A REPORT FOR AGRICOLA WIND LLC

# **Agricola Wind**

# **EMF Study Report**

AUGUST 27, 2024

PREPARED FOR:

Agricola Wind LLC

PREPARED BY: Westwood Surveying & Engineering ww-pc.com

# ELECTRIC AND MAGNETIC FIELD (EMF) STUDY

**Agricola Wind** 

Cayuga County, New York

#### **Prepared For:**

Agricola Wind LLC 90 State Street Albany, New York 12207

#### **Prepared By:**

Westwood Surveying & Engineering 2805 North Dallas Parkway, Suite 150 Plano, TX 75093

Project Number: R0042617.01 Date: August 27th, 2024



### **Revision Notes**

| Rev<br>No. | Issue Date | Prepared by | Reviewed by | Description       |
|------------|------------|-------------|-------------|-------------------|
| 0          | 08/16/2024 | TB          | MB          | ISSUED FOR REVIEW |
| 1          | 08/27/2024 | TB          | MB          | ISSUED FOR REVIEW |
|            |            |             |             |                   |



# **Table of Contents**

| 1. Intro | duction                                                      | 1 |
|----------|--------------------------------------------------------------|---|
| 2. Gene  | ral Description of Electric and Magnetic Fields              | 2 |
| А.       | Background Information                                       | 2 |
| B.       | Units of Measure                                             | 2 |
| C.       | Electric Fields                                              | 2 |
| D.       | Magnetic Fields                                              | 3 |
| E.       | EMF Standard Design Limits                                   | 5 |
| 3. Proje | ct Overview                                                  | 5 |
| 4. Calcu | lations                                                      | 8 |
| А.       | Specific Parameters and Circuit Information for Calculations | 8 |
| B.       | General Parameters                                           | 8 |
| 5. Assur | nptions & Limitations                                        | 9 |
| 6. Resul | lts1                                                         | Ó |
| 7. Appe  | ndix A – EMF DATA1                                           | 6 |



#### 1. Introduction

The Agricola Wind Substation interconnection is located in Cayuga County, New York (the Project). Agricola Wind Substation is a proposed 115kV greenfield collection substation with an interconnecting span to a utility substation. The utility substation has an in-and-out interconnection off an existing transmission line.

An evaluation was performed of the electric and magnetic fields (EMFs) associated with the proposed 115kV in and out substation interconnection, as well as the interconnection between the collection substation and utility substation. The purpose of this study was to perform computer modeling of the lines associated with the Project and prepare a technical report of the calculation results, which are presented herein. Each line cross section was analyzed, and results are provided below for each segment.

As demonstrated in the calculations to follow, the maximum magnetic field produced by the three new transmission spans at the edge of the right-of-way is predicted to be 19.92 mG, which is below the New York state limit of 200 mG. The maximum electric field produced by the three new transmission spans anywhere within the right-of-way is predicted to be .421 kV/m, which is below the New York state limit of 11.8 kV/m. The maximum electric field produced by the three new transmission spans at the edge of the right-of-way is predicted to be .166 kV/m, below the New York state limit of 1.6 kV/m. There are no federal or New York state standards limiting occupational or residential exposure to 60-Hz EMF in the United States. There are no habitable buildings encroaching on any section of ROW or any transmission span for the three spans analyzed.

No transmission or substation design was included in the scope of this report, and information on heights, pole framings, and span lengths/tensions are based on reasonable assumptions for this voltage class. Assumptions and limitations for this analysis are listed in section 5 of this report.

#### 2. General Description of Electric and Magnetic Fields

#### **A. Background Information**

The generation, delivery, and use of electricity produces both electric and magnetic fields. Electric and magnetic fields are created by electrical voltage and electrical current respectively. Electrical facilities, such as the Agricola Wind Substation Interconnection, produce electric and magnetic fields during operation. The exposure to electric and magnetic fields is complex and comes from multiple sources in the home and workplace in addition to power lines.

#### **B. Units of Measure**

Electric field values are reported using units of volts per meter (V/m). Often the electric field is reported using thousands of volts per meter (or kV/m).

Magnetic field values are reported using units of gauss (G). However, it is usually more convenient to report magnetic field using milligauss (mG) which is equal to one-thousandth of a gauss (i.e., 1 mG = 0.001 G). Some technical reports also use the unit tesla (T) or microtesla ( $\mu$ T; 1  $\mu$ T = 0.000001 T) for magnetic fields. The conversion between these two units is 1 mG = 0.1  $\mu$ T and 1  $\mu$ T = 10mG.

#### **C. Electric Fields**

The potential or voltage (electrical pressure) on an object causes an electric field. Any object with an electric charge on it has a voltage (potential) at its surface caused by the accumulation of more electrons as compared with another object or surface. The voltage effect is not limited to the surface of the object but exists in the surrounding space in diminishing intensity. Electric fields can exert a force on the other electric charges at a distance. The change in voltage over distance is known as the electric field. The electric field becomes stronger near a charged object and decreases with distance away from the object. Electric fields are found in everyday life with typical values of electric field measured 1-foot away from common appliances shown in Figure 1.

| Appliance        | Electric Field (kV/m) |
|------------------|-----------------------|
| Electric Blanket | 0.25*                 |
| Broiler          | 0.13                  |
| Refrigerator     | 0.06                  |
| Iron             | 0.06                  |
| Hand Mixer       | 0.05                  |
| Coffee Pot       | 0.03                  |

\* Note: 1 to 10 kV/m next to blanket wires

Source: Carstensen 1985; Enertech Consultants 1985

Figure 1 – Typical Electric Field Values for Appliances at 12 inches

In the United States, electric power transmission lines create 60 Hz electric fields. These fields result from the voltage of the transmission line phase conductors with respect to the ground.

Electric field strengths from a transmission line decrease with distance away from the outermost conductor, typically at a rate of approximately one divided by the distance squared  $(1/d^2)$ . For example, in an undisturbed field, if the electric strength is 10 kV/m at 1 meter away, it will be approximately 2.5 kV/m at 2 meters away, and 0.625 kV/m at 4 meters away. Electric field strengths for a transmission line remain relatively constant over time because the voltage of the line is kept within bounds of about  $\pm$  5 percent of its rated voltage.

Transmission line electric fields are affected by the presence of grounded and conductive objects as demonstrated by Figure 1. Trees and buildings, for example can significantly reduce ground level electric fields by shielding the area nearby.



Figure 2 – Electric Field Measurements Demonstrate Shielding Due to the Presence of a Tree

**D.** Magnetic Fields

An electric current flowing in a conductor (electric equipment, household appliance, power circuits, etc.) creates a magnetic field. The commonly used magnetic field intensity unit of measure is the milligauss (mG).

Since the magnetic field is caused by the flow of an electric current, a device must be operated to create a magnetic field. Magnetic field strengths of many common household appliances were measured and typical magnetic field values for some appliances have been measured as low as 0.3 mG to as high as 20,000 mG. This is shown in figure 3.

| Appliance                  | Magnetic Field at 12 inches<br>Away (mG) | Maximum Magnetic Field<br>(mG) |
|----------------------------|------------------------------------------|--------------------------------|
| Electric Range             | 3 to 30                                  | 100 to 1,200                   |
| Electric Oven              | 2 to 25                                  | 10 to 50                       |
| Garbage Disposal           | 10 to 20                                 | 850 to 1,250                   |
| Refrigerator               | 0.3 to 3                                 | 4 to 15                        |
| Clothes Washer             | 2 to 30                                  | 10 to 400                      |
| Clothes Dryer              | 1 to 3                                   | 3 to 80                        |
| Coffee Maker               | 0.8 to 1                                 | 15 to 250                      |
| Toaster                    | 0.6 to 8                                 | 70 to 150                      |
| Crock Pot                  | 0.8 to 1                                 | 15 to 80                       |
| Iron                       | 1 to 3                                   | 90 to 300                      |
| Can Opener                 | 35 to 250                                | 10,000 to 20,000               |
| Blender, Popper, Processor | 6 to 20                                  | 250 to 1,050                   |
| Vacuum Cleaner             | 20 to 200                                | 2,000 to 8,000                 |
| Portable Heater            | 1 to 40                                  | 100 to 1,100                   |
| Fans/Blowers               | 0.4 to 40                                | 20 to 300                      |
| Hair Dryer                 | 1 to 70                                  | 60 to 20,000                   |
| Electric Shaver            | 1 to 100                                 | 150 to 15,000                  |
| Fluorescent Light Fixture  | 2 to 40                                  | 140 to 2,000                   |
| Fluorescent Desk Lamp      | 6 to 20                                  | 400 to 3,500                   |
| Circular Saws              | 10 to 250                                | 2,000 to 10,000                |
| Electric Drill             | 25 to 35                                 | 4,000 to 8,000                 |

Source: IITRI 1984; Silva 1989

FIGURE 3 – MAGNETIC FIELDS FROM HOUSEHOLD APPLIANCES

Electric power transmission lines also create magnetic fields. These fields are typically generated by the current (amperes) flowing through the phase conductors. The magnetic field is a vector quantity having magnitude and direction.

Similar to the electric field, magnetic field strengths decrease with the inverse square of the distance away from the power line. Unlike electric fields that vary little over time, magnetic fields are not constant because the current on any power line changes in response to increasing and decreasing electrical load. Magnetic fields are not easily shielded.

E. EMF Standard Design Limits

There are no federal standards limiting occupational or residential exposure to 60-Hz EMF in the United States. However, New York has exposure limits for electric and magnetic fields measured based on IEEE (Institute of Electrical and Electronics Engineers) standard C95.3-2021, 1 meter from the ground. For electric fields the limit anywhere within the right-of-way of the transmission line is 11.8 kV/m and the limit at the edge of the right-of-way is 1.6 kV/m. For the magnetic field, the only limit is at the edge of the right-of-way, and it is 200 mG.

#### 3. Project Overview

The Agricola Wind Substation Connection is broken up into three unique right-of-way sections, as defined below:

| Calculation | Cross-                                                                                                      | Description                                                                                                       |  |
|-------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| #           | Section #                                                                                                   |                                                                                                                   |  |
| 1           | 1One Horizontally Oriented 115 kV Circuit to Horizontal Substa1Dead-End with 795 26/7 Drake ACSR Conductor. |                                                                                                                   |  |
| 2           | 2                                                                                                           | One Horizontally Oriented 115 kV Circuit to Horizontal Substation<br>Dead-End with 795 26/7 Drake ACSR Conductor. |  |
| 3           | 3                                                                                                           | One Horizontally Substation Dead-End to Horizontal Substation<br>Dead-End with 795 26/7 Drake ACSR Conductor.     |  |

| Table 1 – | EMF | Study | <b>Cross-reference</b> |
|-----------|-----|-------|------------------------|
|-----------|-----|-------|------------------------|

| Table 2 – El | MF Study Cros | s-Section Struct | ure Range |
|--------------|---------------|------------------|-----------|
|--------------|---------------|------------------|-----------|

| Calculation<br># | Cross-<br>Section # | Structure Range                                  |
|------------------|---------------------|--------------------------------------------------|
| 1                | 1                   | Between Transmission Str. 1 and Utility SUB DE-1 |
| 2                | 2                   | Between Transmission Str. 2 and Utility SUB DE-2 |
| 3                | 3                   | Between Collection SUB DE-1 and Utility SUB DE-3 |



Figure 4 – Aerial imagery showing plan view of all cross sections and proposed substation \*All Dimensions shown are in feet



Figure 5 – Aerial imagery showing plan view of nearest occupied residence \*All Dimensions shown are in feet

#### 4. Calculations

#### A. Specific Parameters and Circuit Information for Calculations

| Corridor Width for Calculation | Corridor width based on a future ROW proposed width of 150ft.                                                                                                                                                                                      |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Frequency                      | 60 Hz                                                                                                                                                                                                                                              |  |  |
| Loading                        | Amperage used was based on the max hypothetical amperage the conductor will be operated up to at 212°F at the line location.                                                                                                                       |  |  |
| Wire Location                  | Based on PLS model (varies)                                                                                                                                                                                                                        |  |  |
| Measurement Location           | 3.28 ft. (1m) above ground                                                                                                                                                                                                                         |  |  |
| Software Used                  | PLS-CADD v19.16 x64                                                                                                                                                                                                                                |  |  |
| Phasing                        | For the purpose of the EMF study, phases A, B, and C will<br>have phase angles of 0 degrees, 120 degrees, and 120<br>degrees, respectively. Balanced three phase loads were<br>assumed. See Figure 4 to Figure 13 for phasing for each<br>section. |  |  |

#### Table 3 – EMF Study Modeling Parameters

Table 4 - EMF Study Modeling Parameters

| Calculation<br># | Number of<br>circuits in<br>ROW<br>Segment | Voltage | Status | Conductors Modeled  | Summer Normal<br>Current (Amps) |
|------------------|--------------------------------------------|---------|--------|---------------------|---------------------------------|
| 1                | 1                                          | 115 kV  | New    | 795 26/7 Drake ACSR | 1110A                           |
| 2                | 1                                          | 115 kV  | New    | 795 26/7 Drake ACSR | 1110A                           |
| 3                | 1                                          | 115 kV  | New    | 795 26/7 Drake ACSR | 556A                            |

#### **B. General Parameters**

The modeling and calculations of electric and magnetic fields were performed using the 3D EMF calculator within PLS-CADD, based on Electric Power Research Institute (EPRI) and IEEE methods.

The calculations were performed on a 60 Hz frequency, with the conductors loaded with a max operating current. The calculations were made, based on IEEE standard C95.3-2021, at 1 meter (3.28ft) above ground in 5ft increments across the right-of-way at the point of Max electric/magnetic field along centerline.

#### 5. Assumptions & Limitations

Loading for this EMF report was based on maximum loading, per section, provided by Agricola Wind LLC. Assumed conductor was 795 ACSR "Drake", as provided by Agricola Wind LLC. A different cable size or loading on the line would result in an increase or decrease in EMF contributions from the line. This EMF report is based off the EMF effects from each span on its own ROW and does not factor in the constructive or destructive interference from any other existing transmission, distribution or electrical equipment (existing or new). The effects of which will likely increase or decrease the EMF effects within the ROW. This was not included as no information on existing transmission or distribution lines was provided for this report by Agricola Wind LLC. Furthermore, the electrical equipment in the substation that will be installed in the future was not included in this analysis and would likely result in an increase or decrease in the effects of EMF on the ROW.

No transmission or substation design was included in the scope of this report. Information on heights, pole framings, and span lengths/tensions are based on reasonable assumptions for this voltage class, or information provided in appendix 5-c to exhibit 5 of the Applicant's VIII Siting Permit Application. As Westwood made assumptions and used drawings provided by Agricola Wind LLC that are pending final design, final engineering may impact the EMF positively or negatively, of which the magnitude is unknown.

#### 6. Results

CALC #1 AGRICOLA WIND 115 KV CIRCUIT HORIZONTAL PHASE ORIENTATION – MAGNETIC FIELD



FINAL DESIGN TO BE COORDINATED WITH LIBERTY RENEWABLES



FIGURE 6 – AGRICOLA WIND PROJECT PHASE ORIENTATION MAGNETIC FIELD STRENGTH FOR 115KV CIRCUIT BETWEEN TRANSMISSION STR. 1 AND UTILITY SUB DE-1





FINAL DESIGN TO BE COORDINATED WITH LIBERTY RENEWABLES



FIGURE 7 – AGRICOLA WIND PROJECT PHASE ORIENTATION ELECTRIC FIELD STRENGTH FOR 115KV CIRCUIT BETWEEN TRANSMISSION STR. 1 AND UTILITY SUB DE-1



CALC #2 AGRICOLA WIND 115 KV CIRCUIT HORIZONTAL PHASE ORIENTATION – MAGNETIC FIELD

FINAL DESIGN TO BE COORDINATED WITH LIBERTY RENEWABLES



FIGURE 8 – AGRICOLA WIND PROJECT PHASE ORIENTATION MAGNETIC FIELD STRENGTH FOR 115KV CIRCUIT BETWEEN TRANSMISSION STR. 2 AND UTILITY SUB DE-2



# CALC #2 AGRICOLA WIND 115 KV CIRCUIT HORIZONTAL PHASE ORIENTATION – ELECTRIC FIELD

FINAL DESIGN TO BE COORDINATED WITH LIBERTY RENEWABLES



FIGURE 9 – AGRICOLA WIND PROJECT PHASE ORIENTATION ELECTRIC FIELD STRENGTH FOR 115KV CIRCUIT BETWEEN TRANSMISSION STR. 2 AND UTILITY SUB DE-2







FINAL DESIGN TO BE COORDINATED WITH LIBERTY RENEWABLES



FIGURE 10 – AGRICOLA WIND PROJECT PHASE ORIENTATION MAGNETIC FIELD STRENGTH FOR 115KV CIRCUIT BETWEEN UTILITY SUB DE-3 AND COLLECTION SUB DE-1





# CALC #3 AGRICOLA WIND 115 KV CIRCUIT HORIZONTAL PHASE ORIENTATION – ELECTRIC FIELD

FINAL DESIGN TO BE COORDINATED WITH LIBERTY RENEWABLES



FIGURE 11 – AGRICOLA WIND PROJECT PHASE ORIENTATION ELECTRIC FIELD STRENGTH FOR 115KV CIRCUIT BETWEEN UTILITY SUB DE-3 AND COLLECTION SUB DE-1

### 7. Appendix A – EMF DATA

Calculated field strengths are shown in Table 7 and Table 8 below at various distances from centerline of the proposed line.

|                               | Magneti | c Field Stren | gth (mG) |
|-------------------------------|---------|---------------|----------|
| Distance From Centerline (ft) | Calc #1 | Calc #2       | Calc #3  |
| -500                          | 0       | 0             | 0        |
| -495                          | 0.048   | 0.446         | 0.049    |
| -490                          | 0.047   | 0.457         | 0.051    |
| -485                          | 0.046   | 0.468         | 0.052    |
| -480                          | 0.044   | 0.479         | 0.054    |
| -475                          | 0.043   | 0.49          | 0.055    |
| -470                          | 0.042   | 0.502         | 0.057    |
| -465                          | 0.041   | 0.515         | 0.059    |
| -460                          | 0.039   | 0.528         | 0.061    |
| -455                          | 0.038   | 0.541         | 0.063    |
| -450                          | 0.036   | 0.555         | 0.065    |
| -445                          | 0.035   | 0.569         | 0.067    |
| -440                          | 0.034   | 0.584         | 0.069    |
| -435                          | 0.033   | 0.6           | 0.072    |
| -430                          | 0.032   | 0.616         | 0.074    |
| -425                          | 0.032   | 0.633         | 0.077    |
| -420                          | 0.032   | 0.65          | 0.08     |
| -415                          | 0.032   | 0.668         | 0.082    |
| -410                          | 0.033   | 0.687         | 0.085    |
| -405                          | 0.035   | 0.707         | 0.089    |
| -400                          | 0.038   | 0.727         | 0.092    |
| -395                          | 0.041   | 0.748         | 0.095    |
| -390                          | 0.045   | 0.77          | 0.099    |
| -385                          | 0.05    | 0.793         | 0.103    |
| -380                          | 0.056   | 0.817         | 0.107    |
| -375                          | 0.062   | 0.842         | 0.111    |
| -370                          | 0.069   | 0.868         | 0.115    |
| -365                          | 0.077   | 0.896         | 0.12     |
| -360                          | 0.085   | 0.924         | 0.125    |
| -355                          | 0.095   | 0.954         | 0.13     |
| -350                          | 0.105   | 0.985         | 0.136    |
| -345                          | 0.116   | 1.018         | 0.141    |
| -340                          | 0.127   | 1.052         | 0.148    |
| -335                          | 0.14    | 1.088         | 0.154    |
| -330                          | 0.154   | 1.126         | 0.161    |

TABLE 5 - CALCULATED MAGNETIC FIELD STRENGTH RESULTS

| -325 | 0.169 | 1.165 | 0.168 |
|------|-------|-------|-------|
| -320 | 0.185 | 1.206 | 0.176 |
| -315 | 0.203 | 1.25  | 0.184 |
| -310 | 0.221 | 1.296 | 0.193 |
| -305 | 0.242 | 1.344 | 0.202 |
| -300 | 0.264 | 1.394 | 0.212 |
| -295 | 0.287 | 1.448 | 0.223 |
| -290 | 0.313 | 1.504 | 0.234 |
| -285 | 0.341 | 1.563 | 0.246 |
| -280 | 0.371 | 1.626 | 0.259 |
| -275 | 0.403 | 1.692 | 0.273 |
| -270 | 0.438 | 1.761 | 0.288 |
| -265 | 0.476 | 1.835 | 0.304 |
| -260 | 0.517 | 1.913 | 0.321 |
| -255 | 0.562 | 1.996 | 0.339 |
| -250 | 0.611 | 2.084 | 0.359 |
| -245 | 0.663 | 2.178 | 0.38  |
| -240 | 0.72  | 2.277 | 0.403 |
| -235 | 0.783 | 2.383 | 0.428 |
| -230 | 0.851 | 2.495 | 0.455 |
| -225 | 0.925 | 2.615 | 0.484 |
| -220 | 1.006 | 2.743 | 0.516 |
| -215 | 1.094 | 2.88  | 0.55  |
| -210 | 1.191 | 3.026 | 0.588 |
| -205 | 1.296 | 3.183 | 0.629 |
| -200 | 1.412 | 3.352 | 0.673 |
| -195 | 1.538 | 3.533 | 0.722 |
| -190 | 1.677 | 3.728 | 0.776 |
| -185 | 1.83  | 3.939 | 0.835 |
| -180 | 1.999 | 4.167 | 0.9   |
| -175 | 2.185 | 4.414 | 0.972 |
| -170 | 2.389 | 4.681 | 1.051 |
| -165 | 2.615 | 4.97  | 1.14  |
| -160 | 2.866 | 5.281 | 1.237 |
| -155 | 3.142 | 5.619 | 1.346 |
| -150 | 3.449 | 5.988 | 1.468 |
| -145 | 3.79  | 6.395 | 1.604 |
| -140 | 4.17  | 6.842 | 1.757 |
| -135 | 4.592 | 7.333 | 1.929 |
| -130 | 5.065 | 7.874 | 2.123 |
| -125 | 5.594 | 8.471 | 2.343 |

| -120 | 6.186  | 9.132  | 2.592  |
|------|--------|--------|--------|
| -115 | 6.848  | 9.867  | 2.871  |
| -110 | 7.603  | 10.684 | 3.192  |
| -105 | 8.454  | 11.598 | 3.558  |
| -100 | 9.415  | 12.621 | 3.977  |
| -95  | 10.494 | 13.772 | 4.457  |
| -90  | 11.697 | 15.049 | 5.01   |
| -85  | 13.057 | 16.478 | 5.645  |
| -80  | 14.594 | 18.091 | 6.377  |
| -75  | 16.355 | 19.915 | 7.221  |
| -70  | 18.391 | 21.981 | 8.189  |
| -65  | 20.714 | 24.323 | 9.305  |
| -60  | 23.365 | 26.977 | 10.579 |
| -55  | 26.385 | 29.978 | 12.029 |
| -50  | 29.817 | 33.401 | 13.661 |
| -45  | 33.692 | 37.283 | 15.397 |
| -40  | 38.023 | 41.599 | 17.246 |
| -35  | 42.786 | 46.306 | 19.165 |
| -30  | 47.893 | 51.294 | 21.077 |
| -25  | 53.169 | 56.349 | 22.88  |
| -20  | 58.247 | 61.141 | 24.463 |
| -15  | 62.376 | 65.183 | 25.719 |
| -10  | 65.495 | 68.198 | 26.572 |
| -5   | 67.286 | 69.827 | 26.984 |
| 0    | 67.581 | 69.841 | 26.955 |
| 5    | 66.393 | 68.175 | 26.502 |
| 10   | 63.895 | 65.093 | 25.655 |
| 15   | 60.558 | 60.994 | 24.452 |
| 20   | 56.549 | 56.288 | 22.95  |
| 25   | 52.122 | 51.229 | 21.23  |
| 30   | 47.573 | 46.099 | 19.387 |
| 35   | 43.129 | 41.195 | 17.512 |
| 40   | 38.942 | 36.642 | 15.682 |
| 45   | 35.093 | 32.507 | 13.955 |
| 50   | 31.61  | 28.81  | 12.365 |
| 55   | 28.496 | 25.531 | 10.927 |
| 60   | 25.713 | 22.64  | 9.644  |
| 65   | 23.257 | 20.059 | 8.51   |
| 70   | 21.091 | 17.816 | 7.515  |
| 75   | 19.172 | 15.862 | 6.646  |
| 80   | 17.463 | 14.149 | 5.887  |



| 85  | 15.946 | 12.649 | 5.226 |
|-----|--------|--------|-------|
| 90  | 14.597 | 11.324 | 4.636 |
| 95  | 13.4   | 10.154 | 4.12  |
| 100 | 12.327 | 9.119  | 3.677 |
| 105 | 11.362 | 8.206  | 3.295 |
| 110 | 10.496 | 7.395  | 2.961 |
| 115 | 9.716  | 6.674  | 2.674 |
| 120 | 9.012  | 6.033  | 2.426 |
| 125 | 8.375  | 5.457  | 2.206 |
| 130 | 7.797  | 4.947  | 2.007 |
| 135 | 7.27   | 4.495  | 1.827 |
| 140 | 6.79   | 4.089  | 1.668 |
| 145 | 6.351  | 3.724  | 1.529 |
| 150 | 5.951  | 3.395  | 1.409 |
| 155 | 5.583  | 3.098  | 1.299 |
| 160 | 5.245  | 2.83   | 1.195 |
| 165 | 4.935  | 2.587  | 1.101 |
| 170 | 4.651  | 2.366  | 1.017 |
| 175 | 4.388  | 2.165  | 0.941 |
| 180 | 4.144  | 1.984  | 0.872 |
| 185 | 3.918  | 1.819  | 0.809 |
| 190 | 3.709  | 1.67   | 0.753 |
| 195 | 3.514  | 1.533  | 0.701 |
| 200 | 3.332  | 1.409  | 0.65  |
| 205 | 3.164  | 1.295  | 0.606 |
| 210 | 3.008  | 1.192  | 0.567 |
| 215 | 2.862  | 1.097  | 0.531 |
| 220 | 2.726  | 1.01   | 0.499 |
| 225 | 2.599  | 0.93   | 0.468 |
| 230 | 2.479  | 0.857  | 0.44  |
| 235 | 2.367  | 0.79   | 0.413 |
| 240 | 2.261  | 0.728  | 0.388 |
| 245 | 2.162  | 0.671  | 0.366 |
| 250 | 2.068  | 0.619  | 0.347 |
| 255 | 1.98   | 0.571  | 0.328 |
| 260 | 1.897  | 0.527  | 0.311 |
| 265 | 1.819  | 0.486  | 0.294 |
| 270 | 1.746  | 0.448  | 0.279 |
| 275 | 1.676  | 0.413  | 0.265 |
| 280 | 1.61   | 0.381  | 0.252 |
| 285 | 1.548  | 0.351  | 0.239 |

| 290 | 1.489 | 0.323 | 0.228 |
|-----|-------|-------|-------|
| 295 | 1.433 | 0.298 | 0.217 |
| 300 | 1.38  | 0.274 | 0.207 |
| 305 | 1.329 | 0.252 | 0.197 |
| 310 | 1.281 | 0.231 | 0.188 |
| 315 | 1.236 | 0.212 | 0.18  |
| 320 | 1.193 | 0.195 | 0.172 |
| 325 | 1.152 | 0.178 | 0.164 |
| 330 | 1.113 | 0.163 | 0.157 |
| 335 | 1.075 | 0.149 | 0.15  |
| 340 | 1.04  | 0.136 | 0.144 |
| 345 | 1.006 | 0.124 | 0.138 |
| 350 | 0.973 | 0.112 | 0.133 |
| 355 | 0.943 | 0.102 | 0.127 |
| 360 | 0.913 | 0.092 | 0.122 |
| 365 | 0.885 | 0.083 | 0.117 |
| 370 | 0.858 | 0.075 | 0.113 |
| 375 | 0.832 | 0.067 | 0.108 |
| 380 | 0.807 | 0.06  | 0.104 |
| 385 | 0.783 | 0.054 | 0.1   |
| 390 | 0.761 | 0.048 | 0.097 |
| 395 | 0.739 | 0.043 | 0.093 |
| 400 | 0.718 | 0.039 | 0.09  |
| 405 | 0.698 | 0.035 | 0.087 |
| 410 | 0.679 | 0.032 | 0.084 |
| 415 | 0.66  | 0.029 | 0.081 |
| 420 | 0.642 | 0.028 | 0.078 |
| 425 | 0.625 | 0.027 | 0.075 |
| 430 | 0.609 | 0.026 | 0.073 |
| 435 | 0.593 | 0.027 | 0.07  |
| 440 | 0.578 | 0.027 | 0.068 |
| 445 | 0.563 | 0.028 | 0.066 |
| 450 | 0.549 | 0.029 | 0.064 |
| 455 | 0.535 | 0.031 | 0.062 |
| 460 | 0.522 | 0.032 | 0.06  |
| 465 | 0.509 | 0.034 | 0.058 |
| 470 | 0.497 | 0.035 | 0.056 |
| 475 | 0.485 | 0.036 | 0.054 |
| 480 | 0.473 | 0.038 | 0.053 |
| 485 | 0.462 | 0.039 | 0.051 |
| 490 | 0.451 | 0.041 | 0.05  |

| 495                       | 0.441  | 0.042  | 0.048  |
|---------------------------|--------|--------|--------|
| 500                       | 0      | 0      | 0      |
| Maximum Field Strength    | 67.581 | 69.841 | 26.984 |
| Maximum Field Strength at |        |        |        |
| edge of ROW               | 19.172 | 19.915 | 7.221  |

#### TABLE 6 - CALCULATED ELECTRIC FIELD STRENGTH RESULTS

|                               | Electrical Field Strength (kV/m) |         |         |
|-------------------------------|----------------------------------|---------|---------|
| Distance From Centerline (ft) | Calc #1                          | Calc #2 | Calc #3 |
| -500                          | 0                                | 0       | 0       |
| -495                          | 0                                | 0.001   | 0       |
| -490                          | 0                                | 0.001   | 0       |
| -485                          | 0                                | 0.001   | 0       |
| -480                          | 0                                | 0.001   | 0       |
| -475                          | 0                                | 0.001   | 0       |
| -470                          | 0                                | 0.001   | 0       |
| -465                          | 0                                | 0.001   | 0       |
| -460                          | 0                                | 0.001   | 0       |
| -455                          | 0                                | 0.001   | 0.001   |
| -450                          | 0                                | 0.001   | 0.001   |
| -445                          | 0                                | 0.001   | 0.001   |
| -440                          | 0                                | 0.001   | 0.001   |
| -435                          | 0                                | 0.001   | 0.001   |
| -430                          | 0                                | 0.001   | 0.001   |
| -425                          | 0.001                            | 0.001   | 0.001   |
| -420                          | 0.001                            | 0.001   | 0.001   |
| -415                          | 0.001                            | 0.001   | 0.001   |
| -410                          | 0.001                            | 0.002   | 0.001   |
| -405                          | 0.001                            | 0.002   | 0.001   |
| -400                          | 0.001                            | 0.002   | 0.001   |
| -395                          | 0.001                            | 0.002   | 0.001   |
| -390                          | 0.001                            | 0.002   | 0.001   |
| -385                          | 0.001                            | 0.002   | 0.001   |
| -380                          | 0.001                            | 0.002   | 0.001   |
| -375                          | 0.001                            | 0.002   | 0.001   |
| -370                          | 0.001                            | 0.002   | 0.001   |
| -365                          | 0.001                            | 0.002   | 0.001   |
| -360                          | 0.001                            | 0.003   | 0.001   |
| -355                          | 0.001                            | 0.003   | 0.001   |
| -350                          | 0.001                            | 0.003   | 0.001   |

| -345 | 0.001 | 0.003 | 0.001 |
|------|-------|-------|-------|
| -340 | 0.001 | 0.003 | 0.001 |
| -335 | 0.002 | 0.004 | 0.001 |
| -330 | 0.002 | 0.004 | 0.001 |
| -325 | 0.002 | 0.004 | 0.001 |
| -320 | 0.002 | 0.004 | 0.002 |
| -315 | 0.002 | 0.005 | 0.002 |
| -310 | 0.002 | 0.005 | 0.002 |
| -305 | 0.002 | 0.005 | 0.002 |
| -300 | 0.002 | 0.006 | 0.002 |
| -295 | 0.002 | 0.006 | 0.002 |
| -290 | 0.003 | 0.007 | 0.002 |
| -285 | 0.003 | 0.007 | 0.002 |
| -280 | 0.003 | 0.008 | 0.002 |
| -275 | 0.003 | 0.008 | 0.002 |
| -270 | 0.003 | 0.009 | 0.002 |
| -265 | 0.003 | 0.01  | 0.003 |
| -260 | 0.004 | 0.011 | 0.003 |
| -255 | 0.004 | 0.012 | 0.003 |
| -250 | 0.004 | 0.013 | 0.003 |
| -245 | 0.004 | 0.014 | 0.003 |
| -240 | 0.005 | 0.015 | 0.003 |
| -235 | 0.005 | 0.017 | 0.003 |
| -230 | 0.006 | 0.019 | 0.004 |
| -225 | 0.006 | 0.021 | 0.004 |
| -220 | 0.006 | 0.023 | 0.004 |
| -215 | 0.007 | 0.025 | 0.004 |
| -210 | 0.007 | 0.028 | 0.005 |
| -205 | 0.008 | 0.031 | 0.005 |
| -200 | 0.009 | 0.035 | 0.005 |
| -195 | 0.01  | 0.039 | 0.006 |
| -190 | 0.01  | 0.044 | 0.006 |
| -185 | 0.011 | 0.05  | 0.007 |
| -180 | 0.012 | 0.057 | 0.007 |
| -175 | 0.014 | 0.065 | 0.008 |
| -170 | 0.015 | 0.074 | 0.009 |
| -165 | 0.016 | 0.085 | 0.01  |
| -160 | 0.018 | 0.097 | 0.011 |
| -155 | 0.02  | 0.112 | 0.012 |
| -150 | 0.022 | 0.129 | 0.013 |
| -145 | 0.024 | 0.149 | 0.014 |

| -140 | 0.027 | 0.172 | 0.016 |
|------|-------|-------|-------|
| -135 | 0.03  | 0.199 | 0.018 |
| -130 | 0.034 | 0.23  | 0.02  |
| -125 | 0.038 | 0.265 | 0.023 |
| -120 | 0.043 | 0.302 | 0.026 |
| -115 | 0.048 | 0.34  | 0.03  |
| -110 | 0.055 | 0.377 | 0.034 |
| -105 | 0.062 | 0.405 | 0.039 |
| -100 | 0.071 | 0.421 | 0.045 |
| -95  | 0.081 | 0.414 | 0.052 |
| -90  | 0.093 | 0.379 | 0.061 |
| -85  | 0.107 | 0.314 | 0.072 |
| -80  | 0.123 | 0.225 | 0.084 |
| -75  | 0.142 | 0.127 | 0.099 |
| -70  | 0.164 | 0.062 | 0.117 |
| -65  | 0.19  | 0.094 | 0.139 |
| -60  | 0.219 | 0.133 | 0.164 |
| -55  | 0.252 | 0.142 | 0.193 |
| -50  | 0.289 | 0.117 | 0.226 |
| -45  | 0.327 | 0.072 | 0.261 |
| -40  | 0.364 | 0.05  | 0.297 |
| -35  | 0.397 | 0.103 | 0.328 |
| -30  | 0.418 | 0.166 | 0.35  |
| -25  | 0.42  | 0.211 | 0.354 |
| -20  | 0.396 | 0.225 | 0.333 |
| -15  | 0.342 | 0.201 | 0.282 |
| -10  | 0.261 | 0.142 | 0.205 |
| -5   | 0.163 | 0.074 | 0.115 |
| 0    | 0.076 | 0.109 | 0.077 |
| 5    | 0.075 | 0.204 | 0.147 |
| 10   | 0.122 | 0.287 | 0.223 |
| 15   | 0.144 | 0.344 | 0.277 |
| 20   | 0.132 | 0.371 | 0.303 |
| 25   | 0.092 | 0.373 | 0.305 |
| 30   | 0.05  | 0.356 | 0.291 |
| 35   | 0.08  | 0.327 | 0.265 |
| 40   | 0.145 | 0.293 | 0.235 |
| 45   | 0.2   | 0.258 | 0.204 |
| 50   | 0.228 | 0.224 | 0.175 |
| 55   | 0.22  | 0.194 | 0.149 |
| 60   | 0.173 | 0.167 | 0.126 |

| 65  | 0.1   | 0.144 | 0.106 |
|-----|-------|-------|-------|
| 70  | 0.08  | 0.123 | 0.09  |
| 75  | 0.166 | 0.106 | 0.076 |
| 80  | 0.258 | 0.092 | 0.064 |
| 85  | 0.327 | 0.079 | 0.055 |
| 90  | 0.366 | 0.069 | 0.047 |
| 95  | 0.377 | 0.06  | 0.04  |
| 100 | 0.367 | 0.052 | 0.034 |
| 105 | 0.342 | 0.046 | 0.03  |
| 110 | 0.309 | 0.04  | 0.026 |
| 115 | 0.274 | 0.036 | 0.022 |
| 120 | 0.239 | 0.032 | 0.02  |
| 125 | 0.207 | 0.028 | 0.017 |
| 130 | 0.179 | 0.025 | 0.015 |
| 135 | 0.154 | 0.022 | 0.013 |
| 140 | 0.132 | 0.02  | 0.012 |
| 145 | 0.114 | 0.018 | 0.011 |
| 150 | 0.098 | 0.016 | 0.01  |
| 155 | 0.085 | 0.015 | 0.009 |
| 160 | 0.074 | 0.013 | 0.008 |
| 165 | 0.064 | 0.012 | 0.007 |
| 170 | 0.056 | 0.011 | 0.006 |
| 175 | 0.049 | 0.01  | 0.006 |
| 180 | 0.043 | 0.009 | 0.005 |
| 185 | 0.038 | 0.008 | 0.005 |
| 190 | 0.033 | 0.008 | 0.004 |
| 195 | 0.03  | 0.007 | 0.004 |
| 200 | 0.026 | 0.006 | 0.004 |
| 205 | 0.023 | 0.006 | 0.003 |
| 210 | 0.021 | 0.005 | 0.003 |
| 215 | 0.019 | 0.005 | 0.003 |
| 220 | 0.017 | 0.005 | 0.003 |
| 225 | 0.015 | 0.004 | 0.003 |
| 230 | 0.014 | 0.004 | 0.002 |
| 235 | 0.012 | 0.004 | 0.002 |
| 240 | 0.011 | 0.003 | 0.002 |
| 245 | 0.01  | 0.003 | 0.002 |
| 250 | 0.009 | 0.003 | 0.002 |
| 255 | 0.009 | 0.003 | 0.002 |
| 260 | 0.008 | 0.003 | 0.002 |
| 265 | 0.007 | 0.002 | 0.001 |

|     |       | <u>.</u> | -     |
|-----|-------|----------|-------|
| 270 | 0.007 | 0.002    | 0.001 |
| 275 | 0.006 | 0.002    | 0.001 |
| 280 | 0.006 | 0.002    | 0.001 |
| 285 | 0.005 | 0.002    | 0.001 |
| 290 | 0.005 | 0.002    | 0.001 |
| 295 | 0.004 | 0.002    | 0.001 |
| 300 | 0.004 | 0.002    | 0.001 |
| 305 | 0.004 | 0.001    | 0.001 |
| 310 | 0.004 | 0.001    | 0.001 |
| 315 | 0.003 | 0.001    | 0.001 |
| 320 | 0.003 | 0.001    | 0.001 |
| 325 | 0.003 | 0.001    | 0.001 |
| 330 | 0.003 | 0.001    | 0.001 |
| 335 | 0.002 | 0.001    | 0.001 |
| 340 | 0.002 | 0.001    | 0.001 |
| 345 | 0.002 | 0.001    | 0.001 |
| 350 | 0.002 | 0.001    | 0.001 |
| 355 | 0.002 | 0.001    | 0.001 |
| 360 | 0.002 | 0.001    | 0.001 |
| 365 | 0.002 | 0.001    | 0.001 |
| 370 | 0.002 | 0.001    | 0     |
| 375 | 0.001 | 0.001    | 0     |
| 380 | 0.001 | 0.001    | 0     |
| 385 | 0.001 | 0.001    | 0     |
| 390 | 0.001 | 0.001    | 0     |
| 395 | 0.001 | 0.001    | 0     |
| 400 | 0.001 | 0.001    | 0     |
| 405 | 0.001 | 0.001    | 0     |
| 410 | 0.001 | 0        | 0     |
| 415 | 0.001 | 0        | 0     |
| 420 | 0.001 | 0        | 0     |
| 425 | 0.001 | 0        | 0     |
| 430 | 0.001 | 0        | 0     |
| 435 | 0.001 | 0        | 0     |
| 440 | 0.001 | 0        | 0     |
| 445 | 0.001 | 0        | 0     |
| 450 | 0.001 | 0        | 0     |
| 455 | 0.001 | 0        | 0     |
| 460 | 0.001 | 0        | 0     |
| 465 | 0.001 | 0        | 0     |
| 470 | 0.001 | 0        | 0     |

| 475                       | 0.001 | 0     | 0     |
|---------------------------|-------|-------|-------|
| 480                       | 0     | 0     | 0     |
| 485                       | 0     | 0     | 0     |
| 490                       | 0     | 0     | 0     |
| 495                       | 0     | 0     | 0     |
| 500                       | 0     | 0     | 0     |
| Maximum Field Strength    | 0.42  | 0.421 | 0.354 |
| Maximum Field Strength at |       |       |       |
| edge of ROW               | 0.166 | 0.127 | 0.099 |