Appendix 23-A Decommissioning and Site Restoration Plan

Oxbow Hill Solar
Towns of Fenner
Madison County, New York

Matter No. 23-00060

DECOMMISSIONING AND SITE RESTORATION PLAN

FOR

Oxbow Hill Solar

Town of Fenner, Madison County, New York

Owner/Operator:

Oxbow Hill Solar, LLC 3402 Pico Boulevard Santa Monica, CA 90405

Published: April 2024

FA Job Number: 220593

Table of Contents

Table	e of Contents	. 2	
l.	EXECUTIVE SUMMARY	. 3	
II.	REMOVAL OF FACILITIES	. 6	
A. Sol	ar Panels	. 6	
B. Ele	ctrical Collection System	. 6	
C. Jun	oction Boxes	. 7	
D. Suk	ostation and Inverters	. 7	
E. Fou	undations	. 7	
F. Access Roads			
G. Tra	nsmission Line	. 8	
H. Temporary Decommissioning Facilities			
III.	SITE RESTORATION	10	
A. Reseeding, Revegetation, Backfilling and Grading			
B. Ero	sion Control and Stormwater Management	11	
C. Debris, Waste Management and Cleanup			
D. Res	storation Monitoring	13	
E. Not	ifications & Approval	13	
IV.	SUMMARY OF DECOMMISSIONING COSTS	15	

I. EXECUTIVE SUMMARY

Fisher Associates on behalf of Oxbow Hill Solar, LLC (the Applicant), has prepared this Decommissioning and Site Restoration Plan (the Plan) to outline the methods and means to decommission the Oxbow Hill Solar Project (the Project) at the end of the Project's useful life, and steps to restore the site following decommissioning. In addition, this Plan identifies the methodologies to be utilized to mitigate potential impacts resulting from the decommissioning process. All decommissioning and restoration activities will adhere to the requirements of appropriate governing authorities and will be in accordance with all applicable federal, state, and local permits and decommissioning agreements. The Applicant will obtain any federal, state, or local permits required for site restoration prior to the commencement of decommissioning.

The Project is anticipated to have a lifespan between thirty (30) to forty (40) years. At the end of its life, the Plan assumes the Project will be decommissioned and restored to pre-construction conditions. Decommissioning will include the removal of all solar panels, ground supports & racking, electrical wiring, ancillary equipment, inverters, substation, buildings, fencing, access drives, and all foundations. The trigger event to start decommissioning is if the Project has not generated electricity for a period of twelve (12) continuous months, unless the twelve (12) month period of no energy output is the result of (a) a repair, restoration, or improvement to an integral part of the Project that affects the generation of electricity and that repair, restoration or improvement is being diligently pursued by the applicant, or (b) a Force Majeure event. Force majeure includes, but is not limited to, causes or events beyond the reasonable control of, and without the fault or negligence of the Party claiming Force Majeure, including acts of God, sudden actions of the elements such as floods, earthquakes, hurricanes, or tornados; sabotage; terrorism; war; riots; explosion; blockades; and/or insurrection.

The decommissioning activities will generally occur in the following order:

- Dismantling of solar arrays including the panels, racks, and supports.
- Removal of electrical cables, inverter units, substation & other miscellaneous electrical equipment.
- Dismantling and removal of all gates and fencing.
- Removal of inverter pads, substation pads and foundations.
- Removal of any temporary laydown areas or stockpiles followed by the removal of all access/ service roads.
- Site restoration including restoration to pre-construction contours (where required in wetland and stream areas and certain agricultural areas) and reseeding and revegetation of disturbed areas.

Prior to commencing decommissioning, the Project will be shut down, de-energized and disconnected from the transmission line tie-in at the Project's collection substation. The Applicant will coordinate de-energization with National Grid and NYISO to ensure no disruption occurs to the overall electrical system. Additionally, the Applicant will give landowners and the Town of Fenner at least six weeks advance notice prior to commencing decommissioning activities.

All aboveground components including buildings, structures, and equipment will be removed during decommissioning. In addition, all foundations will be removed to a depth of at least three (3) feet below ground surface (bgs) in non-agricultural areas and at least four (4) feet below ground surface in agricultural areas. After removal of all foundations to the depth specified, they will be backfilled with suitable compacted fill and topped with a minimum of four (4) inches of topsoil. Based on discussions with landowners, access roads no longer needed will be removed, and the disturbed land areas will subsequently graded and reseeded as outlined in this Plan.

The PV solar modules, including all support components and pile or helical screw foundations, will be dismantled and either reused at another solar energy facility, recycled as scrap metal, or transported to an approved waste disposal facility. Concrete pads and foundations can be broken and crushed into recycled aggregate for potential reuse as road base material. After fluid removal, inverters, and electrical control devices will be reused at other facilities or recycled as scrap metal, while electrical equipment will either be recycled or transported to an approved facility for disposal. Underground electrical and fiber optic control cables will be de-energized and cables that were installed at depths greater than three (3) feet below ground surface (four feet in agricultural areas) will be left in-place at the site. All cables contain no materials that are harmful to the environment.

The goal of decommissioning is the safe and efficient removal of all solar energy facility components and restoration of the site to conditions as close to preconstruction characteristics as possible including restoration of native vegetation, wildlife habitat and/ or land use including agricultural crops. The same safety protocols that are used during construction will be used during decommissioning, ensuring the continued health and safety of the workers and nearby residents.

The major activities associated with decommissioning the Project are summarized in the following sections. The decommissioning process is expected to take approximately nine (9) months. This time includes the two-week site mobilization, site preparation and erosion and sedimentation (E&S) installation per NYDOT current standards; sixteen-to-twenty-week period to disassemble solar panels; an additional eight weeks to remove and reclaim panel foundations and access roads; and eight weeks to remove and reclaim the substation, any temporary laydown areas, and finally demobilize from the site. During disassembly and removal of the solar panels,

and for up to four weeks thereafter, restoration work including grading, backfilling, erosion control activity, reseeding and revegetation will take place. Restoration monitoring will be conducted by a third-party environmental monitor and is anticipated to take place for several months thereafter and additional restoration work will be conducted on an "as needed" basis.

All decommissioning activities will be completed within one year of decommissioning initiation unless otherwise approved by the Office of Renewable Energy Siting.

II. REMOVAL OF FACILITIES

A. Solar Panels

Panel disassembly would mostly be accomplished by hand. Components would be removed in reverse-order of installation; PV modules shall be disconnected from the electrical cables then removed, followed by the mounting racks, then support post sections. The racking system and framework may need to be cut to fit into dump trucks and a post -puller should be used to remove ground posts. The components would then be loaded either directly onto trucks for removal from the Project or placed onto the ground for eventual loading onto trucks.

Some of the solar panels may be reused at another solar facility, resold on the market, or recycled by a company such as We Recycle Solar, Inc. No resale value has been included in the decommissioning estimates. If the panels can't be resold or recycle, they will be disassembled, and components will be sold for scrap. Any hazardous material, such as lubricants, will be removed and disposed of in accordance with all applicable federal, state, and local standards. Any mitigation areas/plantings will be left in place.

B. Electrical Collection System

Prior to removal, all electric cables shall be disconnected and verified they are inactive. The cabling utilized in the collection system is generally installed at least three feet below grade and at least four feet below grade in agricultural areas. All collection cables less than four feet deep in agricultural areas would be removed, and in all other areas, cables less than three feet deep would be removed, such as the areas where connection to junction boxes or transformers occur. Cables buried greater than four-feet below grade will be abandoned in place in accordance with the NYSDAM 2019 *Guidelines for Solar Energy Projects – Construction Mitigation for Agricultural Lands*. This helps minimize the environmental and agricultural soil impacts. All cables contain no materials that are harmful to the environment. It is not anticipated that any cable outside the connections to junction boxes and substation will need to be removed as part of the decommissioning.

The cable installation includes a warning tape and tracer cable to alert anyone digging in the vicinity of the cables. Use of tractors or backhoes may be utilized to pull out all surface/ subsurface cables that meet the previously discussed depth criteria. Wherever cables are to be removed, they will be removed by excavating a narrow trench above the cable to expose it, then cut and loaded onto trucks for removal from the site. Each trench will then be backfilled with native soil and restored as laid out in this Plan.

C. Junction Boxes

Junction box removal would consist of disconnecting the junction box from the electrical system. All high-value sellable components, such as the copper conductor materials, would be removed, and the remaining cables, equipment, and other components would be salvaged for scrap value.

After the removal of the junction boxes, the remaining concrete pad would be removed. The cabling would be removed in accordance with Section B of this document, and the area would be restored to pre-existing conditions and contours consistent with this Plan.

D. Substation and Inverters

The substation shall be shut down and disconnected from the transmission line. The transmission line shall be grounded via portable grounds at multiple points, disconnected, and then removed. Disassembly of the remainder of the substation would include the removal of the steel, transformers, panel board/switches, conductors, and other materials that could be reconditioned and reused or sold as scrap material. Prior to removal the transformer(s) shall be drained of any oils or lubricants and properly disposed of in accordance with the Facility's SPCC Plan. All underground electrical collector cables coming to the substation from the surrounding inverters would be cut at the perimeter of the substation; with any cables less than three feet (four feet in agricultural areas) deep removed in accordance with Section B above.

Any hazardous material such as oil or lubricants will be removed in accordance with applicable federal, state, and local requirements. All concrete foundations would be removed to a minimum depth of three feet (four feet in agricultural areas) and holes backfilled with suitable material in controlled, compacted lifts, (see section E below for details). Fencing around the substation will be broken down and removed. The gravel or aggregate surface at the substation will be loaded onto trucks and removed for sale, reuse, or disposal.

All inverters will be disconnected from all wiring and removed entirely. The inverters may be sold, reused, or properly disposed of offsite. No resale value has been included in this decommissioning plan. Any foundations or gravel from the pads should then be broken down and/or removed in the same fashion as the substation. Upon completion of the removal of the inverters, the site will be restored consistent with this Plan.

E. Foundations

Once the panels, inverters, and substation are removed, excavation around the

foundations to expose the concrete would be accomplished using traditional excavation equipment. The foundations will be excavated to a depth sufficient to ensure complete removal of the anchor bolts, rebar, conduits, cables, and concrete to a depth of at least three feet below grade in non-agricultural areas and four feet in agricultural areas. Shallow concrete foundations will be removed by mechanical means and properly disposed of or reused offsite. After removal of the foundations is completed, the area would be backfilled with clean, compatible fill, compacted to a density similar to the surrounding in-situ material. All disturbed areas will receive a minimum of four inches of topsoil and be restored to pre-existing conditions, and contours will be restored consistent with this Plan. This may require minor site grading.

F. Access Roads

To perform the decommissioning activities, it may be necessary to temporarily return some roads to the geometry and width used during the construction stage. This allows for more efficient equipment or machinery access to the panel sites and facilitates the removal of the larger, heavier components. Prior to the start of decommissioning activities, a road survey should be conducted on the public roads to be used for hauling activities to verify their conditions. During the decommissioning process, the roads may be temporarily improved to allow safe access for clearing, backfill, decompaction, and grading activities.

Once decommissioning has been completed, temporary improvements will be removed and restored. Access roads would be removed unless the landowner(s) request that they remain in place. Removal of access roads includes the removal of all gravel or aggregate, removal of any geotextile fabric, removal of any culverts and/or drainage infrastructure that are no longer necessary, and de-compaction of the road subgrade and shoulder. These areas would then be backfilled with clean, compatible fill compacted to a density similar to the surrounding in-situ material and the area graded to restore pre-construction drainage patterns. Finally, topsoil will be spread across all restored access drives and reseeded in accordance with Section III of this Plan.

G.Transmission Line

The transmission line from the substation to the interconnect has only overhead portions. All poles, high voltage lines, and overhead conductors running from the old substation location to the point of interconnection (POI) would be de-energized, removed, and scrapped, and any holes left by the poles being removed would be backfilled and compacted back to existing grade. The POI along the transmission line and the transmission line itself will remain as this infrastructure is owned and operated by National Grid.

H. Temporary Decommissioning Facilities

With the scale of the decommissioning construction, it may be necessary to establish temporary facilities to assist project decommissioning. The personnel involved in the decommissioning of the project may require temporary office space, parking, equipment storage and/or material storage. Because there are no buildings onsite, a trailer complex and laydown yard(s) may need to be established, like those used during the initial construction phase. Additional temporary facilities may also include portable bathrooms, air conditioning or heating equipment and potable water. Temporary parking will be provided along with security during standard non-working hours. Upon completion of all site decommissioning activities these temporary facilities shall be restored in accordance with this Plan.

III. SITE RESTORATION

A. Reseeding, Revegetation, Backfilling and Grading

Site restoration activities will begin as soon as the decommissioning activities are completed in a certain area and will be ongoing until the entire site is restored. This work includes reseeding and revegetation using appropriate seed mixes with native species in non-agricultural areas. Revegetating these areas through planting or seeding is important to prevent the establishment of invasive or undesirable species in an area, and to ensure slope stability. If mulch is used, the mulch will be certified weed-free prior to use in restoration efforts. Seed mixtures may be considered in consultation with NY State Department of Agriculture and Markets (NYSDAM) and/or the New York State Department of Environmental Conservation (NYSDEC) for use during restoration of the Project.

In agricultural areas, site restoration will be coordinated with the landowner(s) to plant desired crops in these locations. To the fullest extent possible, topsoil will be removed and stockpiled separately from other materials near the area it was retrieved from. The salvaged topsoil will be protected from erosion per current state standards and temporarily stabilized as necessary. In areas where the solar farm infrastructure or decommissioning activities have compacted the topsoil surface, the soil will be decompacted to match the density and consistency of the surrounding undisturbed ground. Stockpiled topsoil will be replaced over the disturbed areas to the original depth, if possible, but to a minimum depth of four (4") inches. Final grading of the topsoil will be performed to reestablish the predevelopment surface contours, conditions, and drainage patterns whenever possible. Stabilization measures will be implemented and maintained in and around disturbed areas to control erosion and sedimentation during final site reclamation.

The topsoil in all disturbed soil surfaces within agricultural fields will be de-compacted to a minimum depth of 18 inches and restored to a density and depth consistent with the surrounding fields. In all areas, restoration may include leveling, terracing, mulching, and other necessary steps to prevent soil erosion, to ensure establishment of suitable plants, and to control noxious weeds. Reseeding will occur over all disturbed surfaces. Appropriate restoration methods and best management practices (BMPs) to minimize wind and water erosion will be implemented to maximize revegetation success.

In areas with steeper slopes, additional measures may be taken to reduce soil movement or erosion. These measures may include placing the topsoil in a roughened condition to prevent erosion, scarification, tilling or harrowing of the area to a depth of approximately three to four inches below ground surface to create a suitable seedbed, or dozer-tracked perpendicular to the slope to provide suitable

areas for seed germination. In some instances, a mulch with tackifier additives for hydroseed applications or a biodegradable fiber additive may be introduced to the seed mixture to increase soil stability and reduce the likelihood of erosion.

Grading activities will be limited to the minimal area required to complete site restoration of disturbed areas using standard construction earth moving equipment. Disturbed areas will be graded and contoured to restore the predevelopment topography and drainage of the site.

B. Erosion Control and Stormwater Management

Erosion control and stormwater management during site reclamation will utilize similar measures and best management practices (BMPs) outlined in the Project's stormwater pollution prevention plan (SWPPP) and in accordance with New York State Standards and Specifications for Erosion and Sediment Control to maintain downstream water quality and manage stormwater runoff during decommissioning of the Project. Selection and design of erosion and sedimentation controls will account for climate, topography, in-situ soil characteristics, and vegetative cover to be reestablished at the site following decommissioning.

Silt fences, compost filter sock, straw bales, erosion control blankets (ECB) or other similar stormwater structures will be installed as needed to control soil erosion and sedimentation while re-establishing vegetation in seeded areas. Reclamation will likely include the installation of several temporary stormwater control structures (i.e., berms, hay bales, blankets, etc.) to prevent soil erosion and/ or sedimentation during the seeding and re-establishment of native grasses across the Project. In large areas where soil disturbance from restoration grading will occur, such as the substation, it may be necessary to install a temporary sediment trap or rock filter structure to ensure sediment is controlled and treated onsite. These BMP's should be designed and constructed in accordance with the most current NYS Stormwater Management Design Manual and be maintained until they are no longer necessary, then restored. Note these are installed as a secondary control method as explained below.

Erosion controls are the primary method for preventing impacts to stormwater runoff quality while sediment controls provide a secondary method of protection to erosion controls by facilitating containment of any sediment in stormwater runoff. Upon completion of restoration and reclamation activities, any temporary structures, silt fences or barriers used as E&S controls during decommissioning, restoration, and reseeding activities will be removed when they are no longer needed. Perimeter BMP's should only be removed once the upstream area it captures is stabilized and well-established vegetative growth is present. In addition, native grasses will be utilized to stabilize disturbed areas and control stormwater runoff during site reclamation.

Commonly used BMPs that may be employed at the site during reclamation will include:

- Minimize disturbed areas and protect natural features of the site (native soil, topsoil, vegetation, topography, and drainage areas);
- Control stormwater runoff and flow to and from disturbed areas;
- Stabilize soils as quickly as possible following disturbance of work areas, including temporary stockpiles;
- Protect slopes and exposed soil;
- Protect culvert inlets, drainage structures and nearby surface water features;
- Establish perimeter controls, such as silt fence or compost filter sock, around disturbed areas;
- Retain and stockpile soils onsite to prevent unnecessary transport and additional truck traffic;
- Maintain BMP controls including maintenance during, decommissioning, restoration, and re-establishment of vegetation; and
- Use native soils, and appropriate seed mixtures for revegetation activities.

C. Debris, Waste Management and Cleanup

During the decommissioning phase, the majority of materials associated with the panels will be recycled or reused. If a material, or portion such as copper wiring, can be recycled, it should be. Another example of material reuse could be donating the gravel from the reclaimed access drives to a local Town or Municipality. All remaining materials that cannot be reused or repurposed will be removed and disposed of at an off-site approved waste facility. The Applicant shall be responsible for hauling, recycling, and disposing of all decommissioned site materials at an approved off-site facility.

Trash containers and regular site cleanup will be provided for proper disposal of solid waste during decommissioning and site reclamation work. Trash and bulk waste collection areas with containers will be designated at the site and materials will be recycled when possible. Litter and assorted trash will be removed daily from decommissioning areas and placed in designated trash receptacles for disposal. Trash, debris, and any other solid waste generated during decommissioning will be minimized and managed in accordance with applicable regulations and routinely removed from the site, as needed. Solid and industrial wastes may also result from the dismantling of the solar energy equipment, specifically around the substation with the concentration of large equipment. Any fluids generated during the decommissioning requiring disposal will be collected in appropriate containers and transported to an approved facility for reclamation or disposal.

Following final site cleanup, seeding, and revegetation, vegetative debris (woody and

non-woody) should be chipped and reused as mulch over reclaimed areas.

D. Restoration Monitoring

Following completion of site reclamation, routine monitoring will be implemented at the site to ensure native vegetation, habitats, and pre-development land use is reestablished in the areas disturbed during decommissioning of the Project until the site has successfully been restored to pre-construction conditions. Inspection frequency should occur in accordance with the most current NYSDEC guidelines.

Reseeded areas will be routinely monitored and inspected to ensure stormwater controls remain effective while vegetation is re-established for slope stability and erosion control. Any areas with concentrated erosion or slips appear should be immediately repaired, restabilized and reseeded. Once dense, well-established vegetation occurs (80% growth), any perimeter silt fences, or barriers used to stabilize the site are no longer needed and will be removed.

Invasive species and noxious weeds will be managed during the site restoration monitoring period to prevent the establishment of them within reclaimed areas. To prevent the establishment and spread of noxious and invasive weeds in reseeded areas, routine monitoring and control of weeds will be implemented at the site following completion of decommissioning activities. Vegetation control may include manual, mechanical, biological, or chemical treatment methods. If herbicides are deemed necessary, the application and use will comply with applicable federal, state, and county guidelines. As a pre-construction compliance filing, the Applicant will develop an invasive species control plan which will describe monitoring requirements and the specific period where monitoring of invasive plant species will occur.

E. Notifications & Approval

Prior to the start of decommissioning activities, the Applicant will send notifications to all stakeholders and surrounding landowners providing the nature of the proposed decommissioning work at the Project. Federal, state, county, and local authorities will be notified, as needed, to discuss the potential approvals required to engage in decommissioning activities. These types of permits typically may include site plans or jurisdictional road use permits. Town will be notified at least six weeks prior to the commencement of any decommissioning activities.

Well-planned and well-managed solar energy facilities are not expected to pose environmental risks at the time of decommissioning. Decommissioning of the Project will follow the standards and best practices at the time of decommissioning. The Applicant will ensure that any required permits and agreements are obtained prior to decommissioning.

This decommissioning Plan will be revised and updated as necessary in the future to ensure that changes in technology and site restoration methods are taken into consideration.

IV. SUMMARY OF DECOMMISSIONING COSTS

Decommissioning costs are based on the engineer's experience & regional construction prices at the time of this report for a 140 MW AC Solar farm. The total cost of the Project decommissioning is estimated to be \$6,436,390 and includes all overhead, contractor margin, expenses, fees, transportation, equipment, and labor to restore the Project to the most practical extent back to predevelopment conditions. It assumes the work will be led and performed by an experienced contractor of the Applicant's choosing who possesses regional expertise and familiarity in solar farm decommissioning work. The cost estimate also includes an additional 15% contingency to offset any unforeseen expenses.

As noted previously, certain equipment from decommissioning the Project could potentially be sold for reuse following the decommissioning of the Project, but no resale of equipment was included in the estimates. In addition, the panels, cables, substation, and other equipment containing large quantities of steel, copper, and other valuable commodities with significant scrap value. It is assumed that the sale of scrap material can offset a portion of the cost of decommissioning.

The Applicant will provide a letter of credit equal to the net decommissioning cost plus a 15% contingency. The table on the following pages summarizes decommissioning costs. As the project nears the end of its projected lifecycle the cost summary should be updated to reflect current market rates and prices, including updated methods and technology used in similar decommissioning practices.

Task	Description	Quantity	Unit	Unit Cost	Total Cost	
Remove Panels ¹	Hand removal & demount panels. Preparation to dismantle, lubricant removal, cut power, etc., salvage preparation and offsite transport.	412,813	EA	\$4.40	\$1,816,377	
Racks and Post Removal ¹	Removal ¹ Dismantling, demolition, cutting and removal of the mounting equipment including post removal with heavy equipment. EA 46,230		\$8.50	\$392,955		
Unit Substation Equipment ¹	Disconnecting all substation equipment, disassembly, and removal or disposal at a waste facility. Excludes foundations.	1	EA	\$150,000.00	\$150,000	
Collector HV Substation Components ¹	Disconnecting all substation equipment, disassembly, and removal or disposal at a waste facility. Excludes foundations.	1	LUMP	\$1,000,000.00	\$1,000,000	
Inverter & Array Cabling <36"-48"bgs1	Removal of collection lines where necessary.	1	LUMP	\$550,000.00	\$550,000	
Removal of Substation Concrete Pads ³	Demolition and disposal/reuse of all concrete pads for substation.	15,000	SQ. FT	\$1.43	\$21,450	
Reclamation of Access Roads & Substation Gravel ³	Removal, hauling and disposal of all gravel, subgrade & topsoil regrading. Subgrade & shoulder decompaction.	22,032	CY	\$13.13	\$289,280	
Transformers ¹	Disconnecting all equipment and removal at a waste facility.	45	EA	\$3,000.00	\$135,000	
Inverters ¹	Disconnecting all equipment and removal at a waste facility.	33	LF	\$1,500.00	\$49,500	
Fence Removal, Including Posts ³	Removal and transport cost.	147,225	LF	\$3.22	\$474,065	
Site Restoration & Revegetation ³	Temporary and permanent stabilization measures, including all E&S BMPs, seeding and mulching, revegetation, and reclamation monitoring.	667	Acres	\$702.00	\$468,234	
Mobilization & Demobilization ¹	Mobilization, temporary staging/ office equipment and final demobilization.	1	Lump	\$250,000.00	\$250,000	
		Dec	\$5,596,861			
Applicant Contingency (15%) Decommissioning Costs Total						

^{*}Actual decommissioning costs may change based on the final construction drawings.

Notes:

- 1. Labor productivity and rates based on RSMeans Online (Syracuse area, 2023 data).
- 2. Data based on current market prices.
- 3. Data based on previously approved agency (NYS Department of Public Service under Article 10 of the PSL) pricing.

Task	Description	Quantity	Unit	Unit Cost	Total Cost (2023)	
Scrap Panels ²	Panels will disassemble, and parts will be scrapped at the current market value.	412,813	EA	\$3.90	\$1,609,970.70	
Scrap Inverters ²	Panels will disassemble, and parts will be scrapped at the current market value.	33	LF	\$500.00	\$16,500.00	
Scrap Transformers ²	Panels will disassemble, and parts will be scrapped at the current market value.	45	EA	\$1,700.00	\$76,500.00	
Salvage/Recycle Racking Frame	Assumes metal will be scrapped at current market value.	46,230	EA	\$1.77	\$82,000.00	
Salvage/Recycle Racking Posts	Assumes metal will be scrapped at current market value.	46,230	EA	\$0.29	\$13,500.00	
Salvage/Recycle Tracker Motors	Motors will be recycled	46,230	EA	\$1.11	\$51,500.00	
Salvage/Recycle Inverter & Array Cabling <36"-48" bgs	Assumes metal will be scrapped at current market value	1	LUMP	\$123,000.00	\$123,000.00	
Salvage/Recycling Credits Total						
Decommissioning Costs Total (From Table 1)						
Net Decommissioning Costs						

^{*}Actual decommissioning costs may change based on the final construction drawings.

Notes:

- 1. Labor productivity and rates based on RSMeans Online (Heavy Construction, 2020 data).
- 2. Assume cooper will be sold for scrap at a price of \$2.99/LB as per USGS 2018 prices.
- Data based on current market prices.
- 4. Data based on previously approved agency (NYS Department of Public Service under Article 10 of the PSL) pricing.
- 5. Scrap credits are based on engineering judgment and current market scrap values.