Energy Storage Roadmap for New York’s Electric Grid

William Acker
Energy Storage Technical Conference
May 26th, 2016
ENERGY STORAGE ROADMAP FOR NEW YORK’S ELECTRIC GRID
Changing Electricity Grid

Key Goals supported by Energy Storage

- Improving the efficiency and capacity factor (utilization) of the electric grid
- Integrating an increasing amount of renewable energy
- Enhancing the reliability and resilience of the electric grid
Electricity Grid Architecture
Energy Storage Applications

<table>
<thead>
<tr>
<th>DRIVERS</th>
<th>CUSTOMER-SITED (BEHIND THE METER)</th>
<th>DISTRIBUTION SYSTEM</th>
<th>GENERATION AND TRANSMISSION GRID</th>
</tr>
</thead>
</table>
| Capacity and Peak Load Reduction | + Demand charge reduction (peak shaving)
+ Avoiding interconnection upgrades
+ Permanent load shifting | + Defer system upgrades (local capacity)
+ Distributed peaker
+ Circuit load relief/demand response | + Capacity (peaker plant replacement)
+ Transmission congestion relief
+ Transmission upgrade deferral |
| Renewables Integration | + Integrating distributed generation
+ Microgrid stability
+ Optimizing energy cost (Time shifting) | + Increase renewable integration (circuit hosting capacity and prevent reverse power flow)
+ Reduce renewables curtailments and congestion
+ Circuit flexibility and stability | + Frequency regulation
+ Renewable firming
+ Reduce renewables curtailments and congestion
+ Spinning/non-spinning reserve
+ Ramp rate reduction (duck curve issue)
+ Time shift energy |
| Resilience and Reliability | + Uninterruptible Power Supply
+ Maintaining power quality
+ Microgrid stability
+ Building emergency power | + Circuit flexibility and stability
+ Improve system reliability
+ Voltage support and power quality (reactive power) | + Spinning/non-spinning reserve
+ Renewable firming
+ Black start |
Flatten the 100 hour peak

Flatten the peak 100 hours would save $1.2 - $1.7 billion annually according to the PSC.

1GW/2GWh would eliminate over 30 hours.

2GW/10GWh would provide over one-third of the total energy to flatten.

Short time allows storage to perform multiple functions.
Renewable Integration

50% Renewable energy by 2030 and a need to go further to meet 80x50 greenhouse gas goal

Capacity factors drive high nameplate capacity requirement

Firming and smoothing

Energy shifting

Project need for at least 4 GW of multi-hour storage and recommend detailed study
Key Challenges

- Inability to currently monetize full value of storage
- Inability to participate in existing markets
- Markets or other monetization mechanisms lacking
- Confidence in future revenue stream
- High soft costs
- Insufficient information availability
Battery prices decline with similar slope to PV
Storage capacity goals in GW are multi-hour systems with GWh levels discussed in Roadmap.
Recommended Actions

LMP+D and peak load:

- Extend existing programs
- Interim programs to realize value – particularly of local capacity/load reduction

Clean Energy Standard:

- Establish Energy Storage goals
- Flexible Energy Credit

Address monetization of value in supporting REV, renewable energy and environmental goals along with revenue confidence
Thank you