BEFORE THE STATE OF NEW YORK BOARD ON ELECTRIC GENERATION SITING AND THE ENVIRONMENT

In the Matter of

Bluestone Wind LLC

Case 16-F-0559

JUNE 7, 2019

Redacted Prepared Testimony of:

Jeremy Rosenthal Utility Analyst (Environment) Electric Gas and Water State of New York

State of New York Department of Public Service Three Empire State Plaza Albany, New York 12223-1350

| 1  | Q. | Please state your name and business address.     |
|----|----|--------------------------------------------------|
| 2  | Α. | Jeremy Rosenthal, Three Empire State Plaza,      |
| 3  |    | Albany, New York 12223.                          |
| 4  | Q. | By whom are you employed and in what capacity?   |
| 5  | Α. | I am employed by the Department of Public        |
| 6  |    | Service (Department) as a Utility Analyst        |
| 7  |    | (Environment) 3, in the Office of Electric, Gas  |
| 8  |    | and Water, Environmental Certification and       |
| 9  |    | Compliance Section.                              |
| 10 | Q. | Mr. Rosenthal, please state your educational     |
| 11 |    | background and professional experience.          |
| 12 | Α. | I received a Master of Public Administration     |
| 13 |    | from the State University New York at Albany;    |
| 14 |    | Rockefeller College of Public Affairs and Policy |
| 15 |    | in May 2005 with concentrations in Government    |
| 16 |    | Fiscal Management and Environmental Management   |
| 17 |    | and Policy. My undergraduate degree is a         |
| 18 |    | Bachelor of Arts in Environmental Sciences from  |
| 19 |    | the State University of New York, Plattsburgh    |
| 20 |    | received May 1993. Before joining the            |
| 21 |    | Department, I worked for four years as an        |
| 22 |    | Environmental Analyst at the New York State      |
| 23 |    | Department of Environmental Conservation. In     |

| 1  |    | 2009, I joined the Department's Office of Energy |
|----|----|--------------------------------------------------|
| 2  |    | Efficiency and the Environment and was assigned  |
| 3  |    | to work on the Energy Efficiency Portfolio       |
| 4  |    | Standard, Environmental Disclosure Program, and  |
| 5  |    | related issues. In 2016, I transferred to my     |
| б  |    | current position in the Office of Electric, Gas  |
| 7  |    | and Water, Environmental Certification and       |
| 8  |    | Compliance section. My primary responsibilities  |
| 9  |    | include evaluating the environmental impacts     |
| 10 |    | associated with siting, construction and         |
| 11 |    | operation of gas and electric transmission lines |
| 12 |    | under Article VII and electric generation        |
| 13 |    | facilities under Article 10 of the Public        |
| 14 |    | Service Law (PSL).                               |
| 15 | Q. | Have you testified before the New York State     |
| 16 |    | Public Service Commission (Commission) or the    |
| 17 |    | Board on Electric Generation Siting and the      |
| 18 |    | Environment (Siting Board)?                      |
| 19 | A. | I am currently involved in the review of over a  |
| 20 |    | dozen PSL Article 10 cases and affiliated PSL    |
| 21 |    | Article VII cases. For example, I testified      |
| 22 |    | regarding Exhibit 22 - Terrestrial Ecology and   |
| 23 |    | Wetlands - in the Cassadaga Wind Project         |

| 1  |    | (Cassadaga) Case 14-F-0490, the Number Three     |
|----|----|--------------------------------------------------|
| 2  |    | Wind, LLC Case 16-F-0328, and the Eight Point    |
| 3  |    | Wind, LLC Case 16-F-0062 (Article 10), in        |
| 4  |    | addition to the Case 18-T-0202 (Article VII).    |
| 5  | Q. | Please describe your role in this case and the   |
| б  |    | purpose of your testimony.                       |
| 7  | Α. | I am responsible for reviewing Bluestone Wind    |
| 8  |    | LLC's (the Applicant) Application and evaluating |
| 9  |    | the probable environmental impacts from the      |
| 10 |    | construction and operation of the proposed major |
| 11 |    | electric generation wind project (the Project)   |
| 12 |    | to terrestrial ecology. My testimony will focus  |
| 13 |    | on the potential impacts of the Project on avian |
| 14 |    | and bat species, including an evaluation of      |
| 15 |    | proposed actions to minimize and mitigate        |
| 16 |    | impacts to those species.                        |
| 17 | Q. | In your testimony, will you refer to, or         |
| 18 |    | otherwise rely upon, any information produced    |
| 19 |    | during the discovery phase of this proceeding?   |
| 20 | Α. | No.                                              |
| 21 | Q. | Are you sponsoring any exhibits to accompany     |
| 22 |    | your testimony?                                  |
|    |    |                                                  |

| 1  | Α. | Yes. I will refer to several source documents    |
|----|----|--------------------------------------------------|
| 2  |    | as referenced in Exhibit_(JR-1) which is,        |
| 3  |    | generally, journal articles related to the       |
| 4  |    | impacts of wind energy facilities to bats, and   |
| 5  |    | the Vermont wind facility siting guidelines;     |
| 6  |    | Exhibit_(JR-2), which is materials submitted by  |
| 7  |    | the Delaware-Otsego Audubon Society (DOAS);      |
| 8  |    | Exhibit_(JR-3), which is the RoxWind Incidental  |
| 9  |    | Take Plan; and, Exhibit_(JR-4), which is a       |
| 10 |    | regression analysis of curtailment.              |
| 11 | Q. | Do you have concerns with this Project as it     |
| 12 |    | relates to impacts on bats and eagles?           |
| 13 | A. | Yes. I will address eagles first. The Project    |
| 14 |    | has the potential to impact Bald Eagles          |
| 15 |    | (Haliaeetus leucocephalus) and Golden Eagles     |
| 16 |    | (Aquila chrysaetos).                             |
| 17 | Q. | Have these species been observed at the Project  |
| 18 |    | site?                                            |
| 19 | A. | Yes. Both species were observed in the Project   |
| 20 |    | area displaying a wide range of behaviors during |
| 21 |    | site surveys.                                    |
| 22 | Q. | What is the basis for your statement that both   |
| 23 |    | species were observed in the Project area?       |

| 1  | Α. | The basis for this statement is avian risk       |
|----|----|--------------------------------------------------|
| 2  |    | assessment filed by the applicant and the        |
| 3  |    | surveys conducted by DOAS contained in Exhibit_  |
| 4  |    | (JR 2).                                          |
| 5  | Q. | , Does this Project pose a greater risk to       |
| 6  |    | eagles than other projects located elsewhere in  |
| 7  |    | New York State?                                  |
| 8  | Α. | Yes. As indicated in the DOAS April 2019 raptor  |
| 9  |    | survey and the assessment of the seasonal status |
| 10 |    | of golden eagles, the Project area is used by    |
| 11 |    | eagles year-round and has a high concentration   |
| 12 |    | of eagle use compared to other parts of the      |
| 13 |    | State. The report goes on to indicate that The   |
| 14 |    | Project's proposed location is sited in an eagle |
| 15 |    | migration corridor and hosts Golden Eagles as    |
| 16 |    | winter residents and Bald Eagles in both the     |
| 17 |    | summer and winter time. Exhibit_(JR-2, p.        |
| 18 |    | 82,126.)                                         |
| 19 | Q. | Does the Project area contain any geographic     |
| 20 |    | features that are noteworthy in terms of use of  |
| 21 |    | the landscape by eagles?                         |
| 22 | Α. | Yes. On the east side of the Project is a ridge  |
| 23 |    | with a string of proposed turbines that runs     |
|    |    |                                                  |

| 1  |    | north-east from proposed turbine 25 to turbine   |
|----|----|--------------------------------------------------|
| 2  |    | 29. The DOAS 2019 raptor survey observed         |
| 3  |    | regular use of this area by eagles and the DOAS  |
| 4  |    | report notes "many eagles using lift along the   |
| 5  |    | ridge and many migrants followed a direct path   |
| 6  |    | along that ridge." Exhibit_(JR-2, p. 126).       |
| 7  | Q. | Please briefly describe the DOAS report's        |
| 8  |    | findings.                                        |
| 9  | Α. | The DOAS report provides additional survey       |
| 10 |    | information that conflicts with information      |
| 11 |    | provided by the Applicant with respect to eagle  |
| 12 |    | numbers and use patterns, which if valid,        |
| 13 |    | strongly calls into question the protectiveness  |
| 14 |    | of the Project design regarding eagles.          |
| 15 | Q. | What additional information did the DOAS report  |
| 16 |    | indicate?                                        |
| 17 | Α. | The DOAS report provided information showing the |
| 18 |    | Project area is utilized by a winter resident    |
| 19 |    | Golden Eagle population and survey results       |
| 20 |    | further identified high eagle use of the eastern |
| 21 |    | ridge. According to the DOAS report "[t]he       |
| 22 |    | March 2018 surveys in Sanford found the highest  |
| 23 |    | number of individual non-migrant Golden Eagles   |



Why is that significant? 1 Ο. 2 The presence of wintering eagles at the Project Α. 3 increases risk because it increases the amount 4 of time that eagles are on the landscape. The assessment of collision risk in the NCBP is 5 predicated on the idea that Golden Eagles <BEGIN б 7 CONFIDENTIAL INFORMATION>" 8 9 10 11 "<END CONFIDENTIAL INFORMATION> The 12 discovery of a resident Golden Eagle population 13 by the DOAS report calls into question the 14 Applicant's assertions, and the associated risks 15 to Golden Eagles from the Project. 16 Ο. What additional information does the DOAS late winter and spring 2019 survey provide? 17 18 The DOAS late winter and spring 2019 survey Α.

identifies significant eagle use in proximity to
proposed turbines 25, 26, and 29, and the survey
identifies that the area is used by resident
Bald and Golden Eagles and migrating eagles of
both species. Exhibit (JR-2, p. 126).

| 1  | Q. | Did the DOAS report provide any other            |
|----|----|--------------------------------------------------|
| 2  |    | information related to the risk posed by         |
| 3  |    | individual turbines to eagles?                   |
| 4  | Α. | Yes. In addition to surveys, the DOAS report     |
| 5  |    | provides an assessment of risk of individual     |
| 6  |    | turbines to Golden Eagles. (Exhibit(JR-2), pp.   |
| 7  |    | 45-61). In this report, risk to migrating        |
| 8  |    | Golden Eagles from individual turbines is        |
| 9  |    | predicted. The NCBP provided by the Applicant    |
| 10 |    | does not specify risk from individual turbines,  |
| 11 |    | but rather proposes take numbers for eagles in   |
| 12 |    | general form the Project.                        |
| 13 | Q. | Does the report provide any mitigation measures? |
| 14 | A. | Yes. The report makes suggestions of options     |
| 15 |    | for micro-sitting individual turbines to reduce  |
| 16 |    | Golden Eagle risk. The DOAS risk assessment      |
| 17 |    | report predicted five turbines as higher risk to |
| 18 |    | migrating Golden Eagles on the eastern ridge.    |
| 19 |    | The DOAS late winter and spring 2019 raptor      |
| 20 |    | survey identified high levels of use near        |
| 21 |    | proposed turbines 25, 26, and 29. This suggests  |
| 22 |    | that the entire eastern ridge of the Project     |
| 23 |    | site is potentially problematic.                 |

| 1  | Q. | Do areas of the Project other than the eastern                         |
|----|----|------------------------------------------------------------------------|
| 2  |    | ridge pose a risk to eagles according to the                           |
| 3  |    | DOAS report?                                                           |
| 4  | A. | Yes, the DOAS assessment of risk to migrating                          |
| 5  |    | eagles by individual turbines identified                               |
| 6  |    | proposed turbines 23 and 13 as higher risk, but                        |
| 7  |    | surveys have not specifically looked at those                          |
| 8  |    | turbines and nearby turbine sites for eagle                            |
| 9  |    | activity.                                                              |
| 10 | Q. | Do you agree with the conclusions of the Avian                         |
| 11 |    | Risk Assessment provided with the Application?                         |
| 12 | A. | No. The Avian Risk Assessment provided with                            |
| 13 |    | the Application concludes <b><begin b="" confidential<=""></begin></b> |
| 14 |    | INFORMATION>"                                                          |
| 15 |    |                                                                        |
| 16 |    |                                                                        |
| 17 |    | " <end confidential="" information=""> This</end>                      |
| 18 |    | assessment is not supported by observations of                         |
| 19 |    | eagles on the landscape within the Project. In                         |
| 20 |    | short, it is at odds with the DOAS report.                             |
| 21 | Q. | Do you think additional eagle use surveys would                        |
| 22 |    | be beneficial and if so why?                                           |

| 1  | Α. | Yes. The surveys performed to date do not        |
|----|----|--------------------------------------------------|
| 2  |    | provide a complete picture of eagle use in       |
| 3  |    | relation to proposed turbines. As illustrated    |
| 4  |    | by the 2019 DOAS survey, when survey efforts     |
| 5  |    | focused on turbine sites high eagle use was      |
| 6  |    | found. Additional surveys could further inform   |
| 7  |    | the record and facilitate more appropriate       |
| 8  |    | turbine locations.                               |
| 9  | Q. | Did the Applicant propose Certificate Conditions |
| 10 |    | designed to protect the Bald and Golden Eagles?  |
| 11 | Α. | Yes, the Applicant proposed Certificate          |
| 12 |    | Conditions 68, which provides a framework to     |
| 13 |    | avoid and minimize impacts to eagles.            |
| 14 | Q. | Do you agree with the Applicant's stipulated     |
| 15 |    | Certificate Conditions.                          |
| 16 | Α. | Not entirely, which is why DPS Staff did not     |
| 17 |    | stipulate to this condition. My review of the    |
| 18 |    | Applicant's proposed Certificate Conditions      |
| 19 |    | leads me to make several suggested               |
| 20 |    | modifications.                                   |
| 21 | Q. | What are those modifications and why are you     |
| 22 |    | recommending them?                               |

| 1  | Α. | Condition 68(a) calls for "The use of a single  |
|----|----|-------------------------------------------------|
| 2  |    | bio-monitor to simultaneously monitor turbine   |
| 3  |    | locations T25, T26 and T29 for a minimum of two |
| 4  |    | years after operations or the development of    |
| 5  |    | automated avian detection and curtailment       |
| 6  |    | technology systems covering turbine locations   |
| 7  |    | T25, T26, and T29." The condition should        |
| 8  |    | clarify the duration of time that the automated |
| 9  |    | system should remain operational. I recommend   |
| 10 |    | the lifetime of the project after installation. |
| 11 | Q. | Do you have any comments regarding condition    |
| 12 |    | 68(b)                                           |
| 13 | Α. | Yes. Applicant's proposed Condition 68(b)       |
| 14 |    | requires that after the first two years of      |
|    |    |                                                 |

15 operation the Certificate Holder will consult with the DPS and DEC Staff to discuss if ongoing 16 monitoring is needed or determine appropriate 17 18 changes based upon on-site data, updated 19 automated avian detection and curtailment technology, and current research in wind-eagle 20 21 interactions. I recommend this condition 22 include a mechanism to determine the outcome of 23 the consultation if parties are not in agreement

| 1  |    | and a means of enforcement. In addition, I       |
|----|----|--------------------------------------------------|
| 2  |    | recommend that at the end of the first year,     |
| 3  |    | interim monitoring results be provided to DPS    |
| 4  |    | and DEC Staff to inform and lay the foundation   |
| 5  |    | for developing a discussion and building a       |
| 6  |    | consensus at the two-year consultation between   |
| 7  |    | agencies and the Certificate Holder.             |
| 8  | Q. | Do you have any comments regarding the           |
| 9  |    | Applicant's proposed Condition 68(c)?            |
| 10 | A. | Yes. Condition 68(c) discuses actions to be      |
| 11 |    | taken in the event of an eagle take. I           |
| 12 |    | recommend identifying the mechanism that will be |
| 13 |    | employed to ensure that if a take were to occur  |
| 14 |    | it is recognized.                                |
| 15 | Q  | Do you have any other comments on the            |
| 16 |    | Applicant's proposed Certificate Conditions?     |
| 17 | Α. | Yes. I recommend adding DPS Staff to the list    |
| 18 |    | of agencies consulted in developing a Post       |
| 19 |    | Construction Avian and Monitoring and Adaptive   |
| 20 |    | Management Plan as per proposed Certificate      |
| 21 |    | Condition 70. All these recommendations will     |
| 22 |    | lead to better monitoring and coordination.      |

| 1  | Α. | Based on the foregoing, can you make a           |
|----|----|--------------------------------------------------|
| 2  |    | recommendation to the Siting Board regarding the |
| 3  |    | Project design as it relates to impacts to Bald  |
| 4  |    | and Golden Eagles?                               |
| 5  | Α. | Provided the Siting Board adopts the Applicant's |
| 6  |    | proposed Certificate Conditions with the         |
| 7  |    | modifications I have discussed here in my        |
| 8  |    | testimony, I submit that the Siting Board can    |
| 9  |    | make the required findings with regard to impact |
| 10 |    | on eagles. However, if the Siting Board does     |
| 11 |    | not adopt the proposed Certificate Conditions as |
| 12 |    | modified herein, then it should consider         |
| 13 |    | alternative avoidance and minimization and/or    |
| 14 |    | additional mitigation measures.                  |
| 15 | Q. | What types of avoidance and minimization and/or  |
| 16 |    | additional mitigation measures are available?    |
| 17 | Α. | The risks to eagles could be reduced through     |
| 18 |    | eliminating some turbines, micro-siting other    |
| 19 |    | turbines, and/or developing operational          |
| 20 |    | controls.                                        |
| 21 | Q. | What turbines would you recommend for            |
| 22 |    | elimination?                                     |

| 1  | Α. | The eastern ridge was identified as an area      |
|----|----|--------------------------------------------------|
| 2  |    | within the Project site with elevated risk.      |
| 3  |    | Proposed turbines 25, 26, and 29 have documented |
| 4  |    | high use and as such are particularly            |
| 5  |    | problematic. In addition, proposed turbines 13,  |
| 6  |    | 22, 23, 27, 31, 32, and 40 are referred to by    |
| 7  |    | the DOAS report for micro-siting to reduce risk. |
| 8  |    | These turbines could be candidates for micro-    |
| 9  |    | siting. I would recommend such a review during   |
| 10 |    | the compliance phase of this case should the     |
| 11 |    | Siting Board approve the Project.                |
| 12 | Q. | What is micro-siting?                            |
| 13 | Α. | Generally speaking, micro-siting is moving the   |
| 14 |    | location of a turbine on the landscape such that |
| 15 |    | it poses a lower risk.                           |
| 16 | Q. | Are there limitations to micro-siting in the     |
| 17 |    | compliance phase?                                |
| 18 | Α. | Yes. I am advised by counsel that the amount     |
| 19 |    | that a turbine can be moved is limited under the |
| 20 |    | PSL Article 10 regulations before triggering a   |
| 21 |    | revision versus a modification.                  |

| 1  | Q. | Has the Applicant eliminated any turbines from   |
|----|----|--------------------------------------------------|
| 2  |    | the Project as originally proposed to            |
| 3  |    | specifically avoid impacts to eagles?            |
| 4  | Α. | The Applicant, in its most recent update, opted  |
| 5  |    | to eliminate six turbines from the Project       |
| 6  |    | including turbines 11, 16, 19, 22, 30 and 32.    |
| 7  |    | Most of the turbines identified for elimination  |
| 8  |    | are not turbines that are identified as high     |
| 9  |    | risk to eagles.                                  |
| 10 | Q. | In the event the Siting Board does not accept    |
| 11 |    | the pertinent Certificate Conditions with your   |
| 12 |    | recommended modifications, why are you proposing |
| 13 |    | avoidance and minimization?                      |
| 14 | A. | The USFWS issued a report in 2016 entitled "Bald |
| 15 |    | and Golden Eagles, population demographics and   |
| 16 |    | estimation of sustainable take in the United     |
| 17 |    | States, 2016." Exhibit_(JR-1). This report       |
| 18 |    | includes calculations of the level of take Bald  |
| 19 |    | and Golden Eagle population can incur and still  |
| 20 |    | meet management goals that maintain stable or    |
| 21 |    | growing populations. The report found that       |
| 22 |    | Golden Eagles cannot incur any take levels       |
| 23 |    | without offsetting the mortality rate. The       |

| 1  |    | report further states on page vi, "currently,    |
|----|----|--------------------------------------------------|
| 2  |    | the only offsetting by compensatory mitigation   |
| 3  |    | measure the Service has enough information to    |
| 4  |    | confidently apply in this manner is retrofitting |
| 5  |    | of power lines to reduce eagle electrocutions."  |
| 6  |    | This is problematic because the DOAS report      |
| 7  |    | makes a compelling argument that power pole      |
| 8  |    | retrofitting is not effective for Golden Eagle   |
| 9  |    | mitigation in New York State.                    |
| 10 | Q. | Why is that?                                     |
| 11 | Α. | The DOAS report references Western states where  |
| 12 |    | tree cover is not abundant and Eagles often rest |
| 13 |    | on power poles, and are electrocuted. Here in    |
| 14 |    | the Northeast, there is abundant tree cover and, |
| 15 |    | therefore, there are far fewer electrocutions as |
| 16 |    | eagles land on trees not power poles. Exhibit    |
| 17 |    | (JR-2, p.40-44). Review and Assessment of        |
| 18 |    | Compensatory Mitigation Options for Golden Eagle |
| 19 |    | Take Permits in the Northeastern USA, Pages 34-  |
| 20 |    | 44).                                             |
| 21 | Q. | Are there any other reasons why avoidance and    |

22 minimization is warranted?

| 1  | Α. | For the Siting Board to substantively comply     |
|----|----|--------------------------------------------------|
| 2  |    | with Part 182, I am advised by counsel that      |
| 3  |    | mitigation needs to comply with net conservation |
| 4  |    | benefit standards which require a "successful    |
| 5  |    | enhancement of the species" overall population   |
| 6  |    | or contribution to the recovery of the species   |
| 7  |    | within New York.                                 |
| 8  | Q. | In the event the Siting Board does not adopt the |
| 9  |    | proposed Certificate Conditions as modified, are |
| 10 |    | you recommending any other eagle risk avoidance  |
| 11 |    | and minimization measures?                       |
| 12 | Α. | Only the type of operational controls already    |
| 13 |    | noted in proposed Certificate Condition 68 such  |
| 14 |    | as bio-monitors and aviation detection and       |
| 15 |    | curtailment technology.                          |
| 16 | Q. | Aside from eagles, are there other avian species |
| 17 |    | you have concerns about in the Project area?     |
| 18 | Α. | Yes, I am concerned about the impacts to the     |
| 19 |    | Northern Long Eared (NLEB) and migratory bats.   |
| 20 | Q. | Could the proposed Project add to cumulative bat |
| 21 |    | mortality from wind facilities in New York       |
| 22 |    | State?                                           |

| 1  | Α. | Yes. Without adequate avoidance or minimization  |
|----|----|--------------------------------------------------|
| 2  |    | measures the proposed wind turbine facilities    |
| 3  |    | could contribute to bat mortality, particularly  |
| 4  |    | migratory bat species.                           |
| 5  | Q. | Why are you concerned about impacts to migratory |
| 6  |    | bats in particular?                              |
| 7  | Α. | The majority of bat mortality at wind farms is   |
| 8  |    | attributable to migratory bat species, which the |
| 9  |    | Applicant stated accounts for 75% of all bat     |
| 10 |    | fatalities. Migratory bat species in New York    |
| 11 |    | State include the eastern red bat [Lasiurus      |
| 12 |    | borealis], the hoary bat [Lasiurus cinereus],    |
| 13 |    | and the silver-haired bat [Lasionycteris         |
| 14 |    | noctivagans]. Frick, W.F. et al, 2017,           |
| 15 |    | forecasts that at the current level of bat       |
| 16 |    | mortality impacts from wind turbines in North    |
| 17 |    | America, in the absence of adequate minimization |
| 18 |    | measures, impacts could "drastically reduce      |
| 19 |    | population size and increase the risk of         |
| 20 |    | extinction" for migratory bats.                  |
| 21 | Q. | Should measures be taken at the proposed Project |
| 22 |    | site to minimize impacts to all bats?            |

| 1  | Α. | Yes. Migratory bat species are considered        |
|----|----|--------------------------------------------------|
| 2  |    | Species of Greatest Conservation Need in New     |
| 3  |    | York. Since they are not listed as Threatened    |
| 4  |    | or Endangered species, and thus are not          |
| 5  |    | "protected" species, there is no regulatory      |
| 6  |    | requirement that there be a NCBP for those bats. |
| 7  |    | This, however, does not mean that wind           |
| 8  |    | facilities do not pose a risk to such species.   |
| 9  |    | Therefore, operation of the proposed Project     |
| 10 |    | should include a curtailment regime that         |
| 11 |    | adequately minimizes impacts to all vulnerable   |
| 12 |    | bat species including migratory bats.            |
| 13 | Q. | What do you mean by a curtailment regime?        |
| 14 | Α. | A curtailment regime is the management of wind   |
| 15 |    | turbines such that the conditions under which    |
| 16 |    | turbine blades are permitted to spin is          |
| 17 |    | constrained. Cut-in refers to the lowest wind    |
| 18 |    | speed at which turbine blades are permitted to   |
| 19 |    | freely spin.                                     |
| 20 | Q. | Does the Application propose a curtailment       |
| 21 |    | regime with a cut-in speed?                      |
| 22 | Α. | Yes. The Applicant proposed a curtailment        |
| 23 |    | regime with a cut-in speed of 5.0 meters-per-    |

| 1  |    | second (m/s) July 1 through September 30 between |
|----|----|--------------------------------------------------|
| 2  |    | sunrise and sunset when temperatures are above   |
| 3  |    | 10 degrees Celsius (50 degrees Fahrenheit).      |
| 4  | Q. | Did you stipulate to a proposed Certificate      |
| 5  |    | Conditions on cut-in speed?                      |
| 6  | A. | Yes. Staff stipulated to a cut-in speed of 5.5,  |
| 7  |    | but with adaptive management.                    |
| 8  | Q. | What is adaptive management?                     |
| 9  | A. | Adaptive management entails monitoring impacts   |
| 10 |    | to bats from the Project over time and adjusting |
| 11 |    | operations accordingly.                          |
| 12 | Q. | If the Siting board does not accept the proposed |
| 13 |    | stipulated Certificate Condition with adaptive   |
| 14 |    | management, what curtailment regime would you    |
| 15 |    | recommend?                                       |
| 16 | Α. | If the Siting Board does not adopt the proposed  |
| 17 |    | stipulated Certificate Condition, then I would   |
| 18 |    | recommend a curtailment regime with a cut-in     |
| 19 |    | speed between 6.0 m/s and 6.9 m/s. Since bats    |
| 20 |    | are nocturnal, and are particularly active       |
| 21 |    | during warm summer nights, I would recommend a   |
| 22 |    | curtailment regime of 6.0 m/s during July 1 to   |
| 23 |    | October 1, to apply from one half hour before    |

| 1  |    | sunset to one half hour after sunrise when      |
|----|----|-------------------------------------------------|
| 2  |    | temperatures are greater than 50 degrees        |
| 3  |    | Fahrenheit.                                     |
| 4  | Q. | Why do you recommend this curtailment regime if |
| 5  |    | the Siting Board does not adopt the pertinent   |
| 6  |    | proposed stipulated Certificate Conditions?     |
| 7  | Α. | A cut-in speed of 6.0 m/s would afford greater  |
| 8  |    | protection to more species of bats than the     |
| 9  |    | Applicant's proposed 5.0 m/s cut-in speed. This |
| 10 |    | greater benefit is particularly important to    |
| 11 |    | migratory bats that have the highest rates of   |
| 12 |    | wind turbine caused mortality and fly at higher |
| 13 |    | wind speeds.                                    |
| 14 | Q. | Why is higher curtailment more protective of    |
| 15 |    | bats?                                           |
| 16 | Α. | As illustrated in Exhibit(JR-4), there is a     |
| 17 |    | strong trend indicating that increased cut-in   |
| 18 |    | speeds correlate with decreased bat mortality.  |
| 19 | Q. | What is the source data for Exhibit(JR-4)?      |
| 20 | A. | The source of data for Exhibit(JR-4) is the     |
| 21 |    | "American Wind Wildlife Institute White Paper,  |
| 22 |    | Bats and Wind Energy: Impacts, Mitigation and   |
| 23 |    | Tradeoffs," prepared by Taber D. Allison, PhD,  |

| 1  |    | AWWI Director of Research, November 15, 2018     |
|----|----|--------------------------------------------------|
| 2  |    | (White Paper).                                   |
| 3  | Q. | Has this recommended cut-in speed been adopted   |
| 4  |    | elsewhere?                                       |
| 5  | A. | Yes. A 6.0 m/s cut-in speed aligns with          |
| 6  |    | curtailment requirements in neighboring Vermont  |
| 7  |    | as presented in Vermont Agency of Natural        |
| 8  |    | Resources Fish and Wildlife Bat-Wind Guidelines, |
| 9  |    | September 2016. In the State of Maine, the       |
| 10 |    | incidental take plan for the RoxWind project     |
| 11 |    | dated October 2018 adopted a much more stringent |
| 12 |    | curtailment plan. The plan calls for             |
| 13 |    | curtailment that "commences daily 1/2 hour       |
| 14 |    | before dusk to ½ hour after dawn of the          |
| 15 |    | following day, when ambient air temperatures are |
| 16 |    | at or above 32 degrees Fahrenheit. April 15-     |
| 17 |    | July 15 Cut-in speed is increased from           |
| 18 |    | manufactures designed speed to 6 meters per      |
| 19 |    | second (m/s); July 16 - September 15, Cut-in     |
| 20 |    | speed is increased to 6.6 m/s; and, September    |
| 21 |    | 16-September 30, cut-in speed returns to 6 m/s." |
| 22 | Q. | Does a 6.0 m/s cut-in speed achieve total        |
| 23 |    | avoidance of bat mortality?                      |
|    |    |                                                  |

| 1  | Α. | No. A 6.0 m/s curtailment regime will not                            |
|----|----|----------------------------------------------------------------------|
| 2  |    | achieve what is considered complete or total                         |
| 3  |    | avoidance for migratory bats or the NLEB. While                      |
| 4  |    | a cut-in speed of 6.9 m/s could achieve total                        |
| 5  |    | avoidance for impacts on the NLEB, if the Siting                     |
| 6  |    | Board approves a lower cut-in speed, the                             |
| 7  |    | Applicant should also be required to provide a                       |
| 8  |    | NLEB NCBP as reflected in the proposed                               |
| 9  |    | stipulated Certificate Condition.                                    |
| 10 | Q. | Have you considered the increased costs                              |
| 11 |    | associated with higher cut-in speeds?                                |
| 12 | A. | Yes. The project's net conservation benefit                          |
| 13 |    | plan provides values for production impacts                          |
| 14 |    | associated with a 6.9 m/s curtailment. Based on                      |
| 15 |    | the values provided in the NCBP, a curtailment                       |
| 16 |    | of 6.9 m/s would result in an annual energy                          |
| 17 |    | production reduction of <b><begin b="" confidential<=""></begin></b> |
| 18 |    | INFORMATION> .< END CONFIDENTIAL INFORMATION>                        |
| 19 |    | Values were not provided for other cut-in                            |
| 20 |    | speeds, but based on my experience evaluating                        |
| 21 |    | other projects, I would estimate that a 6.0 m/s                      |
| 22 |    | curtailment would be about half as much. The                         |

| 1  |    | magnitude of revenue impacts would roughly       |
|----|----|--------------------------------------------------|
| 2  |    | parallel energy impacts.                         |
| 3  | Q. | Did the Siting Board establish a cut-in speed in |
| 4  |    | Case 14-F-0490 (Cassadaga)?                      |
| 5  | Α. | Yes. In Cassadaga the Siting Board ultimately    |
| 6  |    | determined that a cut-in speed of 5.0 m/s was    |
| 7  |    | appropriate with additional mitigation. This     |
| 8  |    | decision, however, acknowledged potential        |
| 9  |    | impacts to migratory bats with the rational that |
| 10 |    | "[w]ith respect to bat species that are not      |
| 11 |    | listed as threatened or endangered, we are       |
| 12 |    | required to find that impacts to those species   |
| 13 |    | will be minimized or avoided to the maximum      |
| 14 |    | extent practicable. A final Net Conservation     |
| 15 |    | Benefit Plan designed for NLEB will also benefit |
| 16 |    | non-NLEB species."                               |
| 17 | Q. | What was Cassadaga Wind's NCBP?                  |
| 18 | Α. | Cassadaga Wind's NCBP ultimately resulted in     |
| 19 |    | telemetry studies of the NLEB on Long Island,    |
| 20 |    | and potentially to identification and protection |
| 21 |    | of the NLEB' roost tree habitats. The same as    |
| 22 |    | is proposed here.                                |
| 23 | Q. | Did this assist in studying migratory tree bats? |

| 1  | Α. | Not entirely, the NLEB telemetry studies         |
|----|----|--------------------------------------------------|
| 2  |    | identified the location of several roost trees   |
| 3  |    | used by the NLEB on Long Island. The telemetry   |
| 4  |    | work did not study migratory tree bats or their  |
| 5  |    | use of habitat.                                  |
| 6  | Q. | Should the curtailment regime remain constant    |
| 7  |    | throughout the life of the Project?              |
| 8  | A. | Not necessarily, changes in bat populations can  |
| 9  |    | occur over time and new technologies to minimize |
| 10 |    | impacts may develop as well. Accordingly, I      |
| 11 |    | recommend that a plan to evaluate bat            |
| 12 |    | populations, minimization efforts, and potential |
| 13 |    | modifications to operations every five years     |
| 14 |    | should be developed by the Applicant and be      |
| 15 |    | submitted for Department Staff's acceptance as   |
| 16 |    | proposed in Stipulated Certificate Condition 67  |
| 17 |    | for the Siting Board's consideration.            |
| 18 | Q. | Is it reasonable to expect the Applicant to      |
| 19 |    | agree to an unknown future cost that could arise |
| 20 |    | from future curtailment regime modification?     |
| 21 | A. | The concern of incurring unknown future costs is |
| 22 |    | legitimate. The cost uncertainty should be       |
| 23 |    | addressed through language as proposed in        |

| 1  |    | Stipulated Certificate Condition 67 for Siting   |
|----|----|--------------------------------------------------|
| 2  |    | Board's consideration. Specifically, the         |
| 3  |    | Project owner should not be subject to adopting  |
| 4  |    | future curtailment or other mortality reduction  |
| 5  |    | methods that are costlier than the curtailment   |
| 6  |    | regime initially adopted. However, it should be  |
| 7  |    | noted that in Cassadaga the Applicant's Brief on |
| 8  |    | Exceptions expressed a willingness to consider   |
| 9  |    | an adaptive management approach to curtailment   |
| 10 |    | based on post-construction monitoring.           |
| 11 | Q. | Should a method for verifying compliance be part |
| 12 |    | of a curtailment regime?                         |
| 13 | Α. | Yes. A curtailment regime should include a       |
| 14 |    | means to verify compliance. The Applicant        |
| 15 |    | should provide a record of curtailment pursuant  |
| 16 |    | to Stipulated Certificate Condition 67.          |
| 17 | Q. | Are there any circumstances under which you      |
| 18 |    | would agree to a curtailment regime with a cut   |
| 19 |    | in speed less than 6.0 m/s?                      |
| 20 | A. | Yes. As indicated, the Stipulated Certificate    |
| 21 |    | Condition 67 requires an evaluation of how       |
| 22 |    | effective curtailment is working at the Project  |
| 23 |    | every five years. This Condition will afford an  |

1 opportunity to employ adaptive management 2 including possible future modifications to the 3 existing curtailment or adoption of other bat 4 mortality minimization measures as technology 5 and knowledge improve over the lifetime of the 6 Project. Proposed Certificate Condition 67 7 protects the Project developer from unknown 8 costs while providing a possible means for 9 future improvements in the overall protection of 10 bats.

11 Are there any other minimization efforts that Ο. 12 you recommend for reducing mortality to bats? 13 Yes. A 2018 article by Christian C. Voight and Α. 14 others contained in Exhibit (JR-2) found that 15 migratory bats appear to be attracted to red 16 lights. They further speculate that aviation lighting on top of wind turbine nacelles may be 17 18 related to migratory bat mortality and that 19 lighting choices could lessen impacts. Accordingly, I recommend, subject to Federal 20 Aviation Administration (FAA) approval, that the 21 22 facility use an aircraft detection lighting 23 system to minimize the presence of red lights in

| 1 |    | the night sky. The article also identifies    |
|---|----|-----------------------------------------------|
| 2 |    | lighting closer to the infrared range as more |
| 3 |    | "bat friendly." If the FAA permits such       |
| 4 |    | lighting options, I recommend their use.      |
| 5 | Q. | Does this conclude your testimony?            |
| 6 | Α. | Yes, at this time.                            |