98-C-1357

Exhibits 368-376

Vol. 26

376

·

Č.

Case: 98-C-1357 Bell Atlantic Date of Request: April 20, 2000 Respondent: BA Panel

CA-BA-35	On page 171 of the panel testimony, it states that NERA analyzed over
	388,000 individual work operations associated with over 4,000 outside
	plant estimate jobs throughout the state." Identify the NERA personnel
	involved in such analysis and detail their educational and professional
	experience in performing such analyses. Produce all documents and
	other materials provided by BA-NY to the involved NERA personnel and
	produce all documents and other materials generated and or relied upon
	in the course of their analysis.

RESPONSE:

The analysis was conducted under the direction and supervision of William Taylor, the witness of record in this proceeding. Dr. Taylor's education and professional experience is described in an attachment to the testimony.

Most of the documents and other materials provided by BA-NY and generated or relied upon by NERA are attached to CA-BA-80. In addition, the following attached documents were provided by BA-NY to NERA:

- (1) FASC Coder Guide
- (2) ECRIS Definition Document, Draft, September 1, 1993
- (3) WCDENSNY2A.xls -- BA-NY wire centers
- (4) Files.doc -- field descriptions for ECRIS database provided in CA-BA-80

Servico	Commisson	
o. 25	C-1357	
12-7-0) o	
376	•	
	0. 25- 12-7-0 376	2-7-00 376

SECTION 7 FASC CODER GUIDE CFC+ UIPHENT CFC R83X EQUIPMENT-REPAIRS REJI R831); 3138R (NYNEX H.Y.)

FIELD REPORTING CODES Elle china -NYNEX FASC CODER GUIDE SECTION 8 Functional FRCs Accounting FRC/USOA/FC RELATIONSHIP OF FIELD REPORTING CODE (FRC) TO UNIFORM SYSTEM OF ACCOUNTS LEVEL SUBACCOUNT (USOA) AND FUNCTION CODE (FC) 17 GENERAL Work reports, as well as some other source documents, prepared by plant occupational personnel and by reporting engineers can show field reporting codes. Field reporting codes are reflected on input transactions to the Property and Cost System and are used to generate Cost Function Codes (CFC) or Special Purpose Function Codes (SPFC). These function codes should be the NYNEX Standard codes described in Volume II of the FA Specifications or a subset of the Standard function codes. TABLE ORGANIZATION The table provides a numerical listing of field reporting codes and their relationship to specific accounts and function codes. The following explains each column.

1. FIELD REPORTING CODE (FRC) - FRCs included in this table are those which are most commonly used in the MYNEX FA System. Local field reporting codes are contained in this table. When a Company chooses to use field reporting codes, the codes should be used to generate function codes. The following is a brief description of the alpha suffix of the FRC. For additional information, refer to the function code marratives or AI-45 for Field Reporting Codes.

۰.

۲.

1

5

C - Construction (See note.) E - Expensing of station connections H - Telco Shop Repairs and Salvage Adjustment M - Rearrangements and changes (See note.) P - Customer preceding R. M. E and Y (See note.) R - Repairs (See note.) T - Testing/Pre-Service Interoffice Testing X - Removal (See note.) Y - Line disconnections and station apparatus removal (See note.)

TICE Page 36 closure outside the of its subsidiaries except en agreement

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

NYNEX Functional Accounting

FASC CODER GUIDE

NYNEX SECTION 8 Functional Accounting

> FIELD REPORTING

CODE

USOA

COMPANY

FASC CODER GUIDE

SPFC

CFC

NYT-

E-5300

DETAIL

FIELD REPORTING CODES SECTION 8 FRCs FRC/USOA/FC

5

						FRC
				-		FRC/USDA/FC
FIELD		Γ		1	T	1
CODE	COMPANY	USDA	CFC	SPFC	E-530	DETAIL
POLE LINES						Constanting of the second
1C 1C 1H 1M 1R 1R	A B A,B A,B A,B	2411.1 2411.1 6411 6411 6411	C10010 C10001 H100 M100 R100	5G101 5G100		Except Actual Cost Whole Ownership
IX AERIAL CABL	B HETALL	3100.51 3100.51	010010 010001	5F1010 5F1001		Except Actual Cost Whole Ownership
2C 2H 2M 2R 2R 2R 2R 2R 2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2T	8,8 4,8 4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8	2421.1121 6421.1 6421.1 6421.1 6421.1 6421.1 6421.1 6421.1 6421.1 6421.1 6421.1 6421.21 6421.21 6421.21 6421.1 7 6421.1 7 7 7 7 7	C20209 H200 M20001 420001 420001 220301 20301 20301 20301 20301 20301 20201 224	5G2005 5G3001 5G30 5F3001 5F30 5F2001	· · · ·	Shop Repairs Non-Svc Acc. Lines Out Mass Out Mass Toll Out Mass Toll Out Mass Line Disconnection
C H M R X	A, B 2 A, B 6 A, B 6 A, B 6 A, B 3	431 C3 431 H3 431 M3 431 R3 100,57 D3	300 300 300 300 300 300	5G22 - 5F22	•	

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) * Measured Work ** Non Measured Work

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

UNDERGROUND CONDUIT C40010 H400 Except Actual Costs |5G1110 4C 2441.1 A 4H A,B A,B 6441.1 6441.1 4M M400 -. . R400 D40010 4R A.B SF1110 Except Actual Cost 3100.58 4X A UNDERGROUND CABLE - METALLIC C500 M500 R500 5C 5M 2422.11 5G23 . Exchange A,B . A.B -. 5R 6422.1 -A,B C503 D503 5633 5F33 ٠ 1011 2422.21 5TC A, 8 5TX 5TX 5X 5X To11 3100.53 A 3100.5321 D503 3100.53 D500 . 5F33 Toll B 3100.53 3100.53 D500 3100.5311 D500 5F23 5F23 Exchange AB . Exchange SUBMARINE CABLE - METALLIC Exchange - Clearing 2424.11 C60010 5G2410 6C A Costs - Actual Exchange 5G24 . 2424.11 C600 6C B . M600 6424.1 6M A,B -. 6R 6424.1 R600 _ A,B C60310 5G3410 Toll-Clearing Costs 6TC 2424.21 A Actual . 6TC 2424.21 C603 5G34 Toll В D603 D603 To11 To11 5F34 6TX 3100.55 AB . 5F34 6TX 3100,5521 D600 D600 5F24 Exchange 6X A 3100.55 5F24 ٠ Exchange 6X в 3100.5511

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) * Measured Work ** Non Measured Work

NOTICE Issued: 01/95 Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

YNEX unctional ccounting			FASC CODE	ER GUIDE		SECTION 8 FRCs	NYNEX Functional Accounting	FASC CODER GUIDE		SECTION 8
				<u>_</u>		FRC/USOA/FC			200	FRC/USOA/FC
FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL	FIELD REPORTING CODE COMPANY USOA	CFC SPF	NYT- E-5300	DETAIL
TERMINAL E 8H BUILDING	QUIPMENT	- SHOP RE	PAIRS AND	SALVAGE A	DJUSTMEN	rs I	LAND/BUILDING FIXTURES	10020 15076		DETAIL
10C 10C 10X 10X 10X	A, B K B K A	2121.1 161-1110 3100.211 171-1110 3100.21	C014 C014 D016 D016 D016	5G7K 5G7K 5F7K 5F7K 5F71			20C B 2121.2 20X B 3100.212 LEASEHOLD IMPROVEMENTS 20C K 20C K 161-1310 20X K 171-1310	C013 5G7L D015 5F75		Land Building Fixtures Building Fixtures
AERIAL CAB 12C 12M 12X	LE - MET A B A	ALLIC 2421.111 6421.1 3100.52	C20101 M20002 D20101	5G2101 5F2101	•	Block - Out Mass. Svc Acc. Wires Block - Out Mass.	TREE TRIMMING 21R A.B 6411 AERIAL CABLE - METALLIC - FI	R120 -	1 • • 1	
CONDUIT SY 14C 14T 14X	STEMS - B A B	MAIN/TESTI 2441.11 6533.41 3100.581	IG C404 T41A-F	5G1U -		Conduit - Main Testing-Inter- office Intralata	22C A 2421.112 22X A 3100.52 CONDUIT SYSTEMS - SUBSIDIARY	C20201 5G2001 D20201 5F2001		Outside - Mass. Outside - Mass.
UNDERGROUN	D CABLE -	- NON METAL	LIC	15020	•		24L B 2441.12 24X B 3100.582 PANEL: C.O. EQUIPMENT	C403 5G13 D40002 5F1102	::	
15TX	B	3100.5323	D581	5F38		Ta11	27X B 3100.3332	D720 5F01		
17X	B	3100.3331	(D710	5F00	1					

•`.

Issued: 01/94 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

.

Issued: 01/94 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

.

LEASEHOLD IMPROVEMENTS 300 2682 613A 614A 5GSA 5F5A A.8 A.8 30% BUILDING FIXTURES 161-1210 C013 171-1210 D015 567L 300 K 30X POLE LINES-ACTUAL COST ITEMS 2411.1 3100.51 C10003 5G1003 5F1003 310 * 31X AERIAL CABLE - METALLIC - BLOCK 2421.1111 C20109 3100.5211 020101 562109 5F2101 320 B 32% UNDERGROUND CONDUIT - ACTUAL COST 5G1103 5G1103 5F1103 5F1103 C40003 34C 2441.1 2441.13 3100.58 C40003 040003 34C 8 34X ٨ 040003 8 3100.583 34X ELECTRO-MECHANICAL SWITCHING - STEP BY STEP EQUIPMENT 37C 37C 37H C730 5G02 2215.1 . A 2215.1 6215.1 5G0201 C73001 В H730 8 . 37M 37R -. Ā,B 6215.1 M730 R730 D730 6215.1 -٠ A,B 5F02 5F0201 37X Å 3100.331 073001 37X 3100.331

FASC CODER GUIDE

CFC

USOA

COMPANY

NYT-E-5300

SPFC

NYNEX Functional

Accounting

FIELD

CODE

12

SECTION 8 FRCs

FRC/USOA/FC

DETAIL

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) * Measured Work

NOTICE Issued: 01/95 Not for use or disclosure outside the . -NYNEX Corporation or any of its subsidiaries except under written agreement

counting						FRC/USDA/FC
]
IELD EPORTING	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
SUBSCRIBE	A LINE TES	TING - MAINT 6533.1 [1	TENANCE	•	1 - 1	
AERIAL CA	BLE - EXC	HANGE - META	C20241	562041	1	Outside Mass.
42C 42H 42R 42X		6421.1 6421.1 3100.52	M20003 R20002 D20241	5F2041		Drop & Block Drop & Block Outside Mass Drop & Block
BURIED C	ABLE - KE	TALLIC	CB0110	562P10	1.	Except Actual Cost Cable and Wire
45C 45M 45M 45R 45R	8 4 8	6423.1 6423.1 6423.1 6423.1	MB0001 MB0009 R80001 RB00	563510	1:	Toll-Except Actual
45TC 45TC 45TX	BA	2423.21 3100.54	CB03 080310	5G35 5F3510	, ·	Toll Toll-Except Actual Cost
451%	B	3100.5421	0803	5F35 5F251	• .	Except Actual Cost (Exchange)
45X 45Y	8 A,8	3100.541 6423.1	1 080001 7226	5F250	" ·	Line Disconnectio
CROSSE	AR EQUIPH	ENT				×
47C 47C	A B	2215.2	C740 C74001 H740	5G03 5G03	01	Equipment

NY only: Contrac * Measured Work

NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement NOTICE Issued: 01/95

D REPORT

NYNEX Functional FASC CODER GUIDE SECTION 8 Accounting FRCs FRC/USOA/FC FIELD REPORTING NYT-COMPANY CODE ·USOA CFC SPFC E-5300 DETAIL CROSSBAR EQUIPMENT (CONTN'D) 6215.2 M740 47M 47M 6215.2 M74009 8 . 6215.2 R740 478 . -47R R74009 8 6215.2 -. 47X 3100.332 0740 5F03 . 47X 3100.332 074001 5F0301 8 AERIAL CABLE - VDT DIRECT - METALLIC DROP 2421.51 520 A.E 10208 15G3K 52M 6421.51 M208 A,B 52R A,B 6421.51 R208 52X A,8 3100.5251 D208 SF3K TESTING - INTEROFFICE, INTERLATA 54T 6533.45 11453 T458-F BURIED CABLE - VOT DIRECT - METALLIC DROP [CB08 55C A,8 2423.51 15G3P 55M 6423.51 MB08 A.B 6423.51 55R RB08 A,B 55X I A B 3100.5451 0808 5F3P OTHER CIRCUIT EQUIPMENT - ANALOG 5G0A01 5G0A01 57C C75001 2232.29 57C 2232.29 C75001 B 57H 6232.29 H758 B -M75C 57M 6232.29 -. 57M B 6232.29 M75C01 -٠ 57R A.B 6232.29 8758 . 5F0Z 57X 3100.3629 0758 D75801 SFOZOL 57X 3100.3629 R NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) * Measured Work

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

NYT-DETAIL FIELD E-5300 SPFC REPORTING CFC USOA COMPANY CODE SUBSCRIBER LINE TESTING - SUBSCRIBER REPORTS 17217 16533.31 A.8 T11A 61E 6533.21 61T OTHER RADIO FACILITIES Terstrial Hicrowave 5G0501 Equipment 1076001 2231.21 Terstrial Hicrowave 500501 C76001 670 2231.21 Terstrial Microwave H760 -67C 6231.21 Terstrial Microwave -67H H766 6231.21 Terstrial Hicrowave . 67M A.B 8764 6231.21 5F05 Terstrial Microwave A,E 67R 3100.3521 0760 SF0501 3100.3521 076001 . 67% 8 67X STATION APPARATUS, NETWORK TERMINATING WIRE 720L 6362.913 -A.8 722L 68AN 6362.913 A.8 . 68AY 7213 6362.911 -Cust Prem Insd Wire A.8 68E 7204 6362.911 Cust Prem Insd Wire A.B -68M 7212 6362.912 Cust Prem Insd Wire A,B -68PE 7202 6362.912 . Cust Prem Insd Wire A.B . 68PM 7303 6362.912 A.B . 68PR 7222 6362.912 A.B . 68PY 7305 6362.911 -A,B 688 7223 6362.911 A.B 68Y AERIAL CABLE - VOT JOINT USE - METALLIC DROP 5G3H 10209 12421.71 A.B 72C M209 6421.71 A,B R209 72M 6421.71 SF3H A.8 728 0209 3100.5271 NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) * Measured Work

FASC CODER GUIDE

NYNEX Functional

10

Accounting

REPORTING

CODES

11

SECTION 8

FRC/USOA/FC

NOTICE Not for use or disclosure outside the Issued: 01/95 NYNEX Corporation or any of its subsidiaries except under written agreement

NYNEX Functional Accounting

FASC CODER GUIDE

SECTION 8 FRCs

12

· • ·

÷.

F

NYNEX Functional Accounting

-

FASC CODER GUIDE

FRC/USOA/FC

FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
CONDUIT SY	STEMS -	EMPIRE CITY	SUBWAY			
74C	B	2441.7	1C405	15G14	1	}
74H	8	6441.B	H401			
74M	В	6441.8	M401	1		
74R	В	6441.8	R401	1		
74X	B	3100.974	D401	SF14		
BURIED CAB	le - Vot	JOINT USE	- METALLIC	DROP		
75C	I A.B	2423.71		15030		1
75M	A.B	6423 71	Mano	2024		
75R	A.B	6423 71	BBOO			
75X	A,B	3100.5471	DB09	5F30	j	
ELECTRONIC	ANALOG	EQUIPMENT				
77C	A	2211.1	C775	5G07		
77C	В	2211.1	C77501	5G0701		
77H	8	6211.1	H775	-		
77H	A	6211.1	M775	-	1	
77M	B	6211.1	M77509	-	•	
778	A	6211.1	R775	-		
77R	в	6211.1	R77509	-	•	
77X	Α	3100.311	D775	5F07		
77X	8	3100.311	077501	SF0701		
CUSTOMER PI	REMISES	INSIDE WIRE				
78PE	A.B	6362.912	7210	-		•
78PM	A.B	6362.912	720K	-	•	
78PR	A.B	6362.912	730F	-		
78PY	A.B	6362.912	7220	-	•	
SUBSCRIBER	LINE TE	TING - PUB	IC TELEPHO	DNE		
015 1		CE 22 22 2	17910			
310	A,0	0233.32	1218	-		
011	л,в	0533.22	1118	-		

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) * Measured Work

Issued:	01/95	NOTICE							
	NYNEX	Not for use or disclosure outside the Corporation or any of its subsidiaries except under written agreement							

ELD PORTING DE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
RIAL CAR	LE - NON	TALLIC				75
82C 82H 82M 82R 82R 82R 82TC 82TC 82TX 82TX 82TX 82X 82Y	8 A,8 A,8 A B A B B B B B B B B B B B B B B B B	2421.122 6421.2 6421.2 2421.22 2421.22 2421.22 3100.52 3100.522 3100.5225 3100.5216 6421.2	282 8280 8280 8280 628301 6283 028301 0283 0282 7225	5G26 5G3601 5G36 5F3601 5F36 5F26		Outside Mass. Outside Mass.
UNDERGRO 85C 85M 85R 85TC 85TC 85TX 85TX 85X 85X 85X	UND CABLE A.8 A.8 A.8 A.8 A.8 A.8 A.8 A.8 A.8 A.8	- NONMETALL 2422.12 6422.2 6422.2 2422.22 2422.22 3100.53 3100.5322 3100.5312	IC (580 #580 8580 583 583 583 583 583 580 580 580	5G28 5G38 5G38 5F38 5F38 5F28 5F28		Toll Toll Toll Toll Exchange Exchange
SUBMARI B6C B6C B6M 86R 86RC 86TC 86TC 86TX 86TX 86TX 86TX	INE CABLE A B A.B A.B A B A B A B A B A B A B A	- NONHETALLI 2424.12 2424.12 6424.2 6424.2 2424.22 2424.22 2424.22 3100.55 3100.555	C C68010 C680 M680 C68310 C683 D683 D683 D680 C680	56291 5629 5639 5639 5639 5639 5639 5639 5639 5629 5629	10	Exchange Exchange Toll Toll Toll Exchange Exchange

NY only: Contracted Labor - Plant Cost Res Measured Work Mon Measured Work

13

/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement Issued: 01/95

REPORTING CODES SECTION 8 FRCs FRC/USOA/FC

				2.21.3.00			FRC/USO
REPOR	TING	T		1	-		
CODE		OHPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
CENTR	L OFFI	CE EQUIP	MENT		1.51		DETAIL
87M 87R 87R 87X INTRABU 88PE 88PF 88PR 88PR 88PY TOWERS/1		CABLE - 636 636 636 636	212.1 112.1 112.1 100.321 CUSTOMER 52.912 12.912 2.912 7 2.912 7	C/601 H776 M77609 R77609 D77601 OwnED Calk 20V 30R 22K	560801 5F0801	Ele Ele Ele Ele Ele Ele Ele Ele Ele Ele	ctronic Digiti ctronic Digiti ctronic Digiti ctronic Digiti ttronic Digiti allation rgmts. & Chgs. irs & Upkeep onnect
91M 91R 91T 91T 91T 91X THER DIG	A,B A,B A,B ITAL ED	2411 6411 6533 6533 3100	.9 (1 . M1 .92 T1 .9 T19 .51 D10	03 56 09 90 13 571	2	Tower Tower Tower Testin Testin	s s 19 - Other 19 - Other
7C 7H 7M 7R 7X	8 8 8 8 8 8	2232. 6232. 6232.1 6232.1 3100.3	19 C75 19 H750 19 M750 9 M750 9 R750 619 D750	901 5G11		1	-
STRUCTIO	ON IN P	ROGRESS		I JPEUA	04		1
0-2000C	ĸ	161-40	10 632н	5G9H			1

Issued: 01/95

1/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

14

. .

unctions]			FASC CODE	R GUIDE		SECTION FRC
						FRC/USOA/F
FIELD REPORTING CODE	COMPANY	USDA	CFC	SPFC	NYT- E-5300	DETAIL
AERIAL CAE	BLE - MET	ALLIC				
102C	в	2421.1121	C20201	5G2003		New Svc. Access Wires (Labor)
MAINTAINIP	IG TRANSM	ISSION POW	ER			
107R	I A	6531	R795	1	1	1
AIR CONDIT	TIONING -	PLANT AUTI	HORIZED			
110M 110M 110R 110R	A B A B	6121.1 6121.11 6121.1 6121.1	M011 M011 R011 R011		••	
AERIAL CAE	BLE - MET	ALLIC - BU	ILDING - E	BLOCK MASS	. EXCLUD	ING U.G. CONN.
112C 112X	1	2421.111 3100.52	C20111 D20111	5G2111 5F2111	1	
OPERATOR S	SYSTEMS C	ONTROL OFF	ICE EQUIPH	IENT		
117C 117M 117R 117X		2220.1 6220.1 6220.1 3100.34	C714 M721 R711 D711	5G1A 		
AERIAL CAE	BLE - MET	ALLIC - EX	CHANGE - M	MSS. EXCE	PT U.G.	CONN.
122C 122TC 122TX 122TX		2421.112 2421.21 3100.52	C20211 C20311 D20311	5G2011 5G3011 5F3011		

NYHEX

FIELD REPORTING CODES

15

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) ** Non Measured Work

/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement Issued: 01/95

NYNEX Functional FASC CODER GUIDE Accounting SECTION 8 FRC/USOA/FC FIELD CODE COMPANY USOA NYT-CFC SPFC E-5300 DETAIL FURMITURE AND OTHER TOOLS IN C.O. EMBEDDED INVESTMENT IN INDIVIDUAL ITEMS OF SMALL VALUE 127C 127X 2116.93 C700 3100.924 0700 I Ä 5G00 TELEPHONE - DISPOSITION COSTS 1280 A.8 2311.11 128X 6102 5642 5F08 A.B 3100.41 Construction Terminal Equip-Disposition Units AERIAL CABLE - EXCHANGE - METALLIC 132C 18 [2421.1111 [C20101 15G2101 | · Block - New Svc BURIED CABLE - METALLIC 145M 18 6423.1 [MB0001 CROSSBAR #1 ٠ Svc Access Wires 147N 6215.2 147R H74001 l ě R74001 -O.D.S. EQUIPHENT 157C 2232.11 2232.11 6232.11 8 C751 C75101 157C 5609 560901 157H 8 157M 8751 ٨ -6232.11 M751 157H -8 6232.11 M75101 157R -A,B . 6232.11 3100.3611 R751 157x -. 0751 157X 5F09 3100.3611 075101 5F0901

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) Heasured Work

Issued: 01/95

NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except 16 under written agreement

						•
(NEX unctional ccounting			FASC CODE	R GUIDE		SECTION 8 FRCs
						FRC/USOA/FC
FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
RADIO - NON	CELLUL	AR AND OTHE	R			·
167C 167C 167H 167H 167R 167X 167X	A B B A A B B	2231.22 2231.22 6231.22 6231.22 6231.22 3100.3522 3100.3522	C764 C76401 H761 M767 R765 D764 D76401	5G1E 5G1E01 - - 5FOW 5FOW01	•	Equipment Equipment
168PE	SET CON	VERSIONS 6362.92	721E	1 -	1	1
ELECTRONIC	ANALOG	EQUIPMENT -	#1 ESS			
177M 177R	9 8	6211.1 6211.1	M77501 R77501	=		#1 ESS-Rearrange. #1 ESS ~ Repair
PUBLIC TELE	PHONE E	QUIPMENT -	COIN			
188C 188E 186H 188M 188R 188R 188X 188X	A, B A, B A, B A, B A, B A, B A, B A, B	2351.1 6351.1 6351.1 6351.1 6351.1 6351.1 3100.451 6351.1	6180 7370 H881 7280 7380 6190 7360	5GE0 - - 5FE0	*	
HEATING - P	LANT AU	THORIZED				
210M 210M 210R 210R	A B A B	6121.1 6121.11 6121.1 6121.1	M012 M012 R012 R012			

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) * Measured Work

** Non Measured Work

1.00

4

FRCs

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

NYNEX Functional Accounting

FASC CODER GUIDE

SECTION 8 FRCs NYNEX Functional Accounting

FASC CODER GUIDE

SECTION B

FIELD REPORTING

FRC/USOA/FC

FISIO	1	T	T	1	· · · · ·	·····
REPORTING	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
LAND						
211-00C 211-00C 211-70C	B K B	2111 161-1010 2111.7	C020 C020 C022	5G76 5G76 5G79		
LAND IMPRO	VEMENTS					•
212-00C	ţκ	161-1030	10021	5G78		I
AERIAL CAB	LE - MET/	ALLIC - BUI	LDING EXCH	NGE - BLO	CK MAS	5. U. G. CONN.
212C 212X 212X	A A K	2421.111 3100.52 171-1030	C20121 D20121 D021	5G2121 5F2121 5F78		
AERIAL CAB	LE - MET/	ALLIC - EXCH	HANGE			
222C 222TC 222TX 222TX 222X		2421.112 2421.21 3100.52 3100.52	C20221 C20321 D20321 D20221	5G2021 5G3021 5F3021 5F2021		Other Mass-UG Conn Hass U.G. Conn Mass U.G. Conn Mass U.G.Conn
STATION APP	ARATUS -	• TEL. & MIS	C STATI	ON APPARA	TUS OTH	ER COST
228C	A,B	2311.12	6103	5G43	•• 1	
228X	A,8	3100.41		5F43	••	
BURIED CABL	.E – EXCH	ANGE - META	LLIC	•	'	
245C 245X	8 8	2423.112 3100.5411	CB02 DB0002	5G20 5F2502	:	Wire-Ex Svc Access Wire

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) Measured Work

** Non Measured Work

/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement Issued: 01/95 18 · - ' .

-						FRC/USOA/FC	8
							Ĭ
FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL	ŝ
SUBSCRIBER	PAIR -	GAIN CIRCUI	T EQUIPMEN	т			
2570	1 4	12232 12	10752	15600	1	Digital Equipment	
2570	L A	2232 21	C75E01	SG0W01		Analog Equipment	1
257EM	l X	6232.12	M759	-		Remote	
257EM	B	6232.21	M75B	-	* *	Anlg-Remte & Int.Rep	
257H	B.	6232.21	H754	-		Analog Equipment	
257M	A	6232.12	M752 .	- 1		C.O. Term	
257H	B	6232.21	M75A	-		Analog	
257ER	8	6232.21	R755	1 -	**	Anlg-Remte & Int.Rep	
257R		6232.12	R752	-		C.D. Term	
257R	8	6232.21	R754	-	•	Analog	
257ER	A	6232.12	R759	1	10 C	Remote & Int.Rep	l
257X	A	3100.3612	D752	SFOC		Digital	
257X	B	3100.3521	D75A01	SF0Y01	1. T. T.	Analog	1
GENERAL PI	URPOSE CO	MPUTER EQUI	PMENT				
261-030	I B	12124.1	16303	5G82	1	1	ļ
261-03C	l ĸ	161-2110	630305	568205		1	
261-03X	В	3100.24	6313	5F82		1	
261-03X	l K	171-2110	631305	SF8205			
261-04C	В	2124.3	6307	5G84	1		1
261-04C	K	161-2113	6307	5G84		1	1
261-04X	B	3100.24	6314	5F84	1		1
261-04X	I K	171-2113	6314	5F84			
261-05C	l K	161-2112	630306	5G8206		Details mats. Mgmt.	1
261-05X	l K	171-2112	631306	5F8206	1	Details Mats. Mgmt.	

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) * Measured Work ** Non Measured Work

Measured only for Dutside Plant Work (JFC 42XX)

NOTICE Issued: 01/95 Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

NYNEX Functional Accounting		···	FASC CO	DER GUIDE		SECTION 8 FRCs	NYNEX Functional Accounting			FASC CODEF	GUIDE		SECTION FR
				·····		FRC/USOA/FC							FRC/USOA/
FIELD REPORTING CODE	COMPANY	USDA	CFC	SPFC	NYT- E-5300	DETAIL	FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
FURNITURE/	FFICE E	QUIPMENT			•	······	VEHICLES A	ND OTHER	WORK EQUIS	-L	I	I!	
261-11C 261-11X 261-11X 261-11X 261-12C 261-12C 261-12C 261-12X FURNITURE/E 261-21C 261-21X 261-22C 261-22C 261-22C 261-22X 261-22X	B K B K B K CUIPMENT K K B K K K	2122.11 161-2021 161-2022 171-2012 2122.12 161-2023 3100.22 171-2012 161-2022 171-2012 2122.9 161-2024 3100.925 171-2012	6308 630101 0013 631101 630C 630201 0014 631201 630102 631102 630H 630202 001A 631202	5G88 5G8001 5F74 5F8001 5G89 5G8101 5F76 5F8101 5F76 5F8101 5F8002 5G80 5G8102 5F70 5G8102 5F70		Storeroom Furn. Storeroom Offc Equip Other Furniture Other Office Equip Storerm. Bidg Equip Embedded Invest- ment Furniture Other Bidg Equip Embedded Investment Furniture	264-01C 264-01X 264-01X 264-02X 264-02X 264-22C 264-22C 264-23C 264-23C 264-23C 264-23C 264-23C 264-33C	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2112.1 161-3110 3100.12 171-3110 2115.1 3100.15 2115.9 3100.921 2116.3 161-3010 3100.16 171-3010 2114 161-3210	6321 6321 6331 6322 6322 6322 6322 6320 632A 632A 632A 632A 633A 633A 6328 632F	5G90 5G90 5F90 5G91 5G91 5G9C 5G9A 5G9A 5G9A 5G9A 5F9A 5G97 5G97 5F9F		Motor Vehicles Auto & Light Tru Garage Work Equi Embedded Invest- ment Garage Work Equip Spec Tools/Wrk Equip Spec Purp Vehicl Other trucks, trailers, aircra and watercraft
261-41C 261-41C 261-41X	HENT B	2123.11 3100.231	630D D017	5G88	1	Storeroom	264-33X 264-33X 264-34C 264-34X 264-43X	8 K K B	3100.14 171-3210 161-3211 171-3211 2116.91	6338 633F 632G 633G 632D	5F97 5F9F 5G9G 5F9G 5G9D		Tractors Spec Tool/Wrk Ed
261-42X 261-52C 261-52X 261-70C 261-70X	B B B B B B B B B B B B B B B B B B B	2123.12 3100.231 2123.91 3100.926 2122.7	630E D018 630J D01B 630K D012	5G8C 5F7N 5G8H 5F7Q 5G87		Embedded Invest- ment Off. Sup Equip	264-71C 264-71X 264-215X 264-215X 264-225C 264-225X	8 8 8 8 8	2112.7 3100.97 2116.51 3100.16 2116.52 3100.16	6323 6333 632504 633504 632802 633506	5G92 5F92 5G9404 5F9404 5G9802 5F9406		Sta App/Lg PBX M Eng. Tools - Mi
TWORK	1-		10012	1 21.12	1		264-3150	B	2116.92	632E	5G9E		Embedded Investa -Other Tools & V Fon
161-71C	2	122.2 61-2210	630A 630A	5G8A 5G8A			L	<u> </u>	I.,,,,	<u> </u>		I	
ved: 01/95								<u>-</u>					-

under written agreement

.

.

NYNEX Corporation or any of its subsidiaries except under written agreement

FIELD REPORTING CODES

NYNEX Function Account	ng		FASC COD	ER GUIDE		SECTION B	۰۰ <u>۱</u>	NYNEX Functional Accounting			FASC CODE	R GUIDE		SECTION B FRCs
						FRC/USDA/FC		<u></u>						FRC/USOA/FC
FIELD REPORTI CODE	COMP	ANY USOA	CFC	SPFC	NYT- E-5300	DETAIL	Ê	FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT-	DETAIL
VEHICLE	S AND OT	IER WORK EQL	IPMENT (CON	סיאדו)					1	1			<u>.</u>	
264-31 264-41 264-41	SX B SC B	3100.923 2116.93	633E C700	5F9C 5G00		Embedded Investment		301C 301X	- JOINT	USE 2411.1 3100.51	C10002 D10002	5G1002 5F1002	:	}
RADIO -	SATELLIT	13100.924 E AND FARTH		5FOB		0.0.		OTHER - PL	ANT AUTH	ORIZED		•		
267C 267H 267M 267R	8. 8 8	2231.1 6231.1 6231.1	C76301 H763 H765	5G1001				310M 310M 310R 310R	A B A B	6121.1 6121.11 6121.1 6121.1	M013 M013 R013 R013			
267X	8	3100.351	R763 D76301	5FOV01				NETWORK CH	ANNEL TE	RMINATING	EQUIPMENT	·		
PUBLIC T	LEPHONE	EQUIPMENT -	COINLESS					328C 328X	A,B A,B	2311.5	6107	5G47 5F45	1::	1
288E 288H	A, B A, B	2351.2 6351.2 6351.2	6181 7371	5GE1	•			STEP BY ST	TEP C.O.	EQUIPMENT	- FURNITU	RE AND OTH	ER TOOL	s
288M 288R 288X	A, B A, B	6351.2 6351.2	7281 7381		:			337C 337X	B	2215.1 3100.331	C73002 D73002	5G0202 5F0202		
288X 288Y	B A,B	3100.452	6191 6191 7361	5FE1 5FE1	:			BURIED CAR	BLE - EXC	CHANGE - ME	TALLIC			
SUBSCRIBE	R PAIR G	AIN SYSTEMS	1,,,,,	1	ł	· ·		345C 345C	A B	2423.11 2423.1111	CB0103 CB0102	5G2P03 5G2P05	1	Actual Cost New Svc Acc. Wire
297C 297EM 207ED	8	2232.12 6232.12	C75204 M759	560C04	Ec	uipment mote Terminals -		345TC 345TX 345X		2423.21 3100.54 3100.54	CB0303 DB0303 DB0003	5G3503 5F3503 5F2503		Toll - Actual Cost Toll - Actual Cost Actual Cost
297H	8	6232.12	R759	-	Re	mote Terminals -		CROSSBAR	EQUIPMEN	T	•			
297M 297R 297X	8 8 8	6232.12 6232.12 3100.3612	H752 R752 D75204	5F0C04	C. C. C. Eg	0. Terminal 0. Terminal 0. Terminal ulpment		347C 347X	B B	2215.2 3100.332	C74002 D74002	5G0302 5F0302		Furniture and Othe Tools Furniture and Othe
<u>only</u> : Measure	Contract d Work	ed Labor - 1	Plant Cost	Results Pla	an (E530	0)		NY <u>only</u> : * Measure ** Non Me	Contrac ed Work asured W	ted Labor - ork	- Plant Co	st Results	Plan (E5300)
sued: 01	/95		NOTICE											

Functional	I		FASC COD	ER GUIDE		SECTION B FRCs	NYNEX Functional Accounting		I	FASC CODER	GUIDE		
						FRC/USDA/FC							FR
FIELD REPORTING CODE	COMPAN	Y USOA	CFC	SPFC	NYT- E-5300	DETAIL	FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DET
OTHER CIR	CUIT EQU	IPMENT					ELECTRONIC	EQUIPME	NT				
357C 357C	8	2232.19	C759 C75002	5G1H 5G0A02		Digital Furniture and Other	377C 377C	ĥ	2212.1	C776 C77502	5G08 5G0702		Digital Analog (
357M 357R 357X 357X	A A B	6232.19 6232.19 3100.3619 3100.3629	M750 R750 D750 D75803	SFDA SFDZDJ		lools Digital Digital Digital Furniture and Other	377M 377R 377X 377X	A A B	6212.1 6212.1 3100.321 3100.311	M776 R776 D776 D77502	5F08 5F0702		Other Too Digital Digital Digital Analog -
ARGE PBX.	DIGITAL	DATA SYSTE	IMS .		4	10015	ELECTRONI		CONTRACT			1	CUTHER 100
158C 158M 158R	A, B A, B A, B	2362.1 6362.1 6362.1	6163 720E 730A	567C	::		387C 387X	8	2212.1 3100.321	C77602	5G0802 5F0802		
358X	A,B	3100.461	6173	SF7C	••		PUBLIC TE	EPHONE E	QUIPMENT -	PHONE BOO	TH ADVERT	SING	
010 EQUI 167C	PHENT A	2231.1	10763	15010		c	388C 388X	8 8	2351.3 3100.453	6183 6193	SGE5 SFE5		1
167C	в	2231,21	C76002	560502		Station	OTHER DIG	TAL EQUI	PMENT - FUI	RNITURE AN	D OTHER TO	00L\$	
67M		6231.1	M765	-		Tools Satellite and Earth	397C	B	2232.19	C75903	5G1H03 5F0A06	1	1
57R	A	6231.1	R763	-		Station Satellite and Farth	AIR CONDI	I ON ING -	ENGINEERI	NG AUTHORI	ZEO	•	•
57X	٨	3100.351	D763	SFOV		Station Satellite and Earth	430M	1 A .	6121.1	M021	1	I.	1
67X	8	3100.3521	076002	SF0502	1	Station	410M 410R	B	6121.12 6121.1	M021 R021			

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) Measured Work

** Non Measured Work

Issued: 01/95 NOTICE Not. for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except Under written agreement

24

. -

422C 422X

Å

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

2421.112 C20242 3100.52 D20241

25

FIELD REPORTING CODES

SECTION 8 FRCs FRC/USOA/FC

DETAIL

Digital Analog - Furniture, Other Tools

Analog - Furniture, Other Tools

5G2042

5F2041

NYNEX Functiona Accountin	1		FASC COL	DER GUIDE		SECTION B FRCs	NYNEX Functional Accounting			FASC CODEI	R GUIDE		SEC
						FRC/USDA/FC							FRC/U
FIELD REPORTING CODE	COMPAN	IY USDA	CFC	SPFC	NYT- E-5300	DETAIL	FIELD REPORTING	COND 1111				NYT-	
STEP BY S	TEP C.O.	FOUTPMENT	-					COMPANY	USUA	CFC	SPFC	E-5300	DETAIL
437C	18	12215 1		RATION			ELECTRONIC	DIGITAL	EQUIPMENT	- ADMINIS	TRATIVE		
437X	B	3100.331	D73003	5G0203 5F0203			487C	8	2212.1	[C77603	5G0803	t I	1
BURIED CA	BLE - EX	CHANGE - ME	TALLIC - C		OCK Utor		487X	8	3100.321	077603	5F0803	I	
445C	1.4	2423.11	100104	LEOGDA .	OCK WINE		PUBLIC TEL	EPHONE E	QUIPMENT -	TOD			
445M	Ā	6423.1	M80002	5G2P04	1 1		4880	1 A.B	12351 4	16187	15057		
445R 445Y	1.	6423.1	RB0002				488E	A,B	6351.4	7374	-		
7737	1 ^	3100.54	DB0004	5F2504		ļ	488H	A,B	6351.4	H884	-	1	
CROSSBAR E	QUIPMENT	- ADMINIST	RATIVE		•		488R	A,B	6351.4	7284	1 :	1	
4470	1 0	10015 -					488X	A	3100.454	6197	SFE8	1	
447X	B	3100.332	C74003	5G0303	1 1		488X	B	3100,451	6197	5FE8		
UBSCRIBER	PAIR GA	TN - ANALOO	FOUT DUCU	-	1 1		0000 400 0		- 01 MIT 4	12304	1 -	i	ſ
4575	27.9		EQUIPMEN				DROP AND B	LUCK WIR	E - PLANI A	1551GNMENT			
457EM	1	2232.21	C75E	5GOW	L L	1	498E	A,8	6421.1	M203	1 -	1	1
457ER	A	6232.21	R755		Re	emote & Int Repeat	POLE LINES	10187	OWNEDGUTD				
457R	4	6232.21	R754]	Re	mote & Int Repeat			ownengh1P				
457X	â	6232.21	H75A	-	c.	0. Terminal	5010	B	2411.1	C10003	5G1003		1
INREGIII ATI	ыл. (П. терит	-100.3021	10/54	1 PLAN	ſ	61 1	JULA		12100.21	1010003	1211003	1	I
	o icwill	WE EQUIPMEN	NT - CPE				HEATING -	ENGINEER	ING AUTHORI	(ZEO			
158R	A.B	6362.5	7200		1		510M	1	6121.1	MOZZ	1	ł	1
	n,0	0302.5	/300	[]			510M	l 🖌	6121.12	R022		1	
ECTRONIC	ARALOG E	QUIPMENT -	ADMINISTR	ATIVE			510R	8	6121.12	R022	1		
770 1	8 1	2211.1	C77502	500702 ·		•	NY only:	Contract	ed Labor -	Plant Cor	+ Raculte	Plan / 9	5300)
177X	8	3100.311	077503	560703			Moscure	d Work		Franc Cost	C RESULLS	Flan (t	53300)

. - `

Issued: 01/95 NOTICE 26 Not for use or disclosure outside the 26 NYNEX Corporation or any of its subsidiaries except under written agreement

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

· ·

27

「シン別の主席

FIELD REPORTING CODES

				_		FRC/USOA	/FC
FIELD REPORTING CODE	COMPANY	USOA	CFC		NYI-		
5750 av er					2 2000	DELAIL	_
5127 87 31	EP C.U. E	QUIPMENT -	- DEFERRABI	LE PLUG-IN	15		
537C 537X	8	2215.1	C73004	5G0204	1 1		1
CROSSBAR F	NITEMENT		1073004	SF0204	1 1		
5470		- DEFERRAS	LE PLUG-IN	S			
547X	8	2215.2 100.332	C74004	5G0304			
DTHER CIRCU	IT EOUIPE	IFNT - DEE		1320304			
557C I			CARABLE PL	UG-INS			
557X	8 3	100.3629	C75003 D75802	5G0A03			
ERMINAL EQ	UIPMENT M	AINTENANCE	- TRAVEL	TINC	1		ſ
558R J	A.B. 16	162 016 1		1146			
		302.915	V JUN	- 1	1		
	- IL - UE	FERRABLE P	LUG-INS				ł
567C	8 2	231.21	C76003	5G0503	1		
ERMINAL FOR	-	NO. 400500	0,0003	5F0503	1		
5690 1		NU ALLESS					
	N'R 163	62.916	730P	- 1	1		
LECTRONIC A	NALOG EQU	IPMENT - C	DEFERRABLE	PLUG-INS			
770	B 22	11.1 [9	77504	G0704	I.		
	. 137	00.31 10	077504 [5	F0704	1		
KUTHAL EQU	LPMENT MA	INTERANCE	- NO TROUE	LE FOUND			
78R	63	62.917	7300	- 1	. 1		
l_							
							'
		•					

HYNEX Functional Accounting			FASC CODI	ER GUIDE		SECTION 8
		_				FRC/USOA/FC
FIELD REPORTING CODE	COMPANY	USQA	CFC	SPFC	NYT- E-5300	DETAIL
ELECTRONIC	DIGITAL	EQUIPHENT	- DEFERR	BLE PLUG-	INS	
587C 587X	B	2212.1 3100.321	C77604 D77604	5G0804 5F0804		
OTHER DIGI	TAL EQUI	PMENT - DEF	ERRABLE	PLUG-INS		
597C 597X	8	2232.19 3100.3619	C75902 D75005	5G1H02 5F0A05		
OTH er - En	GINEERIN	G AUTHORIZE	0			
610H 610H 610R 610R	A B A B	6121.1 6121.12 6121.1 6121.1 6121.12	M023 M023 R023 R023			
INTRABUILD	ING NETW	ORK CABLE -	METALLIC	:		
632C 632M 632R 632X	B B B B	2426.11 6426.1 6426.1 3100.561	C246 M246 R246 D246	SG2L _ SF2L		
INTRABUILD	ING NETW	ORK CABLE -	METALLIC	- OUTSID	E MASS.	
642C 642M 642R 642X		2426.11 6426.1 6426.1 3100.56	C24601 M246 R246 D24601	5G2L01		
CROSSBAR #	5				•	
647M 647R	B	6215.2 6215.2	M74002 R74002	:	:	

IELD REPORTING CODE

Ĥ

NY <u>only</u>: Contracted Labor - Plant Cost Results Plan (E5300) * Measured Work

.• `

Issued: 01/95 NOTICE 29 Not for use or disclosure outside the 29 NYNEX Corporation or any of its subsidiaries except under written agreement

SECTIO							Accounting
FRC/USOA							
				r			FIELD
OFTATI	T-	: E-	SPFC	CFC	USDA	COMPANY	REPORTING CODE
			TOOLS	AND OTHER	FURNITURE /	IPMENT -	D.D.S. EQU
	1	1	5G0902	C75102 D75102	2232.11 3100.3611	B B	657C 657X
			IRE AND	- FURNIT	R AND OTHER	CELLULA	RADIO - NON
	10013			676403	2231 22 1	8 1	667C J
			5G1E03 5F0W03	076403	3100.3522	В	667X
	,	•		Y	CITY SUBWA	- EMPIRE	BUILDINGS
	I		5G73 5F73	CO15 DO19	2121.7	B	670C 670X
	1	1		VIA ESS	UIPMENT -	NALOG EC	LECTRONIC
	1	:	:	177502	211.1 211.1	B 6	677M 677R
	,	•	MPLE	PATCH - S	ROL AND DIS	R - CONT	ERVICE ORDE
		1	-	211. 1	532.9 17	A,B 6	698E
	1	'		ONMETALLI	K CABLE - N	g networ	NTRABUILDIN
	1	1:	GZM	248 5	426.12 C	B 24	732C 732M
			- F2H	248	26.2 R	B 64 B 31	732X
	1	1	• • •	······································	INT CENTERS	MANAGEME	INSTRUCTION
	,	1	-	137 1	10.1 IM	L [87	зэм ,

tracted Labor - Plant Cost Results Plan (E5300) Measured Work . ** Non Measured Work

Issued: 01/95 NOTICE 30 Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

FIELD REPORTING CODES NYNEX Functional FASC CODER GUIDE SECTION 8 Accounting FRCs FRC/USOA/FC FIELD REPORTING NYT-CODE COMPANY USOA CFC SPFC E-5300 DETAIL INTRABUILDING NETWORK CABLE - NONMETALLIC 742C C24801 M248 R248 2426.12 5G2M01 Outside Mass. 742M 6426.2 A -742R A 6426.2 . 742X . . 3100.56 D24801 SF2M01 Outside Mass. D.D.S. EQUIPMENT- DEFERRABLE PLUG-INS 757C 2232.11 C75103 3100.3611 D75103 B 15G0903 757X 8 5F0903 LARGE PBX - SUBSCRIBER PAIR GAIN 758C A,B 2362.7 616A 5G7H 758M A,B 720R 758R A,B 6362.7 730K -758X A,B 3100.4692 617A SF7H RADIO - NON CELLULAR AND OTHER - DEFERRABLE PLUG-INS 767C 2231.22 C76402 3100.3522 D76402 8 5G1E02 5F0W02 767X 8 ELECTRONIC ANALOG EQUIPMENT - #2 ESS 777M в 6211.1 M77503 777R 6211.1 R77503 Í B . . SERVICE ORDER - CONTROL AND DISPATCH - COMPLEX 798E A,B 6532.9 721M NY only: Contracted Labor - Plant Cost Results Plan (E5300)

. Measured Work

.. Non Measured Work

٠ م.

÷

Measured only for Outside Plant (Normally done by JFC 42XXs)

Issued: 01/95 NOTICE 31 Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

Accounting		FASC CODE	ER GUIDE		SECTION 8 FRCs	NYNEX Functional Accounting			FASC CODER	GUIDE		s
	······································				FRC/USDA/FC							FRC
FIELD REPORTING CODE	OMPANY USDA	CFC	SPFC	NYT- E-5300	DETAIL	FIELD REPORTING CODE	COMPANY	USQA	CFC	SPFC	NYT-	DETAI
FURNITURE		•					l <u>.</u>			1		l., ,,
801C 801X OFFICE SUPPO 803C 803X	A 2122.1 A 3100.22 RT EQUIPMENT A 2123.1 A 3100.231	630B D013 630D D017	5G88 5F74 5G8B 5F7M		1	845R 845R 845TC 845TC 845TX 845TX 845TX 845X 845X	LE - NON A,B A B A B A B A B A B	METALLIC (C 6423.2 2423.22 2423.22 3100.54 3100.5422 3100.54	RB80 CB8310 CB8310 CB8310 DB8310 DB83 DB8010 DB80	5G3A10 5G3A 5F3A10 5F3A 5F2A10 5F2A	•	Except Actu Except Actu Except Actu
INTEROFFICE	FACILITY ASSIGNM	MENT AND CI	RCUIT LAYON	דע		845Y	A,B	6423.2	7227	-	-	
808M	6532.81	M791	-	l		CIRCUIT EQ	UIPMENT				• • • • •	
AERIAL CABLE	- NONMETALLIC -	- BUILDING -	- EXCHANGE	- OUTS	IDE MASS.	8570	B	2232,21	C75E02	5G0W02		Oeferrable
812X	3100.52	D28101	5G2701 5F2701		Outside Mass. Outside Mass.	0.077	ľ				1	Deferrable
FURNITURE -	RTWORKS					LARGE PBX	- NETWO	K CHANNEL 1	TERMINATIN	G EQUIPMEN	T	
B17C AERIAL CABLE	- NONMETALLIC -	630A OTHER - EX	5GBA CHANGE - O	UTSIDE	Artworks MASS.	858C 858M 858R 858X	A,B A,B A,B A,B	2362.8 6362.8 6362.8 3100.4692	6165 720G 730C 6175	5G/7 5F77		
822C 822X	2421.122	C28201 D28201	5G2601	1		RADIO - SA	TELLITE	AND EARTH	STATION FA		- DEFER	RABLE PLUG-1
AERIAL CABLE	- NONMETALLIC -	BUILDING -	EXCHANGE			867C	B	2231.1	C76302	5G1002	1	1
832C	2421.121	C281	5G27	:		ELECTRONIC	EQUIPH	ENT - ANALO	G	1	'	•
BURIED CABLE	- NONMETALLIC	10201	12127	- I		877M	B	6211.1	M77504	1:	1:	M3 ESS
845C E 845C E 845M A	2423.12 2423.12 B 6423.2	CB8010 CB80 MB80	5G2A10 5G2A -	:	Except Actual Cost Exchange Exchange	NY <u>only</u> : * Measure ** Non Mea	Contrac ed Work isured W	ted Labor -	Plant Cos	t Results	Plan (E5300)
NY <u>only</u> : Con * Heasured W	tracted Labor - ork	Plant Cost	Results P	lan (E5	300)	# Measuri	a <u>only</u>	for Uutside	riant Wor	k (usuall	y - JFC	7277)

h F
-
ſ

NYNEX Functional Accounting

FASC CODER GUIDE

SECTION'8 FRCs

34

, e ¹

FRC/USOA/FC

NYNEX

Functional

Accounting

FASC CODER GUIDE

SECTION 8 FRCs

LD REPORTING -----8

FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
GENERAL PU	RPOSE CO	MPUTERS	·		L	
881C 881X	Å	2124.1 3100.24	630301 631801	5G82D1 5F8A01		Accounting Office Accounting Office
883C 883X	Å	2124.1 3100.24	630303 631803	5G8203 5F8A03		Other Other
884C 884X	Â	2124.1 3100.24	630304 631804	5G8204 5F8A04		Personal/Word Proc Personal/Word Proc
885C 885X	Â	2124.1 3100.24	630302 631802	5G8202 5F8A02		Central Office Central Office
897C I	PAIR - G	AIN - DEFER	RABLE PLUG	-INS		
897X	8	3100, 3612	075205	5G0C05 5F0C05		
PUBLIC TELE	PHONE EQU	JIPMENT - CO	лім			
ERIAL CABLE	A,B [6 - METAL	5351.1 7 LIC - EXCHA	V283 NGE - EMBE	DDED SERV	ICE ACC	ESS WIRES
902C 902X	B 2 B 3	421.1122 0	20202 5 20202 5	G2004 F2002		
ERIAL CABLE	- METAL	LIC - EXCHA	NGE - EMBE	DDED SERV	ICE ACC	ESS WIRE
932C 932X	B 2 B 3	421.1112 C 100.5212 0	20102 5 20102 5	G2102 F2102		
JRIED CABLE	- EXCHA	NGE - METAL	LIC - EMBEI	DDED SERVI	ICE ACC	ESS WIRES
945C 945X	B 2 B 3	423.1112 CI 100.5412 DI	80103 50 30003 51	32P06 F2503	.	

/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement Issued: 01/95

.

•						FRC/USUA/FC
FIELD REPORTING	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
SUBSCRIBE	ER PAIR GA	IN - ANALOG	EQUIPMENT	- FURNIT	URE AND	OTHER TOOLS
957C 957X	8 8	2232.21 3100.3621	C75E03 D75A03	5G0W03 5F0Y03	*:":**	
LARGE PB	K - MISCEL	LANEOUS				
958C 958M 958R 958X	A,8 A,8 A,8 A,8	2362.92 6362.92 6362.92 3100.4692	6164 720F 730B 6174	5G7E 5F7E	**	
GARAGE W	ORK EQUIPH	IENT				
962C 962X		2115.1 3100.15	6322 6332	5G91 5F91		
SPECIAL I	PURPOSE VE	HICLES				
963C 963X	1	2114 3100.14	6328 6338	5G97 5F97		
OTHER TO	OLS AND WO	RK EQUIPMEN	IT			
965C 965X	1	2116.5 3100.16	6325 6335	5G94 5F94	1	
RADIO SA	TELLITE AN	ID EARTH STA	TION FACIL	ITIES -	FURNITUR	E AND OTHER TOOLS
967C 967X	B B	2231.1 3100.351	C76303 D76303	5G1D03 5F0V03	1	1
MOTOR VE	HICLE					
971C 971X	1	2112 3100.12	6321 6331	5G90 5F90		1

NY <u>only</u>: Contracted Labor Plant Cost Results Plan (E5300) * Measured Work ** Non Measured Work

Measured only for Outside Plant (normally done by JFC 42XXs)

NOTICE 35 Issued: 01/95 Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except . under written agreement

NYNEX Functional	EASC CO				.•	NYNEX				CHIDE		SECT	10
Accounting				SECTION E FRCs		Functional Accounting		۲ 					F
			· · · · · · · ·	FRC/USOA/FC		 -						FRC70:	.0/
FIELD REPORTING CODE COMPAN	USOA CFC	SPFC	NYT- E-5300	DETAIL		FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL	
ELECTRONIC DIGITA	. EQUIPMENT - #5 ES	S			1	TELETYPEW	ITER AND	DATA - OFF	ICIAL COM	UNICATIO	NS		
987M B 987R B PUBLIC TELEPHONE I	6212.1 M77602 6212.1 R77602 QUIPMENT - OTHER	:	:			1118C 1118M 1118R 1118X	A A A	2123.21 6123.21 6123.21 3100.2321	634001 M811 R811 635001	5GE301			
988C A.B 988E A.B	2351.9 6189 6351.9 7379	5GE2	1 • 1			TELEPHONE	AND MISC	ELLANEOUS -	OFFICIAL	COMMUNIC	ATIONS		
988H A.B 988M A.B 988R A.B 988X A 988X B	6351.9 H889 6351.9 7289 6351.9 7389 3100.459 6199 3100.451 6199	- 5FE2 5FE2				1128C 1128M 1128R 1128R 1128X		2123.21 6123.21 6123.21 3100.2321	634002 M821 R821 635002	5GE302 5FE302			
988Y A,B	6351.9 7369	-				RADIÓ - O	FFICIAL C	OMMUNICATIO	SHOOD	1605102			
997C 8 997X 8	2232.12 C75206 3100.3612 D75206	5G0C06 5F0C06				1138C 1138M 1138R 1138X		6123.21 6123.21 6123.21 3100.2321	634003 M831 R831 635003	5FE303			
OTHER CIRCUIT EQUI	PMENT - PICS					CROSSBAR	TANDEM						
OPERATOR SYSTEMS C	16232.19 (M75002 ENTRAL OFFICE FOUTE		• 1		11	1147M 1147R	B	6215.2 6215.2	M74003 R74003	-			
1117C B	2220.1 [C71401	5G1A01	1 1			OFFICIAL ITEMS OF	COMMUNIC/	ATIONS EQUI	PMENT - EP	MBEDDED I	NVESTMENI	IN INDIVIDUA	L
1117M B 1117R B 1117X B	6220.1 H/11 6220.1 H721 6220.1 R711 3100.341 071101	5F0401				1148C 1148X	1	2123.92 3100.927	6342 6352	SGE6 SFE6	1		
NY only : Contrac	ted Labor Plant Cos	t Results P	lan (E5300)										
- measured work	,					NY <u>only</u> • Measu	: Contra red Work	cted Labor	Plant Cos	t Results	: Plan (E	5300)	
						<u></u> .							

:

8

NYNEX Functional			FASC CODE	R GUIDE		SECTION 1	.*	NYNEX Functional			FASC CODER	GUIDE		SECTION
Accounting						FRC		Accounting		<u> </u>				FRC/USOA/
				· · ·				•-						
FIELD REPORTING CODE	COMPANY	USDA	CFC	SPFC	NYT- E-5300	DETAIL		FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
DIGITAL DA	TA SYSTE	MS CIRCUIT	EQUIPMMEN	IT - PICS				OPERATOR S	SYSTEMS C	ENTRAL OFF	ICE EQUIPME	ENT - DEF	ERRABLE F	PLUG-INS
1157M	В	6232.11	[M75102	-	•			1517C	B	2220.1	C71402 071102	5G1A02 5F0402		
CROSSBAR D	ID							ELECTRONIC	C DIGITAL	- DMS100	•	•	•	
1247M 1247R	B	6215.2	H74004 R74004		:			1587M	8	6212.1	M77604	1:	1:	1
CIRCUIT EQ	UIPMENT	- ANALOG -	PICS	·				1587R		16212.1	- METALLIC	- MASS.	EXCLUDIN	G U.G. CONN.
1257M	B	6232.29	M75C02	-	1 1			16420		12426.11	IC24611	5G2L11	1	1
OPERATOR S	YSTEMS E	QUIPMENT -	FURNITUR	e and other	R TOOLS			1642X	Â.	3100.56	024611	5F2L11	1	1
1317C 1317X	B	2220.1	C71403 071103	5G1A03 5F0403				ELECTRONI	C DIGITA	L - DMS200				
CIRCUIT EQ	UIPMENT	- COLLOCAT	ION INVES	TMENT				1687M 1687R	8 8	6212.1	R77605	-	*	1
1357C	A.B.	2232.4	C75M	5G3M	1 1			INTRABUIL	DING NET	WORK CABLĖ	- NONMETAL	LLIC - MA	SS. EXCLU	JDING U.G. CONN.
1357M 1357R	A,8 A,8	6232.4	N75M R75M D75M	651W				1742C	Å	2426.12	C24811 024811	5G2M11 5F2M11		
1357A	[^,0 YSTEMS ()	ENTRAL OFF		MENT - ADM	INISTRATI	ve [°]		ELECTRON	IC DIGIT/	L - TANDEM				
1417C	I B	12220.1	IC71404	5G1A04	1			1787M	I B	6212.1	M77601	1:	1:	
1417X	8	3100.341	D71104	5F0404			1	1787R	ן א אסרי	10212.1	MENT IN IN	I DIVIDUAL	ITEMS OF	SMALL VALUE
ELECTRONIC	DIGITAL	DMS - 1	.0					- 19010		12122.9	1630H	[5G8G	1	I
1487M 1487R	В 8	6212.1 6212.1	R77603		•			1801X	Â.	3100,925	001A	5F7P		<u> </u>
NY <u>only</u> : * Heasure	Contrac d Work ,	ted Labor	Plant Cos	t Results	Plan (E5	300)		NY <u>only</u> * Measu	: Contr red Work	acted Labor	• Plant Cos	at Result	s Plan (E	5300)
Issued: 01	/95 NYNEX (Not for us	NOT se or disc or any o	ICE - losure out f its subs	side the idiaries	except	B	Issued:	01/95 NYNEX	Not for t Corporatio	NOT use or disc on or any o nder writte	FICE closure o of its su	utside ti bsidiario	he es except

IYNEX Functional Accounting			FASC CODE	R GUIDE		SECTION 8 FRCs	·	NYNEX Functional Accounting			FASC CODER	GUIDE		SECTIO F	N 8 RCs
		·····				FRC/USOA/FC				· - · · · ·				FRC/USOA	/FC
FIELD REPORTING CODE	COMPAN	Y USOA	CFC	SPFC	NYT- E-5300	DETAIL		FIELD REPORTING CODE	COMPANY	USDA	CFC	SPFC	NYT- E-5300	DETAIL	
OFFICE EQ	UIPMENT ·	- EMBEDDED	INVESTMENT	IN INDIVI	DUAL ITE	MS OF SHALL VALUE		KEY SYSTEM	IS AND SM	ALL PBX IN	TRASYSTEMS	- OFFICI	AL COMMUN	ICATION	
1803C 1803X AERIAL CA	A A BLE - NOP	2123.91 3100.926	630J D018 BUILDING	5G8H 5F7Q - EXCHANGE	-MASS. E	XCLUDING U.G. CONN.		2128C 2128C 2128M 2128R 2128R 2128X	A,8 K A,8 A,8	2123.21 161-2041 6123.21 6123.21 3100.2321	634005 634102 M822 R822 635004	5GE305 5GE402			
1812C 1812X		2421.121 3100.52	C28111 D28111	5G2711 5F2711				2128X 2128X	BK	3100.232 171-2013	635004 635004	5FE304 5FE304			
AERIAL CA	BLE - NON	METALLIC -	• OTHER - E IC28211	XCHANGE -M	ASS. EXC	LUDING U.G. CONN.		LARGE PBX	INTRASYS	TEMS - OFF	ICIAL COMM	UNICATION			
1822TC 1822TX 1822X		2421.22 3100.52 3100.52	C28311 O28311 D28211	5G3611 5F3611 5F2611				2158C 2158C 2158M 2158M	B K A,B	2123.22 161-2042 6123.22	6341 634103 M850	SGE403	•		
GARAGE WOI SMALL VALU	RK EQUIPH JE	IENT - EMBE	DDED INVES	TMENT IN I	NDIVIDUA	L ITEMS OF		2158X 2158X 2158X	A B	3100.2322 3100.232	635103 6351	5FE403 5FE4			
1962C 1962X	1	2115.9 3100.921	632C 633C	5G9C 5F9B				21584	<u> </u>	1/1-2014	0351	DIE4	I	<u> </u>	J
OTHER TOOL	S AND WO	NRK EQUIPME	NT - EMBED	DED INVEST	MENT IN	INDIVIDUAL		NY <u>only</u> : * Measur	Contrac ed Work	ted Labor	Plant Cost	. Results	Plan (E53	00)	
1965C 1965X		2116.92 3100.923	632E 633E	5G9E 5F9C											
LARGE PBX	INTRASYS	TEMS - NON	ELECTRONI	C											
2058C 2058M 2058R 2058X		2123.22 6123.22 6123.22 3100.2322	634101 M851 R851 635101	5GE401 - 5FE401											
		r		•											
						· · · · · · · · · · · · · · · · · · ·									
ssued: 01	NYNEX C	Not for us orporation	NOTI e or discle or any of	CE Sure outs Its subsid	ide the liaries (40 Except		Issued: O	1/95 NYNEX	Not for us Corporation	NOT: se or disc n or any of	ICE losure out f its subs	tside the sidiaries	except	4]

											(#) (#)	
NYNEX Functional Accounting	FASC CODE	R GUIDE		SECTION 8 FRCs	.*	NYNEX Functional Accounting		F/	ASC CODER	GUIDE		SECTION B FRCs
				FRC/USOA/FC					1			FRC/USOA/FC
[, ,		-	-				_		
FIELD REPORTING CODE COMPANY	USDA CFC	SPFC	NYT- E-5300	DETAIL		FIELD REPORTING CODE	COMPANY	USQA	CFC	SPFC	NYT- E-5300	DETAIL
COMPANY - USED STATIC	DN APPARATUS TRANS	FER				AERIAL CAR	ILE - NONM	ETALLIC				
2318C K 11 2318X K 11	51-2011 6106 71-2011 6116	5G49 5F49				2822C 2822TC	1	2421.122 2421.22	C28221 C28321	5G2621 5G3621		Hass U.G. Conn. HassU.G. Conn Toll
FURNITURE EXPENSE						2822TX	A	3100.52	D28321	5F362		Mass U.G.Conn Toll
2611M A.B 61 2611R A.B 61	22.1 7248 122.1 7246	:				2822X	A	3100.52	D28221	5F262	1	Mass U.G. Conn.
OTHER COMMUNICATIONS	EQUIPMENT					TELETYPEW	RITER AND	DATA - OFF	ICIAL COMP	UNICATIO	NS	
2612C A,B 21	23.21 634004	5GE304	I I			3118C 3118C 3118M	B K B	2123.21 161-2031 6123.21	634001 634001 M811	5GE30 5GE30	1	
Z614M A,B 61	23.1 M416	i -	1 1			3118R 3118X 3118X	8 8 K	6123.21 3100.232 171-2013	R811 635001 635001	SFE30 SFE30		
ADTWORKS ENDENCE	23.1 R416	1 -				TELEPHONE	AND MISC	ELLANEOUS -	OFFICIAL	COMMUNIC	ATIONS	
2617M A,B 61 2617R A,B 61	22.2 7249 22.2 7247	:				3128C 3128C 3128M	B K B	2123.21 161-2032 6123.21	634002 634002 M821	5GE302 5GE302	•	
INTRABUILDING NETWORK	CABLE - METALLIC	- MASS. U	.G. CONN.			3128R 3128X	8	3100.232	635002	5FE302	•	
2642C A 24 2642X A 31	26.11 C24621 00.56 D24621	5G2L21 5F2L21				RADIO -	OFFICIAL (COMMUNICATIO	DNS	1	•	,
INTRABUILDING NETWORK	CABLE - NONMETAL	LIC - MASS	V.G.	CONN.		3138C	B	2123.21	634003 M831	5GE303	•	1
2742C A 2742X A	2426.12 C24821 3100.56 D24821	5G2M21 5F2M21		I .		3138R 3138X	8 8	6123.21 3100.232	R831 635003	- 5FE303		

....

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement 43

1

.

NYNEX Functional Accounting			FASC COD	DER GUIDE		SECTION E FRC1	NYNEX Functional Accounting			FASC CODER	GUIDE		SECTION 8 FRCs
			·····			FRC/USOA/FC							FRC/USOA/FC
FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL	FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
BURIED CAE 3845C 3845TC 3845TX 3845X OFFICIAL C	BLE - NON	METALLIC 2423.12 2423.22 3100.54 3100.54 3100.54 TIONS EQUI	CB8003 C88303 D88303 D88003 PMENT	5G2A03 5G3A03 5F3A03 5F2A03		Exchng-Actual Cost Toll - Actual Cost Toll - Actual Cost Toll - Actual Cost Exchng-Actual Cost	AERIAL CA 5132C 5132M 5132R 5132R 5132X BURIED C/	BLE - VOI A,B A,B A,B A,B A,B BLE - VD	- DIRECT 2421.51 6421.51 6421.51 3100.5251 T - DIRECT	- METALLIC C206 M206 R206 D206 - METALLIC	5G2D 5F1M		
4118C 4118X RESERVE DE	B B FICIENCY	2123.92 3100.927	6342 6352	5GE6 5FE6			5145C 5145M 5145R 5145R 5145X	A,B A,B A,B A,B	2423.51 6423.51 6423.51 3100.5451	CBOS MBOS RBOS DBOS	5G2U 5F2U		
5000X JNDERGROUN 5105C 5105M 5105R	В САВLЕ - А.В А.В А.В	3100.6 - VDT DIRE 2422.51 3100.51 3100.51	 CT - METAL C508 M508 R508	5F2D .LIC 5G2S	 		CONDUIT 5214C 5214M 5214R 5214X	SYSTEMS - А.В А.В А.В А.В	VDT - 01RE 2441.5 6441.5 6441.5 3100.585	CT C408 M408 R408 D408	5G1L 5F1L		
5105X BUILDINGS ~ 5110C 5110M 5110R 5110R 5110X	A,8 VDT EQU A,B A,B A,B A,B A,B	5100.5351 JIPMENT - 2121.5 6121.5 6121.5 3100.25	0508 DIRECT C01C M01C R01C D01C	5F2S 5G7A 5F7A			AERIAL C 5232C 5232M 5232R 5232X BUBLED C	ABLE - VC A.B A.B A.B A.B	T - DIRECT 2421.52 6421.52 6421.52 3100.525 DT - DIRECT	- NONMETA C286 M286 R286 2 D286	LLIC SG2R SF1N		

· • ·

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

۲

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

5285R 5285X	A,B A,B	6422.52 3100.5352	R588 D588	5F2T	ł	
DIGITAL E	LECT SWI	TCHING EQUI	PMENT - V	DT - DIRE	CT	
5287C 5287M	A, B A, B	2212.5	C77J M77J R77J	5601		
5287X	Â, B	3100.325	D77J	SF1H	1	

NOTICE Issued: 01/95 Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

• 7

NOTICE Issued: 01/95 Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

633N09

WORK EQUIPMENT - FULLY DEDICATED NONREGULATED - OTHER

12116.209 632N09

3100.1969

A,B

A,B

6965C

6965X

2426.51 6426.51 M242 A.B 5632M R242 6426.51 A,B 5632R SF2W 3100.5651 D242 5632X INTRABUILDING NETWORK CABLE - VOT DIRECT - NONMETALLIC C243 M243 R243 15G2Y 2426.52 A.B 5732C A.B 6426.52 5732M 6426.52 5732R A.B 3100.5652 D243 5F2Y A,B 5732X OTHER WORK EQUIPMENT - VDT - DIRECT 15G9L 1632L 2116.6 IÁ,B 5965C A,B 3100.17 633L SF9L 5965X WORK EQUIPMENT - FULLY DEDICATED NONREGULATED - VOT 6265C A,B 2116.201 632N01 6265X A,B 3100.1961 633N01 15G9N01 5F9N01 ELECTRONIC ANALOG EQUIPMENT - FULLY DEDICATED NONREGULATED - VDT 2211.201 C77L01 6211.201 M77L01 6211.201 R77L01 15G1S01 . A,B A,B 6277C 6277M A,B 6277R 3100.3121 D77L01 SF1S01 A,B 6277X INTEROFFICE FACILITY ASSIGNMENT AND CIRCUIT LAYOUT 16532.81 (M791 | - | 1 6647M | B

15G9N09

SF9N09

FIELD NYT-REPORTING SPFC CFC E-5300 DETAIL USOA COMPANY CODE CIRCUIT EQUIPMENT - VOT - DIRECT C75G M75G R75G SG1B 5257C A,B 2232.5 5257M A,B 6232.5 6232.5 5257R A,B SF1B 3100.365 D75G 5257X A.B OTHER TERMINAL EQUIPMENT - VDT DIRECT 616G 5G7U 12362.5 5258C A,B 6362.95 720H 5258M A,B 6362.95 730G 5258R A,B A,8 3100.465 617G 5F7U 5258X ANALOG ELECT SWITCHING EQUIPMENT - VOT - DIRECT 5277C A, B A, B 2211.5 |C77G 5G0B 6211.5 6211.5 M77G 5277M 5277R A,B R77G SF1G 5277X A,B 3100.315 D77G UNDERGROUND CABLE - VDT DIRECT - NONMETALLIC 2422.52 6422.52 LC588 | 5G2T 5285C | A,B M588 A.B 5285M A B 6422.52 R588

SECTION 8 FRCs FRC/USOA/FC

46

.....

NYNEX

Functional

Accounting

FIELD

CODE

REPORTING

5632C

FASC CODER GUIDE

USOA

INTRABUILDING NETWORK CABLE - VDT DIRECT - METALLIC

COMPANY

A,B

CFC

LC242

FASC CODER GUIDE

NYT-

E-5300

SPFC

15G2U

REPORTING

CODES

47

SECTION 8

FRC/USOA/FC

DETAIL

FRCs

NYNEX

Functional

Accounting

NYNEX Functional Accounting

Issued: 01/95

SECTION 8 FRCs

NYNEX Functional Accounting

...

FRC/USOA/FC

FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
ELECTRONIC	ANALOG	EQUIPMENT -	FULLY DED	ICATED NO	NREGULA	TED - OTHER
6977C 6977M	A, B A, B	2211.209	C77L09	561509		
6977R 6977X	A,B A,B	6211.209 3100.3129	R77L09 077L09	5F1509		
UNDERGROUN	D CABLE -	- VDT JOINT	USE - MET	ALLIC		
7105C 7105M	A,B A,B	2422.71 6422.71	C509 M509	5635		
7105R 7105X	A,B A,B	6422.71 3100.5371	R509 D509	5F3S		
BUILDINGS	- VDT EQ	UIPMENT - J	OINT USE			
7110C 7110M	A,B A.B	2121.6	C010	5G7B	1	
7110R 7110X	A, B A, B	6121.6 3100.26	R01D D01D	5F78		
AERIAL CAB	ILE - VDT	JOINT USE	- METALLIC			
7132C	A.8	2421.71	C207	5G3D	[I
7132R 7132X	A,B A,B A,B	6421.71 3100.5271	R207 D207	5F3D		
BURIED CAE	BLE - VDT	JOINT USE	- HETALLIC			
7145C	A.8	2423.71	CB06	5G3V	1	1
7145R 7145X	A, B A, B A, B	6423.71 3100.5471	RB06 DB06	5F3U		
CONDUIT SY	STEMS			•	•	•
7214C	A,B	2441.4	C407	561K	1	1
7214M 7214R	A, B A, B	6441.4 6441.4	R407		1	

					<u></u>		FRC/USOA/	FC
IELD EPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	t t	DETAIL	
CONDUIT SY	STEMS (C	ONTN'D)						
7214X	1 A.B	3100.584	D407	5F1R	1	ł		
AERIAL CAB	ile - Vot	JOINT USE	- NONMETA	LLIC				
7232C 7232M	A,8 A,8	2421.72	C287 M287	5G3R	1	1		
7232R 7232X	A,8 A,8	6421.72 3100.5272	D287	5F3R				
BURIED CAR	BLE - VOT	JOINT USE	- NONMETA	LLIC				
7245C	A,B	2423.72	CB86	5G3V	1			
7245R 7245X	A,B	6423.72 3100.5472	RB86 D886	5F3V				
TERMINAL I	EQUIPMENT	- VOT JOIN	IT USE	·				
7258C	A,8	2362.4	616H	5G7T	1	1		
7258M 7258R 7258V	A, B A, B	6362.94	730H	5671				
ANALOG EL	ECTRONIC	SWITCHING	EQUIPMENT	- VDT JO	INT USE	,		
72770	1 A.B	2211.7	1C77H	5GOV	1	ł		
7277M	A,B	6211.7	M77H			1		
7277R	A,B	6211.7	R77H		1			
7277X	A,B	3100.317	1077H	5F1V	I	I		
UNDERGROU	ND CABLE	- VDT JOIN	T USE - N	ONMETALL				
7285C	A.B	2422.72	C589	5G3T				
7285M	A.8	6422./2	P589 .	1	1			
72858	A B	3100.5372	0589	SF3J				
12034	1 ,0	12100.23/2	10101	1	1	1		

FASC CODER GUIDE

/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement Issued: 01/95

.

.

/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

SECTION 8 FRCs

49

48

....

							•							-
YNEX unctional ccounting			FASC CODER	GUIDE		SECTION 8 FRCs	·•	NYNEX Functional Accounting			FASC CODEF	GU10E		SECTION FRC
				· · ·		FRC/USOA/FC								FRC/USOA/F
FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL		FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
DIGITAL EL	ECTRONIC	SWITCHING	EQUIPHENT	- VDT JOI	NT USE			AERIAL CAB	ile - Met.	ALLIC BLOCK	- MASS E	911 (CONTH	('D)	
7287C 7287M 7287R 7287X	A,B A,B A,B A,B	2212.7 6212.7 6212.7 3100.327	C77K M77K R77K D77K	5G04 5F1K				9112R 9112X CONDUIT SY	A A STEMS -	6421.6 3100.62 MASS E911	R201 D20401	5F2B01		
INTRABUILD 7632C 7632M 7632R 7632X	ING NETW A,B A,B A,B A,B A,B	ORK CABLE - 2426.71 6426.71 6426.71 3100.5671	VDT JOINT C244 M244 R244 D244	USE - ME 5G3W 5F3W				9114C 9114M 9114R 9114R 9114X UNDERGROUN	A A A A D CABLE	2441.6 6441.6 6441.6 3100.68 - METALLIC	C406 M406 R406 D406 - MASS E9	5616 5F16 11		
INTRABUILD 7732C 7732M 7732R 7732R 7732X	ING NETW A,B A,B A,B A,B A,B	ORK CABLE ~ 2426.72 6426.72 6426.72 3100.5672	VDT JOINT C245 M245 R245 D245	USE - NO 5G3Y 5F3Y	NMETALLIC			9115C 9115M 9115R 9115R 9115X DIGITAL EL		2422.61 6422.6 6422.6 3100.63 SWITCHING	C507 M501 R501 D507 - MASS E9	5G2G 5F2G		
OTHER WORK 7965C 7965X	EQUIPHE A.B A,B	אד – VDT JO 2116.7 3100.18	DINT USE 632M 633M	5G9M 5F9M		-		9117C 9117M 9117R 9117X		2212.6 6212.6 6212.6 3100.326	C77A M77E R77E D77A	5GOH SFOH		
CIRCUIT EQ	UIPMENT	- VDT JOINT	USE					OFFICIAL C	COMMUNICA	TIONS EQUI	PMENT - MA	SS E911		
8257C 8257M 8257R 8257X	A,B A,B A,B A,B	2232.7 6232.7 6232.7 3100.367	C75L H75L R75L D75L	5G3L 5F3L				9118C 9118M 9118R 9118R	A A A	2123.23 6123.23 6123.23 3100.2323	634006 M832 R832 635006	5GE306 5FE306		
AERIAL CAB	LE - MET	ALLIC BLOCK	C - MASS ES	11				AERIAL CAE	BLE - MET	ALLIC OTHE	R - EXCL-M	ASS E911		
9112C	1.4	2421.611	C20401	5G2B01				9122C	[]	2421.612	1020501	5G2C01		

<u>, ^`</u>

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

NYNEX Functional Accounting			FASC CODEF	GUIDE		SECTION 8 FRCs	·•	NYNEX Functional Accounting			FASC CODE	R GUIDE		SECTIO FI
						FRC/USOA/FC		-						FRC/USOA
FIELD REPORTING					NYT-			FIELD REPORTING CODE	COMPANY	USOA	CFC	SPFC	NYT- E-5300	DETAIL
CODE	COMPANY	USOA	CFC	SPEC	E-5300			AERIAL CAB	LE - MET	ALLIC OTHER	L	MASS F911	-l! 	
BURIED CAE 9145C 9145M	ILE - MET	ALLIC - MA	SS E911 CB04 MB01	5G2K				9222C 9222X	11	2421.612 3100.62	C20502	5G2C02 5F2C02		
9145R 9145X		6423.6 3100.64	R801 D804	5F2K				CIRCUIT EQ	UIPMENT	- FULLY DED	ICATED NO	NREGULATE	D - VDT	
CIRCUIT EC	UIPMENT	- MASS E91	1					9257C 9257M 9257R	A, B A, 8	2232.301 6232.301	C75K01 M75K01	561901		
9157C 9157M 9157R		2232.6 6232.6 6232.6	C757 M753 R753	SGOU				9257X OTHER TERM	A B	3100.3681 IPMENT - FU	D75K01	SF1901	EGULATED	~ VOT
OTHER TERM	IINAL EQL	ISTOUSSO	ASS E911	19100	1 1			9258C 9258M 9258R	A,8 A,B A,B	2362.201 6362.201 6362.201	616J01 720U 730U	5G7V01		
9158C 9158M 9158R		2362.6 6362.6 6362.6	616F 720H 730T	5G7F				9258X ELECTRONIC	A,B DIGITAL	3100.4621 EQUIPMENT	617J01 - FULLY D	SF7V01	 NONREGULJ	 ATED - VERMONTNE1
9158X UNDERGROUT	D CABLE	- MASS E91	617F	5F7F				9317C 9317M 9317R		2212.202 6212.202 6212.202	C77N01 M77N01 R77N01	5G1701		
9185C 9185M 9185R		2422.6 6422.6 6422.6	C587 M581 R581	5G2H				9317X ELECTRONIC	I A DIGITAL	3100, 3222 EQUIPMENT	077N01 - FULLY D	5F1701 DEDICATED	NONREGUL	I ATED - VDT
9185X AERIAL C	ABLE - M	3100.63 ETALLIC BLO	0587 ICK EXCL -	5F2H MASS E911				9327C 9327M 9327R 9327R	A,B A,B A,B	2212.205 6212.205 6212.205 1100 1225	C77N04 M77N04 R77N04	561704		
9212C	14	2421.611	C20402	562802				ELECTRONIC	L DIGITA	CONTONENT			NONDECUL	I ATED-CO I AN

•••

Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement Issued: U1/95 Not for use or disclosure outside the Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

YNEX unctional ccounting	FASC CODER GUIDE SECT	ION 8 Functional FRCs Accounting	FASC CODER GUIDE	SECTION 8
	FRC/US	0A/FC		FRC/USOA/FC
FIELD REPORTING CODE	COMPANY USOA CFC SPFC E-5300 DETAIL	FIELD REPORTING CODE	OHPANY USOA CEC SPEC COM	
9347X CIRCUIT EQU 9357C 9357M 9357R 9357R 9357X 9357X	A.B 0212.203 R77N02 5F1702 A.B 3100.3223 D77N02 5F1702 IPMENT - FULLY DEDICATED NONREGULATED - DSO PRIME SERVICE B 2232.302 K75K02 B 6232.302 K75K02 B 3100.3682 D75K02 B 3100.3682 SF1902	9387C 9387E 9387M 9387R 9387X 9387Y ELECTRONIC C 9397C	A,B (2212.31 (779 SGOT A,B (5212.31 7500 - A,B (5212.31 7500 - A,B (5212.31 777 - A,B (5212.31 777 - A,B (5212.31 777 - A,B (5212.31 7510 - IGITAL EQUIPMENT - FULLY DEDICATED NONREGULATED - OT	THER
9358C 9358E 9358M 9358R 9358R 9358X 9358X 9358Y LECTRONIC D 9367C	A,B (2362.31) (616D (5G7M A,B (5362.31) 721F A,B (5362.31) 7205	9397M 9397R 9397X OPERATOR SYS 9417C 9417M 9417R 9417X 9417X	.8 2222.299 C77N09 5G1709 .8 6212.299 M77N09 5F1709 .8 6212.299 R77N09 5F1709 .8 5100.3229 D77N09 5F1709 FEMS - SHARED EQUIPMENT - OSDI .8 2220.21 C71601 5G3F01 .8 6220.21 M71601 5F3F01 .8 3100.3421 D71601 5F3F01	
9367M 9367R 9367X ILECTRONIC D	B 6212.204 M77N03 B 6212.204 R77N03 B 3100.3224 D77N03 5F1703 IGITAL EQUIPMENT - FULLY DEDICATED NONREGULATED	9458C 9458C 9458M 9458R 9458R 9458X	L EQUIPMENT - FULLY DEDICATED NONREGULATED - OTHER .B 2362.209 616J09 5G7V09 .B 6362.209 720W .B 6362.209 730W .B 3100.4622 617J09 5F7V09	
9377H 9377R 9377R 9377X 9377M 9377F 9377E 9377Y	A,B 2212.201 C777 5G06 * * B 6212.201 H770 - A,B 6212.201 H770 - A,B 3100.3221 D777 5F06 * • A,B 6212.201 M770 - A,B 6212.201 M770 - A,B 6212.201 7410 -	DIGITAL ELECT 9487C A 9487M A 9487R A 9487X A	RONIC SWITCHING - SHARED EQUIPMENT - TOPS/OIS 8 (2212.32 (C77T)5G3C 8 (6212.32 M77T) 8 (5212.32 R77T) 8 (5212.32 R77T) 8 (3100.3232 D77T)5F3C)	

. - *

Issued:	01/95	NOTICE	
	NYNEX	Not for use or disclosure outside the Corporation or any of its subsidiaries except under written agreement	

Issued: 01/95 NOTICE Not for use or disclosure outside the NYNEX Corporation or any of its subsidiaries except under written agreement

-

.

	LOOPS	1998			WC	LOOPS	1998 WKG	Manhattan
LOCATION	PER WC	wkg	CLLI8	WC	SQ_MI	PER_SQ_MI	PER_SQ_MI	(Incl. N. Manh)
115TH AVE.	71,563	77584	NYCQNYOP	088	7.96641	8983.09	9738.89	
14TH AVE	79.205	84685	NYCKNYFT	052	3.19351	24801.86	26517.84	
14TH ST	39,894	45269	NYCKNY14	069	3.24428	12296.72	13953.48	
715T ST	59 836	62707	NYCKNY71	053	2.91739	20510.11	21494.21	
77714 ST	79 255	86732	NYCKNY77	054	4.50479	17593.49	19253.28	
	4 690	5194	AKENNYAK	643	69.5302	67.45	74.70	
	75 106	78614	NYCKNYAI.	050	3 08334	24358.65	25496.38	
ALBEMARLE RD.	5 598	6101	ALBNNYAT	673	100 366	55.78	60.79	
ALBION	62 141	76666	ALBYNYSS	366	31 4709	1974 55	2436.09	
	44 297	50201	ALBINISS	371	21 045	2109 15	2385 41	
ALBY WASHINGTON	44,307	30201	ADDININA	720	46 18/1	63.03	104.82	
ALDEN	4,330	4041	ALDINITAD	526	90.2624	51.99	57.90	
	4,173	4047	ALBANIAA	320	00.2024	01.00	100.41	
	2,485	2/30	ALMINYAL	5/5	21.1091	51.40	54.24	
AMBER	1,100	1122	AMBRNIAB	308	20.0045	45.90	50.61	
AMENIA .	1,848	2042	AMENNYAN	310	40.3400	40.00	702.09	
AMHERST	37,856	38026	AMHRNYMP	644	54.0927	699.64	174.50	
AMSTERDAM	15,624	16706	AMSTNYPE	416	97.4079	160.40	171.51	
ANGELICA	776	8//	ANGENYAG	702	69.4941	11.17	12.02	
ANGOLA	6,472	6967	ANGLNYAO	685	46.5577	139.01	149.64	
ANTWERP	453	452	ATWPNYAW	527	79.5194	5.70	5.68	
ARCADE-CHAFFEE	5,598	. 6206	ARCDNYAE	725	134.708	41.56	46.07	
ARGYLE	1,484	1605	ARGYNYAY	438	55.0716	26.95	29.14	
ARKPORT	1,015	1105	ARPTNYAR	609	32.0507	31.67	34.48	
ARMONK	6,019	8463	ARVGNYAV	278	21.4227	280.96	395.05	
ASTORIA	84,461	90596	NYCQNYAS	081	4.3764	19299.20	20701.03	
ATTICA	3,321	3699	ATTCNYAT	674	87.203	38.08	42.42	
AUBURN	23,009	24588	AUBNNYAU	558	124.325	185.07	197.77	
AVE. I	54,771	59165	NYCKNYAI	057	7.37482	7426.76	8022.57	
AVE. R	61,406	66180	NYCKNYAR	058	3.06225	20052.58	21611.56	
AVE. U	58,171	62689	NYCKNYAU	060	3.6373	15992.91	17235.04	
AVE. Y	62,411	65751	NYCKNYAY	059	3.87653	16099.71	16961.30	
AVERILL PARK	4,137	4551	AVPKNYAV	404	46.6367	88.71	97.58	
AVOCA	1,448	1514	AVOCNYAC	600	86.5437	16.73	1/.49	
BABYLON	47,882	54085	BBYLNYBN	226	19.9393	2401.39	2712.48	
BALDWINSVILLE	13,354	14914	BAVLNYBV	520	60.8296	219.53	245.18	
BALLSTON SPA	9,598	10618	BALSNYBA	476	55.995	171.41	189.62	
BARKER	1,352	1436	BRKRNYBK	664	40.6044	33.30	35.37	
BARNEVELD	1,557	1699	BNVDNYBD	426	38.5531	40.39	44.07	
BATAVIA	14,451	15511	BATVNYBT	675	113.63	127.18	136.50	
BATH	6,678	15511	BATHNYBH	601	141.958	47.04	109.26	
BAYSHORE	49,172	55141	BYSHNYBY	223	29.458	1669.22	1871.85	
BAYSIDE	85,882	68202	NYCQNYBA	082	8.92011	9627.91	7645.87	
BEACON	11,874	12839	BECNNYBE	326	24.3923	486.79	526.35	
BEDFORD VILLAGE	7,372	8797	BDVGNYBV	276	39.499	186.64	222.71	
BELFAST	1,080	1128	BLFSNYBZ	703	73.9412	14.61	15.26	
BELLE HARBOR	25,595	27686	NYCQNYBH	096	5.58148	4585.70	4960.33	
BELMONT	1,282	1540	BLMTNYBM	704	64.4371	19.90	23.90	
BERNE	2,863	3124	BERNNYBR	377	115.233	24.85	27.11	
BIG FLATS	2,063	2336	BGFLNYBF	592	19.2128	107.38	121.59	
BING-HENRY	39,750	43146	BNGHNYHY	596	57.4802	691.54	750.62	
BING-ROBERT	5,733	6187	BNGHNYRO	597	62.1582	92.23	99.54	
BLACK RIVER	6,137	4536	BLRVNYBC	528	26.6595	230.20	170.15	
BLISS	924	996	BLSSNYBS	726	81.735	11.30	12.19	
BOLIVAR	1,586	1723	BLVRNYBX	705	64.7728	24.49	26.60	

.

•

BOLTON LANDING	1,894	1128	BLLNNYBG	439	73.8469	25.65	15.27	
BOSTON	3,028	3282	BSTNNYBN	686	58.0782	52.14	56.51	
BRAINARDSVILLE	663	694	BRNVNYBW	456	53.1051	12.48	13.07	
BREWSTER	12 430	14431	BRWSNYBW	272	39.3271	316.07	366.95	
BRIDGE ST	131 173	159098	NYCKNYBR	066	4,53849	28902.34	35055.27	
BRIDGE ST.	2 718	2862	BEDTNYED	500	27 1041	100 28	105.59	
BRIDGEFORT	102 665	2002	MYCMMYRS	001	0 33365	550475 35	861156.07	X
BROAD STREET	103,005	400020	NICHNIBS	649	13 7297	3250 93	3082.96	
BUFF BAILEY	44,031	42323	BELONIBA	620	7.09562	6242.41	6352 73	
BUFF ELMWOOD	44,947	45013	BFLONYEL	030	1.00002	19221 45	10025 20	
BUFF FRANKLIN	40,575	44367	BFLONYFR	040	2.22000	10231.45	19935.30	
BUFF HERTEL	47,366	50615	BFLONYHE	660	10.5105	2808.64	3005.02	
BUFF MAIN	59,272	62519	BFLONYMA	636	16.4652	3599.83	3/9/.04	
BUFF S.PARK	49,288	51351	BFLONYSP_	651	35.2597	1397.86	1456.37	
BUSHWICK AVE.	50,059	53675	NYCKNYBU	067	2.88047	17378.76	18634.11	
BYRON	1,151	1186	BYRNNYBY	676	39.9138	28.84	29.71	
CAIRO	3,547	3896	CAIRNYCA	332	61.4048	57.76	63.45	
CALLICOON	2,022	2288	CLCNNYCN	355	88.9934	22.72	25.71	
CAMBRIDGE	2,640	2882	CMBRNYCM	477	79.0219	33.41	36.47	
CAMDEN	4,393	4980	CMDNNYZM	417	222.503	19.74	22.38	
CAMERON	347	376	CMRNNYCF	610	44.1408	7.86	8.52	
CAMILLUS	1,944	2178	CMLSNYID	509	22.7436	85.47	95.76	
CAMPBELL	1,212	1217	CMPBNYCP	602	52.1521	23.24	23.34	
CANASERAGA	822	864	CNSRNYCX	611	80.0834	10.26	10.79	
CANASTOTA	4,741	5102	CNSTNYZA	421	59.6405	79.49	85.55	
	1,829	1948	CANSNYCZ	608	101.325	18.05	19.23	
CANTON	5,162	6426	CNTNNYZO	543	280.84	18.38	22.88	
CARMEL	11.045	12944	CRMLNYCL	273	51.1197	216.06	253.21	
CARTHAGE	5.463	6122	CRTHNYZG	529	227.132	24.05	26.95	
	2 727	3014	CSTNNYCS	368	37.3208	73.07	80.76	
CATON	640	683	CTONNYZN	603	30,7661	20.80	22.20	
CATSKILL	7 413	8347	CTSKNYCT	330	69,7586	106.27	119.66	
CATTABALICUS	1 928	2112	CTRGNVSO	695	138 78	13.89	15.22	
	1 152	1192	CNBRNYCD	410	36,7044	31.39	32.48	
CENTRAL BRIDGE	60.834	71283	BRWDNYBW	224	25 0497	2428.53	2845.66	
	6 246	7438	CHRONVCR	277	7 63758	817 80	973.87	
	1 227	1351	CUTCHV7U	457	92 3201	13.40	14 63	
	11 751	12446	CULTIVER	719	7 37141	1594 13	1688 42	
CHEEKTOWAGA		712	CHEINTER	697	52 7030	12.67	13.51	
	1 109	1026	CHCKNICE	291	103 030	11 53	12.85	
	1,190	4000	CHVINIZV	501	42 417	00.25	106 13	
CHITTENANGO	4,309	4000	CINGNYCH	510	43.417	35.25	240.97	
CICERO	9,353	10390	CICRNYCJ	510	43.1330	210.03	007.12	
CITY ISLAND	3,134		NYCXNYCI	039	3.45293	907.03	357.12	
CLARENCE	3,567	4069	CLNCNYBA	641	15.5048	230.06	202.43	
CLARENCE CTR.	4,205	5095	CLCTNYCC	642	36.2953	115.86	140.38	
CLARKSVILLE	858	976	CLVLNYCK	370	28.2867	30.33		
CLAVERACK	2,834	3109	CLVRNYCV	333	76.2359	37.17	40.78	
CLAYTON	3,425	3812	CYTNNYZY	530	76.0124	45.06	50.15	
CLEVELAND	1,549	1637	CLEVNYCE	512	50.3331	30.77	32.52	
CLIFTON PARK	19,261	22630	CLPKNYCP	478	40.8832	471.12	553.53	
CLINTON	6,664	7093	CLTNNYZI	427	31.0946	214.31	228.11	
CLINTON AVE.	62,893	69356	NYCKNYCL	068	2.71243	23186.96	25569.69	
CLINTON CORNERS	2,995	3370	CLCRNYCC	307	48.7908	61.38	69.07	
CLINTONDALE	3,078	3358	CNDLNYCL	308	22.1939	138.69	151.30	<u> </u>
CLYDE	1,754	1881	CLYDNYCY	568	46.3895	37.81	40.55	
COBLESKILL	4,760	5306	CBLSNYZB	382	102.012	46.66	52.01	
COLD SPRING	3,403	3826	CSPPNYCS	300	31.3029	108.71	122.23	

•

COMMACK	27,646	32509	CMMKNYCM	207	23.227	1190.25	1399.62	
CONGERS	8,963	10127	CNGRNYCN	285	12.2206	733.43	828.68	
CONSTANTIA	1,291	1363	CNTTNYCI	511	31.3526	41.18	43.47	
CONVENT AVE	66.640	73652	NYCMNYCA	023	1.7248	38636.36	42701.76	X
COOPERSTOWN	4,519	5122	CPTWNYZW	383	112.182	40.28	45.66	
	783	841	CPNHNYZP	531	84.6831	9.25	9.93	
COPENHAGEN	16.051	17924	CRNGNYCG	606	170.39	94 20	105,19	· ····= ···
	5 462	6275	CRIMINYCW	324	24 4778	223 18	256.35	
CORNWALL	3,403	24590	NYCONYCO	024	1 01/05	16679 29	18062.61	
CORONA	31,940	34505	NICONICO	620	75 1025	190.96	212 95	·····
CORILAND	14,359	7600	CREDNICK	202	14 2415	461.54	535.20	
CROTON	6,573	/622	CRHDNYCH	303	14.2410	401.04	14607.20	
CRUGER AVE.	103,360	110/16	NYCXNYCR	030	1.5795	13030.70		
CTR BRUNSWICK	3,475	3785	CTBRNYCB	401	63.5646	54.07	59.55	
CUBA	2,855	3102	CUBANYEM	706	118.069	24.18	26.27	
CUTCHOGUE	11,729	13672	CTCHNYCU	216	40.1227	292.33	340.75	
DANNEMORA	1,242	1306	DNMRNYDN	458	60.4759	20.54	21.60	
DAVENPORT	1,284	1417	DVPTNYDT	384	76.3088	16.83	18.57	· · · · · · · · · · · · · · · · · · ·
DEER PARK	47,116	52103	DRPKNYDP	227	25.4089	1854.31	2050.58	
DELANSON	1,654	1812	DLSNNYDL	411	38.4818	42.98	47.09	
DELMAR	11,856	13487	DLMRNYDA	372	31.7091	373.90	425.34	
DERBY	2,408	2669	DRBYNYDB	687	12.0045	200.59	222.33	
DOBBS FERRY	22,402	26585	DBFYNYDF	263	11.9413	1876.01	2226.31	
DOLGEVILLE	2,537	2597	DLGVNYDG	434	190.046	13.35	13.67	
DOVER PLAINS	2,374	3006	DVPLNYDP	309	33.2591	71.38	90.38	
DUNKIRK	8,236	8772	DNKRNYDK	696	17.567	468.83	499.35	
E. 150TH ST.	44,009	50256	NYCXNYMH	030	2.93096	15015.22	17146.60	
E. 167TH ST.	51,921	57125	NYCXNYJE	033	1.59379	32577.06	35842.24	
E. 30TH ST.	171,872	158628	NYCMNY30	010	0.74996	229176.42	211516.69	X
E 37TH ST.	144,301	207532	NYCMNY37	012	0.24544	587927.80	845550.85	X
E. 56TH ST.	206,233	295611	NYCMNY56	018	1.05365	195731.98	280559.01	X
E 79TH ST.	138.387	160473	NYCMNY79	020	2.5089	55158.44	63961.50	X
E 97TH ST	110.254	124767	NYCMNY97	021	2.90794	37914.81	42905.63	X
	4,645	5000	OCBHNYOB	225	5.84381	794.86	855.61	
	10,810	11800	EGLVNYGL	408	48.6694	222.11	242.45	
E GREENBUSH	7,766	8961	EGNBNYEG	367	37.8823	205.00	236.55	
E HAMPTON	18.024	21484	EHTNNYEH	220	49.3587	365.16	435.26	
E NORTHPORT	43,107	49055	ENPTNYEN	206	30.0234	1435.78	1633.89	
EASTAURORA	14 646	16168	EAURNYEA	722	125.35	116.84	128.98	
EDEN	2 932	3136	EDENNYED	688	35.9756	81.50	87.17	
EDMESTON	1.862	2002	EDTNNYET	385	95.7187	19.45	20.92	
ELBA	888	945	ELBANYEB	677	31,5297	28,16	29.97	<u></u>
	1 366	1539	EZTWNYEZ	459	149 428	9.14	10.30	
	1,000	1107	FLOONVEIL	460	152 935	6.96	7.24	
	6.547	7036	EDDENTED	356	123 019	53 22	57 19	
	0,347	2111	ELVDNIEU	714	84 3982	33.69	36.86	
	2,043	24022	ENTRACE	590	148 698	211 72	228.80	
ELMIRA	31,403	24008	ENTROLEM	613	92 1585	339.07	378 78	
ENDICOTT	31,240	1090	ENDONYER	412	38 7359	24.55	27.88	
ESPERANCE	4 005	1000	ESPRINIER	532	64 7805	30.64	32.63	
EVANS MILLS	1,900	2114	EVENUEL	502	41 1675	17 78	19.55	
FABIUS	132	000	CABONIES	265	7 77040	2757 10	3233 13	<u></u>
FAIRVIEW	21,424	20123	GNBGNIFV	070	7 22250	11165 22	12//6 20	_
FAIRVIEW AVE.	80,765	90031	NYCKNYFA	010	1.23330	09.04	100 62	
FALLSBURG	9,814	10864	FLBGNYFB	301	99.1921	4242.62	A745 60	
FAR ROCKAWAY	35,459	38/49	NYCQNYFR	095	0.10002	2620 00	3216 20	
FARMINGDALE	55,678	68067	FRDLNYFM	238	21.1032	2030.89	32 10.29	_ _
IFAYETTE	789	814	FYTTNYFY	1 582	35.492/	22.23	22.93	

•

. .

FAYETTEVILLE	6,320	6993	FYVLNYFV	503	14.5508	434.34	480.59	
FISHKILL EAST	10,056	12222	FSHKNYLD	327	23.109	435.16	528.88	
FLEISCHMANNS	1,866	1929	FLSCNYFM	346	112.323	16.61	17.17	
	83,104	91160	FLPKNYFP	248	13.2691	6262.97	6870.10	
FLUSHING	102,189	111523	NYCONYFL	086	8.76078	11664.37	12729.80	
FOREST HULS	85,721	93275	NYCONYFH	094	4.45087	19259.38	20956.58	
FORESTVILLE	944	1028	FSVLNYFL	698	52.326	18.04	19.65	
	819	818	FTANNYFA	440	55.0814	14.87	14.85	
FORT COVINGTON	2 666	2897	FTCVNYFC	461	123.094	21.66	23.53	
	29 774	32964	WDMRNYFR	247	9.07544	3280.72	3632.22	
	2 075	2311	FKVLNYFK	710	123.832	16.76	18.66	<u> </u>
	1 350	1411	FRHDNYFH	334	31,5372	42.81	44.74	
	64 827	70504	FROTNYFD	250	16,1573	4012.24	4363.60	
	000	1072	FREUNVES	707	60 1301	16 46	17.83	
RIENUSHIP	2 650	2875	CLWYNYCW	413	76 2366	34.88	37.71	
GALWAY	1 539	1841	CRENNYCA	299	15 4232	99.78	119.37	
GARRISON	1,005	1936	GEDTING	665	38 4279	47.26	50.38	
GASPORT	12 4 20	12241	GENVINGN	581	75 3998	164.97	162.35	
GENEVA	21 751	25010	GENVINIGN	230	21 3104	1489.93	1685.52	
	21 070	36135	CL.PL.NVCF	441	157 061	202.91	230.07	
GLENS FALLS	31,070	5095	CURNINCO	533	2 69724	1792 94	2218 93	
GOUVERNEUR	4,030	5905	GVRINNIGO	602	111 784	43.59	47.25	
GOWANDA	4,873	2056	GWNDNIGD	358	123 129	15 20	16 70	
GRAHAMSVILLE	1,072	2000	GAVENIGA	032	1 60003	26608.88	29290 70	
GRAND CONCOURSE	42,575	40000	NYCANIGC	206	70 9040	20000.00	20230.70	
GRAND GORGE	1,309	1433	GRGRNYGG	300	29 5729	320.26	353 72	
GRAND ISLAND	9,151	2450	GDISNIGI	442	82 0407	36.48	41.60	
GRANVILLE	3,020	42001	GRVINIGE	236	9 4675	3831 21	4436.33	
IGREAT NECK	30,272	92001	GRINNIGN	479	59 1551	32.68	35.08	
GREENFIELD CIR	1,933	2075	GRCINIGC	215	26 2503	281.98	321 29	
IGREENPORT	7,402	2561	CRUCNICU	335	63 8274	36.36	40.12	
GREENVILLE	2,321	2/201	GRVGN1GV	480	03.0274	33.80	36.96	
GREENWICH	3,144	5430	GNWCNIGW	260	A7 8235	798.37	1087.10	
GREENWICH CO.	30,101	2442	CDI KNYCI	203	9 6344	320.93	357.26	
GREENWOOD LAKE	3,092	3442	CREANIGE	622	46 5546	48 48	51.70	**
GROTON	2,237	2407	ALBANYCD	376	28.0665	980 17	1142.96	
GUILDERLAND	27,310	32013	ALBINIGD	443	65 8711	13 24	14.36	
HAGUE	0/2	21700	HAGONIHQ	69/	43 5006	453 72	500.87	
HAMBURG	19,737	21700	IMEGNIND	423	31 5279	93.89	91.00	
HAMILTON	2,900	44407	HMINNIAA	219	16 7034	583.00	666 15	
HAMPTON BAYS	9,738	12709	HMBINIRB	210	3 99641	2491 72	3461.26	
HARRISON	9,933	13/98	HRSINNYHN	524	164 412	£431.72 6.70	7 28	
HARRISVILLE	1,115	119/	UDEDNUID	114	40 5702	19.75	20.58	
HARTFORD	/89	835	HEFENIHE	397	67 5169	12.40	13 77	
HARTWICK	67.074	74050	UMDONVIIC	251	13 2252	5071 68	5667 21	
HEMPSTEAD	01,014	14900	URVINIUC	432	82 0848	99.23	106.35	
HERKIMER	8,145	1422	INTERNING	544	115 317	11 /0	12.34	
HEUVELION	67.040	70/20		220	17 8805	3800 17	4442 72	
HICKSVILLE	01,949	19430	UTEINVUP	347	41 474	91.91	103.10	
HIGH FALLS	3,812	4210	HIFDNIRF	211	23 4000	106.67	227 30	••••••••••••••••••••••••••••••••••••••
HIGHLAND	4,604	5020	HGLUNING	301	20.4035	100.07	192.91	
HIGHLAND FALLS	3,191	0200		709	47 6021	16.83	18.15	
HINSDALE	1000	4004	UDDENINI	200	82 6120	15.00	16.10	·
HOBART	1,329	1381	HERINYHZ	021	5 80414	23107 12	12565.69	
HOE AVE.	134,117	/2933	NYCANYHO	724	1 0.00414	20107.13	45 90	<u></u>
HOLLAND	1,/52	1924	HELDNYHO	670	61 0126	41.00 55.71	59.04	
HOLLEY	3,399	3602	HLLYNYHE	0/8	01.0136	55.71	35.04	L

.

HOLLIS	64,438	69373	NYCONYHS	092	8.55424	7532.87	8109.78	
HOMER	3 853	4119	HOMRNYHM	621	96,1148	40.09	42.86	
HOOSICK FALLS	4 234	4782	HSFLNYHS	481	103.094	41.07	46.38	
HOUSICK FALLS	7 255	8138	HENLNYHI.	607	90.637	80.04	89.79	
HORNELL	12 103	13636	USUDNVUU	591	142 573	85.52	95.64	
HURSCAL	0.642	11273	UDSNINUD	336	66 1335	145 80	171.97	-
HUDSON	9,042	9600	HDEL NYME	445	60 3162	133.26	144 07	
HUDSON FALLS	0,030	4409	HDF LINIMS	227	20 2727	48 20	49.48	
HUNTER	1,459	00047	HNIRNIHN	205	52 9009	1305 56	1/98 99	
HUNTINGTON	70,240	00047	HNSINIHU	200	20 494	306.30	322 15	
HYDE PARK	6,274	0099	HYPKNYHK	424	20.404	144.26	152.10	
ILION	7,353	1157	ILINNYIL	431	50.9330	177.50	215 52	
ITHACA PLEAS GR	9,185	11153	ITHCNYPG	020	51.740	177.50	107 14	
ITHACA TIOGA	26,876	29849	ITHCNYIH	618	151.412	111.50	197.14	
J. F. KENNEDY	14,406	25842	NYCQNYIA	090	7.33216	1964.77	3524.47	
JAMAICA	71,004	76617	NYCQNYJA	091	4./1668	15053.81	16243.84	
JAVA	1,435	1513	JAVANYJA	723	57.2208	25.08	20.44	
JEFFERSONVILLE	2,608	2459	JFVLNYJF	359	64.581	40.38	38.08	
JOHNSON CITY	26,688	30052	JHCYNYJC	598	66.6077	400.67	451.18	
JONESVILLE	3,809	4486	JNVLNYJV	482	14.0329	271.43	319.68	
JORDAN	3,971	4149	JRDNNYJD	559	56.8008	69.91	73.04	
KATONAH	7,629	9149	KTNHNYKA	279	31.1126	245.21	294.06	
KATTSKILL BAY	1,109	1153	KTBANYKB	446	18.5228	59.87	62.25	
KEENE	978	1122	KNVYNYKV	462	161.034	6.07	6.97	
KENDALL	1,395	1479	KENDNYKD	679	34.7825	40.11	42.52	
KENMORE PL.	76,314	82477	NYCKNYKP	051	7.33345	10406.29	11246.68	·
KERHONKSON	3,888	3964	KRHNNYKR	360	78.8159	49.33	50.29	
KINGSBRIDGE	50,046	53445	NYCXNYKB	035	4.49983	11121.75	11877.12	
KINGSTON	27,173	31425	KGTNNYKG	345	88.4302	307.28	355.37	
L. I. C.	91,854	100338	NYCQNYLI	080	5.87747	15628.15	1/0/1.63	
LAFARGEVILLE	762	802	LFRVNYLE	535	58.7117	12.98	13.66	
LAFAYETTE	2,223	2431	LFYTNYLF	504	51.8209	42.90	46.91	
LAKE GEORGE	3,700	4024	LKGRNYLR	447	41.1176	89.99	97.87	
LAKE HUNTINGTON	757	770	LKHNNYLH	361	18.4983	40.92	41.63	
LAKE KATRINE	5,489	6887	LKKTNYLK	348	19.5744	280.42	351.84	
LAKE PLACID	4,424	5158	LKPCNYLA	463	171.657	25.77	30.05	
LANCASTER	34,885	38943	LNCSNYLC	718	52.0297	670.48	748.48	
LANSING	2,212	2377	LNNGNYLG	619	51.0164	43.36	46.59	
LARCHMONT	12,297	13774	LRMTNYLA	259	3.56507	3449.30	3863.60	
LATHAM	20,260	23527	LTHMNYTS	405	24.7205	819.56	951.72	· · · · · · · · · · · · · · · · ·
LAURELTON	75,642	82170	NYCQNYLN	089	9.19093	8230.07	8940.34	
LEVITTOWN	37,382	40554	LVTWNYLT	237	9.42078	3968.04	4304.74	
LEWISTON	4,357	4752	LSTNNYLW	656	17.816	244.56	266.73	
LEXINGTON	599	615	LXTNNYLX	338	46.3393	12.93	13.27	<u> </u>
LIBERTY	7,849	8775	LBRTNYLB	362	135.621	57.87	64.70	
LIBERTY AVE.	48,693	52306	NYCKNYLA	056	4.78121	10184.24	10939.91	
LIMESTONE	592	588	LMSTNYLM	709	37.0123	15.99	15.89	
LINDENHURST	39,665	43323	LHSTNYLH	228	8.0052	4954.90	5411.86	
LINDLEY	833	885	LNDYNYLN	604	46.5545	17.89	19.01	
LITTLE FALLS	4,684	4907	LTFLNYLS	433	115.016	40.72	42.66	
LITTLE VALLEY	1,368	1674	LTVYNYLI	711	60.7168	22.53	27.57	
LIVERPOOL CLAY	12,738	14025	CLAYNYOS	519	25.3847	501.80	552.50	
LIVINGSTON MANOR	2,284	2339	LVMNNYLV	363	131.314	17.39	17.81	
LOCKPORT	24,679	25978	LCPTNYLK	669	117.983	209.17	220.18	
LONG BEACH	31,617	34622	LNBHNYLB	249	7.13636	4430.41	4851.49	<u>. </u>
LYNBROOK	91,552	101560	LYBRNYLB	246	24.5482	3729.48	4137.17	<u> </u>
LYNDONVILLE	1,557	1676	LYVLNYLL	671	54.9188	28.35	30.52	

•

. . . . '

.

I YON MOUNTAIN	391	392	LYMTNYLO	464	39.9012	9.80	9.82	
LYONS	3,376	3781	LYNSNYLY	569	63.6569	53.03	59.40	
MAC DOLIGALL	864	906	MCDGNYMD	586	46.1755	18.71	19.62	
MACEDON	5 582	7449	MACDNYMC	570	41.5944	134.20	179.09	
MACHIAS	1 177	1333	MCHSNYMA	727	37,8637	31.09	35.21	
	1,002	1221	MORDNYMK	545	80 4636	12 45	15.17	
MADRID	12 246	12003	MUDCNIVMD	274	24 2409	508.07	577 25	
MAHOPAC	12,310	10990	MATADDAF	616	41 5685	38 71	40.05	
MAINE	1,609	1003	MAINNIME	465	41.0000 510 000	17 21	10.58	
MALONE	8,973	10151	MALINNYMM	405	0.00545	2720 52	2100.22	
MAMARONECK	22,479	26251	MMRNNYMA	267	8.20545	2/39.52	2750.05	
MANHASSET	19,708	22296	MNHSNYMH	234	8.08103	2438.80	2759.05	v
MANHATTAN AVE.	95,592	103537	NYCMNYMN	022	1.75316	54525.54	59057.36	X
MARIAVILLE	901	997	MARVNYMV	414	29.2362	30.82	34.10	
MARION	1,908	2067	MARNNYMR	571	23.6024	80.84	87.58	
MARLBORO	2,525	2843	MRBONYMB	325	6.02592	419.02	471.80	
MASSAPEQUA	44,595	48405	MSPQNYMP	241	18.0059	2476.69	2688.29	
MASSENA	10,742	12062	MSSNNYMQ	546	155.512	69.08	77.56	
MASTIC	30,171	34588	MSTCNYMC	214	45.3555	665.21	762.60	
MCGRAW	1,090	1122	MCGRNYMG	624	49.8715	21.86	22.50	
MCLEAN	671	692	MCLNNYMZ	623	17.403	38.56	39.76	
MECHANICVILLE	7,543	8192	MCHVNYMC	483	64.6913	116.60	126.63	
MEDINA	5,503	5854	MEDNNYPA	670	75.8362	72.56	77.19	
MEXICO	3,458	4050	MEXCNYMX	523	71.7157	48.22	56.47	
MIDDLEPORT	2.361	2406	MDPTNYMP	666	57.6834	40.93	41.71	
MID-NASSAU	34,909	46408	GRCYNYGC	245	5.58796	6247.18	8305.00	
MILEORD	1,161	1175	MLFRNYMU	389	48.0621	24.16	24.45	
MILLBROOK	4.394	5225	MLBKNYML	312	63.7975	68.87	81.90	
MILTON	1,539	1718	MLTNNYMN	328	13.8937	110.77	123.65	
	61.819	75968	MINLNYMI	243	11.1985	5520.29	6783.77	
	818	868	MIVLNYNV	448	40.8241	20.04	21.26	
MINOA	5.076	5352	MINONYMI	505	21.5297	235.77	248.59	
MOIRA	1,427	1550	MOIRNYMY	466	71.6564	19.91	21.63	
MONTALIK	5 280	5930	MNTKNYMT	221	17.5659	300.58	337.59	
MONTICELLO	12 966	13846	MNTINYMT	354	106,505	121.74	130.00	
MORAVIA	3 648	3951	MORVNYMO	564	166.345	21.93	23.75	
MORBISTOWN	1 217	1279	MRTWNYMW	547	47.5495	25.59	26.90	
MORRISTOWN	17 770	21504	MTKSNYMK	270	28 4609	624.37	755.56	
	52 893	57645	MTUDNVMV	255	5 94933	8888.90	9689.33	
MI. VERNON	70.099	02073	NYCENYNS	063	15 7183	5031.59	5857.69	
N STATEN ISLAND	19,000	11164	NCONNYNG	402	57 7158	165.80	193.43	
N. GREENBUSH	9,509	25722	NUCONVNI	002	2 16006	11356 17	11913 10	· · · · ·
N. JAMAICA	24,550	20700	NICONING	287	10 8068	1896 77	2018 17	
NEW CITY	20,490	42650	NWCININC	201	11 2025	3349.97	3807 19	
NEW DORP	37,528	42000	NICRNIND	212	02 5336	95.89	112 59	. <u></u>
NEW PALIZ	8,873	57470	NWPLNINP	259	12 401	4112.41	4610.84	
NEW ROCHELLE	50,998	5/1/9	NWRCNINR	200	12.401	9112.41	247.01	
	4,831	6205	NWWNNYNW	329	17.8813	270.17	156.01	
NEWARK	8,106	8932	NWRKNYNK	5/2	56.9237	142.40	150.91	
NEWBURGH	29,102	33056	NWBRNYNW	322	34.26/9	849.25	904.03	· · · · · · · · · · · · · · · · · · ·
NEWBURGH WEST	7,285	8591	NWBRNYWT	323	34.31/2	212.28	250.34	
NEWFANE	3,556	3924	NWFNNYMA	667	43.1251	82.46	90.99	
NEWFIELD	2,068	2185	NWFDNYNF	625	65.9163	31.37	33.15	u
NEWTOWN	155,119	170747	NYCQNYNW	084	8.92961	17371.31	19121.44	·
NIAG FLS 76	7,358	7711	NGFLNY76	654	3.15506	2332.13	2444.01	
NIAG FLS PORT	21,931	22941	NGFLNYPO	653	13.3128	1647.36	1723.23	
NIAG FLS WOODL	11,633	12649	NGFLNYWO	655	27.8752	417.32	453.77	
NICHOLS	1,056	1141	NCHLNYNL	616	32.7799	32.21	34.81	

.

.

NORFOLK	1,373	1465	NRFLNYNO	548	49.127	27.95	29.82	
NORTH CLOVE	1,901	2224	NCLVNYNC	315	34.5005	55.10	64.46	
NORTH COLLINS	2.092	2232	NCLNNYNO	689	60.9068	34.35	36.65	
NORTH ROSE	1,436	1494	NROSNYNR	573	39.4983	36.36	37.82	
	11 446	12761	NSYRNYNS	517	11,9389	958.71	1068.86	
NORWOOD	1 355	1460	NRWINIVNID	552	33 4358	40.53	43.67	
NORWOOD	15 004	10260	NUNCHIVNE	288	12 0035	1230 98	1493 32	
NTACK	15,004	13203	OKUL NYOU	200	84 8083	19.61	20.80	·
	1,663	1/04	OKHLNYOH	339	04.0003	13.01	20.00	
OAKFIELD	2,021	2139	OKEDNYOK	680	60.5931	33.35	35.30	
OGDENSBURG	8,475	9393	OGBGNYOG	549	115.273	/3.52	81.40	
OLEAN	15,547	17309	OLENNYHA	701	142.552	109.06	121.42	
ONEIDA	11,314	12487	ONEDNYOD	420	89.5616	126.33	139.42	
ONEONTA	13,222	14867	ONNTNYOA	390	123.325	107.21	120.55	
ONTARIO	4,970	5553	ONTRNYON	574	46.6598	106.52	119.01	
ORANGEBURG	14,753	18416	ORBGNYOB	291	14.4086	1023.90	1278.13	
ORCHARD PARK	10,246	11902	ORPKNYST	729	32.8719	311.69	362.07	•••
OSSINING	23,137	27687	OSNGNYOS	302	27.1332	852.72	1020.41	
OSWEGO	20,701	22600	OSWGNYOS	522	93.1628	222.20	242.59	
OTEGO	1,483	1553	OTEGNYOT	391	50.4256	29.41	30.80	
OWASCO	487	482	OWSCNYOO	562	31.4189	15.50	15.34	
OWEGO	6,996	8198	OWEGNYOW	614	122.137	57.28	67.12	
OYSTER BAY	14.891	16417	OYBANYOY	233	15.5118	959.98	1058.36	
PALENVILLE	1.625	1729	PLVLNYPL	340	28.493	57.03	60.68	
	4,568	4934	PLMYNYPY	575	60,1386	75.96	82.04	
PARISH	1,636	1796	PRISNYPA	524	53.8843	30.36	33.33	
PATCHOGUE	48,692	56827	PCHGNYPH	208	39.4589	1233.99	1440.16	
PATTERSON	3.631	4245	PASNNYPN	280	40.407	89.86	105.06	
PAWLING	3 996	4033	PWNGNYSS	314	41.7216	95.78	96.66	
PEARL RIVER	26,260	31555	PRRVNYNP	296	15.5343	1690.45	2031.31	
PEEKSKIII	27 192	31328	PKSKNYPS	297	32,038	848.74	977.84	
	8 040	8564	PNYNNYPN	583	145.034	55.44	59.05	
PERII	3 284	3509	PERUNYPE	467	123,918	26.50	28.32	
	978	1055	PHLANVPF	537	51 6207	18.95	20.44	
	1 631	1753	DHMTNYPM	341	28 6494	56.93	61.19	
	2 248	2455	DUNCNYDU	349	128 295	17 52	19.14	
PHOENICIA	1 150	1161	DTTWNVDT	403	36 1712	31 79	32 10	
	42 759	1011	DCUVNYCU	306	53 3707	801.02	915 37	
	42,750	40002	PGHKNISH	300	14 6535	681.68	853.04	
PKP SPACKENKILL	9,909	11029	PGHKNISP	240	2 07936	6613.87	5739 14	
	13,740	24229	PLOWNIPO	469	122 312	160 11	183 19	
PLATISBURGH	21,185	24230	PLBGNIPB	400	22.312	102.20	215.44	
PLEASANT VALLEY	4,237	4/4/	PVIDNYPD	274	15 8425	1424.00	1512 25	
PLEASANIVILLE	22,518	23914	PSVLNYPV	2/1	10.0120	1216 05	1426.32	
POMONA	15,193	1/80/	POMINNYPO	294	12.4040	1210.95	1420.33	
POPLAR RIDGE	2,198	2367	PPRGNYPP	000	100.204	20.00	22.27	
PORT HENRY	1,4/2	1536	PTHNNYPO	449	41.0400	1001.77	32.10	
PORT JEFFERSON	35,470	41982	PJSTNYPJ	203	20.0003	1231.24	1407.29	
PORT WASHINGTON	19,323	21901	PTWANYPW	235	9.21597	2096.69	23/6.42	
PORTCHESTER	30,404	35380	PTCHNYPC	266	11.954	2543.42	2959.68	
PORTVILLE	1,592	1695	PRTVNYPV	712	45.291	35.15	37.42	
POTSDAM	10,853	11603	PTSDNYPS	550	199.283	54.46	58.22	
PRATTSVILLE	519	558	PRVINYPR	342	31.0542	16.71	17.97	
PURDYS	8,068	9987	PRDYNYPD	281	33.9318	237.77	294.33	
PUTNAM	452	466	PTNMNYPX	454	35.415	12.76	13.16	
PUTNAM VALLEY	11,416	13121	PTVYNYPY	298	43.5201	262.32	301.49	w
RANSOMVILLE	1,979	2114	RSVLNYRV	657	34.2848	57.72	61.66	
RED CREEK	957	1048	RDCKNYRC	576	27.4839	34.82	38.13	

•

. •

RICHFIELD SPR	2,724	3111	RCSPNYRS	435	116.824	23.32	26.63	
RICHMOND HILL	43,925	46986	NYCQNYRH	087	3.46949	12660.36	13542.62	
RICHMONDVILLE	824	865	RCVLNYRH	392	32.8672	25.07	26.32	
RIVERHEAD	20,748	25022	RVHDNYRV	212	90.4144	229.48	276.75	
ROCKAWAY AVE	81.809	88436	NYCKNYRA	055	5.48979	14902.03	16109.18	
ROME	24,853	26572	ROMENYRM	419	207.403	119.83	128.12	
RONKONKOMA	48 701	57333	RNKNNYRN	202	25.864	1882.96	2216.71	
	2 529	2796	RODLNYRD	350	14.3193	176.61	195.26	
	28 228	32900	RSUNNYRO	231	20.9539	1347.15	1570.11	
	5 076	5756	RNLKNYRL	484	15.0667	336.90	382.03	
POVPUPY	1 531	1643	PYBYNYRX	393	68.8111	22.25	23.88	
	1,001	1175	PSERNYRE	715	42 4442	25.16	27.68	
RUSHFURD	13 494	16518	RVE-NVRV	268	8,46522	1594.05	1951,28	
	52 723	62399	NYCENVSS	062	19,8665	2653.86	3140.92	
	2 290	2732	COTUNYCO	373	33 5822	71.14	81.35	
	1 320	1414	SCHRNYOH	538	24.9604	52.88	56.65	
SACKETS HARBOR	12 160	14726	SCHRWIGH	219	40 6934	299.04	361.88	
	4 779	5178	ST MINIYWW	713	115 755	41.28	44.73	
SALAMANCA	4,170	2272	CALMAXAM	485	103 582	20.75	22.90	
SALEM	2,149	2012	CDNCNVOC	470	160 532	11 71	12 65	
SARANAC	1,880	2030	SRNCNIQC	470	351 495	18 75	21.00	
SARANAC LAKE	6,590	1124	SREKNYQL	4/1	146 402	101.73	220.18	
SARATOGA	28,087	32200	SRSPNISK	400	140.433 62 4226	149.08	168.02	
SAUGERTIES	9,455	10656	SGRINISG	501	77 2600	17 20	17.61	
SAVONA	1,329	1361	SAVNNYSN	005	11.2000	1276 60	1500.25	
SAYVILLE	36,905	428/4	SYVLNYSA	209	20.0000	2214.04	2723.04	
SCARSDALE	26,551	31242	SCDLNYSR	204	62 1009	1090.02	1156 50	
SCHDY CLINION	67,091	1020	SCHINISC	407	47 6557	362.41	405.76	
	1/2/11	193371	SSUBNISU	1 403	97.000071	002.71		
	4.405	4407	CORDEVON	204	72 527	15.51	16.50	
SCHENEVUS	1,125	1197	SCHVNYQN	394	72.527	15.51	16.50 6.46	
SCHENEVUS SCHROON LAKE	1,125	1197	SCHVNYQN SCLKNYQX	394 450	72.527	15.51 6.11 50.73	16.50 6.46 54.84	
SCHENEVUS SCHROON LAKE SCHUYLERVILLE	1,125 1,879 2,674	1197 1986 2891	SCHVNYQN SCLKNYQX SHVLNYSV	394 450 487	72.527 307.41 52.7156	15.51 6.11 50.73 81930 84	16.50 6.46 54.84 92787 93	×
SCHENEVUS SCHROON LAKE SCHUYLERVILLE SECOND AVE.	1,125 1,879 2,674 167,075	1197 1986 2891 189215	SCLKNYQN SCLKNYQX SHVLNYSV NYCMNY13	394 450 487 008 210	72.527 307.41 52.7156 2.03922 24.8274	15.51 6.11 50.73 81930.84 1359.22	16.50 6.46 54.84 92787.93 1568.75	X
SCHENEVUS SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN	1,125 1,879 2,674 167,075 33,746	1197 1986 2891 189215 38948	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE	394 450 487 008 210	72.527 307.41 52.7156 2.03922 24.8274	15.51 6.11 50.73 81930.84 1359.22 95.04	16.50 6.46 54.84 92787.93 1568.75 103.06	X
SCHENEVUS SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS	1,125 1,879 2,674 167,075 33,746 5,306	1197 1986 2891 189215 38948 5754	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL	394 450 487 008 210 584 204	72.527 307.41 52.7156 2.03922 24.8274 55.8306	15.51 6.11 50.73 81930.84 1359.22 95.04 857 71	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19	x
SCHENEVUS SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET	1,125 1,879 2,674 167,075 33,746 5,306 16,910	1197 1986 2891 189215 38948 5754 20409	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK	394 450 487 008 210 584 204 205	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33	X
SCHENEVUS SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888	1197 1986 2891 189215 38948 5754 20409 964	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS	394 450 487 008 210 584 204 395 252	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42	X
SCHENEVUS SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126	1197 1986 2891 189215 38948 5754 20409 964 3604	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK	394 450 487 008 210 584 204 395 352 242	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 7.10.00	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 2,284	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 24298	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH	394 450 487 008 210 584 204 395 352 213	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 70.94	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5752	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI	394 450 487 008 210 584 204 395 352 213 694	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 67.4134	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88 37	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 3883 3883 5727	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE	394 450 487 008 210 584 204 395 352 213 694 565	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL	394 450 487 008 210 584 204 395 352 213 694 565 286 285	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 24.6484	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 5727	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM	394 450 487 008 210 584 204 395 352 213 694 565 286 201 286	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.5484 22.0644	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 69.35	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 52001 4994	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 603	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15 70	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 8,999	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 52001 4994 969 969	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 225	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SOUUS SOUTH DAYTON SOUTH SALEM	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 52001 4994 9699 9699	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751 27.5064 25.2631	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON SOUTH SALEM SOUTHAMPTON	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768 15,697	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 52001 4994 9699 9699 9699 98789	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS SATNNYSN	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275 217	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751 27.5064 35.3531	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70 444.01	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47 2610.64	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHROON LAKE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON SOUTH SALEM SOUTH SALEM SOUTHAMPTON SPRING VALLEY	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768 15,697 32,625	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 52001 4994 969 9699 18789 18789 38144	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS SATNNYSN SPVYNYSV	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275 217 293	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751 27.5064 35.3531 14.611	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70 444.01 2232.91	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47 2610.64	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHROON LAKE SELDEN SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTHAMPTON	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768 15,697 32,625 4,794	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 52001 4994 969 9699 18789 38144 5210	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS SATNNYSN SPVYNYSV	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275 217 293 690 452	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751 27.5064 35.3531 14.611 104.15	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70 444.01 2232.91 46.03 6.82	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47 2610.64 50.02 7 38	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHROON LAKE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTHAMPTON SPRING VALLEY SPRINGVILLE ST. REGIS FALLS	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768 15,697 32,625 4,794 720	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 52001 4994 969 9699 9699 18789 38144 5210	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS SATNNYSN SPVLNYW SPVLNYW SRLNYQR	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275 217 293 690 469 206	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751 27.5064 35.3531 14.611 104.15 105.473 406.205	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70 444.01 2232.91 46.03 6.83 24.50	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47 2610.64 50.02 7.38	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHROON LAKE SELDEN SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTHAMPTON SPRING VALLEY SPRINGVILLE ST. REGIS FALLS STAMFORD	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768 15,697 32,625 4,794 720 2,604	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 52001 4994 9699 9699 9699 18789 38144 5210 778 2788	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS SATNNYSN SPVLNYWM SRFLNYQR	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275 217 293 690 469 396	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751 27.5064 35.3531 14.611 104.15 105.473 106.305	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70 444.01 2232.91 46.03 6.83 24.50	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47 2610.64 50.02 7.38 26.23	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEY SPRING VALLEY SPRINGVILLE ST. REGIS FALLS STAMFORD STANFORDVILLE	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768 15,697 32,625 4,794 720 2,604 1,356	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3863 5727 2350 52001 4994 9699 9699 9698 18789 38144 5210 778 2788 2788	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS SATNNYSN SPVLNYW SRFLNYQR SMFRNYQM	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275 217 293 690 469 396 317	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.224 46.1837 57.4171 19.2832 34.224 46.1837 57.4171 19.2832 34.5484 73.0641 57.5054 35.3531 14.611 105.473 105.473 106.305 31.6678	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70 444.01 2232.91 46.03 6.83 24.50 445	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47 2610.64 50.02 7.38 26.23 43.48	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHROON LAKE SELDEN SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEY SPRING VALLEY SPRING VALLEY SPRINGVILLE ST. REGIS FALLS STANFORD STANFORDVILLE STAR LAKE	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768 15,697 32,625 4,794 720 2,604 1,356 1,532	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3863 5727 2350 52001 4994 969 9699 9699 18789 38144 5210 778 2788 1377	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS SATNNYSN SPVINYSV SPVLNYWM SRFLNYQR STNVNYST SALKNYQT	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275 217 293 690 469 396 317 532	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751 27.5064 35.3531 14.611 104.15 105.473 106.305 31.6678 344.631	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70 444.01 2232.91 46.03 6.83 24.50 42.82 4.45	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47 2610.64 50.02 7.38 26.23 43.48 4.90	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHROON LAKE SELDEN SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEY SPRING VALLEY SPRING VALLEY SPRINGVILLE ST. REGIS FALLS STANFORD STANFORDVILLE STAR LAKE SUFFERN	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768 15,697 32,625 4,794 720 2,604 1,356 1,532	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 52001 4994 9699 6989 18789 38144 5210 778 2788 1377 1689 1377	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSH SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS SATNNYSN SPVLNYWM SRFLNYQR STNVNYST SALKNYQT SFRNNYSU	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275 217 293 690 469 396 317 539 292	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.2224 46.1837 57.4171 19.2832 34.224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751 27.5064 35.3531 14.611 105.473 106.305 31.6678 344.631 17.8741	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70 444.01 2232.91 46.03 6.83 24.50 42.82 4.45 841.55	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47 2610.64 50.02 7.38 26.23 43.48 4.90	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEY SPRING VALLEY SPRING VALLEY SPRING VALLEY SPRINGVILLE ST. REGIS FALLS STANFORD STANFORDVILLE STAR LAKE SUFFERN SYLVAN BEACH	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768 15,697 32,625 4,794 720 2,604 1,356 1,532 15,042 1,356	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3863 5727 2350 52001 4994 9699 6989 18789 38144 5210 778 2788 1377 1689 17937 1429	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSK SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS SATNNYSN SPVLNYWM SRFLNYQR STNVNYST SALKNYQT SFRNNYSU	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275 217 293 690 469 396 317 539 292 425	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751 27.5064 35.3531 14.611 104.15 105.473 106.305 31.6678 344.631 17.8741 4.91181	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70 444.01 2232.91 46.03 6.83 24.50 42.82 4.45 841.55 276.07	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47 2610.64 50.02 7.38 26.23 43.48 4.90 1003.52 290.93	X
SCHENEVUS SCHROON LAKE SCHROON LAKE SCHROON LAKE SCHUYLERVILLE SECOND AVE. SELDEN SENECA FALLS SETAUKET SHARON SPRINGS SHOKAN SHOREHAM SILVER CREEK SKANEATELES SLOATSBURG SMITHTOWN SODUS SOUTH DAYTON SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEM SOUTH SALEY SPRING VALLEY SPRING VALLEY SPRINGVILLE ST. REGIS FALLS STAMFORD STANFORDVILLE STAR LAKE SUFFERN SYLVAN BEACH SYOSSET	1,125 1,879 2,674 167,075 33,746 5,306 16,910 888 3,126 21,284 3,692 5,074 2,017 45,259 4,699 899 5,768 15,697 32,625 4,794 720 2,604 1,356 1,532 15,042 1,356 24,192	1197 1986 2891 189215 38948 5754 20409 964 3604 24298 3883 5727 2350 52001 4994 9699 9699 9699 18789 38144 5210 778 2788 1377 1689 17937 1429 27368	SCHVNYQN SCLKNYQX SHVLNYSV NYCMNY13 SLDNNYSE SNFLNYSL STKTNYSK SHSPNYQS SHKNNYSK SHHMNYSK SHHMNYSK SLCKNYSI SKNTNYSE SLTSNYSL SMTWNYSM SODSNYSD SDTNNYPI SSLMNYSS SATNNYSN SPVINYSV SPVLNYWM SRFLNYQR STNVNYST SALKNYQT SFRNNYSU SYBHNYQY SYBHNYQY	394 450 487 008 210 584 204 395 352 213 694 565 286 201 577 693 275 217 293 690 469 396 317 539 292 425 254	72.527 307.41 52.7156 2.03922 24.8274 55.8306 19.7152 41.3251 96.32 34.2224 46.1837 57.4171 19.2832 34.5484 73.0641 57.2751 27.5064 35.3531 14.611 104.15 105.473 106.305 31.6678 344.631 17.8741 4.91181 10.92	15.51 6.11 50.73 81930.84 1359.22 95.04 857.71 21.49 32.45 621.93 79.94 88.37 104.60 1310.02 64.31 15.70 209.70 444.01 2232.91 46.03 6.83 24.50 42.82 4.45 841.55 276.07 2215.38	16.50 6.46 54.84 92787.93 1568.75 103.06 1035.19 23.33 37.42 710.00 84.08 99.74 121.87 1505.16 68.35 16.92 254.09 531.47 2610.64 50.02 7.38 26.23 43.48 4.90 1003.52 290.93 2506.23	X

.

.

SYPA E CENESEE	15 330	17622	SYRCNYGS	497	31.5177	486.39	559.11	
	23.978	25708	CMLSNVON	518	43,1192	556.09	596.21	
	23,310	26388	SABORION	498	15 5153	1445.73	1700.77	
STRA JAMES	45 000	16625	CVDCNVSA	100	9 6037	1586 16	1732 14	
SYRA S. SALINA	15,235	04276	SIRCNISA	406	19 04 20	4565 32	4981 87	
SYRASIATE	80,485	94370	SIRCNISU	490	10.5455	1914 92	2116 75	
SYRC ELEC. PARK	22,229	25927	SYRCNYEP	515	12.2400	1014.03	2110.75	
TANNERSVILLE	1,997	2077	TNVLNYTN	343	69.9903	28.53	29.00	
TARRYTOWN	17,114	21157	TRTWNYTT	262	10.6586	1605.65	1984.97	V
THAYER ST.	31,986	37110	NYCMNYTH	025	1.19684	26725.38	31006.65	X
THERESA	1,098	1115	THRSNYTH	540	81.2167	13.52	13.73	
TICONDEROGA	3,195	3574	TCNDNYTI	451	109.57	29.16	32.62	
TIEBOUT AVE.	82,187	85262	NYCXNYTB	034	3.68934	22276.88	23110.37	
TONAWANDA	35,325	37562	TNWNNYTW	661	33.6013	1051.30	1117.87	
TRATMAN AVE.	129,773	116164	NYCXNYTR	038	9.52506	13624.38	12195.62	
TROY 3RD AVE	21,223	22375	TROYNY03	399	36.0861	588.12	620.04	
TROY 4TH ST.	31.607	33979	TROYNY04	400	19.2921	1638.34	1761.29	
TROYAVE	115.601	90404	NYCKNYTY	071	3,12606	36979.78	28919.47	
TUCKAHOE	36 781	40872	TKHONYTU	256	8.85708	4152.72	4614.61	
	2 486	2682	TLLYNYTY	506	60.2129	41.29	44.54	
	2,753	3082	TPLENIVTI	472	648 264	5.79	6.14	
	2,755	2712	THUNDWITY	284	74 0255	30.88	36 65	
TUXEDO	2,200	1209	INCONTIX	563	37 7832	33.45	34 35	
UNION SPRINGS	1,204	F0000	UNSPNIUS	429	115 082	450.03	507.51	
UTICA	52,195	58862	UTICNYUT	420	66 1202	430.03	34.34	
VALLEY FALLS	2,127	22/1	VLFLNYVF	400	00.1292	922.10	05592.66	×
VARICK ST.	60,259	69984	NYCMNYVS	007	0.73218	62300.46	95562.00	<u> </u>
VARYSBURG	1,202	1293	VRBGNYVB	681	62.8844	144.02	164.00	
VOORHEESVILLE	2,739	3101	VRHVNYVR	3/4	18.6962	144.93	1022.42	
W SENECA UNION	18,476	20398	WSNCNYUN	730	19.7384	930.04	1033.42	
W STATEN ISLAND	40,474	46918	NYCRNYWS	064	11.7648	3440.26	3988.00	v
W. 176TH ST.	56,912	63470	NYCMNYWA	024	1.73223	32854.76	36640.63	<u> </u>
W. 36TH ST.	100,946	143616	NYCMNY36	011	0.83219	121301.77	1/25/6.18	<u> </u>
W. 42ND ST.	109,093	180709	NYCMNY42	013	0.28905	377424.35	625191.15	<u> </u>
W. 50TH ST.	143,544	204661	NYCMNY50	015	1.00613	142669.44	203414.07	<u> </u>
W. 73RD ST.	110,279	127877	NYCMNY73	019	1.11462	98938.65	114726.99	X
W. HAMPTON	13,681	16244	WHBHNYWB	222	46.025	297.25	352.94	
W. 18TH ST	142,278	177762	NYCMNY18	009	1.44101	98734.92	123359.31	X
WADDINGTON	823	869	WDTNNYWY	551	33.4186	24.63	26.00	
WANAKAH	5,750	6097	WNKHNYWK	691	13.2842	432.85	458.97	
WANTAGH	49,007	55052	WNTGNYWT	242	26.7077	1834.94	2061.28	
WAPPINGERS FLS	13,938	15826	WPFLNYWF	319	19.749	705.76	801.36	
WARRENSBURG	2,864	3136	WRBGNYWU	452	109.811	26.08	28.56	
WATERLOO	4,704	5332	WTRLNYWT	585	49.6816	94.68	107.32	
WATERPORT	1.550	1649	WTPTNYWR	682	56.9088	27.24	28.98	
WATERTOWN	22,534	25969	WTTWNYUN	541	148.516	151.73	174.86	
WATKINS GLEN	4 165	4673	WTGLNYWG	594	77.759	53.56	60.10	
	4 058	4486	WVRLNYWV	593	59.0401	68.73	75.98	
WEEDSPORT	1 790	1928	WDPTNYWT	561	28.5228	62.76	67.60	
WELLSVILLE	6.322	7101	WLVLNYNM	716	166.243	38.03	42.71	
WEST HAVEPSTRAW	18 315	21058	WHVRNYWH	290	54.4829	336.16	386.51	
WEST ST	197 956	292038	NYCMNYWS	004	0.93687	211295.51	311717.34	X
WEST ST.	32 625	36516	WRYNNVWP	244	9.38131	3478.73	3892.42	
WESTERIO	1 1 1 1 7	1220	WERLAVWI	378	52,9906	21.65	23.21	· · · · · · · · · · · · · · · · · · ·
WESTERLO	2 010	2165	MUL KMVHH	364	77 5939	38.91	40.79	· ·
	3,019	100400	MUDI MAND	260	27 8617	3173.07	3893.84	
	08,407	108489	WHPLNIWP	152	112 26	24 65	26 30	
WHITEHALL	2,/92	2979	WHTHNYUH	400	20 5064	24.00	20.30	
WHITESBORO	12,465	13686	WHBONYWP	429	38.5061	323.71	300.42	

٠

.

.

•

.

WHITESTONE	22,921	25815	NYCONYWS	083	2.93	7822.87	8810.58	
WILLIAMSBURG	52,694	56751	NYCKNYWM	065	2.99543	17591.46	18945.86	
WILLIAMSON	3,176	3513	WMSNNYWN	578	41.0319	77.40	85.62	
WILLIAMSVILLE	43,486	49981	WSVLNYNC	640	26.5416	1638.41	1883.12	
WILLOWVALE	3,431	3851	WWVLNYWW	430	38.2534	89.69	100.67	
WILLSBORO	1,812	1993	WLBONYUB	473	62.959	28.78	31.66	
WILSON	2,013	2167	WLSNNYME	668	39.2312	51.31	55.24	
WINDHAM	3,275	3545	WNHMNYWM	344	91.9115	35.63	38.57	
WINGDALE	2,219	2523	WNDLNYWD	320	33.8404	65.57	74.56	
WOLCOTT	2,818	3119	WLCTNYWC	579	79.3647	35.51	39.30	
WOODSTOCK	6,313	6988	WDSTNYWS	353	66.6774	94.68	104.80	
WORCESTER	1,489	1640	WRCSNYUC	397	89.5362	16.63	18.32	
WORLD TRADE C	35,475	62496	NYCMNYST	003	0.33	107500.00	189381.82	<u> </u>
YAPHANK	13,766	16742	YPHNNYYA	211	42.4549	324.25	394.35	
YONKERS	69,844	78833	YNKRNYYN	257	11.3662	6144.89	6935.74	
YORKTOWN	21,714	25729	YRTWNYYT	304	36.5224	594.54	704.47	
YOUNGSTOWN	2,217	2360	YNTWNYYT	658	14.4631	153.29	163.17	<u>. </u>
	10,853,864	12,390,267			27,270	398.02	454.36	

۱

•

The ECRIS system is located on 9 database servers in NY using the following geographic breakdown:

BOXAREAGM01BRONX/NO MANHATTANGM02QUEENSGM03BROOKLYN/STATEN ISLANDMH01MANHATTANST01NASSAU/SUFFOLKST02NORTHEASTST03WESTERNST04CENTRALST05MIDSTATE

.

. .

The following is the file description for the ECRIS wkop files: (Filenames are xxxxW)

FIELD /NAME	NO	STAR	T END	<u>LENGTH</u>	
JOB-NO	1	1	10	10	
JOB_JTYP_CD	2	11	11	1	
JOB CAT_CD	3	12	16	5	
PRT NO	4	17	26	10	
WKOP WOT_CD	5	27	27	1	
WKOP_NO	6	28	31	4	
WKOP_WCM_WC_CD	7	32	35	4	
WC_NM	8	36	60	25	
WKOP_WCM_MUNI_CD	9	61	70	10	
MUNI_NM	10	71	95	25	
FRC_CD	11	96	101	6	
SI DESC	12	102	141	40	
WKOP CALC_TIME	13	142	153	12	
WKOP_CALC_PRICE	14	154	165	12	
WKOP_OTY	15	166	175	10	
MAT_DESC	16	176	215	40	
WC_SWP_FAC	17	216	220	5	
JOB_AUTH_DT	18	221	228	8	
JOB_COMPL_DT	19	229	236	8	
WKOP_END_DT	20	237	244	8	
WKOP_CALC_DT	21	245	252	8	
RTL_HRS	22	253	260	8	
LBR_RT_PRICED	23	261	270	10	
LBR_RT_TODAY	24	271	280	10	
MULTI_STI_HRS	25	281	290	10	
MULTI_STI_DLRS	26	291	300	10	
STI_VARIABLE_HRS	27	301	310	10	
STI_VARIABLE_DLRS	28	311	320	10	
ADDER_HRS	29	321	330	10	
ADDER_STI_DLRS	30	331	340	10	
MATERIAL_DLRS	31	341	350	10	

DESCRIPTION OF WHAT THE FIELDS ARE

JOB-NO	The number of the job, The letter matches the DOPAC will only have	in ECRIS 1st position is a letter followed by 5 numbers. type of job. the job number as the 5 numbers.
JOB_JTYP_CD	The type of the job:	E - estimate
		R - routine
		C - custom work order
		D - damage job
		M - memo

JOB_CAT_CD 5 character field to identify why the job is being done

PRT_NO

The print number

The type of wkop:

WKOP_WOT_CD

- P pole
 - S splice
 - R recon
 - E electronic
 - C cable

WKOP_NO

The wkop number, sequence number within the print

WKOP_WCM_WC_CD The wkop wire center code, for NY a 3 digit number

.

..

.

•

••

WC_NM	The wkop wire center name.
WKOP_WCM_MUNI_C	D The wkop muni/tax district code. For NY 6 digits.
MUNI_NM	The wkops municipality name.
FRC_CD	The wkop field reporting code
SI_DESC	The wkop work task description
WKOP_CALC_TIME	The amount of time ECRIS calculated that the work should take.
WKOP_CALC_PRICE	The labor and material cost of doing the wkop
WKOP_QTY	The wkop qty. If the wkop calls for material it it the amount of the material. If the wkop doesn't have material for example 'join pairs' it is the number of pairs being joined.
MAT_DESC	Description of the material being placed or removed
WC_SWP_FAC	A multiplier used in the Metro area to inflate the hours required Based on past work performance. (The value on the day the wkop was priced – see wkop_calc_dt)
JOB_AUTH_DT	Date the job was marked as authorized in ECRIS
JOB_COMPL_DT	Date the job was marked as complete in ECRIS
WKOP_END_DT	The date the wkop was reported as finished.
WKOP_CALC_DT	The date the wkop_calc_price was computed (Would be either the job submit date or the wkop revision date)
RTL_HRS	Total hours reported on timesheets against the wkop.
LBR_RT_PRICED	The labor rate used to compute the wkop_calc_price. (The value on the day the wkop was priced – see wkop_calc_dt)
LBR_RT_TODAY	The latest months labor rate in the ECRIS system. (The value used for wkops entered today)
MULTI_STI_HRS	Wkop hours from multi-stis
MULTI_STI_DLRS	Wkop dollars from multi-stis
STI_VARIABLE_HRS	Wkop hours from sti-variables
STI_VARIABLE_DLRS	Wkop dollars from sti-variables
ADDER_HRS	Wkop hours from adders

•

.

4 1

ADDER_STI_DLRS Wkop dollars from adders

MATERIAL_DLRS The cost of material

•

Exhibit 375 - See Confidential Exhibits.

. . .

•

. . . .

374

.

.

Exh 135 135

Cases 95-C-0657 94-C-0095 91-C-1174 ATT-NYT-255 Frederick C. Pappalardo Witness: C. Curbelo Date of Request: 10/4/96

ATT-NYT-255

Is NYT's TELRIC cost methodology "forward looking" in ways that the incremental cost methodology employed in the loop and port cost studies it submitted in the earlier phase of this proceeding were not? If so, describe each respect in which NYT's current TELRIC methodology is more forward-looking than its prior incremental cost methodology.

RESPONSE:

Both methodologies are forward looking. The TELRIC methodology differs from the prior methodologies in the following ways, among others:

- 1) Economic lives of plant assets were used to calculate carrying charge factors which are a more accurate portrayal of depreciation that regulatory prescribed lives.
- 2) A market based cost of money was used to calculate carrying charge factors which is a more accutrate forward looking expression of the cost of capital used in the carrying charge factors.
- 3) ECRIS standard time increments were used in calculating the cost of installing outside plant. The standard time increments assume forward looking efficiencies in labor that have not been achieved in actual experience.
- 4) The TELRIC study for Links assumed a digital hand-off at the Central Office; whereas the prior study assumed an analog hand-off. Correspondingly, port costs were developed to match the new outside plant assumption.

		CASE 95-C-0657 SUPPLEMENTAL TESTIMONY OF
)		CASE 94-C-0095 CASE 91-C-1174 Case 91-C-1174 Case No. 98-C-1357 Data 12-7-00
	1	Q. Please state your name and business address.
	2	My name is Carmelo R. Curbelo. My address is 1095 Avenue of the Americas, New York,
	3	New York.
	4	2. Have you previously testified in this proceeding?
	5	A. Yes. I presented testimony in support of the Resale Avoided Cost Study and the Unbundled
	6	Link and Port Cost Studies that were filed by the Company in the previous phase of this
	7	case. My background and experience are described in that testimony.
	8	PURPOSE OF TESTIMONY
	9	2. What is the purpose of this testimony?
	10	A. The purpose of my testimony is to describe the study methodology employed by the
	11	Company to develop the Total Element Long-Run Incremental Cost (TELRIC) investments
	12	and expenses associated with the following network elements, as defined by the Federal
	13	Communications Commission (FCC) in its First Report and Order in CC Docket 96-98 (the
	14	"Local Competition Order", or "LCO"):
	15	(1) Links (referred to in the LCO as "Local Loops")
	16	(2) Local Switching
	17	(3) Tandem Switching
	18	(4) Dedicated Transport
	19	(5) Common Transport
	20	(6) Signaling Networks
	21	(7) Call-Related Databases - Switch Query.

н

:... .

1

.

•

1

2

3

4

5

6

8

9

10

11

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Q. Is the Company developing cost studies for any other unbundled network elements?
A. Yes. Cost studies are also being developed for Operator Services/Directory insistance, Service Management Systems (SMS), Operational Support Systems (OSS), and the Network Interface Device (NID). Studies for these services will be completed, by December 31, 1996. The Company was not able to carry out, by September 30, the conceptual cost study design work, input data gathering, and data analysis necessary to calculate the TELRIC for each of these network elements.
Q. A Commission order of September 13, 1996 refers to this proceeding costing and pricing

questions related to Extended Switched Voice Grade Analog Link Service, Premium Link Service, and House and Riser Cable Service. Have you performed cost studies for those services? 10 N

A. My link cost study encompasses the TELRIC forward-looking cost of premium links, as
 discussed below. The investment required for extended links can be determined as a
 combination of the investments needed for links and interoffice transport, as discussed
 below. The Company could not complete cost studies for House and Riser Cable Service by
 the date on which this testimony was filed; however, we expect to be able to complete such
 studies by December 31.

Q. Did you rely on the testimony of any other NYT witnesses in carrying out your analysis?
A. Yes. The forward-looking technology model described in the testimony of Mr. Joseph
Gansert determined the specifications of the network elements whose investments I studied.
In determining NYT's forward-looking cost of capital, I relied on the testimony of Dr.

2

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

James Vander Weide, and in determining its depreciation costs, I relied on the testimony of Dr. Lawrence Vanston. 2 Is there an exhibit associated with your testimony? Q. 3 Yes, it is labeled "Exhibit Referred to in the Direct Testimony of C. R. Curbelo," and 4 Α. consists of five parts: 5 Links Part A 6 Switching Part B 7 Part C Transport 8 Signaling Systems Part D 9 Annual Carrying Charge Factors Part E 10 Was this Exhibit prepared under your direction? 11 Q. Yes, it was. 12 Α. DEFINITION OF TOTAL ELEMENT LONG-RUN INCREMENTAL COST 13 What definition of TELRIC did you apply in performing these studies? Q. 14 I used the definitions and methodology described in the LCO and the associated FCC 15 Α. regulations. Also, to the extent that they are consistent with the LCO, I applied the 16 principles set forth in this Commission's Subscriber Loop Services Incremental Cost Study 17

18 Manual (the "Loop Manual") and in its Toll and Carrier Access Service Incremental Cost

19 Study Manual (the "Toll Manual").

- 20 Q. What factors should be considered in the development of a TELRIC study?
- 21 A. The FCC has set forth the following requirements concerning TELRIC studies:

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

p. 1

.

:

1

Γ

.

Ì E_

6

••

	, 1	•	(a) The increment that forms the basis for a TELRIC study shall be the writine quantity of
	2		the network element provided;
	3		(b) All costs associated with providing the element shall be included
	4		(c) Only forward-looking, long-run incremental costs shall be included; and
•	· 5		(d) Costs must be based on the incumbent LEC's existing wire center locations and most
	6		efficient technology available.
	7	S	Furthermore, a TELRIC study is to be based on a forward-looking cost of capital and
	8		economic depreciation rates.
	9		Finally, the LCO and associated regulations require that the price of unbundled network
	10		elements include a reasonable portion of forward-looking common costs.
	11	Q.	Does the long-run, forward-looking cost construct imply that costs are to be determined as of
	12		some particular point in the future?
	13	А.	No. The LCO emphasizes that cost analyses are to be based on the most efficient network
	14		technologies currently available (assuming current wire center locations). This is directly
	5		contrary to the notion that TELRIC must be determined based on speculative determinations
	16		as to what technologies or costs may exist at some point in the future. I did not seek in my
	17		analysis to project costs forward into any particular "test year", or to analyze costs over any
•	18		specific future period. Rather, my analysis attempted to determine what the Company's
	19		annual TELRIC costs would be for provisioning the network elements in question using the
	20		most efficient technologies currently available.

4

90 - C

2

3

4

5

6

7

8

9

10

11

12

13

14

15

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Q. The LCO calls for the State commissions to establish geographically-deaveraged rates for at least three cost-related rate zones. Have you provided deaveraged cost information that can be used for this purpose?

A. Yes. Where appropriate, investments have been developed for four density zones. The zones were determined by the number of loops per square miles. They are:

ZONE	DESCRIPTION	DENSITY (LOOPS/SQ. ML)
1	Major Cities	≥ 1500
2	Urban	≥ 500 and < 1500
3	Suburban	\geq 150 and $<$ 500
4	Rural	< 150

O. Why did you establish more than the minimum three zones?

A. New York's diverse geographical make-up warrants four density zones, in order to reflect cost differences resulting from the diverse nature and characteristics of the State. Its major cities, including New York City, have a high degree of access line concentration, giving them unique cost characteristics. Therefore, in our judgment, the major cities comprise a separate zone. The other three density zones have been designated Urban, Suburban and Rural. All the zones reflect cost differences resulting from their different densities.

Q. Mr. Curbelo, what increment of demand provides the basis for your calculation of the

TELRIC for the network elements you studied?

A. The TELRIC studies performed by NYT examined and calculated the total investment
 necessary to meet the total demand for network elements. This total demand is based on the
 sum of the total number of units that the Company will provide to requesting

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

telecommunications carriers and the total number of units that the Company will use in 2 providing its own services. For the purposes of the Company's TELRIC study, it was assumed that the Company's 3 currently anticipated demand provides the best estimate of this total increment of demand. 4 (The Toll Manual, Page 10, states that the starting point for the determination of demand 5 6 should be the actual, current levels for the service.) 7 How did the Company calculate the necessary investment to meet this level of demand? 0. 8 In the telecommunications industry, the investments associated with central office switching Α. systems and outside plant facilities are relatively large expenditures which are incurred in 9 10 discrete or "lumpy" blocks. The long-run cost estimates required to meet the Company's 11 demand over time must reflect these lumpy investments in a way that spreads them over the full increment of demand that will make use of the investment. Thus, a unit investment for 12 each network element was calculated using the capacity cost approach. A capacity cost is 13 calculated by spreading all required investments over the full increment of demand for a 14 network element in order to generate a levelized unit investment or capacity cost. This 15 capacity cost methodology is also endorsed by both the Loop Manual (Pages 4-5) and the 16 17 Toll Manual (Page 4) for the calculation of long-run incremental costs. Q. How did you insure that the NYT TELRIC studies would include "all costs associated with 18

19 the element"?

A. The investments associated with a particular element in our study include the cost of every
 function required to produce the element, including the depreciation and cost of capital

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

1		associated with the required physical investment. In addition, the TELRIC Carrying Charge
2		Factors (CCFs) identify all expense directly associated with each element as well as joint
3		and common costs. All of these costs have been taken into account in my analysis, as
4		discussed in more detail in this testimony and in the additional testimony being submitted
5		by NYT witnesses Dr. Lawrence Vanston and Dr. James Vander Weide.
6	Q.	Does the NYT TELRIC study include "only forward-looking, incremental costs" for the
7		network elements?
8	Α.	Yes. As discussed in more detail below and in the accompanying testimony of Mr. Joseph
9		Gansert, the calculation of the costs associated with each network element was based on the
10		latest technology currently available to the Company. This is consistent with the Toll
11		Manual (Page 11). TELRIC study is based on the most current vendor material prices
12	·	which reflect the latest vendor discounts realized by the Company.
13	Q.	Did you use loading factors in your TELRIC study?
14	Α.	Yes. We applied loading factors, developed by class of plant, to the material investment to
15		arrive at a total investment. How these factors were applied will be discussed later in my
16		testimony.
17	Q.	How did you develop these loading factors?
18	Α.	We analyzed the most recent jobs that installed the particular equipment type being studied,
19		and developed ratios between material investment and total investment for each class of
20		plant.

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

ı The material prices, which are the basis of the TELRIC study, reflect - e most recent 2 vendor discounts that the Company has experienced. These loading to stors, which are based on the Company's 1995 equipment installations, were applied to the lower TELRIC 3 identified material prices. The product of the TELRIC material price and the 1995 4 installation loading factor will result in the Company's best estimate of its forward-looking 5 installation costs. These loading factors can be found in the workpapers for each of the 6 7 TELRIC elements. Q. Is the NYT TELRIC study based on the "most efficient telecommunications technology 8 currently available and the lowest cost network configuration, given the existing location of 9 10 the [Company's] wire centers"? Yes. The Company's TELRIC study is based on NYT's current wire center locations and 11 Α. employs the "most efficient technology" for "reasonably foreseeable capacity requirements" 12 13 consistent with the future network plans which have been designed by the Company's 14 Engineering Department. The locations of the wire centers remain the same but the technology used to provision the full complement of network elements is assumed to be 15 16 based on the latest, most efficient technology available to the Company. For example, the 17 link investment is based on the forward-looking technology (e.g., Integrated Digital Loop 18 Carrier) for which the Company will expend its future capital resources. This network architecture does not reflect the Company's current subscriber plant infrastructure but rather · 19 the Company's best estimate of the future cost of the network based on the most efficient, 20 currently available technology. This approach is consistent with the Tol! Manual (Page 6), 21

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

which recognizes that it would be "impractical in most cases to attempt to estimate changes 2 in cost that would result from changes in the entire structure of an LEC's network". Q. How did the Company's TELRIC study reflect the "lowest cost network configuration" 3 given existing wire center locations? 4 5 Existing feeder and distribution routes were used in our study because those routes were Α designed to be the shortest and most economical routes between existing wire centers and 6 customer locations, based on the existing topography, taking into account rivers, highways, 7 8 and rights-of-way. Q. Mr. Curbelo, would you please provide a brief description of the unbundled network 9 10 elements studied by you? 11 TELRIC studies were done for each of the eight unbundled network elements depicted in Α. 12 the Figure below. These elements are discussed in greater detail in Mr. Gansert's 13 testimony.

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Each of the Parts A through D of my Exhibit relates to a particular element or set of elements. Part E contains a general description of the methodology used to develop the Annual Carrying Charge Factors (CCFs).

LINK INVESTMENTS

1 2

3

Δ

5

6

7

8

9

Q. Please define the link network element you used in your TELRIC study.

A. The link network element is defined as a transmission facility between a distribution imme (or its equivalent) in a wire center and an end user customer premises. Physically, this

÷.,

2

3

4

5

6

7

8

9

10

П

12

13

14

15

16

17

· 20

*****1** 1....

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

element includes cable (either copper and/or fiber-optic), digital loop carrier equipment, and support structures such as poles and conduit.

- Q. What is the technological basis for the link construct used in your study?
 - A. The construct used for determining the TELRIC of the unbundled link reflects the Company's forward-looking technology in accordance with the latest designs of the Company's Engineering Department. This network follows the existing feeder and distribution routes, as well as existing structure architecture. Using this existing network layout, investments were identified using the latest available prices and forward-looking fill factors, which we refer to in this testimony as utilization factors, in each density based zone. This technology is described and explained in greater detail in the accompanying testimony of Joseph Gansert.
- Q. How did the company determine the "most efficient [link] technology"?
 - A. Based on the unique characteristics of the particular serving area, a typical link design was chosen based on the latest technology available and current plans of the Company's
 - Engineering Department which would meet the reasonably foreseeable capacity
 - requirements for that serving area.
- O. Is the link design the same for each density zone?
- 18 A. No. TELRIC methodology for links is based on two link types:
- 19 1) 100% fiber link
 - 2) Hybrid fiber/copper link

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Design No. 1 will be deployed primarily in high demand, high density zones or example, 1 2 single location areas such as office buildings or large apartment complexes. This design has been incorporated in each of the four density zones, in a proportion based 3 on input from the Company's Engineering Department. The remainder of links utilize 4 Design No. 2. The percentages of each of the two link designs, by density zone, are 5 summarized in the Workpapers associated with Part A of my Exhibit. 6 Q. Is Integrated Digital Loop Carrier the current design for provisioning links used by NYT 7 8 today? No. The Company uses Universal Digital Loop Carrier (or its equivalent) in the provision 9 A. of DS-0 level voice grade links today. Because the LCO requires the TELRIC link 10 investment for a link to be based on the most efficient forward-looking technology currently 11 12 available, the Company has incorporated the Integrated DLC (IDLC) link design as the 13 basis for its TELRIC study. However, basic-rate Integrated Services Digital Network (ISDN - BRI), can only be efficiently provided using Universal DLC (UDLC). 14 Accordingly, our technology model utilizes UDLC for "premium-basic" (ISDN-BRI 15 capable) links and IDLC for all other links. For the same reason, DS0 switching ports have 16 been identified separately in the Company's presentation of its local switching element. 17 What structures are associated with the provision of links? 18 О. Link structures (i.e., support facilities) include underground conduit, manhoics, and poles. 19 Α. 20 **O**. Were structure investments included in your TELRIC study for links?

1

· Ż

3

4

5.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

O.

577

11

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

- A. Yes. As stated in Paragraph 682 of the LCO, "Directly attributable forward-looking costs include the incremental costs of facilities and operations dedicated to that element. Such costs typically include investment costs and expenses related to primary plant used to provide that element."
- Q. What assumptions were made concerning structure in the forward-looking technology model that underlies your cost analysis?

A. It was assumed that outside loop plant facilities that are currently aerial (i.e., supported by poles) would remain aerial, and plant that is currently underground would remain underground. We believe that our current plant design is the most economical and efficient based on specific area topography, access, and obtainable rights-of-ways necessary for remote electronic equipment. This construct reflects the most efficient layout for provisioning links to our current customers. Given current zoning laws, environmental regulations, and related restrictions, a forward-looking engineering design would likely entail the construction of predominantly underground outside plant facilities and structures. Therefore, the Company's TELRIC link study is a conservative underestimate of the cost of these facilities.

A. Outside plant link structure investments were determined on a per foot of conduit (underground) and per pole (aerial) basis. Conduit investment is composed of a fixed trench investment plus a variable duct investment. The attribution of the fixed investment to a per duct investment is dependent on the number of ducts placed. The conduit investment

How did you determine the structure investments directly attributable to the local link?

1

2

3

4

5

6

7

8

9

10

11

20

21

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

includes the investment of the manholes. The manhole investment, divided by two average distance (total duct feet) between manholes, plus the per foot conduit investment, results in the conduit investment per foot. This conduit investment was applied to those link investments which utilize underground facilities.

The pole investment is determined by considering the percentage of poles used jointly with other utility companies. Only the investment of those poles owned by NYT was considered in the study. The average number of poles required per link was identified. The pole investments attributable to the link investment were reduced to account for multiple cables on a pole. The assignment of structure investment was based on the replacement investment per pole multiplied by the average number of poles per link.

Q. How did you determine the material and installation prices for link components?

12 The most current vendor material prices and their installation prices, which reflect the latest Α. 13 vendor discounts realized by the Company, were the basis of the input prices to the cost 14 study. Material prices for electronic equipment and cables reflect the latest negotiated 15 contract prices NYT has with the manufacturers of the circuit equipment and cable 16 facilities. Fiber cable, copper cable, Serving Area Interface (SAI), service wire, distribution terminals, poles, and installation and engineering costs were obtained from the Outside 17 18 Plant Planner's Costing Tool and the Engineering & Construction Records Information 19 System (ECRIS).

Q. What are the Outside Plant Planner's Costing Tool and ECRIS?

A. The Outside Plant Planner's Costing Tool (Costing Tool) is a server-based

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

system developed to provide the Company's Outside Plant (OSP) Planners with the ability to compile material and labor costs for an internal project or external customer sales request. The prevailing material and labor costs are picked up by the Costing Tool from the Engineering & Construction Records Information System (ECRIS). ECRIS is a separate system used by OSP Project Engineers to automate the pricing, scheduling, tracking and construction management of OSP facilities. The Costing Tool retrieves additional cost information from other internal sources for plug-ins, central office terminal electronics, remote terminal electronics, contract costs, outside plant materials, and all associated labor costs. The plug-in and electronics costs reflect recent contract costs negotiated with vendors.

The Costing Tool provides common electronic configurations at a planning level, and associates the configurations with cabling, material, equipment engineering, equipment installation, and CO technician hours and dollars. This includes common plug-in packages and individual channel units.

Another important feature of the Costing Tool is the automatic splice generation for a cable placement operation. Taking into consideration the wire center geography type and the footage of copper or fiber cable placed, splice costs are automatically calculated. This allows for the development of contract costs that truly reflect the costs specific to that area.
Q. How were the investments converted to monthly costs for the link element?
A. As discussed in greater detail later in my testimony, the investment associated with the link

element was converted to a monthly cost through the application of the annual CCFs.

.

15

, ij.

2

3

4

- 5

6

7 .

8

9

14

15

16

17

18

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Q. Explain how you used utilization factors to calculate the per-unit inversion of the 1 ... unbundled link network elements in your TELRIC study.

A. As stated in Paragraph 682 of the LCO, "under a TELRIC methodology, ... [p]er-unit costs shall be derived from total costs using reasonably accurate 'fill factors' (estimates of the proportion of a facility that will be 'filled' with network usage); that is, the per-unit costs associated with a particular element must be derived by dividing the total cost associated with the element by a reasonable projection of the actual usage of the element."

Q. What is your definition of a "reasonably accurate" utilization factor and how did you determine it?

10 A utilization factor for a particular element is the portion of the element (or facility) that Α. 11 will be filled with network usage. The method by which the Company calculated utilization factors for the network elements being studied is described in Mr. Gansert's testimony. The 12 13 utilization factors used the TELRIC studies can be found in Mr. Gansert's Exhibit.

How did you calculate the per-unit investment of the unbundled link network elements? 0.

Per-unit investments were calculated by dividing the total investment associated with the A. element by a reasonably accurate projection of actual usage for that element within each density zone, reflecting the utilization factors identified by Mr. Gansert.

Q. Did you geographically deaverage link investments in your study?

19. Yes. Investments were deaveraged into the four density zones which i dentified earlier in Α. 20 my testimony.

and the second second

15

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

1	Q.	Did you limit your study to the average investment of all links, or did you determine
2		separate investments for different types of links?
3	A.	We have developed separate investments for the following four types of links:
4		1) Two wire analog voice grade. A two-wire analog voice grade link is a transmission
5		circuit composed of two-wires - signal and ground - used to both send and receive
6		voice conversation in the range of 300 Hertz (Hz) to 3000 Hz.
7		2) Four wire analog voice grade. A four-wire analog voice grade link is a transmission
8		circuit composed of four-wires. One pair is used to send and the other is used to
9		receive.
10		3) Two wire conditioned digital. A two-wire conditioned digital link is a transmission
11		circuit composed of two-wires which have been conditioned to improve the
12		transmission characteristics of a leased voice-grade link so that it meets the
13		specifications for higher-speed data transmission. This link will be offered as Premium
14		Link - Basic. This link will support Basic Integrated Services Digital Network (ISDN-

BRI) service.

15

4) Four-wire conditioned digital. A four-wire conditioned digital link is a transmission
 circuit composed of four-wires which have been conditioned to improve the
 transmission characteristics of a leased voice-grade link so that it meets the
 specifications for higher-speed data transmission. This link will be offered as Premium
 Link - Primary. This link will support Primary Rate ISDN service.

21 Q. Please summarize the results of your link cost study.

· 17

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

	Monthly Cost					
	2 Wire Analog	2-Wire Conditioned	4-Wire Analog	4-Wire Conditioned		
	\$16.75	- \$31.34	\$49.36	\$125.55		
	\$20.26	\$36.17	\$57.00	\$125.13		
	\$27.22	· \$42.04	\$70.26	\$138.26		
•	\$30.48	\$45.02	\$74.96	\$176.98		
300021 1	\$19.37	\$34.14	\$54.51	\$131.01		

more found in Part A, Pages 2-3 of my Exhibit and also summarized below:

ECURRING COST STUDIES

35

100

searing costs included in your TELRIC link study?
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs were identified for three categories of activities: (1) Service
searing costs the activities from the initial customer (i.e., CLEC) contact to
searing covers the activities from the initial customer (i.e., CLEC) contact to, and the field is patch of a service technician to perform
searing perform installation work. These function is listed on Part A, Page
searing perform the central Office and the field. This function is listed on Part A, Page

memory and the set of the set of

existing NYT subscriber to a CLEC (referred to a "Hotcut") and (2)

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

CASE 95-C-0657 CASE 94-C-0095 CASE 91-C-1174

1

2

3

4

5

6

7

8

9

10

11

12

0024

. . . provisioning for a new customer ("New"). The service provisioning activities for a Hotcut customer is more expensive than a New customer because of additional work required on the Recent Change Memory Administration Center (RCMAC) and in the central office. However, the overall cost is higher for a New Link because an installation dispatch is usually required.

Q. Please describe how the Link Non-Recurring Costs were developed.

A. The specific work functions that are involved in providing the Link were identified.
Estimates of average work time required by each work function for both types of Links (i.e., Hotcut and New) were developed through discussions with Company experts. Using the fully assigned hourly rate for the personnel performing the work in each function, the cost attributable to that function was calculated. The costs for all functions were added to obtain the total non-recurring costs for both Hotcuts and New Links.

Using recent historical Hotcut and New Link provisioning data, a ratio was developed which represents the percentage of Hotcut Links versus New Links. Using this ratio, the weighted average Link Non-Recurring Cost associated with service provisioning, excluding the dispatch function, was obtained.

As shown in Part A, Page 7 of my Exhibit, the weighted average non-recurring cost for the
Service Provisioning of a Link is \$126.22.

19 Q. What is the non-recurring cost associated with an installation dispatch for a Link?

A. When an installation dispatch is required to provision a Link, the non-recurring cost of the dispatch is \$149.35 as shown in Part A, Page 7.

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Γ

Q. What trouble-related non-recurring Link cost have you identified? 1 I have identified the costs associated with misdirected dispatches (e.g., a service technician 2 Α. dispatched, by a CLEC tester, out to the customer's premises when the trouble is in the 3 central office) and when a trouble is found not to be with NYT facilities (e.g., trouble 4 caused by end-user equipment or CLEC switch). 5 Q. How did you identify the non-recurring costs associated with these two trouble-related 6 7 activities? 8 While there are four different repair scenarios: (1) misdirected dispatch-in, (2) misdirected Α. 9 dispatch-out, (3) dispatch-in, trouble in CLEC switch, and (4) dispatch-out, trouble in end 10 user's equipment; there are only two distinct costs. Whether the dispatch-in is the result of a misdirected dispatch or the trouble is found to be in the CLEC's switch, the functions 11 performed and the cost incurred will be the same. Likewise, whether the dispatch-out is the 12 13 result of a misdirected dispatch or the trouble is found to be in the end user's equipment, the functions performed and the cost incurred will be the same. Therefore, as shown in Part A, 14 Page 7, of my Exhibit, there are only two trouble-related non-recurring costs: \$58.76 for a 5 16 dispatch-in and \$157.06 for a dispatch-out. The development of the misdirected dispatch 17 cost is similar to the development of non-recurring costs for service order and installation 18 dispatch. Work centers included in providing trouble clearance and the associated work center work time were provided by Company experts. The cost of a misgirected dispatch · 19 was calculated by multiplying the New York fully assigned labor rate by me associated 20 work time to arrive at the work center cost. The total cost is the sum of the appropriate 21

1.2

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

1		work center costs.
2		LOCAL SWITCHING
3	Q.	Please define the Local Switching element you used in your TELRIC study.
4	A.	The Local Switching element used in our TELRIC study is made up of the following:
5		1) line-side facilities, which include, but are not limited to, the connection between a link
6		termination at a main distribution frame and a switch port;
7		2) trunk-side facilities, which include, but are not limited to, the connection between the
8	,	trunk termination at a trunk-side cross-connect panel and a switch trunk port; and
9		3) all features, functions, and capabilities of the switch.
.10	Q.	What assumptions concerning the use of the most efficient forward-looking technology
11		were incorporated into the development of the Local Switching element?
12	A.	The construct used for the development of Local Switching investments reflects the
13		Company's future planned deployment of an equal split of 5ESS and DMS-100 digital
14		switches. These are the most advanced switch types currently used for switching voice
15		traffic in the Company's network, and are the switch types that are incorporated in the latest
16		forward-looking designs of the Company's Engineering Department. In the TELRIC
17		analysis, these switches were placed at the existing central office locations. Investments
18		were identified for four density based zones, using the latest available switch-vendor prices,
19	•	including appropriate discounts, utilization factor, and loading factors for power and
20		installation.
21	Q.	How were the investments of Local Switching developed?

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

F

Ł

1	A. "1	The investments of Local Switching were developed by the following steps:
2	. 1	Material investments for each switch type were developed for each of four density
3		zones. Three separate components (Line Ports, Trunk Ports, and Usage) were
4		identified. In that process, the investments for the 5ESS and the DMS-100 digital
5		switches were combined, using weighting factors based on the projected mix of switch
6		types. The line and trunk port investments were adjusted for utilization.
7	2	2) Material investments for the identified Line and Trunk features that require special
8		hardware, including memory, were separately developed.
9	3) These material investments were converted to total investment by the application of
10 [.]		loading factors that capture the capital investments of power and switch installation.
11	4	Associated software Right-To-Use (RTU) fees for basic and special features and
12		functions were identified and then added to the appropriate total investment for each
13		component of Local Switching.
14	5) Annual CCFs were applied to the resultant investment totals, to arrive at annual
15		investments.
16	Q. V	What features are included in the Local Switching element?
17	A. A	All features that can be provisioned through the switch processor are included in the Local
18	S	Switching element. In addition, Three-Way Calling and Speed Calling, switch-related
19	f	eatures that require special hardware, have been identified and included in the TELRIC for
20	I	Local Switching.
21	Q. N	What features are not included in the Local Switching element?
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1.11

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

A. Those features provisioned through adjunct equipment, such as Voice Dialing and Voice Messaging, that are not within the definition of the Local Switching network element, are not included. In addition, those features whose cost are highly dependent upon customer usage characteristics, such as switch based Advanced Intelligent Network (AIN) features and packet-switching have not been, included. However, the Local Switching element will provide access to these feature functions.

O. What components of Local Switching reflect the investments associated with features?

A. Switch processor based features were assigned to the Usage component of Local Switching. Features that require special switch hardware or memory were assigned to the port component. Investments for software RTU fees are provided in two general forms: per switch and per line/trunk port. The per switch investments were included in the Usage component of Local Switching, and the per line/trunk investments were used as additives to the appropriate port components.

O. How were the material investments developed for Local Switching?

A. The material investments for the switches were developed using Bellcore's Switching Cost Information System (SCIS). SCIS is a computer system that determines the basic switching material investments of switches. It includes basic switching investments and the processor related investments associated with features.

Q. How did you utilize SCIS in your study?

A. SCIS lets the user "build" (i.e., specify) a Model Office, which is representative of a typical office in the network, for the development of basic switching investments, including main

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

frame distribution investments. Model offices were built for each density group, and for 1 2 each of the two switch technologies (5ESS and DMS-100), using current lines in service and typical switch traffic characteristics, based on Engineering design criteria. Using these 3 models, unit and total material investments (with current applicable NY discounts) for 4 Local Switching were developed for each technology, by density group The Feature 5 module of SCIS was used to separately develop the material investments of special 6 hardware, including memory required for features, since they are not included in the basic 8 investments produced by the Model Office portion of SCIS. 9 Q. What features investments were developed using the SCIS Feature module? 10 Investments were developed for Three-Way Calling and Speed Calling. These features A. require special hardware. For example, Three-Way Calling requires three-port conference 11 circuits and Speed Calling requires memory, each required on a per line basis. 12 13 Q. What type of switching equipment is represented in the model offices? The model offices were built to represent the existing switch configurations of the four. 14 Α. density zones. Thus, the switching equipment included in the model offices consist of 16 "host" switches, and, if appropriate, their associated "remote" switches. 17 What are "host" and "remote" switches and how are they treated in your servery? Q. 18 Α. The Company's serving area is divided into exchanges. Each exchange is served by its own switch, sized according to the number of lines within the exchange. However, it 19 is more economical to serve small exchanges (i.e., less than a few thousand lines) by means 20 of a "remote" switch, an extension of a much larger, "host" switch. With such an 21

24

Ň

-:;;

154

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

			•
	1	3	arrangement, the remote switch is dependent on and therefore, an integral part of, the host
	2		switch. Umbilicals are used to connect remote switches to their host switch. The umbilical
	3		investments are developed outside the SCIS process and are included in the Usage
	4	•	component of the Local Switching element.
	5	Q.	How are the density zones for Local Switching defined?
	6	A.	The density zones for Local Switching are defined in the same manner as those for the Link.
	7		However, since remote switches are an integral part of the host switch, they are included in
	8		the same density zone as the host.
	9	Q.	What components are included in the investment of Local Switching and how were they
	10		determined?
	11	A.	The material investments for Local Switching and, thereby, the resulting total investment,
	12		were broken into three components: Line Termination, Trunk Termination, and Usage.
	13		These were determined using the SCIS output report.
_	14	Q.	How were the material investments converted to unit material investment?
	15	A.	Unit material investments for the Line and Trunk Port components were obtained directly
	16		from the SCIS model office outputs, and were adjusted for average utilization. Unit
	17		material investments were developed for analog, digital, and Basic - ISDN (ISDN - BRI)
	18		line ports, and for digital and ISDN Primary (ISDN - PRI) trunk ports. The Usage
	19		component was obtained from the Total Costs output of SCIS, by subtracting the Line and
	20		Trunk Port total investments from the total office investments. The Usage component was

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Γ

•••••

.....

•...

Section.

F A

Sector B

		·
1		divided by the total busy hour minutes of use served by the switches in order to arrive at a
2		busy hour per-minute-of-use investment.
3		The investment of the Trunk Termination was also expressed on a per-minute-of-use basis,
4		by dividing the trunk port investment by the busy hour minutes of use that it serves, to
5		arrive at a busy hour quantity. These busy hour unit investments then were converted to
6		day, evening, and night quantities.
7	Q.	Why did you determine separate unit investments for the day, evening, and night periods?
8	Α.	Peak-period demand determines the size of the investment required for a local switch.
• 9		Therefore, calculating per-unit costs separately for time periods with different peak demand
10		characteristics better reflects the cost causative nature of the demand. A rate structure
11		reflecting these differing demand characteristics promotes allocative efficiency.
12	Q.	How were the busy hour usage and trunk component converted to day, evening, and night
13		quantities?
14	A.	The busy hour investments were converted using a methodology that is consistent with that
5		employed in the development of usage investments in the Toll Manual (Pages 41-46).
16	Q.	How were the material investments converted to total investment?
17	Α.	The material investments were converted to total investment by the use of loading factors
18		for power and installation. The material investments were multiplied by the installation
19		loading factor, and that result was multiplied by the power loading factor, to arrive at total
20		investment.
21	Q.	What are software RTU fees?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

A. Software RTU fees are payments made to the switch vendors for use of their software in their switches.

Q. Did you treat the RTU fees as a part of the investment or as an expense?

A. Since our study looks at replacement switch investments, all initial RTU costs are considered to be a part of the original purchase of the switch, and, therefore, part of the capitalized investment being added to the total investments for Local Switching. As described earlier, per switch RTU fees were added to the Usage component of Local Switching. Per-line RTU fees, as incurred for Ringmate, Centrex, and ISDN (Basic and Primary), were developed as additives to the line/trunk port investments.
RTU fees incurred subsequent to the installation of the switch are expensed. As discussed later in my testimony, subsequent RTU fees are reflected through the use of annual CCFs.

Q. How were the investments converted to monthly costs for the Local Switching element?A. As discussed in greater detail later in my testimony, the investment associated with the

Local Switching element was converted to a monthly cost through the application of the

Annual CCFs.

- Q. Please summarize the results of your study of Local Switching investments.
 - A. The results can be found in Part B, Pages 3 6 of my Exhibit and also summarized below:

	Monthly Costs			
	Major	Urban	Suburban	Rural
Analog Line Port	\$6.46	\$5.75	\$4.38	\$4.71
Digital Port	\$6.10	\$6.04	\$5.51	\$5.87
ISDN - BRI Port	\$27.34	\$27.47	\$27.17	\$27.64
Dedicated Digital Trunk	\$17.03	\$15.80	\$13.46	\$14.02
ISDN - PRI	\$430.84	\$449.86	\$445.19	\$452.74

I

2

3

4

5

7

8

9

10

11

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

	n an an an an Araba	Per Minute	of Use Cost	
	Major	Urban	Suburban	Rural
Common Trunk - Day	\$0.000238	\$0.000243	\$0.000215	\$0.000460
Common Trunk - Evening	\$0.000058	\$0.000058	\$0.000053	\$0.000112
Common Trunk - Night	\$0.000028	\$0.000029	\$0.000025	\$0.000054
Usage - Day	\$0.000634	\$0.000784	\$0.00094	\$0.000789
Usage - Evening	\$0.000268	\$0.000398	\$0.000566	\$0.000440
Usage - Night	\$0.000199	\$0.000323	\$0.000494	\$0.000373

	Port Additives			
	Major	Urban	Suburban	Rural
CENTREX	\$0.94	\$0.92	\$0.93	\$0.94
<u>Ringmate®</u>	\$1.07	\$1.05	\$1.06	\$1.07
Three-Way Calling	\$0.41	\$0.40	\$0.41	\$0.41
Speed Calling	\$0.0039	\$0.0038	\$0.0039	\$0.0039
Call Waiting	\$0.0018	\$0.00178	\$0.00178	\$0.00178
Call Forwarding -D/A	\$0.00036	\$0.00036	\$0.00036	\$0.00036
Call Forwarding - Busy	\$0.00036	\$0.00036	\$0.00036	\$0.00036
Call Forwarding - Var.	\$0.00094	\$0.00094	\$0.00094	\$0.00094

TANDEM SWITCHING

Q. Please define the tandem switching element you used in your TELRIC study.

A. The tandem switching element includes:

(a) trunk facilities, including but not limited to the connection between the trunk

termination at a cross-connect panel and a switch trunk port;

(b) basic tandem switching function of connecting incoming trunks to outgoing trunks; and

(c) functions that are centralized in tandem switches (as distinguished from separate endoffice switches), including but not limited to call recording, and signaling conversion features.

175.4

e an ci Norma .

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

	1	٠.	Q	What assumptions concerning the use of the most efficient forward-looking technology
	2			were incorporated into the development of the tandem switching element?
	3		A.	The construct used for the development of tandem switching investments reflects the
	4			Company's deployment of only the 5ESS digital switch, as incorporated in the latest
	5			designs of the Company's Engineering Department. It was assumed that the Tandem
	6			switches are placed at the existing locations because these locations are the most
)	7			economical and efficient locations in the network. Investments were identified using the
•	8			latest available switch-vendor prices, including appropriate discounts, utilization factors,
	9			and loading factors for power and installation.
	10		Q	How were the investments of tandem switching developed?
	11		A.	The investments of tandem switching were developed using the same five step approach
	12			previously described for Local Switching.
	13		Q.	How were the material investments developed for tandem switching?
	14		A.	The material investments for the tandem switches were developed using SCIS. As with
	15			Local Switching, using the Model Office portion of SCIS for basic switching investments, a
	16			tandem model office was built using current trunks in service and typical tandem traffic
	17			characteristics, based on engineering design criteria. The Feature module of SCIS was not
	18			required because the Trunk features are provided solely by software and the processor.
	19		Q.	What components of the investment of tandem switching were included and how were they
	20			determined?

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

- A. The material investments for tandem switching, and, thereby, the resulting total investments, were broke:....to two components: Trunk Termination and Usage. These were determined from the SCIS output reports.
- Q. How were the two components of tandem switching converted to use material investments?

A. As was done for Local Switching, the unit material investment for the Trunk Port component was obtained directly from the SCIS model office outputs, and was adjusted for utilization. The Usage component was obtained from the Total Cost output of SCIS by subtracting the Trunk Port total investments from the total office investments. This was then divided by the minutes of use served by the tandem switch, to arrive at a busy hour per minute of use investment. In addition, the investment of the Trunk Port was also expressed on a busy hour per-minute-of-use basis in a manner identical to that described for Local Switching. These investments were converted to day, evening, and night quantities in the same manner as utilized for Local Switching.

- Q. How were the material investments converted to total investment?
 - A. The material investments were converted to total investment using the same method described above for Local Switching.

Q. How were the investments converted to monthly costs for the tandem switching element?
A. As discussed in greater detail later in my testimony, the investment associated with the
tandem switching element was converted to a monthly cost through the application of the
Annual CCFs.

21 Q. Please summarize the results of your study of tandem switching investments.

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

- - - - - **- 1**

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A. The results can be found in Part B, Page 11 of my Exhibit and also summarized below:

Element	Monthly Cost
Digital Dedicated	\$16.83
Element	Cost Per Minute

Licuicat	COST I CI MILLARC
Common Trunk - Day	\$0.000830
Common Trunk - Eve	\$0.000203
Common Trunk - Night	\$0.000097
Usage - Day	\$0.000082
Usage - Eve	\$0.000051
Usage - Night	\$0.000044

DEDICATED TRANSPORT

Q. Define the Dedicated Transport network element for which the Company performed a

TELRIC study.

A. The Dedicated Transport network element is defined as the transmission facilities dedicated to a particular customer. These may provide telecommunications between wire centers owned by NYT and those owned by requesting telecommunications carriers, or between wire centers owned by NYT, or between wire centers owned by requesting telecommunications carriers.

Q. Please describe the Interoffice Network architecture utilized in developing investments for the Dedicated Transport network element.

A. NYT is using Synchronous Optical Network (SONET) transport equipment for all new growth applications in the interoffice network. This technology selection for Interoffice Facilities (IOF) is discussed in greater length in the testimony of Company witness Mr. Joseph Gansert.

:

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Łź

i

Ì.

葭

È.

1	Q.	Describe how the investments for Dedicated Transport were developed.
2	Α.	The Dedicated Transport investments, which we also refer to as Interoffice (IOF) Network
3		investments, were developed on a fixed and variable basis. The fixed investments, which
4		were identified at the originating and terminating NYT serving wire centers, include
5		electronic equipment such as multiplexers, digital cross connect frames, and fiber
6		termination frames. The variable investments, which were developed on a per mile basis,
7		are those that vary with the length of facility and contain the interoffice fiber cable,
8		structure, and any electronics necessary at intermediate NYT serving wire centers.
· 9	Q.	What type of facilities were utilized in the IOF Network to develop your unit investments?
10	Α.	The Dedicated Transport unit investments reflect a 100% fiber facility network.
11	Q.	Did you include interoffice structure investments in your TELRIC study?
12	А.	Yes. Outside plant interoffice structure investments were determined using the same
13		methodology as previously described to determine outside plant link structure investments.
14	Q.	On what basis were the material and installation prices in your TELRIC study determined
5		for the interoffice network?
16	Α.	Material prices for electronic equipment and cables reflect the latest negotiated contract
17		prices NYT has with the manufacturers of the circuit equipment and interoffice cable
18		facilities. Circuit equipment installation and engineering loading factors were multiplied by
19		the material prices to arrive at a total investment. Fiber cable installation and engineering
20		costs were obtained from the Outside Plant Planner's Costing Tool.
21	0	What utilization factor was used for the unbundled Dedicated Transport network element?

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

As discussed in Mr. Gansert's testimony and reflected in my Workpapers, the utilization Α. factor for interoffice fiber facilities in NYT's TELRIC study was 50%. 2 Q. Did the Company's cost study deaverage the Dedicated Transport investments by density 3 zones? 4 No. Neither the "fixed or "variable" cost components are density sensitive. 5 Α. How were the Dedicated Transport unit investments converted to monthly costs? 6 Q. As discussed later in my testimony, the investments associated with Dedicated Transport 7 Α. were converted to monthly costs through the application of annual CCFs. 8 Please explain how the non-recurring costs for Dedicated Transport were developed? 9 Q. The non-recurring costs identified expenses associated with the installation and removal of 10 Α. the network element. To determine work time associated with each network element, Task 11 Oriented Costing (TOC) and time and motion studies were used in the development of what 12 are, essentially, service provisioning costs. These costs include work associated with the 13 service order, circuit design, performing cross connections, assignment of facilities, testing, 14 acceptance and finally disconnection. Fully distributed labor rates were applied to the 15 appropriate field job functions to derive unit labor costs by function. These various costs 16 were combined into the final non-recurring costs. 17 Please summarize the results of your study of Dedicated Transport investments. 0. 18

.19

7/8 11...

A. The results can be found in Part C, Pages 8-10 of my Exhibit and also summarized below:

	Monthly Re	Non-Recurring	
Element	Fixed	Per Mile	Fixed
OC-48	\$12,167.38	\$470.84	\$1,135.02
OC-12	\$5,163.06	\$301.15	\$1,001.61

2

3

4

5

6

7

8

9

10

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

OC-3	\$1,700:76	* \$75.29	\$863.21
DS-3	\$1,134.70	\$25.09	\$863.21
DS-1	\$136.73	\$0.90	\$634.17
CO Muxing 3/1	\$278.42	N/A	N/A

COMMON TRANSPORT

 Q. Define the Common Transport network element for which the Company performed a TELRIC study.

A. The Common Transport network element is defined as the transmission facilities shared by more than one customer or carrier that provide telecommunications between wire centers owned by NYT or requesting telecommunications carriers, or between switches owned by NYT or requesting telecommunications carriers.

Q. Describe how the TELRIC investment for the Common Transport network element was developed.

A. The investment of the Common Transport network element was developed by dividing the Dedicated Transport investments, calculated in the manner previously described, by the annual minutes of usage that would be transported by those investments. This is a reasonable approach because Common Transport uses the same physical interoffice facility as Dedicated Transport.

Q. How were the investments converted to monthly costs for the Common Transport element?
A. As discussed in greater detail later in my testimony, the investment associated with the
Common Transport element was converted to a monthly cost through the application of the
annual CCFs.

1

2

3

4

5

6

7

8

9

613

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

- Q. Please describe the methodology used to calculate the usage minutes.
- A. The usage was obtained by analyzing all recorded network traffic for a recent one month
- period and adjusting for the relationship between Busy Hour traffic volumes and day,
- evening, and night volumes. This methodology is consistent with that employed in the
- development of transport investments in the Toll Manual.
- Q. Please summarize the results of your Common Transport element investment study.

ELEMENT	COST/MINUTE
Usage - Day	\$0.00096
Usage-Evening	\$0.00051
Usage - Night	\$0.00000

A. The results can be found in Part C, Page 11 of my Exhibit and also summarized below:

SIGNALING NETWORKS

10	Q.	Define the signaling network elements for which the Company performed a TELRIC study.
11	Α.	Modern telecommunications networks transmit signaling information over communications
12		paths separate from those used to transmit the voice traffic itself. Signaling information is
13		switched at Signaling Transfer Points (STPs), and is carried between STPs and local and
14		tandem switches over Signaling Links. Routing and other information used by the signaling
15		network is stored in call-related databases known as Service Control Points (SCPs). The
16		protocol used for signaling information is known as Signaling System 7 (SS7).
17	Q.	What technology assumptions were used in the development of the costs for the STP port
18		element?

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

8.5 10.1

÷

Ł

L

a se se l a sas	Α.	The construct used for the development of the costs of the STP port element reflects the
2		Company's deployment of forward-looking STP equipment, as incorporated in the latest
3		designs of the Company's Engineering Department. In the analysis, the STPs are placed at
4		the existing locations. Costs were identified using the latest available and or material
5		prices, including appropriate discounts and utilization factors, and factors for power and
6		installation. It would not be meaningful to calculate these costs by density zone since the
•	•	STP equipment does not vary by density zone.
8	Q.	How were the TELRIC investments for the STP port element developed?
9	A.	With the exception of the material investments, the investments for the STP port element
10		were developed in the same manner as that used for Local Switching.
11	Q.	How were the material investments developed for the STP port element?
12	Α.	The material investments, including discounts for the STP port element were obtained from
13		information on the latest contracts with the vendor from which the STP was purchased.
14	Q.	How were the material investments converted to total investment?
	A.	The material investments were converted to total investment using the same installation
16		loading factors as described in the development of the Local Switching investment. The
17		total investment for the STP was divided by the estimated actual number of ports to be
18		utilized, to arrive at a unit investment for the STP port element.
19	Q.	How were the investments converted to monthly costs for the STP port element?
20	Α.	As discussed in greater detail later in my testimony, the investment associated with the STP
21		port element was converted to a monthly cost through the application of the annual CCFs.

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

- Q. Please describe how the investment for the Signaling Link element was developed.
 A. The investment of the Signaling Link element was developed by taking the investments previously developed for the Dedicated Transport "fixed" and "variable" elements. These figures to reflect the investment associated with the DS-0 level facility which comprises the Signaling Link.
 Q. Please summarize the results of your signaling network investment study.
 A. The results can be found in Part D, Page 1 of my Exhibit and also summarized below:
- 8

1

2

3

4

5

6

7

9

10

11

CALL-RELATED DATABASES - SWITCH OUERY

Q. Please define Call-Related database switch query element for which the Company performed a TELRIC study.

A Call-Related database query is a switch query and database response through the 12 Α. signaling network, which provides access to NYT's Line Information Database (LIDB) and 13 Toll Free Calling (800) database by means of physical access at the STP. These are the only . 14 Call-Related databases that the Company currently has in its network. In the future, as the 15 Company deploys other databases, such as number portability and Advance Intelligent 16 Network databases, NYT will provide access to them. NYT will provide this access in the 17 same manner as the Company itself accesses these databases; through the Service Control 18 Point (SCP) via Signaling Links. This is referred to as the Signaling Query element in our 19 TELRIC study. 20

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

ŀ

The second

į,

L.

and the second

÷.,1

٤.

ì

I	Q.	What technology was incorporated into the development of the investments for the
2		Signaling Query element?
3	A.	The construct used for the development of Signaling Query investments reflects the
4		Company's deployment of the SCP technology incorporated in the latest designs of the
5		Company's Engineering Department. In the analysis, the SCPs are placed at the existing
6		locations. Investments were identified using the latest available vendor prices, including
7	•	appropriate discounts and utilization factors, and loading factors for power installation. It is
8		not meaningful to calculate these investments by density zone since the relevant costs are
9		not density-sensitive.
10	Q	How were the investments for the Signaling Query element developed?
11	А.	The methodology to determine the investments for the Signaling Query element was the
12		same as that used for the signaling port.
13	Q.	How were the material investments developed for the Signaling Query element?
14	Α.	The material investments, including discounts for the Signaling Query element, were
5		obtained from information on the latest contracts with the vendor from which an SCP was
16		purchased.
17	Q.	How were the material investments converted to total investment?
18	A.	The material investments were converted to total investment using the same method
19		described for the signaling port element.
20	Q.	How were the investments or total investment converted to monthly costs per Signaling
21		Ouery?

ł

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

["+

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

 A. As discussed in greater detail later in my testimony, the investment associated with the Signaling Query element was converted to a monthly cost through the application of the annual CCFs.

Q. Please summarize the results of your Signaling Query cost study.

A. The results can be found in Part D, Page 1 of my Exhibit and also summarized below:

Signaling Query Element	Cost Per Transaction
800 Service	\$0.001286060 -
LIDB Service	\$0.001576396

COSTS OF EXTENDED LINK SERVICE

Q. What is extended link service?

A. Link service may be extended (Extended Switched Voice Grade Analog Link Service) from the Company's normal central office to a point of termination at the customer's collocation multiplexing node in another Company central office in the same LATA. The Service is subject to the availability of facilities and is only available when the customer is not collocated in the Company's normal central office serving the customer's end user.
Q. What is the TELRIC cost of an extended link and how is such cost calculated? An extended Link would consist of a two-wire analog Link and a Foreign Exchange DSO interoffice facility. The follow table summarizes the cost of Extended Links by density zone:

1

2

3

4

5

6

7

8

9

10

11

12

13

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

		Extend	ded Link	- 	
Density Zones	2-Wire Analog Link	Source	FX IOF	Source	Mouchly Cost
Major Cities	\$16.75	Part A, P2, L1	\$52.71	Part C, WP1.1, P4	\$69.46
Urban	\$20.26	Part A, P2, L2	\$52.71	Part C, WP1.1, P4	\$72.97
Suburban	\$27.22	Part A, P2, L3	\$52.71	Part C, WP1.1, P4	\$79.93
Rural	\$30.48	Part A, P2, L4	\$52.71	Part C, WP1.1, P4	\$83.19
Average	\$19.37	Part A, P2, L5	\$52.71	Part C, WP1.1, P4	\$72.08

11

÷. •

ANNUAL CARRYING CHARGE FACTORS

Q. What are Annual Carrying Charge Factors?

A. An Annual Carrying Charge Factor is the relationship between the expenses and the plant investments for a given network element. This ratio is used to estimate the level of expenses that the Company can expect to incur for any network element on the basis of the element's investments. Expenses that are incurred for specific plant accounts are directly attributed only to those investments, while expenses that are not specific to plant accounts are spread equally across all investments. This approach ensures that the expenses for each network element are attributed to the greatest extent possible on a cost-causative basis, and non-specific costs are allocated in reasonable proportions.

Q. What expenses are captured in the calculation of the annual CCFs?

A. The CCF captures the capital and investment related costs (i.e., depreciation, cost of money,
 and ad valorem taxes), the operating costs related to the maintenance of the network, and
 certain administrative costs.

17 Maintenance

1. 1

9

10

11

13

14

15

16

17

18

19

20

21

О.

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Q. Please describe the methodology that the Company employed to develop the maintenance -1-2 carrying charge factor.

The starting point for the maintenance factor is the set of expenses that have been incurred 3 Α. in 1995 for repairing and rearranging our plant and equipment. It includes the costs 4 associated with responding to subscriber trouble reports ("R" dollars) as well as the costs 5 associated with moves, changes and upgrades to our network ("M" dollars). These 6 expenses, which are captured by plant account, are divided by the investments in the 7 associated plant accounts to calculate the maintenance CCF for each plant account. 8

Besides plant-specific expenses, what other expenses have been included in the maintenance **Q**. carrying charge factors?

There are two additional loadings which comprise the maintenance CCF. The Specific Α. Loading Factor accounts for those expenses which can be directly assigned to either the 12 . central office or outside plant asset accounts. For example, central office engineering expense is applied to all central office switching and circuit investments. The second factor, Common Loading Factor, accounts for those network expenses which cannot be solely assigned to either outside plant or central office accounts.

Did you adjust the base year 1995 maintenance expenses in the calculation of the CCFs? For copper outside plant facilities, newly placed cables may experience fewer troubles **A**. related to equipment deterioration over the life of the plant. In order to reflect this potential reduction in subscriber troubles due to newly placed copper plant, we have adjusted the forward-looking assessment of "R" dollars by removing 60% of deteriorated plant troubles

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

and the associated repair expenses from the outside facility accounts (conside plant and drop wire). The estimate of a 60% reduction is based on the Company's exponences over the past five years after totally rehabilitating deteriorated areas of the network.

Q. Are the maintenance expenses you used in your TELRIC study forward-looking?

A. Yes. The maintenance (and administrative) carrying charge factors represent a historic ratio of expenses to investment. In developing the TELRIC investment in the manner I described earlier, the incorporation of the costs associated with the latest technology, which are in most instances lower than the Company's embedded costs, created a lower on-going expense identification after the application of the annual CCF. The lower projected requirement for on-going maintenance and administrative expenses addresses the potential efficiencies that the Company may realize in the future telecommunications marketplace.

Q. How did the Company treat the costs related to testing expenses in the maintenance carrying charge factors?

A. It is assumed that a purchaser of network elements will perform their own subscriber trouble testing. Therefore, the expenses associated with this activity have been removed from the overall testing expense. The remaining testing expenses are spread over the revenue producing investment base. In addition, investments associated with the testing equipment needed to test the network elements have been identified. CCFs (without the testing component included) are applied to the investments to estimate the annual costs associated with this testing equipment. These annual costs are then reduced to reflect the elimination of the subscriber trouble testing activity. The resultant amount is then combined with the

. .

. ...

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

	1		annual projected testing expenses to derive the basis of the forward-looking estimation of
	2		testing that will be required for unbundled elements.
•	3	Q.	Did you deaverage the maintenance carrying charge factors in your TELRIC study?
	4	A.	We deaveraged the maintenance carrying charge factors in order to address the difference in
	5		maintenance expenses across the four density zones.
r I	6		Attributable Administration
	·7	Q.	What expenses were included as directly attributable administration CCF in your TELRIC
	8		study?
	9	А.	The calculation of the directly attributable administration CCF includes the following
	10		expenses:
	11		(a) Wholesale costs associated with product management, sales, service order processing,
	<u>1</u> 2		and customer accounting;
	13		(b) The capital requirements associated with investments that are not directly used to
	14		provide network elements; and,
	15		(c) General and Administrative expenses.
لتسنا 1	16	Q.	Mr. Curbelo, have you made adjustments to the directly attributable administration factor to
	17		remove Retailing Costs?
	18	A.	Yes. The LCO states that retailing costs, such as consumer billing costs associated with
•	19		retail services, may not be attributed to network elements that are offered to interconnecting
	20		carriers.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

5

16

17

18

19

·20

21

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Q. What wholesale "customer care" costs are included in the directly attributable are

administrative expenses?

Directly attributable administration associated with the wholesale "customer care" function .A. captures the product management, advertising, sales, and customer accounting accounts. Product management expenses will continue to be incurred by a strictly-wholesale provider to identify the needs in the marketplace, enable selection of network technology, and develop usable products/elements for the network elements. Product Management expense which is strictly retail in nature has been removed from the CCF development. Advertising expenses (except for public telephone advertising) that the Company currently incurs are included in the directly attributable administration expenses category. These advertising costs are the expenses the Company will incur as a wholesale provider of network elements. The Company's reasons for believing that advertising expense will continue in a wholesale environment are set forth in pleadings filed by the Company in the resale phase of this case. In addition, the Company reviewed the advertising expense incurred by six major wholesalers. On the basis of that analysis, contained in my Workpapers, the Company fully expects to incur advertising expenses of the same order of magnitude it incurs today.

The expenses included from the sales and service order account are those which would be directly incurred by a wholesale marketing organization. These forward-looking expenses were estimated on the basis of the number of "customer care" personnel that would be required to support the wholesale service network elements multiplied by appropriate wage

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

m**

13

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

rates. Directly attributable administration expenses in the Customer Accounting account are those expenses incurred by organizations other than wholesale marketing but whose functions are essential to the operation of a wholesale company (i.e., Carrier Access Billing System (CABS) (as a surrogate for a wholesale billing system), Service and Equipment Database, and rating and recording of toll/local message).

Q. Please describe the directly attributable administration expenses associated with the capital requirements for investments other than the facilities used in providing the network elements.

A. The administration CCF includes expenses that will be incurred for capital requirements associated with land, leases, furniture, general purpose computers, vehicles, work and office equipment, and official communications investments. As discussed, the directly attributable expense CCF assigns certain of these expenses to a particular class of plant (e.g., Motor Vehicle expense to subscriber link facilities). Other expenses, which are incurred in support of all classes of plant, are attributed to all investment categories. These allocations are detailed in my Workpapers.

Q. Please discuss how you treated the expenses associated with the General and Administration functions.

A. The directly attributable CCF also includes those expenses associated with the Company's General and Administration functions. Accidents, Damages and Settlements have been assigned to the outside plant accounts because virtually all of these expenses are associated with the outside plant field forces or outside plant facilities. The remainder of the G&A

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Ţ *

i.

÷.,

].		functions have been analyzed to distinguish between those functions which are sensitive to
	2		the number of employees versus those which are insensitive to the Congress's employee
	3		base. The functions which have been identified as insensitive to employee size, and for the
	4		most part fixed relative to changes in volume of business, have been designated as
	· 5		"Common" and are discussed below. The remaining G&A functions, whose level of on-
	6		going expense can be considered to be a function of the size of the employee base, have
	7		been assigned to either the central office operations, outside plant operations, or other,
	8		based on employee headcount. These expenses are then reduced by 10% to reflect the
	9		reduction in G&A expenses that would be expected if the Company were to shift to being a
	10		100% wholesale company.
1	11	Q.	Did you make any adjustment for inflation in computing CCFs?
	12	A.	No. This is one of the reasons that my analysis is conservative.
	13		Common Costs
	14	Q.	What is included in the Common costs CCF in your TELRIC study?
	15	A.	Common costs are comprised of Executive, Planning, Legal, General Accounting and
	16		Finance, Interconnecting Company Relations, Regulatory and Government Relations, and
	17		Research and Development.
	18		Ad Valorem Taxes
	19	Q.	What is included in Ad Valorem taxes and how did you account for them in your TELRIC
	20		study?

ā.

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

CASE 95-C-0657 CASE 94-C-0095 CASE 91-C-1174

1

2

3

4

5

6

7

8

9

1.41

A. Ad Valorem taxes include special franchise taxes, property taxes on the taxable plant, and other miscellaneous taxes imposed upon the company by the various municipalities, counties, etc. in the state. The CCF is based on the assignment of the ad valorem tax expense to the class of plant which is being taxed.

Q. Did you deaverage the Ad Valorem carrying charge factors in your TELRIC study?

A. We deaveraged the ad valorem carrying charge factors in order to address the differences across the four density zones.

Depreciation

Q. How did you calculate depreciation in your TELRIC study?

As discussed in the testimony of Company witness Dr. Lawrence Vanston, economic lives 10 Α. 11 are used for calculating the forward-looking depreciation expense, not the regulated 12 prescribed lives nor the remaining lives of the assets. The economic lives used in the 13 Company's TELRIC studies are based on economic lives used when the Company 14 discontinued the use of FASB 71 accounting and moved to FASB 101 and are consistent with the economic lives used in preparing the financial statements that the Company has 15 16 filed with the Securities and Exchange Commission. These economic lives selected have a 17 direct impact on capital recovery calculations, and an indirect impact on the Return and 18 Income tax values due to the levelized Net-to-Book determinations. Depreciation rates also take into consideration the future net salvage (Cost of Removal minus gross salvage) of the 19 20 plant account. Consistent with the concept that all plant Is being placed new, there is no 21 depreciation reserve for each of the plant accounts in the TELRIC study.

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

Cost of Capital

Q. Did you use a risk adjusted cost of capital in your TELRIC study?

A. Yes.

1

2

3

4

5

6

8

9

10

11

Q. What value did you use and how was it calculated?

A. As discussed in the testimony of Company witness Dr. James Vander Weide, the Cost of Equity is set to 14.8% while Cost of Debt is set at 7.9%. The capital structure of the firm is set to 23.51% Debt and 76.49% Equity. This calculation results in a 13.178% Cost of Capital. This risk-adjusted cost of capital is used in determining the return component of the central office and outside plant investments as well as in the levelizing algorithms for the Net-to-Book values.

Gross Revenue Loading

12 Q. What is Gross Revenue Loading?

A. Gross Revenue Loading is a factor that is applied against the Company revenue to account for the PSC assessment and uncollectibles. Both of these expenses are associated with the level of revenues that the company actually receives. As set forth in the pleadings filed by the Company in the resale phase on this case, the Company believes that its wholesale uncollectibles, such as negotiated bill adjustments, will equal or exceed its current retail uncollectibles. As such, we continue to use the current level of uncollectibles in the development of the Gross Revenue Loading factor.

20 Loop and Toll Cost Manuals

21 Q. How is the methodology for the development of the annual CCFs for the TELRIC cost

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

21

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

studies the same as or different from the methodologies addressed in the Loop and Toll Manuals?

A. In order to conform to the various provisions of the LCO, the CCF methodology that has been developed for TELRIC studies contrasts from those previously approved in the Loop and Toll Manuals in the following manner:

Depreciation. The TELRIC CCF is based on the forward-looking economic lives associated with the individual classes of plant. The CCFs described in the Manuals are generally based on the average depreciation lives prescribed by the Public Service Commission, although the Toll Manual also permits depreciation based upon estimates of the economic value of investments (Page 30).

Cost of Capital. The TELRIC CCF requires a forward-looking cost of capital which reflects the risk premium facing the Company in the provision of the network elements. The cost of capital methodology prescribed by the Loop and Toll Manuals is based on PSC-authorized rates of return.

Ad Valorem Taxes. The methodology for the calculation of Ad Valorem Taxes is the same for the TELRIC CCFs as that described in the Loop Manual and the Toll Manual with one exception. In the calculation of the TELRIC CCFs, these property tax expenses have been deaveraged by the density zones.

Q. How does the TELRIC CCF methodology for maintenance compare with that set forth in
the Loop and Toll Manuals?

A. The calculation of maintenance expense factor for the TELRIC CCF utilizes the same

49

والأوب بالخاص

21

this proceeding.

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

general methodology as that described in the Loop Manual and the Toll Manual. However, the TELRIC CCFs incorporate the previously discussed density zone deaveraging as well as 2 3 a potential reduction in the future maintenance costs associated with new cooper cable 4 plant. 5 Q. How does the TELRIC methodology for computing an administration CCF compare with the approach of the Toll Manual? 6 A. The Manual recommends the allocation of administration expenses on the basis of relative 7 8 investments unless separately identified. It goes on to state that service specific CCFs should be developed for different services, if feasible, where certain services impose 9 10 different costs per unit of investments. The Company addressed this recommendation in its estimate of the number of employees who will be performing wholesale customer care 11 12 functions in support of network elements in the future. Q. Are common costs addressed in either the Loop Manual or the Toll Manual? 13 A. Common costs are not specifically addressed in either of these previously approved cost 14 manuals. However, the LCO specifically addressed the incumbent LEC's right to recover 15 16 common costs. 17 Q. What are the CCFs used in your TELRIC studies? 18 Please see my Exhibit E, Pages 2-5. Α. 19 Q. Please summarize the differences in the major CCF categories between the embedded link 20 study filed by the Company on May 31, 1996 and the TELRIC link studies performed for

2

S

4

5

6

7

8

9

10

11

17.3

SUPPLEMENTAL TESTIMONY OF C. R. CURBELO

The following is a summary of the percent differences between the results of the TELRIC 1 .-Α. link study and the previously filed embedded link study. (A positive percentage indicates that the TELRIC CCF is higher than the embedded CCF; a negative percentage indicates that the embedded CCF is higher.) See Workpapers associated with Exhibit E, Pages 175-81.

Investment	(25.71%)
Depreciation	21.08%
Return Interest and Taxes	11.93%
Ad Valorem Taxes	(49.01%)
Maintenance	(56.85%)
Administration/Common	(46.01%)
Total Cost	(28.52%)

The TELRIC study reflects a lower unit investment. Therefore, when the CCFs are applied to the TELRIC investments, the result is a lower attribution of maintenance and administration expenses on a forward-looking basis.

Q. Mr. Curbelo, does this conclude your testimony?

A. Yes.

۰. ۰. ۰. ろてこ

6 Calino Commission SC NO.98-C-1367 1-7-00 Ex. No. 372

Case: 98-C-1357 AT&T Date of Request: 2/16/00 Respondent: Panel Pages 1-7

ATT-BA-5	Please provide all supporting documentation for each of the unit prices (i.e., all material and labor costs) set forth in the spreadsheet tab "Cable cost" of the Bell Atlantic Link Cost Model
	Link_L2K.xls.

RESPONSE:

The source of the material and labor costs used in the "Cable cost" tab is the ECRIS database used in BA-NY. Several steps were taken to produce the cable cost table in this tab.

1. Average material prices per foot for each cable size (e.g. 1200 pair copper cable, 24 strands fiber cable, etc.) and type (copper or fiber) were collected for nine areas in BA-NY based on a 13 month rolling average of the disbursed cable prices in ECRIS. For copper cables, this is an average cost of the three possible gauges of cable used, 22, 24 and 26 gauge. Ultimately, in developing the cable cost table for each of the field reporting code (FRC – for example, 2C for aerial and 5C for underground), the material price per foot for a particular size cable for every FRC in an area is the same. For example, in Manhattan, the material price for a 100 pair cable, whether it is 2C or 5C, is \$0.77. There is no mechanism in place to differentiate the slight per foot cost differences of cable, if any, for the many different sheath types purchased and installed in the OSP network. For fiber cables, ribbon cable costs were used exclusively because of the operational efficiencies gained by the use of mass fusion splicing of ribbon cables.

The results of these operations are two material price tables, one for copper and one for fiber.

Avg./ft.	Are	a														
Size	1		2		3		4		5		6		7		8	9
25	\$	0.31	\$	0.31	\$	0.36	\$	0.33	\$	0.28	\$	0.33	\$ 0.31	\$	0.31	\$ 0.31
50	\$	0.50	\$	0.50	\$	1.19	\$	24.69	\$	0.50	\$	24.69	\$ 0.42	\$	0.42	\$ 0.42
100	\$	0.77	\$	0.77	\$	0.78	\$	0.94	\$	0.88	\$	0.94	\$ 0.81	\$	0.81	\$ 0.81
200	\$	1.13	\$	1.13	\$	1.49	\$	1.99	\$	1.75	\$	1.99	\$ 1.47	\$	1.47	\$ 1.47
300	\$	1.91	\$	1.91	\$	2.49	\$	2.20	\$	2.58	\$	2.20	\$ 2.16	\$	2.16	\$ 2.16
400	\$	2.16	\$	2.16	\$	4.43	\$	2.31	\$	3.18	\$	2.31	\$ 3.79	\$	3.79	\$ 3.79
600	\$	5.35	\$	5.35	\$	4.19	\$	4.24	\$	4.24	\$	4.24	\$ 4.01	\$	4.01	\$ 4.01
900	\$	8.59	\$	8.59	\$	6.52	\$	5.83	\$	6.21	\$	5.83	\$ 6.01	- \$	6.01	\$ 6.01
1200	\$	10.37	\$	10.37	\$	8.02	\$	6.29	\$	6.40	\$	6.29	\$ 8.99	\$	8.99	\$ 8.99
1500	\$	8.84	\$	8.84	\$	6.82	\$	7.59	\$	7.45	\$	7.59	\$ 8.12	\$	8.12	\$ 8.12
1800	\$	9.96	\$	9.96	\$	9.72	\$	9.36	\$	9.50	\$	9.36	\$ 9.45	\$	9.45	\$ 9.45
2700	\square				\$	13.58	\$	12.43			\$	12.43	\$ 11.79	\$	11.79	\$ 11.79
3000	\$	12.79	\$	12.79	\$	13.57	\$	14.39	\$	13.60	\$	14.39	\$ 13.71	\$	13.71	\$ 13.71

The copper cable material price table:

	3600	\$ 17.17	\$ 17.17	\$ 15.87	\$ 16.88	\$ 17.21	\$ 16.88	\$ 14.87	\$ 14.87	\$ 14.87
1	4200			\$ 17.12						

The fiber cable material price table:

۰.

Avg./ft.	Area						_										
Size	1		2		3			4		5		6	7		8		 9
12	\$	1.43	\$	1.43	\$	0.72	\$	0.58	\$	0.67	\$	0.58	\$	0.55	\$	0.55	\$ 0.55
24	\$	2.63	\$	2.63	\$	0.79	\$	0.99	\$	1.44	\$	0.99	\$	0.76	\$	0.76	\$ 0.76
48	S	3.56	\$	3.56	\$	1.13	\$	1.31	\$	1.36	\$	1.31	\$	1.12	\$	1.12	\$ 1.12
72	S	5.06	\$	5.06	\$	2.34	\$	1.87	\$	1.63	\$	1.87	\$	1.48	\$	1.48	\$ 1.48
96	S	3.24	\$	3.24	\$	2.07	\$	2.48	\$	2.22	\$	2.48	\$	2.10	\$	2.10	\$ 2.10
144	\$	27.55	S	27.55	\$	10.06	\$	3.51	\$	2.84	\$	3.51	\$	3.09	\$	3.09	\$ 3.09
216	\$	313.97	\$	313.97	\$	4.74	\$	5.03	\$	4.95	\$	5.03	\$	4.71	\$	4.71	\$ 4.71

2. These cable cost tables were "smoothed" to remove any cost outliers. For a small number of cable sizes, the ECRIS material and labor costs were outliers with respect to the overall relationship between cost and size indicated by the bulk of the data. In these cases, a regression analyses was performed to establish the relationship between cost and size. There were also missing values for certain size cables in an area. For the outlying and missing material costs, the predicted values from the estimated regression relationship were used in lieu of the ECRIS costs.

These are the cost tables after substituting the outliers with the predicted values from the regression analysis:

Avg./ft.	A	REA						 	 	 	
Size		1		2	3	4	5	 6	7	 8	9
25	\$	0.31	\$	0.31	\$ 0.36	\$ 0.33	\$ 0.28	\$ 0.33	\$ 0.31	\$ 0.31	\$ 0.31
50	\$	0.50	\$	0.50	\$ 1.19	\$ 0.56	\$ 0.50	\$ 0.56	\$ 0.42	\$ 0.42	\$ 0.42
100	\$	0.77	\$	0.77	\$ 0.78	\$ 0.94	\$ 0.88	\$ 0.94	\$ 0.81	\$ 0.81	\$ 0.81
200	s	1.13	\$	1.13	\$ 1.49	\$ 1.99	\$ 1.75	\$ 1.99	\$ 1.47	\$ 1.47	\$ 1.47
300	\$	1.91	\$	1.91	\$ 2.49	\$ 2.20	\$ 2.58	\$ 2.20	\$ 2.16	\$ 2.16	\$ 2.16
400	s	2.16	\$	2.16	\$ 4.43	\$ 2.31	\$ 3.18	\$ 2.31	\$ 3.79	\$ 3.79	\$ 3.79
600	s	5.35	\$	5.35	\$ 4.19	\$ 4.24	\$ 4.24	\$ 4.24	\$ 4.01	\$ 4.01	\$ 4.01
900	S	8.59	\$	8.59	\$ 6.52	\$ 5.83	\$ 6.21	\$ 5.83	\$ 6.01	\$ 6.01	\$ 6.01
1200	\$	10.37	\$	10.37	\$ 8.02	\$ 6.29	\$ 6.40	\$ 6.29	\$ 8.99	\$ 8.99	\$ 8.99
1500	S	8.84	\$	8.84	\$ 6.82	\$ 7.59	\$ 7.45	\$ 7.59	\$ 8.12	\$ 8.12	\$ 8.12
1800	S	9.96	\$	9.96	\$ 9.72	\$ 9.36	\$ 9.50	\$ 9.36	\$ 9.45	\$ 9.45	\$ 9.45
2700	Ŝ	12.20	\$	12.20	\$ 13.58	\$ 12.43	\$ 12.34	\$ 12.43	\$ 11.79	\$ 11.79	\$ 11.79
3000	s	12.79	\$	12.79	\$ 13.57	\$ 14.39	\$ 13.60	\$ 14.39	\$ 13.71	\$ 13.71	\$ 13.71
3600	S	17.17	S	17.17	\$ 15.87	\$ 16.88	\$ 17.21	\$ 16.88	\$ 14.87	\$ 14.87	\$ 14.87
4200	\$	19.17	\$	19.17	\$ 17.12	\$ 18.76	\$ 18.98	\$ 18.76	\$ 15.56	\$ 15.56	\$ 15.56

The copper cable material price table:

The fiber cable material price table:

Avg./ft.	AREA						 		 	
Size	1		2	3	4	5	6	 7	 8	9
12	S 1	.16 5	5 1.16	\$ 0.72	\$ 0.58	\$ 0.67	\$ 0.58	\$ 0.55	\$ 0.55	\$ 0.55
24	\$ 1	.97 S	5 1.97	\$ 0.79	\$ 0.99	\$ 1.44	\$ 0.99	\$ 0.76	\$ 0.76	\$ 0.76

48	\$	3.56	\$ 3.56	\$ 1.13	\$ 1.31	\$ 1.36	\$ 1.31	\$ 1.12	\$ 1.12	\$ 1.12
72	s	5.06	\$ 5.06	\$ 2.34	\$ 1.87	\$ 1.63	\$ 1.87	\$ 1.48	\$ 1.48	\$ 1.48
96	\$	3.24	\$ 3.24	\$ 2.07	\$ 2.48	\$ 2.22	\$ 2.48	\$ 2.10	\$ 2.10	\$ 2.10
144	\$	9.97	\$ 9.97	\$ 3.27	\$ 3.51	\$ 2.84	\$ 3.51	\$ 3.09	\$ 3.09	\$ 3.09
216	\$	14.71	\$ 14.71	\$ 4.74	\$ 5.03	\$ 4.95	\$ 5.03	\$ 4.71	\$ 4.71	\$ 4.71

3. Labor cost per foot

۸.

Unit labor costs for construction and engineering was developed using Costing Tool. Costing Tool was developed for analyzing data residing in ECRIS, without disrupting the live data needed for provisioning actual jobs. Jobs were built using Costing Tool for each work operation (such as joining copper pairs or placing fiber cables) based on default cable section lengths defined by the tool for each FRC, cable type, cable size and area. Costing tool then provide estimates of total cost to engineer, place and splice these cables in the OSP network of BA-NY. Per foot labor costs were developed by dividing the total labor costs by the default cable section lengths.

The result of these operations is the labor cost table shown below:

		Area								
FRC	SIZE	1	2	3	4	5	6	7	8	9
2C	25	\$0.68	\$0.63	\$0.65	\$0.86	\$0.73	\$0.72	\$0.73	\$0.76	\$0.75
	50	\$0.78	\$0.73	\$0.72	\$0.93	\$0.81	\$0.77	\$0.80	\$0.83	\$0.82
	100	\$0.86	\$0.81	\$0.76	\$0.79	\$0.85	\$0.81	\$0.84	\$0.88	\$0.86
	200	\$0.92	\$0.87	\$0.92	\$0.97	\$1.02	\$0.96	\$1.00	\$1.04	\$1.02
	300	\$1.08	\$1.03	\$1.08	\$1.17	\$1.18	\$1.12	\$1.16	\$1.20	\$1.18
	400	\$1.26	\$1.20	\$1.26	\$1.35	\$1.36	\$1.31	\$1.35	\$1.39	\$1.37
	600	\$1.51	\$1.44	\$1.56	\$1.71	\$1.68	\$1.61	\$1.66	\$1.70	\$1.68
	900	\$2.27	\$2.19	\$2.03	\$2.23	\$2.16	\$2.06	\$2.14	\$2.19	\$2.17
	1200	\$2.26	\$2.17	\$2.43	\$2.69	\$2.60	\$2.51	\$2.58	\$2.64	\$2.61
	1500	\$2.91	\$2.81	\$2.84	\$3.15	\$3.03	\$2.96	\$3.00	\$3.07	\$3.04
	1800	\$3.53	\$3.40	\$3.36	\$3.75	\$3.52	\$3.41	\$3.59	\$3.68	\$3.64
	2700	\$6.97	\$6.63	\$6.47	\$7.97	\$6.84	\$7.14	\$7.00	\$7.22	\$7.10
	3000	\$6.99	\$6.63	\$7.10	\$8.80	\$7.66	\$8.90	\$7.72	\$7.96	\$7.84
	3600	\$5.51	\$5.31	\$5.41	\$6.19	\$5.74	\$5.44	\$5.59	\$5.73	\$5.67
32C	25	\$3.33	\$3.10	\$3.31	\$4.11	\$3.40	\$3.20	\$3.49	\$3.85	\$3.64
	50	\$3.54	\$3.30	\$3.49	\$4.32	\$3.58	\$3.35	\$3.67	\$4.04	\$3.81
	200	\$3.64	\$3.40	\$3.64	\$3.77	\$3.75	\$3.50	\$3.83	\$4.20	\$3.98
	300	\$4.30	\$4.02	\$4.30	\$4.67	\$4.42	\$4.12	\$4.51	\$4.95	\$4.69
	400	\$4.76	\$4.46	\$4.78	\$5.13	\$4.89	\$4.58	\$5.01	\$5.48	\$5.19
	600	\$5.46	\$5.11	\$5.53	\$6.13	\$5.66	\$5.30	\$5.78	\$6.32	\$5.99
	900	\$6.96	\$6.55	\$6.74	\$7.48	\$6.88	\$6.44	\$7.04	\$7.68	\$7.28
	1200	\$7.68	\$7.21	\$7.88	\$8.86	\$8.07	\$7.5 7	\$8.26	\$9.01	\$8.53
	1500	\$9.07	\$8.53	\$9.03	\$10.24	\$9.24	\$8.71	\$9.45	\$10.30	\$9.76
	1800	\$10.42	\$9.74	\$10.22	\$11.75	\$10.40	\$9.78	\$10.73	\$11.78	\$11.18
i i	2700	\$21.75	\$20.32	\$21.33	\$26.44	\$21.63	\$20.80	\$22.41	\$24.70	\$23.28
	3000	\$23.16	\$21.61	\$23.37	\$28.97	\$23.85	\$23.85	\$24.60	\$27.09	\$25.54
	3600	\$16.74	\$15.69	\$16.65	\$19.67	\$17.00	\$15.86	\$17.31	\$18.98	\$17.96
45C	25	\$1.07	\$1.02	\$3.66	\$4.61	\$2.29	\$4.15	\$2.85	\$2.92	\$2.76
1	50	\$1.21	\$1.16	\$3.77	\$4.73	\$2.41	\$4.24	\$2.95	\$3.02	\$2.86
1	100	\$1.43	\$1.38	\$3.96	\$4.65	\$2.62	\$4.43	\$3.18	\$3.25	\$3.07
1	200	\$1.71	\$1.64	\$4.34	\$5.15	\$3.03	\$4.81	\$3.60	\$3.67	\$3.46
	300	\$2.09	\$2.01	\$4.74	\$5.75	\$3.44	\$5.20	\$4.02	\$4.09	\$3.85

	1 400	63.54	67 16	65.77	\$6.24	\$3.04	\$5 60	\$4 56	\$4 62	\$4 34
1	400	\$2.34	JZ.40	JJ.22 85 00	30.24 67 20	\$J.74 \$1 76	\$6.46	\$5 30	\$5 46	\$5.12
1	000	33.22	33.12	97.70 67.70	\$1.32 \$0.70	ወዓ./ህ ፍር በላ	\$7.47	\$6.75	\$6.91	\$6 37
	900	\$4.71	34.57	3/.22	30./Y	30.V4	.0/.0/ ¢000	φ0./J ¢0 Δ7	0.01 CQ 12	\$7.50
	1200	\$5.41	\$5.24	\$8.38	\$10.28	37.3U	30.00 010 10	30.U/ 40.27	\$0.13 \$0.13	\$7.37 \$8.70
	1500	\$6.77	\$6.58	\$9.55	\$11.78	\$8.55	\$10.10	<u>ቅሃ.</u> 3/ ይነስ 74	ቅን.42 ይነሱ ሰሳ	ወ0./ሃ ሮ10.12
[1800	\$8.11	\$7.80	\$10.76	\$13.42	\$9.77	\$11.24	\$10.74	\$10.90	\$10.10 ¢12.21
	2700	\$11.27	\$10.95	\$13.91	\$17.78	\$12.97	\$14.84	\$14.19	\$14.24	\$13.21
	3000	\$11.75	\$11.40	\$15.06	\$19.29	\$14.32	\$17.09	\$15.51	\$15.55	\$14.42
	3600	\$14.31	\$13.82	\$17.32	\$22.06	\$16.79	\$17.78	\$17.92	\$18.06	\$16.73
5C	25	\$0.73	\$0.68	\$0.71	\$0.90	\$0.85	\$0.71	\$0.75	\$0.83	\$0.79
1	50	\$0.92	\$0.85	\$0.86	\$1.07	\$1.03	\$0.84	\$0.90	\$0.99	\$0.94
	100	\$1.09	\$1.02	\$0.99	\$1.12	\$1.18	\$0.96	\$1.04	\$1.14	\$1.09
	200	\$1.40	\$1.30	\$1.39	\$1.61	\$1.66	\$1.35	\$1.46	\$1.60	\$1.52
	300	\$1.95	\$1.84	\$1.95	\$2.26	\$2.30	\$1.87	\$2.04	\$2.21	\$2.11
	400	\$2.36	\$2.23	\$2.36	\$2.76	\$2.77	\$2.28	\$2.46	\$2.67	\$2.55
	600	\$3.26	\$2.93	\$3.16	\$3.88	\$3.71	\$3.05	\$3.30	\$3.73	\$3.56
	900	\$4.91	\$4.51	\$4.50	\$5.49	\$5.27	\$4.32	\$4.70	\$5.24	\$5.00
1	1200	\$5.78	\$5.31	\$5.78	\$7.03	\$6.79	\$5.58	\$6.06	\$6.72	\$6.41
	1500	\$731	\$6 78	\$7.05	\$8.57	\$8.30	\$6.85	\$7.40	\$8.16	\$7.79
[1800	\$8.81	\$8.71	\$8.46	\$10.24	\$9.89	\$8.15	\$8.92	\$9.80	\$9.35
	2700	\$17 74	\$16.12	\$16.56	\$20.45	\$19.55	\$16.35	\$17.43	\$19.13	\$18.17
	2000	\$12.27	\$17.12	\$18.27	\$22 74	\$21.71	\$19.10	\$19.28	\$21.14	\$20.07
	2600	\$15.07	\$14.04	\$15.67	\$19.20	\$18.44	\$14.98	\$16.30	\$17.84	\$16.98
6220	3000	\$13.71 \$2.0F	\$2 5C	¢10.02	\$4 67	\$4.05	\$3.68	\$3.90	\$4.30	\$4.12
032C	23	03.83 QA 74	93.30 \$3.04	33.71 \$4 07	ୁତ 1 .0/ §5.11	\$4 44	\$4.01	\$4.27	\$4 71	\$4.51
1	100	94.20 85 A7	53.74 SA 65	\$4.07 \$1.78	5.11 \$5.78	\$5 22	\$4 70	\$5.02	\$5.53	\$5.30
1	100	00.02 02.02	94.03 66 00	ወተ./0 ዊር 17	4J.20 \$7 02	\$6.71	\$6.07	\$6 40	\$7.16	\$6.85
1	200	\$0.30 #7.01	97.97 67.94	JU.1/	¢0.00	40.74 88 77	\$7.15	\$7.06	\$8 77	\$8 30
	300	\$7.81	⊅/.24 ¢0.00	31.39 60 11	ወቻ.ፈኃ ፍ10 በባ	50.21 \$10.24	50 02	\$0.90 \$0.90	\$10 85	\$10.37
1	400	39.05	30.98 011 50	97.41 \$19.90	φ10.98 ¢14.00	910.20 \$12.21	\$11.00	_{ምን} .02 \$1ን ዩን	\$14.09	\$13.45
1	600	\$12.47	\$11.59	\$12.20 \$16.00	\$14.92 \$20.17	010.01 010.00	911.99 \$16 60	\$17 L7	\$10.27	\$18 <1
1	900	\$17.48	\$16.30	\$10.82 \$21.20	320.17 \$25.70	310.52 877 70	910.3U	\$77.0/	917.31 871 67	\$72 57
I	1200	\$21.70	\$20.22	321.55	⇒∠⊃./8	J∠3.3U	\$20.99 \$75 40	ッレン・40 ダウブ ウイ	\$24.02 \$20.04	\$22.52 \$28 €1
	1500	\$26.59	\$24.80	\$25.90	331.40	\$28.27 \$22.05	323.47 \$20.41	92/.20 \$21 70	327.0J 825 77	\$22 40
	1800	\$31.45	\$28.96	\$30.16	\$37.15	\$32.83 \$47.00	329.01 642.07	\$31.17 CAC 70	\$33.27 \$50.07	\$33.09 \$47 70
	2700	\$44.87	\$41.86	\$43.44	354.26	\$47.22 \$50.00	343.U/	943./U 860 51	φ_U.U/ Φεε 12	341.17 667 00
1	3000	\$48.87	\$45.56	\$47.96	\$59.89	\$52.29	348.01	\$20.21	\$22.52 \$25.70	977.9A 653 20
L	3600	\$58.48	\$54.16	\$56.64	\$70.50	301.84	300.00	337.30	\$03.7U	JU2./U
732C	12	\$10.70	\$9.92	\$7.89	\$12.66	38.50	30.31	\$0.05 \$7.07	۵/.48 ۲۰ ۲۶	\$2.82 \$2.22
1	24	\$13.06	\$12.22	\$9.43	\$15.63	\$10.56	۵/.78 ۵۰ – ۲	\$/.97 \$0.00	\$8.33 011 01	40.05 00.05
1	48	\$17.13	\$16.17	\$12.11	\$21.17	\$13.75	\$9.76	39.98 610 0-	\$11.04	38.28 00.00
1	72	\$21.50	\$20.06	\$15.17	\$26.75	\$16.98	\$12.30	\$12.33	\$13.53	\$9.92
1	96	\$25.45	\$23.89	\$17.91	\$32.34	\$20.53	\$14.03	\$14.37	\$16.05	\$11.59
1	144	\$34.10	\$31.93	\$23.67	\$43.16	\$27.19	\$18.65	\$19.10	\$20.72	\$14.58
	216	\$46.42	\$43.53	\$32.11	\$59.83	\$37.39	\$24.87	\$25.45	\$28.17	\$19.48
82C	12	\$1.19	\$1.68	\$1.06	\$1.15	\$1.02	\$1.11	\$1.18	\$1.14	\$1.23
1	24	\$1.43	\$1.90	\$1.21	\$1.40	\$1.24	\$1.19	\$1.30	\$1.33	\$1.43
1	48	\$1.98	\$2.62	\$1.56	\$1.84	\$1.52	\$1.58	\$1.70	\$1.72	\$1.84
1	72	\$2.41	\$3.28	\$1.96	\$2.31	\$1.83	\$2.20	\$2.11	\$2.03	\$2.18
1	96	\$2.48	\$3.52	\$2.37	\$2.79	\$2.15	\$2.34	\$2.54	\$2.45	\$2.62
1	144	\$3.73	\$5.00	\$3.07	\$3.72	\$2.92	\$3.06	\$3.31	\$3.26	\$3.48
1	216	\$4.77	\$6.45	\$4.12	\$5.14	\$3.99	\$4.11	\$4.43	\$4.39	\$4.69
832C	12	\$8.81	\$8.30	\$5.51	\$6.35	\$6.01	\$6.21	\$6.38	\$7 .79	\$7.01
	24	\$11.62	\$10.98	\$7.28	\$9.04	\$8.03	\$8.14	\$8.40	. \$10.24	\$9.20
1	1 - ·									

. .

.`

	48	\$17.81	\$16.42	\$10.75	\$13.97	\$11.76	\$12.08	\$12.47	\$15.62	\$14.02
	72	\$23.95	\$22.30	\$14.59	\$18.94	\$15.91	\$16.64	\$16.92	\$21.00	\$18.83
	96	\$29.66	\$27.25	\$18.11	\$24.32	\$19.69	\$20.33	\$21.02	\$26.41	\$23.67
	144	\$41.69	\$38.77	\$25.45	\$34.24	\$27.81	\$28.61	\$29.57	\$36.76	\$32.93
	216	\$59.16	\$54.97	\$36.24	\$49.47	\$39.70	\$40.78	\$42.13	\$52.42	\$46.94
845C	12	\$1.36	\$1.92	\$3.95	\$4.76	\$2.32	\$4.35	\$3.05	\$3.31	\$3.15
	24	\$1.67	\$2.19	\$4.15	\$5.09	\$2.58	\$4.48	\$3.22	\$3.64	\$3.46
	48	\$2.38	\$3.13	\$4.72	\$5.74	\$3.00	\$5.04	\$3.82	\$4.31	\$4.09
	72	\$2.92	\$4.00	\$5.32	\$6.40	\$3.46	\$5.83	\$4.42	\$4.85	\$4.60
	96	\$3.14	\$4.45	\$5.94	\$7.09	\$3.92	\$6.14	\$5.04	\$5.55	\$5.26
	144	\$4.68	\$6.31	\$7.01	\$8.44	\$4.95	\$7.17	\$6.16	\$6.93	\$6.56
	216	\$6.17	\$8.34	\$8.64	\$10.50	\$6.43	\$8.69	\$7.81	\$8.93	\$8.42
85C	12	\$1.19	\$1.14	\$1.03	\$1.15	\$1.15	\$1.02	\$1.09	\$1.19	\$1.13
	24	\$1.59	\$1.40	\$1.25	\$1.57	\$1.48	\$1.18	\$1.29	\$1.57	\$1.49
	48	\$2.46	\$2.24	\$1.91	\$2.34	\$2.14	\$1.84	\$1.99	\$2.33	\$2.21
	72	\$3.14	\$3.03	\$2.61	\$3.14	\$2.86	\$2.74	\$2.70	\$2.95	\$2.80
	96	\$3.53	\$3.39	\$3.31	\$3.96	\$3.57	\$3.15	\$3.43	\$3.75	\$3.55
	144	\$5.41	\$5.09	\$4.55	\$5.55	\$5.04	\$4.36	\$4.74	\$5.32	\$5.04
	216	\$7.41	\$6.88	\$6.43	\$8.03	\$7.21	\$6.17	\$6.68	\$7.60	\$7.19
		A								

4. The same smoothing regression analysis used on the cable material price tables was also used to eliminate outliers in the labor cost table. Additionally, missing labor cost values for the 4200 pair copper cables were created.

These are the labor cost tables after substituting the outliers with the predicted values from the regression analysis:

<u> </u>		Area			· · ·					
FRC	SIZE	1	2	3	4	5	6	7	8	9
2	25	\$0.62	\$0.58	\$0.61	\$0.62	\$0.69	\$0.66	\$0.69	\$0.72	\$0.71
ļ	50	\$0.67	\$0.62	\$0.65	\$0.67	\$0.74	\$0.70	\$0.74	\$0.77	\$0.75
	100	\$0.76	\$0.71	\$0.74	\$0.77	\$0.82	\$0.79	\$0.83	\$0.86	\$0.84
	200	\$0.93	\$0.88	\$0.91	\$0.96	\$1.00	\$0.96	\$1.00	\$1.03	\$1.02
	300	\$1.10	\$1.04	\$1.07	\$1.15	\$1.17	\$1.13	\$1.17	\$1.21	\$1.19
	400	\$1.27	\$1.21	\$1.24	\$1.33	\$1.35	\$1.29	\$1.34	\$1.38	\$1.36
	600	\$1.60	\$1.53	\$1.56	\$1.70	\$1.68	\$1.62	\$1.67	\$1.72	\$1.70
	900	\$2.07	\$1.99	\$2.03	\$2.23	\$2.17	\$2.09	\$2.15	\$2.21	\$2.18
	1200	\$2.53	\$2.44	\$2.48	\$2.75	\$2.64	\$2.54	\$2.61	\$2.68	\$2.65
i	1500	\$2.97	\$2.86	\$2.91	\$3.24	\$3.09	\$2.97	\$3.06	\$3.13	\$3.10
	1800	\$3.39	\$3.27	\$3.32	\$3.71	\$3.52	\$3.38	\$3.48	\$3.56	\$3.52
	2700	\$4.53	\$4.37	\$4.44	\$5.02	\$4.70	\$4.50	\$4.63	\$4.74	\$4.69
	3000	\$4.88	\$4.70	\$4.78	\$5.42	\$5.05	\$4.83	\$4.98	\$5.10	\$5.04
	3600	\$5.50	\$5.29	\$5.39	\$6.15	\$5.70	\$5.44	\$5.61	\$5.75	\$5.68
	4200	\$6.05	\$5.81	\$5.92	\$6.81	\$6.27	\$5.97	\$6.16	\$6.32	\$6.25
32	25	\$3.11	\$2.90	\$3.12	\$3.17	\$3.21	\$3.01	\$3.31 -	\$3.63	\$3.43
_	50	\$3.21	\$3.00	\$3.23	\$3.30	\$3.32	\$3.11	\$3.41	\$3.75	\$3.54
l	100	\$3.42	\$3.20	\$3.43	\$3.55	\$3.53	\$3.31	\$3.63	\$3.98	\$3.76
	200	\$3.84	\$3.59	\$3.85	\$4.05	\$3.95	\$3.70	\$4.06	\$4.45	\$4.21
	300	\$4.26	\$3.99	\$4.26	\$4.54	\$4.37	\$4.10	\$4.49	\$4.91	\$4.65
	400	\$4.67	\$4.38	\$4.67	\$5.03	\$4.79	\$4.49	\$4.91	\$5.38	\$5.09

2.

	600	\$5.49	\$5.15	\$5.49	\$6.01	\$5.62	\$5.27	\$5.76	\$6.30	\$5.96
	900	\$6.71	\$6.30	\$6.69	\$7.47	\$6.85	\$6.42	\$7.01	\$7.66	\$7.26
	1200	\$7.91	\$7.42	\$7.88	\$8.90	\$8.05	\$7.55	\$8.24	\$9.00	\$8.53
	1500	\$9.09	\$8.53	\$9.05	\$10.32	\$9.24	\$8.66	\$9.45	\$10.33	\$9.79
	1800	\$10.25	\$9.62	\$10.19	\$11.71	\$10.41	\$9.76	\$10.64	\$11.63	\$11.03
	2700	\$13.61	\$12.77	\$13.52	\$15.78	\$13.80	\$12.92	\$14.10	\$15.43	\$14.62
	3000	\$14.69	\$13.77	\$14.59	\$17.10	\$14.89	\$13.94	\$15.21	\$16.66	\$15.78
	3600	\$16.80	\$15.74	\$16.67	\$19.67	\$17.02	\$15.91	\$17.38	\$19.05	\$18.04
	4200	\$18.82	\$17.62	\$18.67	\$22.17	\$19.06	\$17.80	\$19.47	\$21.37	\$20.22
45	200	\$10.02	\$0.97	\$1.05	\$1.10	\$1.13	\$1.08	\$1.20	\$1.20	\$1.10
45	20 50	\$1.00 \$1.11	\$1.07	\$1.15	\$1.23	\$1.25	\$1.18	\$1.31	\$1.31	\$1.21
	100	\$1.11 \$1.21	\$1.07	\$1.15	\$1.20	\$1.47	\$1.39	\$1.54	\$1.54	\$1.42
	200	\$1.51	\$1.27	\$1.78	\$2.03	\$1.91	\$1.81	\$2.00	\$2.01	\$1.85
	300	\$2.13	\$2.05	\$2.20	\$2.56	\$2.35	\$2.23	\$2.46	\$2.46	\$2.28
	400	\$2.53	\$2.45	\$2.61	\$3.09	\$2.79	\$2.64	\$2.91	\$2.92	\$2.70
	600	\$3.33	\$3.22	\$3.44	\$4.14	\$3.65	\$3.47	\$3.82	\$3.83	\$3.54
Ì	900	\$4.52	\$4.37	\$4.65	\$5.71	\$4.94	\$4.68	\$5.16	\$5.18	\$4.79
	1200	\$5.68	\$5.49	\$5.85	\$7.25	\$6.21	\$5.88	\$6.48	\$6.50	\$6.02
	1500	\$6.83	\$6.60	\$7.03	\$8.77	\$7.46	\$7.06	\$7.78	\$7.81	\$7.23
	1800	\$7.95	\$7.69	\$8.19	\$10.27	\$8.68	\$8.22	´ \$9.06	\$9.10	\$8.42
	2700	\$11.22	\$10.84	\$11.55	\$14.66	\$12.25	\$11.59	\$12.78	\$12.85	\$11.87
i	3000	\$12.27	\$11.85	\$12.63	\$16.09	\$13.40	\$12.67	\$13.99	\$14.06	\$12.98
1	3600	\$14.30	\$13.81	\$14.73	\$18.88	\$15.64	\$14.78	\$16.34	\$16.42	\$15.14
	4200	\$16.27	\$15.69	\$16.76	\$21.59	\$17.81	\$16.81	\$18.61	\$18.70	\$17.23
5	25	\$0.66	\$0.58	\$0.61	\$0.67	\$0.75	\$0.60	\$0.66	\$0.77	\$0.74
	50	\$0.78	\$0.69	\$0.73	\$0.81	\$0.88	\$0.71	\$0.78	\$0.90	\$0.86
Ì	100	\$1.01	\$0.91	\$0.96	\$1.09	\$1.15	\$0.93	\$1.02	\$1.16	\$1.11
	200	\$1.48	\$1.34	\$1.41	\$1.65	\$1.68	\$1.37	\$1.49	\$1.68	\$1.60
ł	300	\$1.94	\$1.78	\$1.86	\$2.20	\$2.20	\$1.81	\$1.96	\$2.19	\$2.09
	400	\$2.40	\$2.21	\$2.32	\$2.75	\$2.73	\$2.24	\$2.43	\$2.70	\$2.58
	600	\$3.32	\$3.07	\$3.21	\$3.85	\$3.77	\$3.10	\$3.36	\$3.72	\$3.33 \$4.00
	900	\$4.68	\$4.34	\$4.54	\$5.47	\$5.32	\$4.38	\$4.75	\$3.22 \$6.71	34.99 ¢6 40
ļ	1200	\$6.01	\$5.60	\$5.84	\$7.08	\$6.85 #0.27	\$2.03 \$6.97	\$0.11 \$7.46	30./I CO 10	30.40 \$7.80
1	1500	\$7.33	\$6.83	\$7.13	\$8.07	30.37 0.07	40.07	07.40 0070	\$0.10 \$0.67	\$7.00 \$0.18
	1800	\$8.63	\$8.05	\$8.40	\$10.24	\$9.80	30.00	00.70	\$7.05 \$12.96	\$7.10 \$17.01
	2700	\$12.41	\$11.57	\$12.08	\$14.83	\$14.22 \$15.63	\$11.02 \$12.75	\$12.04	\$15.80	\$13.21
	3000	\$13.03	\$12.71	\$15.27	\$10.52	010.0J	\$12.75 \$14.07	\$16.30	\$17.01	\$17.06
	3600	\$16.02	\$14.93	\$15.00	\$19.24	\$18.40 #21.10	014.7/ 017.11	\$10.J2	\$17.51	\$10.57
	4200	\$18.32	\$17.06	\$17.84	\$22.08	\$21.10	\$17.11	\$10.00	\$20.52	\$19.52
632	25	\$3.65	\$3.41	\$3.50	\$3.80	\$3.89	33.31	33.75	J4.07	\$J.72 \$4.74
	50	\$4.04	\$3.77	\$3.94	\$4.28	\$4.30	\$3.89	\$4.15	\$4.53 \$5.40	34.34 es 10
	100	\$4.83	\$4.50	\$4.70	\$5.23	\$5.13	\$4.63	ን 4.ሃጋ ኖረ ናና	\$3.42 \$7.10	\$2.17 \$66 07
	200	\$6.40	\$5.96	\$6.22	\$7.12	\$6.79	30.13 \$7.60	\$0.33 . \$0.33 .	\$7.19 \$503	ውር የ
	300	\$7.97	\$7.41	\$7.74	\$9.02 \$10.01	ወ \$10 10	\$7.02 \$0.11	50.14 \$0 71	_{ም0.22} \$10 የዕ	\$10.22 \$10.22
1	400	39.33	30.00 \$11.76	37.20 \$10.00	011/51 01/60	\$12.10	\$12 07	\$17 97	\$14.20	\$13.57
	000	\$12.00	311.70 \$16.00	\$16.81	\$20.35	\$1833	\$16.51	\$17.68	\$19.44	\$18.58
1	1200	\$21.09	\$20.09	\$21.21	\$25.95	\$23.24	\$20.93	\$22.41	\$24.66	\$23.56
1	1 1200	J 921.70	φ20. 4 0	461.21	Ψ20.70	Ψ±J.2-1	4-0.75			

.*•

۰.
										AAC
	1500	\$26.61	\$24.69	\$25.79	\$31.59	\$28.13	\$25.33	\$27.13	\$29.87	\$28.53
	1800	\$31.23	\$28.96	\$30.26	\$37.19	\$33.00	\$29.71	\$31.83	\$35.05	\$33.48
	2700	\$44.95	\$41.66	\$43.54	\$53.86	\$47.50	\$42.73	\$45.80	\$50.49	\$48.20
	3000	\$49.49	\$45.85	\$47.92	\$59.37	\$52.30	\$47.03	\$50.42	\$55.60	\$53.07
	3600	\$58.50	\$54.18	\$56.64	\$70.35	\$61.83	\$55.58	\$59.60	\$65.75	\$62.75
	4200	\$67.44	\$62.43	\$65.28	\$81.25	\$71.28	\$64.04	\$68.70	\$75.83	\$72.35
732C	12	\$10.70	\$9.92	\$7.89	\$12.66	\$8.50	\$6.51	\$6.63	\$7.48	\$5.82
	24	\$13.06	\$12.22	\$9.43	\$15.63	\$10.56	\$7.78	\$7.97	\$8.55	\$6.63
	48	\$17.13	\$16.17	\$12.11	\$21.17	\$13.75	\$9.76	\$9.98	\$11.04	\$8.28
	72	\$21.50	\$20.06	\$15.17	\$26.75	\$16.98	\$12.30	\$12.33	\$13.53	\$9.92
	96	\$25.45	\$23.89	\$17.91	\$32.34	\$20.53	\$14.03	\$14.37	\$16.05	\$11.59
	144	\$34.10	\$31.93	\$23.67	\$43.16	\$27.19	\$18.65	\$19.10	\$20.72	\$14.58
	216	\$46.42	\$43.53	\$32.11	\$59.83	\$37.39	\$24.87	\$25.45	\$28.17	\$19.48
82C	12	\$1.19	\$1.68	\$1.06	\$1.15	\$1.02	\$1.11	\$1.18	\$1.14	\$1.23
	24	\$1.43	\$1.90	\$1.21	\$1.40	\$1.24	\$1.19	\$1.30	\$1.33	\$1.43
	48	\$1.98	\$2.62	\$1.56	\$1.84	\$1.52	\$1.58	\$1.70	\$1.72	\$1.84
	72	\$2.41	\$3.28	\$1.96	\$2.31	\$1.83	\$2.20	\$2.11	\$2.03	\$2.18
	96	\$2.48	\$3.52	\$2.37	\$2.79	\$2.15	\$2.34	\$2.54	\$2.45	\$2.62
	144	\$3.73	\$5.00	\$3.07	\$3.72	\$2.92	\$3.06	\$3.31	\$3.26	\$3.48
	216	\$4.77	\$6.45	\$4.12	\$5.14	\$3.99	\$4.11	\$4.43	\$4.39	\$4.69
832C	12	\$8.81	\$8.30	\$5.51	\$6.35	\$6.01	\$6.21	\$6.38	\$7.79	\$7.01
	24	\$11.62	\$10.98	\$7.28	\$9.04	\$8.03	\$8.14	\$8.40	\$10.24	\$9.20
İ	48	\$17.81	\$16.42	\$10.75	\$13.97	\$11.76	\$12.08	\$12.47	\$15.62	\$14.02
	72	\$23.95	\$22.30	\$14.59	\$18.94	\$15.91	\$16.64	\$16.92	\$21.00	\$18.83
	96	\$29.66	\$27.25	\$18.11	\$24.32	\$19.69	\$20.33	\$21.02	\$26.41	\$23.67
	144	\$41.69	\$38.77	\$25.45	\$34.24	\$27.81	\$28.61	\$29.57	\$36.76	\$32.93
	216	\$59.16	\$54.97	\$36.24	\$49.47	\$39.70	\$40.78	\$42.13	\$52.42	\$40.94
845C	12	\$1.36	\$1.92	\$3.95	\$4.76	\$2.32	\$4.35	\$3.00	\$3.31 \$2.64	\$3.15
	24	\$1.67	\$2.19	\$4.15	\$2.09 66.74	\$2.58	ቅ4.48 ኖና በለ	\$3.22 \$3.87	\$3.04 \$4.31	\$3.40
	48	\$2.38	\$3.13	34.72 85.22	\$3.74 \$6.40	\$3.00	\$5.07	\$3.02	\$4.85	\$4.60
		\$2.92	\$4.00 \$4.45	\$J.52 \$5.04	\$0.40 \$7.00	\$3.40	\$5.05	\$5.04	\$5.55	\$5.26
	90	\$3.14	94.45 66.21	\$J.74 \$7.01	\$7.03	\$1.92	\$7.17	\$6.16	\$6.93	\$6.56
	144	\$4.08	30.31 \$8.34	\$7.01 \$8.64	\$10.44	\$6.43	\$8.69	\$7.81	\$8.93	\$8.42
050	12	\$0.17	\$0.54 \$1.14	\$1.04 \$1.02	\$1.15	\$1.15	\$1.02	\$1.09	\$1.19	\$1.13
850	12	\$1.19	\$1.14 \$1.40	\$1.05 \$1.75	\$1.15	\$1.15	\$1.12	\$1.09	\$1.57	\$1.49
	24	\$1.39	\$1.40 \$2.24	\$1.2J \$1.01	\$7.34	\$2.40	\$1.10	\$1.99	\$2.33	\$2.21
1	48	\$2.40	92.24 \$3.02	91.71 \$2.61	\$3.14	\$2.14	\$2.74	\$2.70	\$2.95	\$2.80
	06	\$2.52	\$3.03	\$2.01	\$3.96	\$3.57	\$3.15	\$3.43	\$3.75	\$3.55
	1 144	\$5.33	\$5.09	\$4.55	\$5.55	\$5.04	\$4.36	\$4.74	\$5.32	\$5.04
	216	\$7.41	\$6.88	\$6.43	\$8.03	\$7.21	\$6.17	\$6.68	\$7.60	\$7.19
	1 210	1	40.00							

r.**?**

The "smoothed" material and labor costs were then used to populate the lookup table shown in the "Cable cost" tab.

·

, .

371

Case: 98-C-1357 Bell Atlantic Date of Request: April 20, 2000 Respondent: BA Panel

CA-BA-80	Refer to Docket No. 98-C-1357, Exhibit to Bell Atlantic-New York's Initial Testimony, February 7, 2000, Please provide the "Analysis of FCRIS
	Data" (Section 10 of Exhibit Part A-1).

RESPONSE:

Ľ,

4

The attached file, "CA-BA-80.PDF", contains the NERA report titled "Environmental Costs of Bell-Atlantic New York's Loop Plant". This report includes a technical appendix and methodology describing the development of the Environmental Factors.

The attached file "CA-BA-80.zip", containing the datasets and STATA program files underlying the development of the ECRIS environmental factors and statistical test shown in Exhibit Part A-1 Section 10.

1. New_wcs.dta – STATA dataset with wire center numbers and associated density zone assignments.

2. Zero.dta – STATA dataset with Wkops whose total actual hours = 0 for the entire job, and therefore no work was done.

3. Multareaden.dta – STATA dataset with Wkops in a job that spans more than one area or density zone.

4. 7-2-99c.do – STATA "do" file that manipulates All_wkops.dta in order to create multiplicative factors.

5. 7-22-99.do – STATA "do" file that manipulates All_wkops.dta to create zero.dta.

6. Part I 7-22-99.do – STATA "do" file that manipulates All_wkops.dta to create multareaden.dta.

The database of ECRIS work operations is contained in the attached file CA-BA-80_db.ZIP.

Public	Service	Commisson
Case N	0. 98-	C-(357
Date	1-7-0	0
Fx. No	371	

ENVIRONMENTAL COSTS OF

BELL ATLANTIC-NEW YORK'S

LOOP PLANT

July, 1999

NATIONAL ECONOMIC RESEARCH ASSOCIATES

ONE MAIN STREET, CAMBRIDGE, MASSACHUSETTS 02142 TELEPHONE: 617.621.0444 FACSIMILE: 617.621.0336

> **N/C/I/A** Consulting Economists

I. BACKGROUND AND SUMMARY

This study investigates the time and cost incurred to construct and rearrange the Company's outside plant (OSP). This construction and rearrangement includes, for instance, placing underground cable, placing aerial cable on utility poles, and/or connecting cable at junctions in the network. In general, OSP-related work is the activity required to make loops available as unbundled network elements as required by the Telecommunications Act of 1996. The objective of the study is to determine if the cost to provision and maintain OSP differs across the Company's service territory.¹

Broadly speaking, the overall cost of provisioning and maintaining loop plant falls into two categories: standard engineering and construction ("standard") costs and costs related to environmental or locale-specific conditions ("environmental"). Standard costs are those costs related to the physical structure of loop plant and are specifically measured in the Company's loop TELRIC analysis. Standard costs of the Company's loop plant are well defined, and the cost drivers that affect these costs are understood and measurable.

Environmental costs are less well-defined. Unlike standard costs, they occur for reasons that are not directly associated with the normal physical structure of loop plant. Environmental costs occur because of work site or other environmental conditions—e.g., the cost to add additional field crew because of terrain, automobile traffic or other environmental conditions that vary across the Company's service territory.² Environmental cost drivers are difficult to systematically identify by name. Unlike standard cost drivers (e.g., loop length, the

For purposes of this study, the Company's service territory is divided into nine strategic business unit areas: Bronx, Queens, Brooklyn/Staten Island, Manhattan/No. Manhattan, Nassau/Suffolk, Northeast, Western, Central and Midstate. In addition, the company identified three density zones to which all wire centers are assigned. They are DZ1 comprised of all Manhattan/No. Manhattan wire centers; DZ2 comprised of all wire centers where the number of links per square mile exceeds 1,500; and, DZ3 comprised of all wire centers where the number of links per square mile is less than or equal to 1,500.

² Examples include: the cost of additional technicians, for instance, to hand carry tools, equipment and/or material to a work location because of right of way restrictions; the cost incurred because traffic conditions and/or safety considerations dictate the need for additional personnel; the cost to have a technician at a work location around the clock even while no construction work is being done, *e.g.*, maintaining pump and blower operations or blocking and maintaining access to work areas in congested areas; or the cost of additional technicians required to hand pass cable during placing operations through ceilings, under sub-floors or over fencing or other obstacles during cable placement operations.

proportion of aerial compared with underground plant and other factors relating to the structural nature of a loop), environmental costs are likely to depend upon a wide variety of circumstances.

While difficult to identify by name, the effect of environmental cost drivers on total overall loop cost can nonetheless be identified by systematically comparing the estimated and actual cost of OSP activity across different regions of the Company's service territory. In such a comparison, the standard cost components of OSP activity fall away providing an opportunity to investigate environmental cost differences.

Our analysis uses such an approach to investigate environmental costs. The analysis reported upon in this study identifies the effects of environmental costs on the overall cost of providing and maintaining the Company's loop plant. In addition, we test the hypothesis that the level of environmental costs differs across the Company's service territory. As reported in more detail below, we find that there are significant differences in the levels of environmental costs across the different geographic regions and density zones of the Company's service territory. We derive a set of multiplicative factors which can be used to adjust the labor component of the Company's link cost calculator to account for the differences in the level of environmental hours across the Company's service territory.

II. METHODOLOGY

Our study method is straightforward. We derive a measure of the relative effect of environmental costs from a comparison of the estimated expected hours to complete OSP work with the actual (booked on time-sheet) hours to complete the work. Our analysis looks at such comparisons across different regions of the Company's service territory. Specifically, in our study we (i) obtain systematic estimates of the expected time required to complete OSP jobs, (ii) stratify the data by area and density zone and (iii) compare the Estimated Expected Time with the actual time required to complete the work. As we explain in more detail below, the greater the difference between estimated expected and actual time, the greater the level of environmental costs.

- 2 -

Following is an overview of the construct of OSP jobs, a description of the data available for analysis and our results. A detailed discussion of the methodology is presented in the Technical Appendix at the end of this document.³

A. An Overview of the ECRIS Data and OSP Jobs

Our primary source of data is the Engineering Construction Record Information System (ECRIS). ECRIS is a Bell Atlantic work administration and planning tool which (i) is used to develop systematic time and cost estimates to perform OSP work and (ii) houses a database of information for every OSP job the Company performs. Each OSP job requires that an engineer review the job schematics and enter pertinent data into ECRIS.⁴ In addition to labor time and cost estimates, ECRIS retains detailed information about the material required to complete each OSP job, a detailed description of the job's structural characteristics, and also a record of the time it takes to actually complete each job. These data are generally used by the Company to manage its large projects, evaluate productivity and manage its work load as well as provide supporting data for the design of future jobs.⁵

1. The Elements of OSP Jobs

Every OSP job the Company performs can be viewed as a collection of activities and sub-activities. Specifically, each job is a collection of activities (each referred to by an FRC or Field Reporting Code) and, in turn, each FRC is a collection of sub-activities (each referred to as a WKOP or work operation).

To illustrate, consider an OSP job to provision a cable between Schenectady and Albany. The job might consist of placing aerial cable on a pole line for part of the distance, placing a buried cable and then pulling underground cable through ducts and manholes for the remainder of the distance. Since these three activities (placing aerial cable, placing buried cable

- 3 -

³ The Technical Appendix and Methodology shows the derivation of the multiplicative environmental adjustment factors.

⁴ The process of entering data into ECRIS is described in detail in <u>ECRIS Definition Document</u>, Draft Issued: September 1, 1993; and <u>ECRIS Helpful Hints</u>, Second Release, August 15, 1997.

⁵ As the Company's central repository of material cost and labor time and cost data related to OSP activity, data from ECRIS are used as input to the Company's evaluation of standard costs to provision loops—*i.e.*, the Company's TELRIC analysis.

and placing underground cable) are physically different (and have different structural cost components) ECRIS requires that they be differentiated from one another in order to estimate the time and cost for the entire job (provisioning a cable between Schenectady and Albany). Each activity is associated with a different FRC. Engineers are then required to identify each WKOP and associate it with the appropriate FRC as the job is entered in the ECRIS system. There are ninety different FRCs included in the data we studied.⁶

a) Work Operations

Each FRC is made up of one or more work operations. Continuing with the previous example, the FRC for installing a buried cable may consist of placing the new buried cable in the trench (WKOP #1), splicing the cable (WKOP #2) and testing the cable (WKOP #3).

The ECRIS database contains all of the WKOPs associated with the Company's OSP activity. The following illustration shows the relationship between WKOPs, FRCs and an OSP job.

b) Time and Cost Estimates

Time and cost estimates are made at the WKOP level in ECRIS. Algorithms in ECRIS estimate (in hours) how long each WKOP will take and this estimate—based on the engineer's input—is by design consistent throughout BA-NY's operating service territory. That is to say, ECRIS's time estimate of a given WKOP in Buffalo will be identical to the time estimate to

- 4 -

⁶ The FRCs in our data do not represent the complete set of FRCs. Some FRCs are absent due to the absence of that type of OSP field work. Also, one category of OSP field work has purposefully been omitted. Conduit work is not included in the data we analyzed. While the cost of conduit work is generally high and likely to vary substantially across the Company's service territory, ECRIS does not contain the requisite data to include conduit work in our analysis.

Environmental Costs of Bell Atlantic-New York's Loop Plant-

perform the same WKOP in Ithaca so long as the work operations themselves (including factors like quantities of materials and description of materials) are in fact identical.⁷ Time estimates are in turn the basis for the cost estimate.⁸

B. The ECRIS Database

Bell Atlantic – New York extracted data from ECRIS and provided NERA with a database spanning the period between January 1, 1997 to October 20, 1998. In addition to information about the material required to complete each OSP job and a detailed description of the job's structural characteristics the record of each WKOP included the following information:

- Job Number indicating the overall job the WKOP is associated with
- Field Reporting Code (FRC) indicating the particular FRC the WKOP is associated with
- Wire Center the wire center in which the WKOP was performed
- Estimated Expected Time the amount of time ECRIS calculated a WKOP should take (including the engineers' modifications as described below)
- Adder Hours⁹ the number of adder hours entered by the engineer
- Variable-Standard Time Increment (STI) Hours the number of Variable-STI hours entered by the engineer
- Actual Hours the actual hours reported on time sheets to complete the WKOP

1. The development of base hours.

As recorded in ECRIS, the Estimated Expected Time can include up to two adjustments: an Adder Hours adjustment and a Variable STI Hours adjustment. If, beyond the basic and structural engineering aspects of the job, the engineer is sufficiently familiar with the

- 5 -

⁷ Small differences sometimes occur because of differences in the time required to travel from the Company's garages to a work site. The location of garages in each area are taken into account when ECRIS estimates the time required to complete an activity.

⁸ Insofar as time estimates are the seed of cost estimates in ECRIS we confine our analysis to a comparison of the estimate and actual time to complete a WKOP.

⁹ If used, Adder and Variable-STI Hours contain adjustments to Estimated Expected Time and can be used to reflect an engineer's specific knowledge of the work site's environmental conditions. The use of such adjustments is left to the discretion of the engineer.

job site and other environmental conditions specific to the job, either or both adjustments could be used to account for the time required to accommodate *environmental* cost elements of the job. In reality, different engineers have different levels of knowledge about such issues and thus not every Estimated Expected Time is so adjusted.

Since our objective is to determine if the effect of environmental cost elements are different across the Company's service territory we adjust the amount of time ECRIS calculates a work operation should take (the Estimated Expected Time) to remove any adjustments (*i.e.*. Adder or Variable STI Hours) made during the estimating process. Only then are we assured that the estimate of time required to complete a work operation is systematically and uniformly measured¹⁰ across every WKOP in every area of the Company's service territory. We calculate Estimated Base Hours for each WKOP as the amount of time ECRIS calculated a work operation should take (Estimated Expected Time) less the number of Adder Hours, and Variable-STI Hours.

C. The Methodology¹¹

Our measure of environmental cost hours is based on the calculated difference between recorded Actual Hours and Estimated Base Hours. Recall that by construction, Estimated Base Hours for a WKOP in Area *A* is identical to the measure of base hours for the same WKOP in Area *B*. Also, recall that all OSP activity is made up of both standard cost elements and environmental cost elements. Since the record of Actual Hours captures <u>all</u> time spent in the field to complete a WKOP it includes time to accomplish both standard cost related hours and environmental cost related hours. Since by construction the measure of Estimated Base Hours only includes the time required to accomplish standard cost related activity, the difference between Actual and Estimated Base Hours is a measure of the time required to accomplish the environmental cost element of the WKOP. This is the basis of our analysis and the means by which we explore the relationship between environmental cost element areas of the Company's service territory.

- 6 -

¹⁰ Except for small differences in travel time discussed earlier.

[&]quot; A more detailed explanation of the methodology is presented in the Technical Appendix & Methodology.

Broadly speaking, the study uses ECRIS data to measure the way in which environmental cost hours varies across the Company's service territory. Following is a description of the data used in our analysis and then our findings.

III. THE DATA

The distribution of WKOP and FRC data across the Company's service territory stratified by area is shown in Table 1. Table 2 shows the distribution of WKOP level data stratified by density zone and area—*i.e.*, the twenty-seven cells that constitute the intersection of the Company's nine strategic business unit areas and three density zones.¹²

For review purposes we grouped like-FRC codes together and obtained nine 'activity' categories shown in Table 3. Counting the number of FRC activities performed within each activity category reveals that aerial cable, pole lines, and underground cable are the most common OSP activities. Table 3a shows the distribution of FRC activities performed by activity, and Table 3b shows the distribution by area-density cell.¹³ As can be seen in Table 3, OSP activity in each category occur, for the most part, throughout the Company's service territory. Notable and understandable exceptions include: the absence of pole lines or tree trimming in Manhattan/North Manhattan and only a small amount of intrabuilding network cable outside of the metro area.¹⁴

Table 4 shows average Actual Hours and Estimated Base Hours in the fourteen areadensity cells at the WKOP, FRC and overall job level.

IV. FINDINGS

Table 5 shows average environmental cost hours for WKOP, FRC and overall Job level OSP activity by the fourteen area-density cells. Inspection of Table 5 shows that there are clear

¹² Note that only fourteen cells are populated. This is because not all of the Company's nine strategic business unit areas contain wire centers in each of the three density zones. The Manhattan/North Manhattan area, for instance, only contains wire centers in density zone 1. Similarly, the Midstate area contains only wire centers in density zones two and three.

¹³ The cells are labeled as Area (Density Zone) so, for instance, Midstate (3) is the label for the Midstate area and density zone 3.

¹⁴ The metro area is made up of Bronx, Queens, Brooklyn/Staten Island and Manhattan/North Manhattan.

differences in the level of environmental cost hours across different areas of the Company's service territory. The differences are evident by comparing the relative number of hours required to accommodate environmental cost related OSP activity at any level—*i.e.*, WKOP, FRC and overall Job—of data.

At the WKOP level, environmental cost elements in *Manhattan/North Manhattan (1)* require an average of 5.35 hours to perform while in *Northeast (3)* they only require .77 hours and in *Western (3)* and *Central (3)* there appear to be none at all.¹⁵ The same relative ordering of hours is apparent when FRC or Job level data are analyzed.¹⁶ More significantly, at the FRC and Job level, *Manhattan/North Manhattan (1)* is shown to have the highest level of environmental hours (143.99 and 673.39 respectively) of any area-density cell in the Company's service territory. We find this a most significant result because Job level data in particular is the highest aggregation of OSP activity. A conclusion we can draw from our analysis is that environmental hours associated with OSP jobs in the *Manhattan/North Manhattan (1)* area-density cell exceed environmental hours associated with OSP jobs in any other area of the Company's service territory.

Table 6 shows the multiplicative factors derived using WKOP level data in Tables 4 and 5. The multiplicative factors for each area-density cell (c) are defined as:

$$Factor' = 1 + \frac{NEH'}{EH'}$$

where NEH represents environmental hours and EH represents standard hours. As is more fully explained in the Technical Appendix, these factors are derived as multiplicative adjustments to the labor hours in the Company's link cost calculator. Labor hours in the

¹⁵ This result is obtained when the measure of Actual Hours is less than Estimated Base Hours. This can happen, for instance, when the time required to complete a particular WKOP is less than the ECRIS standard time (*i.e.*, Estimated Base Hours) for that WKOP activity. Using the notation in equation (2) of the Technical Appendix

we conclude that in Western (3) and Central (3) that $EH_{i,i,k} - \widetilde{E}\widetilde{H}_k < 0$.

¹⁶ These results are obtained by simply taking the difference between Actual Hours (a measure of both standard and environmental hours) and Estimated Base Hours (a measure of only standard hours). We also performed Ordinary Least Squares (OLS) regression analysis to test the hypotheses that the relative amount of time required to accommodate environmental OSP activity in the metro areas is greater than in the non-metro areas. The OLS model results confirm the hypothesis that a significantly greater number of hours are required to accommodate environmental OSP activity in the metro area compared with the non-metro area.

Company's link cost calculator are by definition only standard cost hours. Using the multiplicative factors derived here, the measure of standard hours required to accommodate a particular engineering construct can be adjusted to also include the measure of environmental hours required to provision and maintain the Company's OSP.

V. CONCLUSIONS

The environmental hours, and thus the cost, to construct and rearrange the Company's outside plant does vary significantly by area. The level of environmental cost is greatest in the *Manhattan/North Manhattan (1)* area-density cell and lowest in *Central (3)*.¹⁷ In addition to the results shown in Tables 5 and 6, we also conclude that costs are significantly higher in the general metro region (Bronx, Queens, Brooklyn/Staten Island and Manhattan/North Manhattan) than in the non-metro region (Nassau/Suffolk, Northeast, Western, Central and Midstate).

The multiplicative factors shown in Table 6 are suitable to adjust the labor hours of the Company's link cost calculator to reflect an appropriate adjustment for our estimate of environmental hours.

¹⁷ Indeed, as described in an earlier footnote, in the Central area it may be that the level of standard costs are lower than would be allowed by ECRIS estimates.

Area	WKOPs	FRCs	Jobs
Bronx	21,465	1,423	323
Queens	42,421	2,287	473
Brooklyn/Staten Island	47,411	3,672	624
Manhattan/No. Manhattan	78,456	2,913	623
Nassau/Suffolk	58,841	3,424	576
Northeast	41,769	2,908	365
Western	21,713	1,958	368
Central	37,236	2,940	354
Midstate	39,662	2,243	378
Total	388,974	23,768	4,084

Table 1: Count of WKOPs, FRCs, and Jobs by Area

Table 2: Count of WKOPs by Density Zone and Area

	Density	Density	Density	
Area	Zone 1	Zone 2	Zone 3	Total
Bronx	-	21,465	-	21,465
Queens	-	42,421	1 -	42.421
Brooklyn/Staten Island	-	47,411	-	47.411
Manhattan/No. Manhattan	78,456	•		78,456
Nassau/Suffolk	•	44,557	14,284	58,841
Northeast	-	2,248	39,521	41,769
Western	-	4,065	17,648	21,713
Central	-	2,613	34,623	37,236
Midstate	•	20,664	18,998	39,662
Total	78,456	185,444	125,074	388,974

- 10 -

Environmental Costs of Bell Atlantic-New York's Loop Plant

Table 3: Activity C Area(Density	ount of WKOPs	s by Area/Den:	Buried	<u>.</u>	Intrabuilding	Pole Lines	Subscriber Pair-Gain	7 ree Trimming	Underground Cable	Total
Zonel	Aerial Cable	Aerial Wire	Cable	Equipment	Network Cable	1.114	20	e	35F	1.423
Brony(2)	845		17	16	40	280	13	49	651	2.287
Oueens(2)	1,192		1	68	74	102				
Brooktyn/ Staten				35	64	489	4	44	952	3.672
Island(2)	2.0/5				1.00				606	2,913
Manhatan	1.241			293	622	····				
	102		06	60	5	610	3	159	563	2.485
Nassau/ Suffoik(2)	991					1493	12	75	154	938
Contract Contracts (73)	375	· · · · · · · · · · · · · · · · · · ·	81	10		236		10	59	260
Northeast 21	98	2	25	7	7	47	2	124	226	2.648
Northeest(3)	1.006	.62	336	102		1/6	15	20	107	474
Western(2)	197		28	15		351	45	55	130	1,484
Western(3)	631	6	220	29				20	45	318
Central(2)	145	3	28	7	4	751	8	138	172	2.622
Central(3)	1.005	78	357	67	12	271	6	61	164	1,010
Midstate(2)	420		28	46	11	370	13	54	102	1,233
Midstate(3)	536		70	80	830	4 484	302	822	4,290	23,768
otal	10,755	151	1,295	835	830			- 11-1		

Table 3a: Distribut Area(Density	ion of FRC Act	ivity Pertorme	Buried	<u>ny</u>	Intrabuilding	Pole Lines	Subscriber Pair-Gain	Tree Trimming	Underground Cable	Total
Zone)	Aerial Cable	Aerial Wire	Cable	Equipment	Network Cable	2.64	5.6%	0.7%	8.4%	6.0%
General 1	7.9%	0.0%	1.3%	1,9%	5,5%	<u>, 2,570</u>	4.3%	6.0%	15.2%	9.6%
	11 1%	0.0%	0.1%	8,1%	2.9%	0.4%	9.576	1.		
Brookiyn/ Staten		0.0%	0.7%	4.2%	7,7%	10,9%	1,3%	5.4%	22.2%	15.4%
sland(2) Vanhattan/No.	19.3%	0.07	0.770	26.194	74 9%	0.0%	50.0%	0.0%	14.1%	12.3%
<u>Manhanan</u>	11.5%	0.0%	0.0%		0.6%	13.6%	1,0%	19,3%	13.1%	10.5%
Nassau/ Suttolk(2)	9.2%	0.0%	7.3%	1.2%	0.0%	6 794	1 3%	9.5%	3.6%	3.9%
Nassau/ Suffolk(3)	3.5%	0.0%	6.3%	1,2%	0.0%	1.0%	1 7%	1.2%	14%	1.1%
Northeast(2)	0.9%	1.3%	1.9%	0.8%	0.8%	17 3%	26%	15,1%	5 3%	11.1%
Northeast(3)	9.4%	41.1%	25.9%	12.2%	1.0%	1 0%	5.0%	2.4%	2.5%	2.0%
Western(2)	1.8%	0.0%	2.2%	1.8%	0.8%	7 8%	16.2%	7.2%	3.0%	6.2%
Western(3)	5,9%	4.0%	17.0%	3.5%	1,1%	1.070	0.0%	24%	1.0%	1.3%
Central/2)	1.4%	2.0%	2.2%	0.8%	0.5%	47.494	2.6%	16.8%	4.0%	11.0%
Centrel(3)	94%	51.7%	27.6%	8.0%	1.8%	17.070	3.0%	7 4%	3.8%	4.2%
Midstate(2)	3.9%	0.0%	2.2%	5,5%	1.3%	6.0%	4 394	6.6%	2.4%	5.29
Ministate(3)	5.0%	0.0%	5.4%	9.6%	1.0%	8.3%	100.0%	100.0%	100.0%	100.09
Total	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	1 100.07	1		

able 3b; Distribut Area(Density	lian of FRC Act	ivity Performe	Buried	Covinment	Intrabuilding	Pole Lines	Subscriber Pair-Gain	Tree Trimming	Underground Cable	Total
Zone)	Aerial Cable	Aerial Wire	Cable	Equipment	RECOOLE GODIE	8 0.94	1.4%	0 4%	25.2%	100.0%
Bronx(2)	59.4%	0.0%	1.2%	1 1%	3.2%	12.6%	0.6%	2.1%	28.5%	100.0%
Queens(2)	52.1%	0.0%	0.0%	3.0%	1.0%	16.0.0			Partient .	
Brooklyn/ Staten			0.2%	1.0%	1.7%	13.3%	0 1%	1.2%	25.9%	100.0%
siend(2)	56.572	0.070	0.6.0			1		1.245	1 (/) (10000000)	100 084
Manhattan/No.			0.004	10 155	21.4%	0.0%	5.2%	0.0%	20.8%	100.072
Manhatian	42.6%	0,0%	0,076		0.756	24 595	0.1%	6.4%	22.6%	100.0%
Nassau/ Suffolk(2)	39.9%	0.0%	3.8%	24%	0.2%	1.00		1		+
Section 2010 and and	11222-	200300	i coma	states (0.004	35 364	0.4%	8.3%	15.4%	100.0%
Nassau/ Suttolk(3)	40,0%	0.0%	5.6%	1.1%	0.0%	18 194	1.9%	3.8%	22.7%	100.0%
Northeast(2)	37.7%	0.8%	9.6%	2.7%	1.17	20.2%	0.3%	4,7%	8.5%	100.0%
Northeast(3)	38.0%	2.3%	12.7%	3.9%	0.3%	29.37	3.254	4 25%	22.6%	100.0%
Mestern/2)	41.6%	0.0%	5.9%	3.2%	1.5%	17.975	1.354	4.0%	8.8%	100.0%
Western(3)	42.5%	0.4%	14,8%	2.0%	0.5%	23.170	0.0%	6.3%	14,2%	100.0%
Central(2)	45.9%	0.9%	5.8%	2.2%	1.3%	20.4%	0.9%	5 3%	6.6%	100.05
Contral 1	38 4%	3.0%	13.6%	2.5%	0.6%	29.8%	V.0 %	6.0%	16.2%	100.0%
Central 3	41.6%	0.0%	2.8%	4.6%	1,1%	26.8%	0.9%	44%	8.3%	100 0%
Midstate(1)	43.5%	0.0%	5.7%	6.5%	0.6%	30,0%	1.176	3.5%	18.0%	100.0%
Total	45.3%	0.6%	5 4%	3.5%	3.5%	18.9%	1.3%	3.5 %		

	WKO	P LEVEL	FRC	LEVEL	JOB LEVEL		
Area(Density Zone)	Avg Actual Hrs	Avg Est Base Hrs	Avg Actual Hrs	Avg Est Base Hrs	Avg Actual Hrs	Avg Est Base Hrs	
Bronx(2)	23.84	16.09	359.68	242.77	1,584.62	1.069.56	
Queens(2)	16.46	13.13	305.26	243.54	1.475.98	1,177.56	
Brooklyn/Staten	<u>_</u>						
Island(2)	25.88	17.83	334.18	230.18	1.966.54	1,354.50	
Manhattan/No.		1					
Manhattan(1)	14.43	9.09	388.75	244.76	1.817.32	1,143.93	
Nassau/Suffolk(2)	14.17	10.46	254.02	187.48	1.489.59	1.099.64	
Nassau/Suffolk(3)	11.63	8.09	177.10	123.20	1.093.24	760.22	
Northeast(2)	7.24	6.17	62.58	53.38	403.26	341.68	
Northeast(3)	6.26	5.49	93.43	81.98	763.59	670.41	
Westem(2)	7.41	7.40	63.57	63.43	308.34	316.30	
Westem(3)	5.99	6.58	71.26	78.25	394.04	431.83	
Central(2)	5.77	5.58	47.44	45.84	306.58	296.42	
Central(3)	4.21	4.96	55.62	65.57	477.50	560.97	
Midstate(2)	17.62	11.93	360.59	244.05	2.020.35	1.365.71	
Midstate(3)	13.76	10.57	211.97	162.89	1.322.71	1,017.71	

Table 4: Average Actual Hours & Est. Base Hours by Area/Density Zone

Table 5: Average Non-Engineering Cost Hours at the WKOP, FRC, and Job levels by Area/Density Zone

Area(Density Zone)	WKOP Level	FRC Level	Job Level
Bronx(2)	7.75	116.91	515.06
Queens(2)	3.33	61.72	298.42
Brooklyn/Staten Island(2)	8.06	104.01	612.04
Manhattan/No. Manhattan(1)	5.35	143.99	673.39
Nassau/Suffolk(2)	3.71	66.54	389.96
Nassau/Suffolk(3)	3.54	53.91	333.03
Northeast(2)	1.06	9.20	61.58
Northeast(3)	0.77	11.45	92.73
Western(2)	0.02	0.14	(8.38) ,
Western(3)	(0.59)	(6.99)	(37.98)
Central(2)	0.20	1.61	11.37
Central(3)	(0.75)	(9.95)	(83.25)
Midstate(2)	5.70	116.54	654.64
Midstate(3)	3.19	49.08	304.99

1

- 12 -

Environmental Costs of Bell Atlantic-New York's Loop Plant

Area(Density Zone)	Multiplicative Factor
Bronx(2)	1.48
Queens(2)	1.25
Brooklyn/Staten Island(2)	1.45
Manhattan/No. Manhattan(1)	1.59
Nassau/Suffolk(2)	1.35
Nassau/Suffolk(3)	1.44
Northeast(2)	1.17
Northeast(3)	1.14
Western(2)	1.00
Western(3)	0.91
Central(2)	1.04
Central(3)	0.85
Midstate(2)	1.48
Vidstate(3)	1.30

Table 6: Multiplicative Factors by Area/Density Zone

.

1

1

Technical Appendix & Methodology

Outside plant (OSP) activity to build and maintain the Company's loop distribution facilities is made up of OSP Jobs. Each OSP Job is made up of a collection of activities and each activity is classified as a Field Reporting Code or FRC. Each FRC, in turn, is comprised of a collection of work operations or WKOP-level activities. Using Job, FRC and WKOP to represent the number of hours required at each level, we can show that the number of hours required to complete a Job is the sum of hours required to complete the FRCs that make up that Job. Similarly, the number of hours required to complete an FRC is the sum of hours required to complete the WKOPs that make up that FRC. In algebraic notation, we can write:

$$Job_i = \sum_{j} FRC_{i,j} = \sum_{j} \sum_{k} WKOP_{i,j,k}$$
(1)

where i indexes lobs, j indexes the job reporting codes and k indexes the different work operations.

The ECRIS data are reported at the WKOP level and constitute the universe of OSP job activities undertaken by the Company between January 1, 1997 and October 20, 1998. For each observation of WKOP-level data in ECRIS we are provided with (i) the actual hours required to complete the WKOP and (ii) the estimate of standard hours that are assigned to the WKOP.

Actual hours are recorded as the amount of time it takes the Company's OSP field personnel to complete the k^{th} WKOP of the j^{th} FRC in the i^{th} Job. We denote actual hours as: $AH_{i,j,k}$.

The Company determines the appropriate estimate of standard hours required to perform a work operation.¹⁸ Given a particular WKOP (*i.e.*, dig a ditch 3 feet deep and 12 feet long) the standard estimate of hours required would be the same regardless of the work operation's Job or FRC association. We define $\tilde{E}\tilde{H}_k$ as the standardized estimate of hours allotted to the performance of $WKOP_k$ anywhere in the Company's service territory.

¹⁸ This is done using time and motion studies as well as by monitoring the time it takes to perform work operations.

Environmental Costs of Bell Atlantic-New York's Loop Plant Page 2 of Technical Appendix & Methodology

(4)

Although $\tilde{E}\tilde{H}_{k}$ is a Company-wide standardized estimate of hours allotted to the performance of a work operation, we recognize the possibility that the actual time required to complete the work operation may differ in any particular Job-FRC combination. Thus, for the estimate of standard hours associated with the k^{th} work operation of the j^{th} FRC in the i^{th} Job $(EH_{i,j,k})$ we write:

$$EH_{i,j,k} = \widetilde{E}\widetilde{H}_k + (EH_{i,j,k} - \widetilde{E}\widetilde{H}_k)$$
⁽²⁾

which shows that the standard hours to perform the kth work operation may deviate from EH_k by either a positive or negative amount (*i.e.*, $(EH_{i,i,k} - \tilde{E}\tilde{H}_k) \leq 0$)

The relationship between actual and estimated hours to complete a work operation is written as:

$$AH_{i,j,k} = EH_{i,j,k} + NEH_{i,j,k}$$
(3)

where AH and EH are as previously defined and $NEH_{i,j,k}$ represents the environmental hours required to complete the k^{th} work operation of the j^{th} FRC in the i^{th} Job. Environmental hours are different from standard hours and occur because of environmental and/or job site differences.¹⁹

Rearranging terms we obtain the basis for the dependent variable of our analysis.

$$NEH_{i,i,k} = AH_{i,i,k} - EH_{i,i,k}$$

In simple terms, our analysis compares the average level of $NEH_{ij,k}$ in different areadensity cells of the Company's service territory.²⁰ Since all ECRIS records contain sufficient information to assign each WKOP to its area-density cell we make a notation change to obtain:

¹⁹ See the earlier comments in this report about environmental hours.

²⁰ For purposes of this study, the Company's service territory is divided into nine strategic business unit areas: Bronx, Queens, Brooklyn/Staten Island, Manhattan/No. Manhattan, Nassau/Suffolk, Northeast, Western, Central and Midstate. In addition, the company identified three density zones to which all wire centers are assigned. They are DZ1 comprised of all Manhattan/No. Manhattan wire centers: DZ2 comprised of all wire centers where the number of links per square mile exceeds 1,500; and, DZ3 comprised of all wire centers where the number of links per square mile is less than or equal to 1,500.

Environmental Costs of Bell Atlantic-New York's Loop Plant Page 3 of Technical Appendix & Methodology

$$NEH_{i,j,k}^{\epsilon} = AH_{i,j,k}^{\epsilon} - EH_{i,j,k}^{\epsilon}$$
(5)

where the superscript c denotes area-density cell. In addition, with no loss of generality, we drop the Job and FRC (i and j) subscripts to obtain:

$$NEH_k^c = AH_k^c - EH_k^c \tag{6}$$

which shows that the environmental hours of the k^{th} work operation in area-density cell c are equal to the actual hours less the standard hours associated with that work operation.

We then calculate average environmental hours (over all Job-FRC combinations) in a given area-density cell c as:

$$\overline{NEH}^{c} = \frac{1}{K^{c}} \sum_{k} NEH_{k}^{c}$$
(7)

where K^{c} denotes the number of work operation records in ECRIS associated with area-density cell c. Our measure of average environmental hours in each area-density cell is a measure of the population average because it is measured over all the recent OSP activity undertaken by the Company to support its loop plant. As such it represents average actual environmental hours required to perform the actual mix of work operations in each area-density cell.

Our study objective is to obtain multiplicative factors that can be used to adjust the standard hours assigned to the work operation activity in the Company's link cost calculator. The Company's link cost calculator is used to derive link cost estimates for a given areadensity cell of the Company's service territory. Currently, the Company's link cost calculator is used to determine the cost of standard hours plus the cost of material required to provide a link. That is to say, by design, the Company's link cost calculator only accounts directly for standard hours (it does not account for environmental hours) associated with the required work operations. The area-density specific multiplicative factors we derive will be used to adjust the estimate of standard hours in the Company's link cost calculator for the average level of environmental hours that actually characterizes the mix of work operations. Continuing our notation, we seek to derive individual area-density factors such that: Environmental Costs of Bell Atlantic-New York's Loop Plant -Page 4 of Technical Appendix & Methodology

(9)

$$EH_{Link\,Cost}^{c} \times Factor^{c} = \overline{AH}^{c} = (\overline{EH}^{c} + \overline{NEH}^{c})$$
(8)

where $EC_{LincCosr}^{c}$ represents the count of standard hours of the work operations required to complete the construction of a particular OSP design pertinent to area-density cell c and \overline{AH}^{c} , \overline{EH}^{c} and \overline{NEH}^{c} represent the average actual, standard and environmental hours calculated over all work operations in area-density cell c in ECRIS.²¹ In words, we want to adjust the standard hours used by the link cost calculator in a given area-density cell to account for environmental hours. Since ECRIS data constitutes the universe of OSP activity for a representative current time period, it also represents the mix of work operations in each areadensity cell and thus is a good approximation of the mix of work operations underlying $EH_{LinkCost}^{c}$. Thus, we can substitute \overline{EH}^{c} for $EH_{LinkCost}^{c}$ and derive our factors as:

Factor' =
$$\frac{\overline{EH}' + \overline{NEH}'}{\overline{EH}'} = 1 + \frac{\overline{NEH}'}{\overline{EH}'}$$

¹¹ Specifically,
$$\overline{AH}^{c} = \frac{1}{K^{c}} \sum_{k} AH_{k}^{c}$$
 and $\overline{EH}^{c} = \frac{1}{K^{c}} \sum_{k} EH_{k}^{c}$ where K^{c} is the number of work operations in area-density c and where \overline{NEH}^{c} is previously defined.

Attachment 2 to CA-Ba-80 is a Zip file attached to the E-Mail message.

Attachment 3 to CA-BA-80 is a CD titled BA's response to ATT-BA-114.

jobfrc

E31530257C E31530758C E3210185C E3210285C E3264585C E3321285TC E39984758C E40039832C E4003985M E40059102C E400591C E400591M E400591R E400591X E4005921R E400592C E400592M E400592R E400592X E40059301X E40059501C E40059501X E400611C E400611X E400612M E4006182C E4006182M E40061832C E4006185C E4006185M E404792C E404792M E4047982C E4047982M E40479832C E4047985M E4107982C E41079832C E414191C E414191X E414192M E41419501X E414505C E416162C E416165C E4161682C E41635832C E4163585C E418975C

E4235085C E4235785C E42676832C E428411C E428411X E428412M E42841301X E429921C E429922M E42992501X E429931C E429931M E429931X E429932M E42993501X E430051C E430051M E430051X E430052M E430052X E43005301X E43005501C E43005501X E4300582M E430381C E430381X E430382M E43038501C E43038501X E434451C E434451M E434451X E434452M E43445501C E43445501X E435921X E4366245TX E4366257X E436625TX E436731C E4367321R E436732C E436732M E43673501X E437421C E437581C E437581R E437582M E43758301X

E42350832C

Ъ

E438242X E442321C E442321M E442321X E442322M E442322X E44232301X E44232501C E44232501X E4425785TC E443355TX E443615C E44390845TC E444081C E444081M E444081X E444082M E44408501C E44408501X E44455758C E4445582C E4445582M E44455832C E4445585C E4445585M E449831C E449831M E449832M E44983501X E450332C E4503345TX E4505385C E4505585C E4509285TC E45210832C E4521085C E4523285M E4536385C E455141C E45514257C E455142C E455142M E4551432C E45514632M E45514758C E4551482C E4551482M E45514832C

E43758501C

E4551485M

E455401C E455401M E455401R E455401X E4554021R E455402C E455402M E455402R E455402X E45540301X E455403M E4554045M E45540501C E45540501X E4554082M E4556385TC E455655TX E455655X E45592832C E4559285C E45618102C E456181C E456181M E456181X E456182M E456182X E45618301X E456183M E456183X E45618501C E45618501X E45672102C E456721C E456721M E456721R E456721X E4567221R E456722C E456722M E456722R E456722X E45672301X E456723M E4567245M E45672501C E45672501X E4567282M E45737832C

E4573785C

E45540102C

ч.

ι.

•. .

E457912M - " E4579182C E4579185C E4579185M E45800102C E458001C E458001M E458001X E4580021R E458002C E458002M E458002X E45800301X E4580045X E45800501C E45800501X E458005C E45812732C E45812758C E4581282M E45839832C E4583985C E45867257C E458672C E458672M E4586732C E45867357C E4586745C E4586745M E45867758C E4586782C E45867832C E45872102C E458721C E458721M E458721X E4587221R E458722C E458722M E458722X E45872301X E4587245C E4587245M E45872501C E45872501X E45879257C E458792C E458792M E458792R

.

٤

E457911C

۰.

E45879357C E458795C E458795M E45879758C E4587982C E4587985M E4590032C E4590032X E459292C E459292M E45929357C E4592945M E459295M E460805C E460805X E4626485C E4626885C E4631785C E4637032C E463705C E463801C E46380257C E46380758C E4638082C E4638082M E46380832C E4638085C E4638085M E4638385C E463935C E464575C E464575X E46473758C E464791C E46479257C E4647982C E46479832C E4647985M E464982C E464982M E465291C E4652982C E46529832C E4652985C E4652985M E465605C E465605X E4671585C E4672985C

E4587932C

•.

E46732832C E4673285C E467365C E4675682C E46756832C E4675685C E467621C E467621X E4676221R E46762257C E467622C E467622M E467622X E4676245M E46762501C E46762758C E4676282C E4676282M E46762832C E46762845C E4676285C E4676285M E46767758C E467751C E467751X E467752C E467752M E4677532C E46775758C E4677582C E4677582M E46775832C E46775845C E4677585C E4677585M E4682782TC E4682785TC E468905C E468955C E468955X E46930832C E469891R E4698921R E4698982C E4698985C E469921C E46992257C E469922M E46992758C E4699282C

۰.

٠. .

: .

E46992832C E4699285C E4699285M E470541C E4705421R E47054257C E470542M E47054758C E4705482C E4705482M E47054832C E4705485C E4705485M E470575C E47094758C E4711785C E471185C E4718632C E47186832C E4718685C E47215832C E4721585C E472321C E4723282TC E4723285TC E472595C E4726285C E4726832C E47300832C E4730085C E473111C E473112M E47311758C E4731182C E47311832C E4731185C E47321758C E4732185C E47336758C E4733685M E4733685TC E47486758C E47658758C E4765882C E4765882M E47658832C E4765885C E4765885M E477985C

E4699282M

٠,

ĩ.

E4789082TC E480125C E480865C E480865X E48120832C E4812085C E48136758C E4813685C E48137758C E4814985C E48227257C E48227758C E482701C E482701X E4827021R E48270257C E482702C E482702M E48270758C E4827082C E4827082M E48270832C E48270845C E48270845M E4827085C E4827085M E4827485C E48280832C E483141C E483142C E483142M E4831445C E483171C E483171R E483171X E483172C E483172M E48317301X E48317501C E48317501X E483285X E48349832C E4834985C E4839132C E484921C E484921M E484921R E484921X E4849221R

E478555C

•

. .

. .

.

۲. .

ر 1

٩.,

E484922M E484922R E48492501C E48492501X E4849282M E48545832C E4854585C E485595TX E4856385M E4858385C E48647832C E486602C E4867932C E486795C E487511C E487511M E4875121R E487512M E487513X E48751501C E48751501X E487521C E487521M E487521R E487521X E487522C E487522M E487522R E48752501C E48752501X E4875521R E48755257C E487552M E4875532C E4875545C E487555M E48755758C E4875582C E48755832C E487581C E487581M E487582M E48758501X E487611C E487612M E48761501X E487621C E487621M

E487622M

.. •

E484922C

.

.

. N

E48762501X E487632M E48763501X E489461C E489461X E489462C E489462M E490305C E49036832C E4903685C E4912385C E49273102C E492731C E492732M E49273758C E4927382C E4927382M E49273832C E49273845C E4927385M E4928885C E493681C E4936821R E49368257C E493682M E49368758C E4936882C E4936882M E49368832C E4936885C E4936885M E49402832C E4940285C E49458758C E4950932C E49511102C E495111C E495111M E495111R E495111X E495112M E49511301X E49535832C

E4953585C E4974185TC E4987985TC E499332X

E48762501C

٠.

1. 5

2

wc	density	1									
	1	, 1									
	3	1									
	4	1							•	· ·	
	7	1									
	8	1	•								
	9	1	,								
	10	1				- , .					
	11	1									
	12	1									
	13	1									
	15	1									
	18	1			•						
	19	1		,							
	20	1									
	21	1									
	22	1.									
	23	1 .									
	24	1					•				
	25	1									
	30	2									
• •	31	2									
	32	2									
	33	2									
	34	2	10								
	35	2									
	36	2									
	37	2									
	38	2									
	39	3									
	50	2									
	51	2									
	52 52	2									
	(00 54	2 2									
	55	2									
	56	2									
	57	2									
	58	2									
	59	2									
	60	2									
	61	2									
	62	2									
	63	2									
	64	2									
	65	2									
	66	2									
	67	2									
	68	2									
	69	2									

÷

•

•

						•	•			
×.										
	233	3								
	234	2								
	235	2								
	236	2								
	237	2		585						
	238	2								
	239	2								
	240	2								
	241	2								
	243	2								
	244	2								
	245	2								
	246	2								
	247	2								
	248	2								
	249	2								
	250	2								
	251	2				,				
	255	2								
	256	2	•			2**				
	257	2								
	208	2								
	260	2								
	261	2								
	262	2								
	263	2								
	264	2								
	265	2								
	266	2								
	267	2								
	268	2								
	269	3								
	270	3 2								
	272	3								
	273	3								
	274	3						•		
	275	3								
	276	3								
	277	3			ъ.					
	278	3 .								
	279	3								
	280	3								
	281	3								
	284	ა 2								
	200	ა ვ					•			
	200	2								
	201	-								
}										
) (

•

• • • •
· · · · · · · · · · · · · · · · · · ·							•		
	288	3							
	289	3							
	290	3							
	291	3							
	292	3							
	293	2							
	294	3							
	296	2							
	297	3							
	298	3							
	299	3							
	300	3							
	301	3							
	302	3							
	303	3							
-	304	3							
	306	3							
	307	3							
	308	3							
	309	3							
	310	3						-	
	311	3							
	312	3							
	313	3							
	314	3							
	315	3							
	316	3							
_	317	3				. *			
	318	3							
	319	3							
	320	3							
	321	3							
	322	3							
	323	3							
	324	3							
	325	3							
	326	3							
	327	3							
	328	3 ·							
	329	3							
	330	3	. •						
	332	3							
	333	3							
	334	3							
	335	3							
	336	3							
	337	3							
	338	3							
	339	3		•					
	340	3							
							•		
-					··	- · ·			

• 、

.

.

343

	395	3					
	396	3			1. J.		
	397	, 3				- 25	
	399	3					
	400	2 ·					
	401 ·	3					
	402	3					
	403	3					
	404	3					·
	405	3					
	407	3					
	408	3					
	409	3					
	410	3					
	411	3					
	412	3					
	413	3					
	414	3					
	416	3					
	417	3					
	419	3					
	420	3					
	421	3					
	423	3					
	420	3					
	420	3					
	428	3					
	429	3					
	430	3					
	431	3					
	432	3					
	433	3					
	434	3					
	435	3					
	438	3					
	439	3					
	440	3					
	441	3					
·	442	3					
	443	3					
	444	3		,			
	440	2					
	440	3					
	448	3					
	449	3					
	450	3	1.5				
	451	3					
	452	3					
		•					

.

V

• •

)

					•
453	3				
454	3				
456	3				
457	3				
458	3	۰			
459	- 3				
460	3				
461	. 0				
401	2				
402	3				
403	2				
404	່ 3				
400					
400	2		•		
407	2				
400	ა ი				
409	ు				
470	ა ი				
471	3				
412	3				
4/3	3				
4/6	3				
4//	3				
478	3				
419	2				
400	2				
401	3				
482	3				
483	3				
484	3				
400	<u>з</u>				
400	<u>з</u>				
407	3				
400	<u>з</u>				
490	2				
491	3 2				
490	2				
499 500	2				
501	3				
502	3				
502	3				
503	3				
505	3	•			
506	3				
508	3				
500	2				
510	े २				
511	3				
512	3				
514	2				
V 1 T	-				

)

.

٠.

 ,									
÷., ·						•			
					,				
	577	3							
	5/8 579	3 3							- ,
	581	3							
	582	3	•						
	583	3							
	585	3 3							
	586	3							
-	590	3							
	591	3							
	592	3							
	594	3							•
	596	3							
	597 598	3							
	600	3							
	601	3				e :			
	602	3							
	604	3							
	605	3							
	606	3					·.	• .	
	607 608	3							
	609	3		<u>,</u>					
	610	3							
	611 613	3							
	614	3							
	615	3							
	616	3							
	619	3							
	620	3							
	621	3					1		
	622 623	3 3		•					
	624	3							
	625	3							
	626	3		•					
	638	2							
	640	2							
	641	3							
	642 643	3							
	644	3							
	646	2							

.

».	•								
								,	
	707	3							
	708	3							
	709	3							
	710	3							
	711	3							
	712	3			. · · .	*	a second of		
	713	3					•		
	714	3							
	715	3							
	716	3							
	718	3							
	719	2		.*					
	720	3		~					
	722	3							
	723	3							
	724	3							
	725	3							
	726	3							
	727	3							
	729	3		2	-				
	730	3	4		·				
		÷							

,

×

totalrh

jobfrc

.t1 *

0 E3043985TC 0 E3100732X 0 E31345357C 0 E31372758C 0 E315161R 0 E31530257M 0 E33174845C 0 E33568832C 0 E3356885TC 0 E38045758C 0 E4001021R 0 E4001032C 0 E40010858C 0 E40024845TC 0 E40028845TC 0 E4003545X 0 E4003985C 0 E400665X 0 E400781M 0 E4010145C 0 E40101845C 0 E4010945C 0 E4010945X 0 E40109845TX 0 E402235C 0 E402235X 0 E4023445TX 0 E402345TX 0 E402975C 0 E403195X 0 E4035645C 0 E4037821R 0 E4037845C 0 E4040845X 0 E404275X 0 E404492M 0 E405183M 0 E40520357C 0 E40615257C 0 E406272TX 0 E40912257C 0 E40939257C 0 E409972TX 0 E409975TX 0 E41029257C 0 E410292X 0 E410671X 0 E411031X 0 E412341R

0 E414053C 0 E41419301C 0 E414232TC 0 E41423345C 0 E4160532X 0 E416342X 0 E4163532X 0 E41642257X 0 E4167745X 0 E416901X 0 E417012C 0 E4171245X 0 E418552X 0 E419085C 0 E41967132C 0 E4196732C 0 E420451C 0 E420451M 0 E42083301X 0 E42113257C 0 E4211385C 0 E421751C 0 E42210257C 0 E4227545C 0 E4233432C 0 E4233432X 0 E4233632C 0 E4237632C 0 E4238432C 0 E4238632X 0 E423865C 0 E4239121R 0 E424125C 0 E424125X 0 E425402C 0 E425622C 0 E425622X 0 E425625C 0 E425625X 0 E4257232X 0 E425741X 0 E4266682TC 0 E426795X 0 E426842R 0 E426885C 0 E4276645C 0 E427852C 0 E42923257C 0 E4292332C 0 E4292345C

٤,

0 E4299585C 0 E430052C 0 E43011257C 0 E43052301X 0 E431692C 0 E4323585TX 0 E432625X 0 E432942C 0 E433805C 0 E4341532X 0 E43415632X 0 E43422257X 0 E4342282C 0 E4342285TX 0 E434292C 0 E434391C 0 E434392C 0 E434392M 0 E4343932X 0 E434395TX 0 E434411C 0 E434411M 0 E4344745X 0 E43449257C 0 E43466257C 0 E4350232C 0 E435025X 0 E435042C 0 E435111C 0 E4351482C 0 E43514832C 0 E4351485C 0 E4351682X 0 E43516832X 0 E4351685C 0 E4351685X 0 E435211X 0 E435212TX 0 E4352145TX 0 E4352145X 0 E4353332C 0 E435335C 0 E43538345C 0 E43538501C 0 E435685C 0 E4357032C 0 E4357145C 0 E4357145X 0 E4360782C

 $\boldsymbol{\zeta}^{*}$

0 E436152X

0 E437082C 0 E437082X 0 E4370832C 0 E4370832X 0 E437085C 0 E437085X 0 E437092X 0 E4370932C 0 E4370932X 0 E4371832C 0 E437191M 0 E4371982M 0 E43740357C 0 E4374245X 0 E437492C 0 E437611M 0 E4376832C 0 E437705C 0 E437822TX 0 E4378582C 0 E43786301X 0 E438091M 0 E43809501C 0 E43809501X 0 E438125C 0 E438145C 0 E438145M 0 E438145R 0 E438155C 0 E438201C 0 E438215X 0 E438232R 0 E438242C 0 E438301M 0 E4383932C 0 E438412R 0 E438415C 0 E4384645C 0 E4384945X 0 E4385832X 0 E43861632C 0 E43864257C 0 E438992X 0 E4389945X 0 E439015X 0 E4390845X 0 E439085TX 0 E4391182C 0 E439151X 0 E4392532C

٠,

0 E4392645X 0 E439302C 0 E43939758C 0 E4394545X 0 E439461C 0 E43959632C 0 E439671X 0 E43967301X 0 E4397245X 0 E4397545X 0 E4397645TX 0 E4397745X 0 E4398045X 0 E4398245X 0 E4398345X 0 E4398445X 0 E4398545X 0 E4398745X 0 E4398832X 0 E439931X 0 E439935X 0 E4399532C 0 E439955X 0 E440221X 0 E44037301X 0 E4403832C 0 E4404032C 0 E4406645C 0 E440665C 0 E440701C 0 E440745M 0 E440765X 0 E44089457X 0 E4409432X 0 E441031X 0 E44110257C 0 E4411085C 0 E4411632C 0 E441165C 0 E441165X 0 E44116632C 0 E441172X 0 E4411732C 0 E4411732X 0 E4411832C 0 E4411832X 0 E44125501C 0 E44125501X 0 E441271X 0 E441272X

0 E4412745X 0 E44127501C 0 E44127501X 0 E4412932X 0 E4412945X 0 E44129501C 0 E44129501X 0 E4412985M 0 E4413182C 0 E4413782C 0 E4414285M 0 E441432M 0 E4414345X 0 E4415245X 0 E4415732C 0 E441585C 0 E441735X 0 E4417485C 0 E4418032X 0 E4418432C 0 E441845C 0 E44190357C 0 E44201758C 0 E442062M 0 E442062X 0 E442102M 0 E4421045M 0 E4421832X 0 E442195C 0 E442195X 0 E442205X 0 E442345X 0 E4425932X 0 E44267132C 0 E4426845C 0 E44268501C 0 E4426882M 0 E4427232C 0 E44272632X 0 E442762M 0 E44283832C 0 E4428785M 0 E442902TX 0 E4429245X 0 E442965X 0 E443012C 0 E44308301X 0 E443181C 0 E443382M 0 E443382R

.

0 E4433945C 0 E443421C 0 E443422M 0 E44342501X 0 E443521C 0 E4435221R 0 E4435432C 0 E443605C 0 E443641C 0 E4437832X 0 E44385501C 0 E44386501C 0 E44390845C 0 E443931C 0 E4440032C 0 E444025C 0 E444083M 0 E4440845M 0 E4440882M 0 E444091X 0 E44409301X 0 E4440932C 0 E4440932X 0 E444132C 0 E444132X 0 E444135X 0 E4441545C 0 E44421501C 0 E444492C 0 E4445032X 0 E444551M 0 E4445632C 0 E44456632C 0 E444601M 0 E444601X 0 E444602X 0 E4446045C 0 E4446045X 0 E44463501C 0 E444661C 0 E444661M 0 E444662C 0 E444662M 0 E444662X 0 E44466501X 0 E444665C 0 E4448132X 0 E444821M 0 E44482345C

0 E4433885C

۰,

0 E4448282M 0 E4448432C 0 E444901C 0 E444991M 0 E444992M 0 E44506357C 0 E44506632C 0 E44506758C 0 E44507501C 0 E44507501X 0 E445092TC 0 E445292M 0 E445411C 0 E44541632X 0 E4454185C 0 E445422X 0 E445425X 0 E4454285TX 0 E445442X 0 E4455985C 0 E4456132X 0 E4457145TX 0 E445971X 0 E446041R 0 E4460645X 0 E44619257X 0 E44635257C 0 E4464545X 0 E446475X 0 E446482X 0 E44650501X 0 E4465345X 0 E446535TC 0 E446535X 0 E446545C 0 E446545X 0 E44657102C 0 E446611C 0 E446641M 0 E44673832C 0 E446772X 0 E4467745C 0 E446882M 0 E446901X 0 E44694832C 0 E446951X 0 E446952X 0 E44695345C 0 E4469732X 0 E4471045C

0 E447171C 0 E44717501X 0 E447222X 0 E447225C 0 E4472432X 0 E4472615TX 0 E44731301X 0 E447342C 0 E447342X 0 E44734301X 0 E447346R 0 E447482C 0 E44754102C 0 E44754257C 0 E447542X 0 E447601C 0 E44760301X 0 E447631C 0 E447722C 0 E4478032X 0 E447852X 0 E4478532C 0 E4478532X 0 E44788257C 0 E447915X 0 E44792632C 0 E4479732C 0 E4480032X 0 E4480445M 0 E448072C 0 E4480732C 0 E4480745X 0 E44807832C 0 E4481245C 0 E448142X 0 E44819632X 0 E448252C 0 E4483645X 0 E448381X 0 E4483821R 0 E4483932X 0 E448395X 0 E44839632X 0 E448425X 0 E448592R 0 E44861832C 0 E4487745X 0 E4487845X 0 E4487945X 0 E4488245X

0 E4488445X 0 E4488521R 0 E4488745X 0 E4488945X 0 E4489045X 0 E448922X 0 E4489245X 0 E44903257C 0 E44906632C 0 E449171C 0 E44926257C 0 E4492685C 0 E44936632C 0 E449382X 0 E4493832C 0 E449385X 0 E44939257C 0 E449455X 0 E449471X 0 E4495185C 0 E44985832C 0 E44987632C. 0 E44987732C 0 E449961X 0 E450011C 0 E450022C 0 E45006301X 0 E45006501X 0 E450195C 0 E45021301X 0 E450222M 0 E45022832C 0 E4502285C 0 E4503345TX 0 E4503645X 0 E45039345C 0 E4503982C 0 E450472C 0 E4504785C 0 E450491C 0 E45058345C 0 E4505845R 0 E450592R 0 E45059345C 0 E4506045C 0 E45068301X 0 E450832X 0 E4508345TX 0 E4508345X 0 E4508445X

0 E4508545X 0 E450882M 0 E4509110C 0 E450911M 0 E450911X 0 E45093301X 0 E450935C 0 E451042X 0 E451181X 0 E45125301X 0 E4513532C 0 E451381C 0 E451412X 0 E45142758C 0 E451442M 0 E451445M 0 E451492C 0 E4515545C 0 E4516732X 0 E45167632X 0 E451712M 0 E45179501C 0 E45180257C 0 E451802M 0 E4518032C 0 E45181257C 0 E451925C 0 E45197257C 0 E45197345C 0 E4519745X 0 E451995C 0 E45199632X 0 E452045X 0 E45230301X 0 E452311C 0 E4523232X 0 E4523285TX 0 E452351C 0 E4523545C 0 E4523645X 0 E45237257R 0 E4523732X 0 E45237501C 0 E4523932X 0 E4523945X 0 E452395X 0 E452431C 0 E452431M 0 E452432M 0 E45243501X

0 E45246345C · 0 E45246377C 0 E45246457X 0 E45247345C 0 E45248832C 0 E45252632X 0 E45253102C 0 E452531X 0 E45253257C 0 E452545X 0 E4526432X 0 E4526745M 0 E45268501C 0 E45272357C 0 E4527285M 0 E4527745C 0 E452782M 0 E4528232C 0 E452832C 0 E453012C 0 E4530532C 0 E45308257C 0 E45320732X 0 E4532285C 0 E4532332C 0 E453241C 0 E45340301X 0 E45348345C 0 E45350102C 0 E45352501C 0 E45352501X 0 E45361257C 0 E453791C 0 E453791M 0 E4537921R 0 E453841C 0 E453841M 0 E453841R 0 E453841X 0 E45384257C 0 E453842M 0 E4538515TX 0 E4538745X 0 E454075M 0 E45414345C 0 E45426257C 0 E4543132C 0 E45432758C 0 E454572C 0 E454585X

0 E45462102C 0 E45463345C 0 E45476301X 0 E45478845TC 0 E454791R 0 E45479457X 0 E454812C 0 E4548532X 0 E45486501X 0 E4548721R 0 E4549321R 0 E454971C 0 E45502257C 0 E4551482R 0 E45523257C 0 E45537357C 0 E455382C 0 E45543257C 0 E4555332C 0 E45553832C 0 E4556645TX 0 E4556657X 0 E45566845TX 0 E45571845C 0 E455775M 0 E455805TX 0 E455812M 0 E455835TX 0 E455841X 0 E455845M 0 E4558745X 0 E456002R 0 E456005C 0 E456005X 0 E45612301X 0 E45618345C 0 E45651102C 0 E45651132C 0 E456512X 0 E4565132X 0 E456515X 0 E45657102C 0 E456571C 0 E45657501X 0 E4565782C 0 E45666102C 0 E456761X 0 E456762R 0 E456945X 0 E456961C

0 E4569682C 0 E45696832C 0 E4569685C 0 E45703257C 0 E457135X 0 E457185TX 0 E457185X 0 E45734102C 0 E45742377X 0 E4574645X 0 E45750257C 0 E45753102C 0 E457541C 0 E457552TX 0 E45769257C 0 E457701M 0 E457791M 0 E4578585C 0 E4578885C 0 E4580032X 0 E45806845C 0 E4581232C 0 E458291C 0 E45829257C 0 E45836845C 0 E45879102C 0 E45879345C 0 E4590521R 0 E4590585C 0 E45908845C 0 E4591645X 0 E4592145X 0 E45938257C 0 E4593882X 0 E4593932C 0 E45939845C 0 E4593985C 0 E45946501C 0 E459602C 0 E45987758C 0 E459935M 0 E459935R 0 E460005M 0 E460005R 0 E460025M 0 E460025R 0 E460035M 0 E460035R 0 E460045M 0 E460045R

0 E460065M 0 E460065R 0 E4601245TX 0 E4601245X 0 E460125TX 0 E460125X 0 E460575M 0 E460671C 0 E460681X 0 E46068257X 0 E46068301X 0 E460751X 0 E46090301X 0 E46091301X 0 E460915C 0 E46114845C 0 E461175X 0 E46119845X 0 E4612445R 0 E461335C 0 E461341M 0 E46135501X 0 E46152345C 0 E46164257C 0 E46169102C 0 E4616982M 0 E461705X 0 E461745C 0 E461852C 0 E46185632C 0 E4619332X 0 E4619382M 0 E4619732X 0 E46206301X 0 E4620682R 0 E4620685C 0 E4621082C 0 E4621232C 0 E462125M 0 E462125R 0 E462193X 0 E4621945C 0 E462301C 0 E462441X 0 E4624445C 0 E4627045X 0 E4627245C 0 E46277357C 0 E46286845C 0 E463272R

0 E463272X 0 E463275X 0 E46332501C 0 E4634245C 0 E4635482C 0 E46354832C 0 E4635485C 0 E463835C 0 E463855X 0 E46398257C 0 E4640221R 0 E464022R 0 E464182TX 0 E464281M 0 E464292X 0 E4642932X 0 E46430845C 0 E46438257C 0 E464421C 0 E464422C 0 E46446257C 0 E464632C 0 E464685M 0 E464685R 0 E4647345C 0 E46474102C 0 E46474257M 0 E46474257X 0 E46474301X 0 E4647432C 0 E46474357X 0 E46488758C 0 E4649845X 0 E4649882X 0 E4649885M 0 E4650032C 0 E465045X 0 E4650832X 0 E46514832C 0 E46523357C 0 E46527102C 0 E4653045C 0 E465375TX 0 E46538257C 0 E46540758C 0 E46549345C 0 E4654945M 0 E46549845TC 0 E46572345C 0 E465723X

0 E46575257C 0 E46575257X 0 E465752X 0 E4658785C 0 E4659032C 0 E46592345C 0 E466035C 0 E466151X 0 E4662745TX 0 E466275TX 0 E46627845X 0 E4662785X 0 E4663845X 0 E466431X 0 E46648301X 0 E4665485C 0 E466662X 0 E466792M 0 E46688301X 0 E4669485TC 0 E46698257C 0 E4669885M 0 E4672421R 0 E467255TX 0 E467271M 0 E46727845TC 0 E46748457X 0 E467492X 0 E4674932X 0 E46750102C 0 E4675645C 0 E4675682M 0 E46762501X 0 E46765301X 0 E467751M 0 E46785501X 0 E46785845C 0 E46788257C 0 E46791632X 0 E467942C 0 E467965C 0 E468001X 0 E4680045X 0 E4685945X 0 E46867377C 0 E4687032C 0 E46874132C 0 E468742M 0 E4688532X 0 E46885632X

. ...

0 E4688582M
0 F46928257C
0 E4693232X
0 E469325M
0 E4604245Y
0 E4094243A
0 E40907210
U E4090/02IVI
0 E46991257C
0 E4699345R
0 E4/00915/C
0 E4700935/C
0 E470202M
0 E47038832C
0 E4705245C
0 E470691R
0 E47077832C
0 E47094257C
0 E471025X
0 E471081C
0 E4711332C
0 E47130132C
0 E471312C
0 E471402X
0 E47166758C
0 E4718885C
0 E471921M
0 E47192345C
0 E4719945C
0 E4721845X
0 E472285C
0 E472302C
0 E472335X
0 E47243301X
0 E47243457X
0 E472655X
0 E472842C
0 E473111X
0 E4734532X
0 E4735045C
0 E4735045X
0 E4735245M
0 E47352845TC
0 F473641C
0 E473642C
0 F473642X
0 F4736432Y
0 E4736545Y
0 E473802Y
0 E4738032X
0 F47381832C

0 E47381845C 0 E473825X 0 E4738282C 0 E4740521R 0 E47406102C 0 E474092C 0 E4741245X 0 E4741345X 0 E47416501C 0 E474235C 0 E474235M 0 E4742757C 0 E4743745X 0 E47441257C 0 E474412X 0 E47443257C 0 E474665X 0 E4747045C 0 E47481345C 0 E474841R 0 E474861X 0 E47491345C 0 E475095X 0 E47515858C 0 E4752132C 0 E475255X 0 E4753045C 0 E4753245X 0 E47538257C 0 E475561M 0 E4755645X 0 E4756845X 0 E47573357C 0 E47575845C 0 E475882X 0 E475932M 0 E47593501C 0 E475942X 0 E476012C 0 E476052C 0 E47605758C 0 E4760885C 0 E476325X 0 E47643257X 0 E476432X 0 E4764332X 0 E47643632X 0 E47643732X 0 E47643832X 0 E476481M

e Constante

0 E4816632X 0 E48166632X 0 E481721R 0 E481721X 0 E48172357C 0 E48172758C 0 E482052C 0 E48221758C 0 E482225TC 0 E48241845C 0 E482422M 0 E48242832C 0 E48246257X 0 E482465TX 0 E4825132C 0 E48258257C 0 E4826445C 0 E482701M 0 E483155X 0 E4831585TX 0 E4831585X 0 E4832357X 0 E4832382C 0 E48323845TX ' 0 E483251X 0 E483252M 0 E483252X 0 E48325301X 0 E483255X 0 E4834045X 0 E48347758C 0 E4840045X 0 E484405C 0 E484685X 0 E4847882C 0 E48487301X 0 E4853945C 0 E4854832C 0 E4854945X 0 E48556832X 0 E4857532C 0 E4858432C 0 E485995X 0 E4861545X 0 E486261R 0 E486262R 0 E486512C 0 E486512X 0 E4866045M 0 E48684758C

.

0 E4869632C 0 E487252C 0 E487481X 0 E487503C 0 E487503X 0 E4875045M 0 E4875385C 0 E4875385TC 0 E487745C 0 E48778345C 0 E4878345C 0 E487961C 0 E487962C 0 E487962X 0 E48806758C 0 E488192C 0 E488552C 0 E48860257C 0 E488652C 0 E489121X 0 E489181X 0 E489571X 0 E48976832C 0 E4904785TC 0 E490491C 0 E49076758C 0 E490825C 0 E490845TX 0 E4909132C 0 E4909132X 0 E490915C 0 E491652C 0 E49199257C 0 E49215257C 0 E4925245X 0 E49321632C 0 E4933332C 0 E49344257C 0 E49357832C 0 E4946145X 0 E4947585C 0 E4947585TC 0 E4951121R 0 E495132C 0 E495135C 0 E495312C 0 E495541C 0 E4955421R 0 E49569832C 0 E4958645C

- 0 E49605357C 0 E4963232X 0 E49683758C 0 E4979145C 0 E4980045X 0 E4983545C 0 E498961X 0 E498962X 0 E4989632X 0 E499092C 0 E4993345X 0 E49986345C 0 E49986845C 0 E49987257X 0 E7473282C 0 E74732832C

log using "Q:\USER\TELCO\Bell Atlantic\BA-north\STATE-NY\Loop_cost\Ecris Analysis\A-B-C Work\7-2-99c.log" ****** * Does WKOP level analysis to obtain mlt_fctr directly from means ****** set memory 90m use "Q:\USER\TELCO\Bell Atlantic\BA-north\STATE-NY\Loop_cost\Ecris Analysis\all_wkops.dta", clear drop calcprce m_hrs_t gen bh = (calctime- s_hrs_t- a_hrs_t)/swp drop calctime s_hrs_t a_hrs_t drop if area>20 count count if wkcy==1996 drop if wkcy==1996 count if wkey<1997 drop if wkey<1997 drop if frc_cd=="4M" drop if frc_cd=="4R" tab frc_cd if substr(frc_cd,1,2)=="14" | substr(frc_cd,1,2)=="24" drop if substr(frc_cd,1,2)=="14" | substr(frc_cd,1,2)=="24" tab frc_cd if substr(frc_cd,1,2) == "34" drop if frc_cd=="34C" count if wc_cd==39 drop if wc_cd==39 rename wc_cd wc sort wc merge wc using "q:\user\telco\bell atlantic\ba-north\state-ny\loop_cost\Ecris analysis\new_wcs.dta" count if _merge==2 drop if __merge==2 count a .1 tab area density replace area=4 if wc>18 & wc<26 tab area density *egen adfactor=group(area density) *count if adfactor==. *drop if adfactor==. *count gen neh= rtl_h - bh *xi:reg neh i.adfactor *char adfactor[omit]9 *xi:reg neh i.adfactor *drop adfactor REMOVE THE WKOPs associated with Job/FRC combos that don't have any booked hours *********** gen str12 jobfrc = job_no+frc_cd sort jobfrc drop _merge

```
merge jobfrc using "q:\user\telco\bell atlantic\ba-north\state-
ny\loop_cost\Ecris analysis\Zero work\zero.dta"
count
count if _merge ==3 .
drop if _merge ==3
count
                        ۰..
****
* REMOVE THE WKOPs associated with Job/FRC combos
  that span two area/densities
                              ***********
**********
drop _merge
sort jobfrc
merge jobfrc using "q:\user\telco\bell atlantic\ba-north\state-
ny\loop_cost\Ecris analysis\area-den work\multareaden.dta"
count
count if _merge ==3
drop if _merge ==3
count
egen adfactor=group(area density)
count if adfactor==.
drop if adfactor==.
count
xi:reg neh i.adfactor
char adfactor[omit]9
xi:reg neh i.adfactor
* Calculate Multiplicative Factors
collapse (mean) rtl_h bh neh, by(adfactor)
list adfactor rtl_h bh neh
gen mlt_fctr=(neh/bh)+1
list adfactor mlt_fctr
*******
  AGGREGATE TO JOB/FRC and do analysis
*drop adfactor
*drop totalrh
*gsort job_no frc_cd -printnum
*qui by job_no frc_cd: gen totalrh=sum(rtl_hrs)
*qui by job_no frc_cd: gen totalbh=sum(bh)
*qui by job_no frc_cd: keep if _n==_N
*egen adfactor=group(area density)
```


્યે સ `.

est.

*count if adfactor==.
*drop if adfactor==.
*count
*count if totalrh==0
*drop if totalrh==0
*count
*drop neh
*gen neh= totalrh- totalbh
*xi:reg neh i.adfactor
*char adfactor[omit]9
*xi:reg neh i.adfactor

log close

• 11

. .

log using "Q:\USER\TELCO\Bell Atlantic\BA-north\STATE-NY\Loop_cost\Ecris Analysis\zero work\7-2-99.log" set memory 100m use "Q:\USER\TELCO\Bell Atlantic\BA-north\STATE-NY\Loop_cost\Ecris Analysis\all_wkops.dta", clear keep rtl_hrs wc_cd calctime s_hrs_t a_hrs_t swp area wkcy wkey job_no frc_cd printnum. gen bh = (calctime- s_hrs_t- a_hrs_t)/swp drop calctime s_hrs_t a_hrs_t drop if area>20 count count if wkcy==1996 drop if wkcy==1996 count if wkey<1997 drop if wkey<1997 drop if frc_cd=="4M" drop if frc_cd=="4R" tab frc_cd if substr(frc_cd,1,2) == "14" | substr(frc_cd,1,2) == "24" drop if substr(frc_cd,1,2) == "14" | substr(frc_cd,1,2) == "24" tab frc_cd if substr(frc_cd,1,2) == "34" drop if frc_cd=="34C" count if wc_cd==39 drop if wc_cd==39 rename wc_cd wc sort wc merge wc using "q:\user\telco\bell atlantic\ba-north\state-ny\loop_cost\Ecris analysis\new_wcs.dta" count if __merge==2 drop if _merge==2 gsort job_no frc_cd -printnum qui by job_no frc_cd: gen totalrh=sum(rtl_hrs) qui by job_no frc_cd: gen totalbh=sum(bh) qui by job_no frc_cd: keep if _n==_N count replace area=4 if wc>18 & wc<26 keep if totalrh == 0 gen str12 jobfrc = job_no + frc_cd keep totalrh jobfrc sort jobfrc save "Q:\USER\TELCO\Bell Atlantic\BA-north\STATE-NY\Loop_cost\Ecris Analysis\zero work\zero" clear all Sum real hours of zero WKOPs by area/density ***** use "Q:\USER\TELCO\Bell Atlantic\BA-north\STATE-NY\Loop_cost\Ecris Analysis\all_wkops.dta", clear drop calcprce m_hrs_t keep rtl_hrs job_no frc_cd area wkcy wkey wc_cd drop if area>20

log using "Q:\USER\TELCO\Bell Atlantic\BA-north\STATE-NY\Loop_cost\Ecris Analysis\area-den work\Part I 7-2-99.log" set memory 100m use "Q:\USER\TELCO\Bell Atlantic\BA-north\STATE-NY\Loop_cost\Ecris Analysis\all_wkops.dta", clear drop if area>9 drop if wkcy==1996 drop if wkey<1997 drop if frc_cd=="4M" drop if frc_cd=="4R" drop if substr(frc_cd,1,2) == "14" | substr(frc_cd,1,2) == "24" drop if frc_cd=="34C" drop if wc_cd==39 rename wc_cd wc sort wc merge wc using "q:\user\telco\bell atlantic\ba-north\state-ny\loop_cost\Ecris analysis\new_wcs.dta" drop if __merge==2 sort job_no frc_cd collapse (sd) area density (sum) rtl_hrs a_hrs_t s_hrs_t calctime, by (job_no frc_cd) drop if area==.&density==. keep if area>0 density>0

gen str12 jobfrc = job_no+frc_cd
keep jobfrc area density
cont delay

sort jobfrc
save "Q:\USER\TELCO\Bell Atlantic\BA-north\STATE-NY\Loop_cost\Ecris
Analysis\area-den work\multareaden"
log close

a 1

Exhibit 370 - See Confidential Exhibits.

370

Exhibits 98-C-1357 12-7/8-00

\$

369-397

3'

BEFORE THE STATE OF NEW YORK PUBLIC SERVICE COMMISSION

In the Matter of:

Proceeding on Motion of the) Case 98-C-1357 Commission to Examine New York) Telephone Company's Rates for) Unbundled Network Elements.)

CITY OF WASHINGTON)) ss. DISTRICT OF COLUMBIA)

HARRY GILDEA, being first duly sworn, on his oath States:

My name is Harry Gildea. My principal place of business is 1220 L Street, NW, Washington, District of Columbia.

Attached hereto and made a part hereof is my Responsive Testimony, dated June 26, 2000, and my Rebuttal Testimony, dated October 19, 2000 which has been prepared in written form for introduction into evidence in Case 98-C-1357.

I hereby swear and affirm that my answers contained in the testimony, to the best of my knowledge, information and belief, are true and correct.

Subscribed and sworn before me this 5ω day of December, 2000.

MANUSULE CINAL SHOP AND SHOP Notary Public Public Service Commission Case No. 28-C-1357 4 Com est 6 130/2003 Date 12-0 36

.*

3 G 20

·

Supplemental EXHIBIT 3

Public Service Commisson Case No. 98-C.1357 Date 11-30-00 Ex. No. 368

1

Atlantic - Legal Department 1095 Avenue of the Americas New York, NY 10036 37th Floor Tel 212 395 6509 Fax 212 768-7568

Joseph A. Post Regulatory Counsel

July 7, 2000

VIA OVERNIGHT DELIVERY

John Black Cable Television & Telecommunications of New York 80 State Street Albany, New York 12207

Re: Case 98-C-1357

Dear Mr.Black:

Attached is BA-NY's supplemental response to the following interrogatories:

Date

Interrogatory Number

March 14, 2000

CTTANY-BA-2(b), 22, and 42

BA Panel

Witness

Very truly yours, Joe Post (c6)

Attachments

cc: "Me too" parties (Via E-Mail w/out attachments)

CTTANY-BA-2(b), 22 and 42 (excerpts)

R

Subject: Poleycondult Kentass

REGULATORY MATTERS STRATEGIC DOCKET COSTING

April 7, 1992

MR. HOPLEY: MS. PORTI:

I wrote to you on February 14, 1992 stating that I was going to review the costs and rental practices associated with both pole attachments and conduit space rentals. The attached white paper outlines the results of Tom Carroll's study efforts. The salient points are as follows:

- The current rental rates for conduit space appear to be adequate, given "fiber" provisioning on a going forward basis (e.g., sub-ducts within a duct).
- 2. While "pole attachment fee" costs are less than those costs that we impute into our own rate structure, for a number of reasons we should remain silent on this issue until the current legal action between the CATV industry and the PSC is settled (<u>e.g.</u>, our most recent pole attachment study shows costs that are less than those presently being argued in the case).
- 3. In addition to simply filing new rates, PSC Law changes would be required.

In conclusion, it would appear that the most appropriate course of action is to maintain the status quo for the immediate future. However, I plan to revisit these issues in a couple of months.

Cat Saudjelle

Attachment

cc: B. Geeslin R. Anderson T. Carroll L. Maese

1865r 8

4/18

I. GENERAL

The purpose of this paper is to outline various items of interest concerning two areas of telephone plant; telephone poles and related issues such as construction, attachments, and moving of poles; and conduit space rental issues. Both of these areas will be of increasing importance in the future as competition within the telecommunications and cable television industries increase. Companies that are presently categorized as "Licensees", and who are given what appear to be special discounts for use of telephone facilities, may soon be in direct competition with New York Telephone for local telephone service. An understanding of both historic events as well as the present environment is essential in order to discuss possible strategies to deal with these potential competitive threats.

II. PRESENT RATE STRUCTURE

A. Pole Attachments

Pole attachment rates are found under Section 14 of the PSC 900 Tariff and are as follows:

 CATV, Other Licenses (Such as Power Companies), and 	Annual Rate = \$ 8.97	
Municipalities (non-Public Safaty)		

- Municipalities (Public Safety)

Annual Rate = \$ 5.19

"Make Ready" work, such as surveys, inspections, and engineering, are based on the full cost (including general overheads) if NYT performs the work or all fees plus a 10% premium if an outside contractor hired by NYT performs the work.

Prior to the Commission's 1991 Opinion and Order in Case 90-C-0191, CATV companies were given a 25% discount on the normal tariff rate. PSC Staff's proposal in 90-C-0191 to eliminate this discount was approved by the Commission. CATV's Petition for Reconsideration of this decision was granted and at present is under review by the Commission. It is unlikely, however, that the Commission will reinstate the discount.

There are approximately 345 Pole Attachment agreements currently in effect, generating annual revenues of \$5.8M.

B. NYT Conduit Space Rentals (Outside Manhattan and Bronx)

				4	Annual Fee Per Duct Foot			
				Ņ	<u>lain</u>	<u>Conduit</u>	Sub	sidiary
Single C	able, Less	Than 1.1"	Diameter		\$.45	\$.85
Single Ca Two or Ma	able, More ore Cables	Than 1.1" (Regardless	Diameter of Size	or	\$.75	\$	1.40

These rates are fixed and are included in all Conduit Occupancy Agreements. On average, customers are presently paying NYT about \$.70 per duct foot. "Make Ready" work, such as surveys, inspections, and engineering, are based on the full cost to NYT (including general overheads) plus a premium of 35%. If such work is performed by a contractor hired by NYT, the customer is billed the full cost of the Contractor's fee plus a 10% premium. The costs for periodic inspections are billed to the customer at full cost.

There are approximately 40 Conduit Rental Agreements currently in effect, generating annual revenues of \$1.46M.

C. ECS Conduit Space Rentals (Manhattan & Bronx)

Conduit space rental rates are set by Empire City Subway Company and are the same for all potential occupants.

	<u>Annual Fee Per Duct Foot</u>
2" or 2 1/2" Trunk or Or Distribution Cable	\$.6909091
3" Trunk or Distribution Cable	\$.7931818
4" Trunk Cable	\$ 1.1045455

III. PRESENT COST METHODOLOGIES

A. Pole Attachments

Pole attachment costs are calculated by first determining the total average investment per pole. Total Pole Telephone Plant in Service (TPIS) is divided by the total number of poles to calculate a unit investment cost. From this unit investment cost is subtracted that portion of the pole investment such as anchors, appurtenances, etc. which are normally paid for separately by the connecting party (The χ used in this calculation is .29%). The remaining unit investment is then multiplied by the "usable space allocation" χ to identify that portion of the pole costs that will be paid for by the connecting party (The χ used in this calculation is 9.43%). This investment is then multiplied by an annual Carrying Charge Factor (CCF) to calculate the annual attachment rate for connecting parties. The actual calculation used in the development of the 1991 attachment cost is as follows:

A. Total Pole TPIS	335,545,507
B. Total Number of Poles 🖌	1,115,417
C. Investment per Pole (A/B)	300.83
D. Appurtenances Not Usable (C*.0029) or Paid for Separately.	.87
E. Remaining Pole Investment (C-D)	299.95
F. Usable Space Allocation (E*.0943)	28.29
G. Annual Carrying Charge Factor	.2825
H. Annual Pole Attachment Cost (F*G)	7.99

Based on the above calculation and the present tariff rate of \$8.97, it was determined that no change to the existing rate would be filed in 1991.

B. Conduit Space Costs

The current rates for conduit are based upon pre-divestiture cost data that at the present time is not available.

The most recent conduit study (1990) identifies an annual conduit space cost of \$1.87 per duct foot using actual fill ratios of 58% for main conduit and 80% for subsidiary conduit. If 100% fill is assumed, the cost decreases to \$1.15 per duct foot.

IV. "JOINTLY USED" POLES VS. "JOINTLY OWNED" POLES

"Jointly Used" poles are poles that have some shared usage between NYT and another utility (e.g., a local power company). Ownership of the pole resides with either of the two parties. Attachment rates for the "non-owner" are either set by Joint Use Agreements between the parties or by directly referencing the tariff rates. Attachment rates for third parties (e.g., CATV) are the same as the normal tariff rate and are paid to the company who owns the pole.

"Jointly owned" poles are poles where both NYT and the local power company each have more than two wire strands occupying the same pole. Agreements are signed designating which party shall have the majority share of ownership, and hence, "custodianship" of these poles. For example, the agreement between NYT and Central Hudson Gas and Electricity (CHG&E) states that NYT shall assume 46% ownership and CHG&E shall assume 54% ownership of all jointly owned poles within their service areas (These percentages are frequently based upon the ratio of solely owned poles of each utility). In addition, attachment fees for third parties, such as CATV companies, are paid to CHG&E as the custodian of the poles.

In some areas of the state there are no joint ownership agreements in force. As an example, NYT and Orange and Rockland Utilities do not have such an agreement. Each party owns their own poles and each pays the other party attachment fees set by contract and based on each parties percentage of ownership of all poles in the area. Third parties pay tariff attachment fees to the owner of each pole.

V. POLE RELOCATIONS

As a result of municipal road widening and/or repair projects (State, City, or local), NYT is frequently required to either move or replace existing poles that run along the road. If the property onto which the pole is to be moved is owned by the municipality, then NYT assumes all costs for the relocation. If the property is privately owned, and the municipality receives an easement for that property, then the municipality assumes all cost responsibility including pole relocation costs. Most pole relocations are performed within municipal property boundaries requiring NYT to absorb the costs.

Costs to move poles along Federal highways are compensated by the Government.

Pole relocations are normally booked as a retirement of the existing pole investment and capitalization of the new pole costs. The estimated cost for pole relocations in 1992, as identified in the Fall Construction program, is approximately \$2.7M.

.

VI. COMPETITIVE ISSUES

A. Pole Attachments

The question has arisen that, based upon the existing formula for the development of pole attachment rates for third parties, potential competitors for telecommunications services, such as CATV companies, only compensate us for approximately 9.43% of the total costs of the poles to which they may wish to attach (this is the usable space % as shown previously).

NYT is left to recover the remaining 90.57% of the costs from its own products and services (However, if it is a pole that is jointly occupied by another utility, some of these costs will be shared). On the surface, it appears that NYT may be placed at a significant competitive disadvantage if CATV companies are allowed to provide telecommunications services using NYT poles at tariffed attachment rates. The obvious solution would be to allocate a portion of the "non-usable" space (such as below ground and from ground level to 15 feet up the pole, the minimum clearance required before any connection is made to a pole) to the competitive connector's cost responsibility.

It is difficult to predict how such a position would be received by the Commission. CATV rates were only recently increased by the elimination of the 25% discount in Case 90-C-0191 (which is still being adjudicated on an appeal by the CATV industry). Additionally, there is no immediate need for them to explore such a proposition because at the present time there is no perceived competition between CATV and the Telcos for either cable television or telecommunications services.

The CATV industry would no doubt react extremely negatively to any proposition to increase their rates. In their opposition filing to the 90-C-O191 decision eliminating the 25% discount, CATV (through Lee Selwyn) argue that current NYT rates are more than adequate to cover its <u>incremental</u> costs to attach a CATV line and, in fact, provide a significant level of contribution above such costs. While their position may be valid, it is put forth in the context of an non-telephone industry group arguing for access to monopoly <u>telecommunications</u> facilities for the provision of <u>cable</u> television are fairly obvious.

In 1985, the Company filed to increase conduit rental rates based on a revised study methodology and was met with strong opposition from CATV. As support for their position, CATV cited Section 119-a of the New York State Public Service Law which reads as follows: "The commission shall prescribe just and reasonable rates, terms, and conditions for attachments to utility poles and the use of utility ducts, trenches, and conduits. A just and reasonable rate shall assure the utility of the recovery of not less than the additional cost of providing a pole attachment or of using a trench, duct, or conduit nor not more than the actual operating expenses and return on capital of the utility attributed to that portion of the pole, duct, trench, or conduit used. With respect to cable television attachments and use, such portion shall be the percentage of total usable space on a pole or the total capacity user. Usable space shall be the space on a utility pole above the minimum grade level which can be used for the attachment of wires and cables".

It would appear that, absent the convincing establishment of a competitive environment between NYT and the CATV industry, any attempt to establish a tiered rate structure for CATV connections would not be possible. However, such a concept may be viable for connections by other communications carriers, such as AT&T, who at present pay the same rates as the CATV companies. Connections by carriers are presently de minimus but as IntraLata Presubscription approaches, we may wish to explore this position

B. Conduit Space Rentals

As mentioned above, Public Service Law limits our cost recovery of both pole and conduit space to only that portion which is actually <u>occupied</u> by the Licensee. In the 1985 conduit rental filing, the Company attempted to introduce the concept of a fill factor and how such a factor results in a higher cost per foot of occupied conduit. The CATV intervenors cited the law as written to exclude fill loadings. No definitive ruling was issued by the PSC because the Company withdrew its application in the face of the CATV opposition. Assuming no fill loading, the most recent cost study (as previously mentioned) identifies a cost of approximately \$1.15 annually per conduit foot (\$1.87 using actual fill ratios).

The question that has been raised is "are the existing NYT conduit rental rates compensatory?" The answer to such a question is not as easy as it seems because of the following:

> Copper and Coaxial cables of both other communications companies and CATV providers are generally placed in conduit ducts separate from NYT facilities. As previously mentioned, the rates charged for these cables average about \$.70 per duct foot. Matching the

\$.70 revenue against the \$1.15 cost (w/o fill) results in a shortfall for NYT.

However, on a going forward basis the majority of new rental agreements will be for the placing of fiber optic cable in NYT conduits. The normal procedure for provisioning fiber optic cable is to sub-divide a single duct into a number of "inner" ducts (up to eight). Inner ducts are used for the protection of individual fiber cables and they allow for the joint occupancy of a single duct by a number of inner ducts, carrying both NYT and other users within the individual inner ducts. Inner ducts, however, are not considered in the quantification of total duct feet costs, which are based on the single duct as the unit of measurement. Utilizing a hypothetical separately by CATV and NYT, based on average rental rates the annual rental fee would be approximately \$.70 per duct foot for CATV. Matched against a cost of \$.63 (the "no fill" cost of \$1.15 divided by 2), the CATV revenue results in a contribution to NYT.

C. Incremental Costs

Another important consideration is the fact that NYT is not obligated to provide either pole attachments or conduit space. If a pre-provisioning engineering study determines that existing space is not available, the request may be rejected. These engineering studies examine both the present and <u>future</u> requirements of NYT. Consequently, NYT is offering space that would essential remain vacant were it not for the Licensee's request. In addition, the Licensee is responsible for all incremental "make ready" work. lost on intervenor parties, as witnessed by Mr. Selwyn's comments in the current pole attachment proceeding.

> T. CARROLL 3/31/92

CONDUIT RATES

For the past two years, the Customer Services Staff and Regulatory organizations have been attempting to gain PSC approval of revised conduit rates. The initial attempt was based on a current cost study and resulted in a proposed rate of \$3.57/foot/year. This rate, if accepted and approved by the PSC, would have placed New York Telephone in the middle of rates charged by other RBOC's \$2.50-\$7.50).

The Company was successful in selling the current cost concept to members of the PSC Staff, however politically the rate was not acceptable to senior PSC Staff. In addition, the PSC Staff Legal Counsel determined the rate was not in accordance with the provisions of Public Service Law, Section 119(a) (PSL, 119-a). This law implies that the conduit rates (and pole attachment rates) must be based on embedded cost.

In December 1984 and again in November, 1985, the Company filed conduit rates in the \$1.50 to \$1.60 range based on embedded costs. Several intervenors challenged the initial filing and the PSC Legal Staff challenged the second filing as not in compliance with PSL-119(a) because a "fill factor" was used to develop the rates. Both filings were withdrawn because of these challenges. If the "fill factor" is omitted from the embedded cost rate calculation, the resultant rate increase would be insignificant (about \$.05/foot/year).

At present, an impasse exists between the Company and the PSC Staff. The Staff undoubtedly does not wish to tackle this issue. This may leave two alternatives open to the Company: 1) to challenge PSL-119(a) by filing rates based on costs well above the embedded cost or 2) to lobby for the repeal of that portion of PSL-119(a) that deals with setting rates using embedded cost. Neither of these courses of action hold much promise since it is doubtful the Company would want to openly challenge the PSC or the Legislature with a rate increase of \$274M currently pending before the Commission.

POLE ATTACHMENT RATES

The Pole Attachment Rate issue is basically identical to the conduit issue because both involve PSL-119(a). At present the CATV pole attachment rate calculations are dictated by PSC Opinion and Order 83-4 issued January 31, 1983. The rates were increased at that time from \$5.00/pole attachment/year to \$5.89. The current rate of \$6.22 was set in 1985. A new rate of \$6.77 will be filed in the 3Q-1986.

In addition we have explored the possibility of a tiered charge - one for CATV, a second for municipal governments, and a third for all other users. This third rate would be 1 1/2 - 3 times the CATV rates. However, no legal determination has been made on this approach, which might be considered discriminatory pricing.

CURRENT ACTIVITY AFFECTING RATES

Recently, a Federal law similar to PSL-119(a) was found to be unconstitutional by a U. S. District Court (the law was challenged in Florida by a power Company). This federal law passed in 1978, gives the FCC the power to regulate rates that electric companies charge CATV operators for pole attachments. The court ruled that the cable company's use of the electric poles was a "taking" of property that the Constitution says requires "just compensation." The appeals court stated the 1978 law is unconstitutional because it is the responsibility of the federal courts, and not the FCC, to determine what is "just compensation." Currently, this decision has been appealed and the case is being reviewed by the United States Supreme Court. There is every expectation that the court will find the law unconstitutional. A decision should be forthcoming by 12/31/86.

However, even if the Federal law is found to be unconstitutional, it may be several years before such a decision would impact PSL-119(a). In the interim, the PSC is almost certain to continue to regulate conduit and pole attachment rates through the requirement to establish tariffs (this was done in 1985 for pole attachments). Ultimately, the Company may be able to raise these rates, but it is doubtful we could ever move the rates to reflect current costs.

POLITICAL CONSIDERATIONS

Political pressure, brought about by the IEC's, CATV Association, and municipalities has caused the PSC Staff to quickly back away from supporting our requests for conduit rate increases. Pole attachment rates however are dictated by the Order and Opinion and the PSC Staff has readily accepted these increases,

There is little doubt pressure will continue to be exerted by the interested parties to keep rates low. For this reason, it is doubtful the Company will ever obtain current or marginal cost based rates. However, we should continue to press for increased rates even after the Supreme Court reaches a decision.