Blue Stone Wind Project

Spill Prevention, Control, and Countermeasure (SPCC) Plan Broome County, New York December 1, 2020

Prepared By: Westwood

Prepared For:

Spill Prevention, Control, and Countermeasure (SPCC) Plan Blue Stone Wind Project Broome County, New York

Prepared for:

Northland Power 30 St. Clair Ave W Toronto, ON M4V 3A1, Canada +1-309-531-0440

Prepared by:

Westwood Surveying & Engineering, P.C. 12701 Whitewater Drive, Suite 300 Minnetonka, MN 55343 (952) 937-5150

Project Number: 0022482.02 Date: December 1, 2020

TABLE OF CONTENTS

1.0	INTR				
	1.1	Purpose	2		
	1.2	Professional Engineer Certification	3		
	1.3	Management Certification of the SPCC Plan	4		
	1.4	Location of the SPCC Plan	5		
	1.5	Plan Review	5		
	1.6	SPCC Provision Cross-Reference	5		
2.0	GENE	ERAL FACILITY INFORMATION	8		
	2.1	Description of the Facility	8		
	2.2	Administration of Responsibility	9		
	2.3	Oil Storage 1	10		
	2.4	Discharge Potential 1	12		
3.0	DISC	HARGE PREVENTION	13		
	3.1	Facility Layout Diagram and Remote Sites 1	13		
	3.2	Spill Reporting Procedures 1	13		
	3.3	Potential Discharge Volumes and Direction of Flow 1	13		
	3.4	Containment Drainage 1	15		
	3.5	Containment and Diversionary Structures 1	15		
	3.6	Practicability of Secondary Containment 1	16		
	3.7	Inspections, Tests, and Records 1	16		
		3.7.1 Monthly Inspections 1	16		
	3.8	Personnel, Training, and Discharge Prevention Procedures 1	17		
	3.9	Spill Response Equipment 1	18		
	3.10	Security 1	18		
	3.11	Loading/Unloading 1	18		
	3.12	Brittle Fracture Evaluation	20		
	3.13	Conformance with State and Local Applicable Requirements	20		
4.0	DISC	HARGE RESPONSE	21		
	4.1	Response to a Minor Discharge 2	21		

	4.2	Response to a Major Discharge	22			
	4.3	Waste Disposal	23			
	4.4	Discharge Notification	23			
Арре	ndix /	A: Substantial Harm Determination	30			
Арре	ndix I	B: Plan Review Log	31			
Арре	ndix	C: Emergency Contacts	32			
Арре	Appendix D: Discharge Notification Form					
Арре	ndix I	E: Record of Secondary Containment	35			
Арре	ndix I	F: Calculation of Secondary Containment	36			
Арре	ndix	G: Monthly Facility Inspection	37			
Арре	ndix I	H: Discharge Prevention Briefing and Training Log	39			

NOTE: This flow chart is to be used for reference only. Please refer to full SPCC Plan text for detailed response instructions.

1.0 INTRODUCTION

1.1 Purpose

This Spill Prevention, Control, and Countermeasure (SPCC) Plan has been prepared for Bluestone Wind, LLC (Bluestone Wind) for the construction of the Blue Stone Wind Project (Project) site located in Broome County, New York ("Facility," see <u>Facility Location Figures</u>). The Project is located near the City of Sanford and encompasses an area of 6,396 acres; however, construction activity and disturbed area will consist of approximately 367 acres. Construction will include the installation of up to twenty-six (26) wind turbines, a substation, an operations and maintenance (O&M) building, a switchyard, a temporary laydown yard, a temporary concrete batch plant, underground electrical collection, overhead transmission, gravel access roads, crane paths, as well as activities for tree clearing. Due to minimal oil storage present on-site during tree clearing, there is no spill risk anticipated for this activity. For the purpose of this SPCC Plan, oil storage locations for the remainder of the activities necessary to construct the facility will include the Laydown yard, Batch Plant, Collector Substation, POI Substation, and individual turbine sites (TBD).

The purpose of this SPCC Plan is to describe the procedures, methods, equipment, and other requirements that are used to prevent the discharge of oil from non-transportation related facilities into or upon navigable waters of the United States or adjoining shorelines, or that may affect natural resources belonging to, appertaining to, or under the exclusive management of the United States, and to minimize and abate hazards to human health and the environment should such an event occur.

SPCC Plans are prepared and implemented according to United States Environmental Protection Agency (U.S. EPA) regulations contained in Title 40, Code of Federal Regulations, Part 112 (40 CFR 112). A non-transportation related facility is subject to SPCC regulations if: the total aboveground storage capacity exceeds 1,320 gallons; or the underground oil storage capacity exceeds 42,000 gallons; and if, due to its location, the facility could reasonably expect to discharge oil into or upon the navigable waters of the United States. At this Facility, as defined in 2.1 Description of the Facility, the total aboveground oil storage capacity is more than 1,320 gallons; therefore, SPCC regulations apply.

The threat of substantial harm caused by the Facility has been evaluated and certified by Bluestone Wind, LLC management. It has been determined that this Facility does not pose a risk for substantial harm and that preparation of a Facility Specific Response Plan, pursuant to 40 CFR 112.20, is not required. The Substantial Harm Determination certification is included as Appendix A: Substantial Harm Determination.

1.2 Professional Engineer Certification

I certify that I am the preparer of this SPCC Plan or it was prepared under my direct supervision.

Furthermore, I certify the following with respect to this Federal SPCC Plan:

- I am familiar with the applicable requirements of 40 CFR Part 112;
- I have visited and examined the Facility or have supervised examination of the Facility by appropriately qualified personnel;
- This SPCC Plan has been prepared in accordance with good engineering practices;
- The procedures for required inspections and testing have been established; and
- The SPCC Plan is adequate for the Facility as herein described.

This certification in no way relieves the owner or operator of the Facility of his/her duty to prepare and fully implement the SPCC Plan in accordance with the requirements of 40 CFR Part 112.

Alejandro Alvarado NY PE #101100

214-473-4648

December 1, 2020

1.3 Management Certification of the SPCC Plan

The Owner of the Blue Stone Wind Project is Bluestone Wind, LLC. Bluestone Wind has engaged Bluestone Wind as the General Contractor for the Project. This SPCC Plan is being managed by Bluestone Wind and applies to the construction of the Project. Bluestone Wind will prepare a separate SPCC Plan for the operation of the Project that will go into effect once construction is complete.

Bluestone Wind is committed to preventing discharges of oil into navigable waters of the United States or adjoining shorelines, or that may affect natural resources belonging to, appertaining to, or under the exclusive management of the United States through implementation and regular review and amendment to the SPCC Plan during construction of the Blue Stone Wind Project. Bluestone Wind has committed the necessary resources to implement the measures described in this SPCC Plan.

I am the designated SPCC Emergency Coordinator and am responsible for implementation of this SPCC Plan. To the best of my knowledge, this SPCC Plan is accurate.

Jeffrey Nemeth Bluestone Wind, Project Development Director +1-309-531-0440 December 1, 2020

1.4 Location of the SPCC Plan

A complete copy of the SPCC Plan will be maintained at the Facility when the Facility is normally attended at least four (4) hours per day or at the nearest field office when the Facility is attended less than four (4) hours per day.

General Location of the Plan	Laydown Yard
Hours Location is Attended	7 am to 8 pm Monday - Saturday, 8 am to 8 pm Sunday & national holidays
Specific Location of the Plan	Main office area in the Bluestone Wind construction trailer in the Laydown Yard
Location of Notices Regarding SPCC Plan	Notice of the location of the SPCC Plan will be posted on the Project information board in the Laydown Yard.

Table 1-1: Location of SPCC Plan

1.5 Plan Review

Review and amendments to the SPCC Plan must be made as stated in 40 CFR 112.5 under any of the following circumstances:

- Complete a review and evaluation of the SPCC Plan at least every five (5) years;
- There is a change in Facility design, construction, operation, or maintenance that materially affects the Facility's potential for discharge of oil into navigable waters of the United States or adjoining shorelines, or that may affect natural resources belonging to, appertaining to, or under the exclusive management of the United States; and
- In the event of a spill into waters of the United States or adjoining shorelines or adjoining shorelines, or that may affect natural resources belonging to, appertaining to, or under the exclusive management of the United States.

As a result of the review listed above, the SPCC Plan will be amended within six (6) months to include more effective prevention and control measures for the Facility, if applicable. Amendment will be implemented as soon as possible, but no later than six (6) months following the SPCC Plan amendment.

The review and evaluation must be documented in a Plan Review Log, the form of which is contained in the <u>Appendix B: Plan Review Log</u>. The Plan Review Log must state whether the SPCC Plan will be amended. Any technical revision to the SPCC Plan must be certified by a Professional Engineer in New York.

1.6 SPCC Provision Cross-Reference

This SPCC Plan does not follow the exact order presented in 40 CFR Part 112. The table below presents a cross-reference of Plan sections relative to the applicable parts of 40 CFR Part 112.

Provision	Plan Section	Page
112.3(d)	1.2 Professional Engineer Certification	<u>3</u>
112.3(e)	1.4 Location of the SPCC Plan	<u>5</u>
112.4	4.4 Discharge Notification	23
112.5	1.5 Plan Review	<u>5</u>
112.7	1.3 Management Certification of the SPCC Plan	4
112.7	1.6 SPCC Provision Cross-Reference	<u>5</u>
112.7(a)(3)	2.0 GENERAL FACILITY INFORMATION	<u>8</u>
112.7(a)(3)	3.1 Facility Layout Diagram and Remote Sites	<u>13</u>
112.7(a)(3)	3.2 Spill Reporting Procedures	<u>13</u>
112.7(a)(4)	3.0 DISCHARGE PREVENTION	<u>13</u>
112.7(a)(5)	3.0 DISCHARGE PREVENTION	<u>13</u>
112.7(b)	3.3 Potential Discharge Volumes and Direction of Flow	<u>13</u>
112.7(c)	3.5 Containment and Diversionary Structures	<u>15</u>
112.7(d)	3.6 Practicability of Secondary Containment	<u>16</u>
112.7(e)	3.7 Inspections, Tests, and Records	<u>16</u>
112.7(f)	3.8 Personnel, Training, and Discharge Prevention Procedures	17
112.7(g)	3.10 Security	<u>18</u>
112.7(h)	3.11 Loading/Unloading	<u>18</u>
112.7(i)	3.12 Brittle Fracture Evaluation	20
112.7(j)	3.13 Conformance with State and Local Applicable Requirements	20
112.7(k)	3.3 Potential Discharge Volumes and Direction of Flow	<u>13</u>
112.8(b)	3.4 Containment Drainage	<u>15</u>
112.8(c)(1)	2.3 Oil Storage	<u>10</u>
112.8(c)(2)	3.5 Containment and Diversionary Structures	<u>15</u>
112.8(c)(3)	3.4 Containment Drainage	<u>15</u>
112.8(c)(6)	3.7 Inspections, Tests, and Records	<u>16</u>
112.8(c)(8)	3.5 Containment and Diversionary Structures	<u>15</u>
112.8(c)(10)	3.7 Inspections, Tests, and Records	16
112.8(d)	3.7 Inspections, Tests, and Records	<u>16</u>

Provision	Plan Section		
112.20(e)	Certification	<u>30</u>	
112.20(f)2(i)	2.4 Discharge Potential	<u>12</u>	

Table 1-2: SPCC Cross Reference

Oil Contingency Plan Cross-Reference

This SPCC Plan does not follow the exact order presented in 40 CFR Part 109.5 for Oil Contingency Plans. The table below presents a cross-reference of Plan sections relative to the applicable parts of 40 CFR Part 109.5.

Provision	Plan Section	Page
109.5(a)	3.10 Security	<u>32</u>
109.5(b)(1)	2.3 Oil Storage	<u>10</u>
109.5(b)(2)	Certification	<u>30</u>
109.5(b)(3)	4.4 Discharge Notification	<u>23</u>
109.5(b)(4)	4.4 Discharge Notification	<u>23</u>
109.5(c)(1)	3.6 Practicability of Secondary Containment	<u>16</u>
109.5(c)(2)	3.4 Containment Drainage	<u>15</u>
109.5(c)(3)	3.10 Security	<u>18</u>
109.5(d)(1)	3.10 Security	<u>18</u>
109.5(d)(2)	3.10 Security	<u>18</u>
109.5(d)(3)	2.1 Description of the Facility	<u>8</u>
109.5(d)(4)	4.0 DISCHARGE RESPONSE	<u>21</u>
109.5(d)(5)	2.3 Oil Storage	<u>10</u>
109.5(e)	3.13 Conformance with State and Local Applicable Requirements	<u>20</u>

Table 1-3: Oil Contingency Plan Cross-Reference

2.0 GENERAL FACILITY INFORMATION

2.1 Description of the Facility

Table 2-1: Facility Information

Owner Information			
Owner Legal Entity	Bluestone Wind, LLC		
Owner Best Contact	Jeffrey Nemeth		
Address	30 St. Clair Ave W, Toronto, ON M4V 3A1, Canada		
Owner Best Contact Phone and Email	+1-309-531-0440; Jeffrey.Nemeth@Northlandpo wer.com		
Operator Information			
General Contractor Company	Bluestone Wind, LLC		
General Contractor On-Site Representative	Jeffrey Nemeth		
Address	30 St. Clair Ave W, Toronto, ON M4V 3A1, Canada		
General Contractor Phone; On-site Manager Email	+1-309-531-0440; Jeffrey.Nemeth@Northlandpower.com		
Facilities Include:			
Remote Sites	Up to 26 Turbines		
Laydown Yard	10 Acres		
Batch Plant	3 Acres		
Collection Substation	1.5 Acres		
POI Substation	1.7 Acres		
Facility			
Facility Address	William Law Road and Rector Road, Sanford, NY 13754		

The Facilities are located in Broome County, New York, and consist of the distinct areas that contain oil products and/or oil storage. These areas include individual turbine sites (referred to as the "Remote Sites,"), a temporary Laydown Yard, a temporary Batch Plant, a Collector Substation, and a Point of Interconnect (POI) Substation. Construction activity will disturb an area consisting of approximately 367 acres consisting of both temporary and permanent improvements. Hours of operation for the Facility are typically between 7 am to 8 pm Monday - Saturday, 8 am to 8 pm Sunday & national holidays.

The Remote Sites will consist of up to twenty-six (26) turbines. At the Remote Sites, construction will include using distinct crews for the construction of each component of the turbines. The crews move from turbine site to turbine site as the construction progresses, and may be at 2-3 sites per day. The number of active turbine construction sites varies, but there may be construction occurring at all of the different sites. Oil storage will be located in each turbine's gearbox and hydraulic unit, both which will be contained within the turbine itself.

The majority of the contaminants will be stored at the temporary construction Laydown Yard, which will consist of construction trailers that are used by Bluestone Wind, Bluestone Wind, and other subcontractors. An aggregate surface will be installed for the Facility to be used for storage, supplies, and equipment. Oil products at the Laydown Yard will primarily be found in ASTs, slip tanks, and drums used by the Operator and its subcontractors primarily to store fuel and other vehicle fluids. A fuel truck will be used to transport fuel from the Laydown Yard to the construction equipment as needed. The Laydown Yard will serve as the Facility operations center during construction and will be equipped with a reliable communications center for directing response operations. The Laydown Yard is accessible from William Law Road, approximately 0.5 miles northeast of Rector Road.

The Batch Plant will consist of concrete mixing operations and associated materials and oil products in ASTs. An aggregate surface will be installed for the facility for the equipment, vehicle traffic, and material storage. There will be many vehicles transporting concrete material to and from the Batch Plant. The Batch Plant is accessible from William Law Road, approximately 0.5 miles northeast of Rector Road.

The Collector Substation will consist of a main power transformer, associated control and distribution equipment, an underground electrical transmission system for the turbines, an aggregate surface, and a fence that surrounds the perimeter of the Substation. The Collector Substation is located on Big Hollow Road, approximately 1 mile north of Lumber Road.

The POI Substation will consist of distribution equipment, an underground electrical transmission system, and aggregate surface, and perimeter fence. The POI Substation is located on Big Hollow Road, approximately 1 mile north of Lumber Road.

Locations of all of the Facilities are shown in the Facility Location Figures.

2.2 Administration of Responsibility

To fully implement this SPCC Plan, the assistance and cooperation of multiple parties is required. The following descriptions outline key roles and responsibilities involved in the implementation of this SPCC Plan.

Owner Legal Entity

Bluestone Wind is the owner of the Blue Stone Wind Project. Bluestone Wind has engaged Bluestone Wind as the General Contractor for the Project. Owner's responsibilities include:

- Ensure those who work with oil on the Project are aware of and follow the requirements of this SPCC Plan;
- Follow the established policies and procedures of this SPCC Plan; and
- Enforce the requirements of the SPCC Plan and have overall responsibility of the Project and SPCC Plan requirements.

General Contractor Company

Bluestone Wind is the General Contractor for the construction of the Blue Stone Wind Project. Bluestone Wind is responsible for site tree clearing, and the construction of access roads, foundations, underground collection, turbine erection, and the substation. Bluestone Wind will engage an oil company to supply fuel for the project. Specific responsibilities include:

- Serve as SPCC Emergency Coordinator;
- Perform inspections to ensure compliance with the provisions of this SPCC Plan;
- Coordinate training and maintain training records;
- Maintain the SDS sheets;
- Maintain security of oil storage areas;
- Notify the Owner of any releases;
- Investigate oil releases;
- Provide the proper notification for environmental releases;
- Ensure corrective action is taken in the event of a release;
- · Coordinate disposal of waste materials;
- Ensure that emergency response equipment is available and working properly; and
- Update the SPCC Plan as required.

Subcontractors

Subcontractors will be selected for the construction of <mark>the operations and maintenance facility, rebar installation, and turbine electrical equipment</mark>. Subcontractor responsibilities include:

- Follow the established policies and procedures of this SPCC Plan;
- Adhere to fuel transfer procedures established in the SPCC Plan;
- Ensure the personnel have appropriate training; and
- Inform Bluestone Wind of any releases and ensure that corrective action is taken.

2.3 Oil Storage

The Contractor shall use storage containers that are compatible with the material stored within considering pressure and temperature.

Bulk oil storage at the Facility consists of ASTs, slip tanks, a mobile refueler, various fifty-five (55) gallon drums. Oil-filled equipment includes the main power transformer and the turbine components. An inventory of the products stored at the Facility is shown below. All containers with a capacity of fifty-five (55) gallons or more are included, unless otherwise exempt from the rule.

Oil tanks used at this Facility are constructed of steel or plastic. The design and construction of all bulk storage containers is compatible with the characteristics of the oil product they contain and with applicable temperature and pressure conditions.

Capacity			Storage	Secondary	Party Responsible for Oil	
(gallons)	Quantity	Content	Containment	Containment	Storage	
Remote Sites						
TBD	TBD	Gear Oil	WTG Gearbox	Self-containe d	Bluestone Wind	
TBD	TBD	Hydraulic Oil	WTG Gearbox	Self-containe d	Bluestone Wind	
Laydown Yard						
120	4	Diesel Fuel	Slip Tank	Active Containment/ Sorbent Materials	Bluestone Wind	
2,500	3	Diesel Fuel	Mobile Refueler	Active Containment/ Sorbent Materials	Bluestone Wind	
Batch Plant						
1,500	2	Diesel Fuel	Aboveground Storage Tank	TBD	Bluestone Wind	
Collector Substat	Collector Substation					
TBD	1	Mineral Oil	Main Power Transformer	Concrete Pit	Bluestone Wind	
POI Substation						
500	2	Diesel Fuel	Aboveground Storage Tank	TBD	Bluestone Wind	

Table 2-2: Oil Storage I	nventory
--------------------------	----------

2.4 Discharge Potential

The Project activity areas are divided between four (4) watersheds: Upper Oquaga Creek, Lower Oquaga Creek, Big Hollow-West Branch Delaware River, and Occanum Creek-Susquehanna River. The Facility has multiple discharge points to the receiving waters, but the runoff directly from the disturbed areas is generally non-point discharges via overland flow.

Due to the remote nature and large quantity of turbine sites, drainage patterns vary for each turbine site. Runoff from the Remote Sites will travel by overland flow towards the nearest receiving surface water body, the nearest of which is over 0.14 miles (740 feet) away. It is unlikely that simultaneous discharges will occur at multiple turbine sites. If a discharge reaches a navigable water, the priority is to control it before it discharges downstream to other water uses. Point discharge locations are noted below and are located within the drainage areas shown in the Facility Location Figures. The named receiving watersheds are:

Upper Oquaga Creek: This watershed covers the east central portion of the site and includes six (6) of the Remote Sites. Runoff from the Remote Sites drains via overland flow in various directions towards Upper Oquaga Creek, which runs through the center of the site, or its unnamed tributaries.

Lower Oquaga Creek: This watershed covers the west central portion of the site and includes up to fourteen (14) of the Remote Sites, as well as the Laydown Yard and Batch Plant. The Laydown Yard and Batch Plant consist of a compacted gravel surface and slope to the east and south. Runoff from the Laydown Yard and Batch Plant will flow southeast towards an unnamed tributary to Marsh Creek, which discharges to Oquaga Creek approximately 2.8 miles to the southeast. Runoff from the Remote Sites on the western part of the watershed will drain over 0.2 miles (1,056 feet) towards Fly Creek or Marsh Creek, while runoff from the Remote Sites on the eastern part of the watershed will drain over 0.14 miles (740 feet) towards Tarbell Brook or Bone Creek. These immediate receiving streams are all tributary to Oquaga Creek.

Big Hollow-West Branch Delaware River: This watershed covers the easternmost portion of the site and includes two (2) of the Remote Sites and the Substations. The Substations are located on terrain that slopes to the southeast, and consists of a compacted gravel surface. Runoff from the Substations will proceed southeast via overland flow towards a tributary of the Big Hollow Branch of the West Branch Delaware River. Runoff from the two (2) Remote Sites will flow overland over 0.3 miles towards unnamed tributaries of Big Hollow Branch.

Occanum Creek-Susquehanna River: This watershed covers the southwest corner of the site and includes three (3) of the Remote Sites. Runoff from the Remote Sites will proceed over 0.27 miles in a generally west direction towards unnamed tributaries to Tuscarora Creek.

Because this is a new construction project, there is no previous history of any discharge at the Facility.

3.0 DISCHARGE PREVENTION

The following measures must be implemented to prevent oil discharges during the handling, use, or transfer of oil products at the Facility. Oil-handling employees must receive training in the proper implementation of the measures.

3.1 Facility Layout Diagram and Remote Sites

The Drainage Map is attached in the <u>Facility Location Figures</u>. Facility Layout Diagrams are attached for each of the facilities described above which show the location of storage tanks and general layout. As required under 40 CFR 112.7(a)(3), the Facility diagrams indicate the location and contents of bulk storage containers and oil-filled operational equipment.

3.2 Spill Reporting Procedures

A list of Emergency Contacts is in <u>Appendix C</u>. A Discharge Notification Form, included as <u>Appendix D</u>, will be completed immediately upon detection of a discharge and prior to reporting a spill to the proper authorities. More detailed spill reporting procedures are contained in <u>Section</u> <u>4.4</u>.

3.3 Potential Discharge Volumes and Direction of Flow

The table below contains expected volume, discharge rate, general direction of flow in the event of equipment failure at the Facility, and means of secondary containment.

Releases from oil-filled construction equipment could range from gradual to instantaneous depending upon the type of leak. Direction of flow will depend on the location of the operational equipment with respect to the Remote Sites.

Potential Event	Maximum Volume Released (Gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
<mark>Remote Sites</mark>				
Leaking/Rupturing Gearbox	TBD	Gradual to Instantaneous	Varies**	Self-contained
Leaking/Rupturing Hydraulic Unit	TBD	Gradual to Instantaneous	Varies**	Self-contained
Laydown Yard				
Tank Overfill	90	1 gal/min*	Southeast	Active Containment/ Sorbent Materials

Table 3-1: Potential Discharge Volumes and Direction of Flow

Potential Event	Maximum Volume Released (Gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
Hose Leak During Unloading	90	1 gal/min*	Southeast	Active Containment/ Sorbent Materials
Dispenser Hose Rupture	90	1 gal/min*	Southeast	Active Containment/ Sorbent Materials
Tank Rupture	120	Gradual to Instantaneous	Southeast	TBD
<mark>Batch Plant</mark>				
Tank Overfill	90	1 gal/min*	Southeast	Active Containment/ Sorbent Materials
Hose Leak During Unloading	90	1 gal/min*	Southeast	Active Containment/ Sorbent Materials
Dispenser Hose Rupture	90	1 gal/min*	Southeast	Active Containment/ Sorbent Materials
Tank Rupture	1,500	Gradual to Instantaneous	Southeast	Active Containment/ Sorbent Materials
Collector Substati	on		•	
Transformer Rupture	TBD	Gradual to Instantaneous	Southeast	Concrete Pit
POI Substation				_
Tank Overfill	90	1 gal/min*	ТВД	Active Containment/ Sorbent Materials
Hose Leak During Unloading	90	1 gal/min*	TBD	Active Containment/ Sorbent Materials
Dispenser Hose Rupture	90	1 gal/min*	TBD	Active Containment/ Sorbent Materials

Table 3-1: Potential Discharge Volumes and Direction of Flow

Potential Event	Maximum Volume Released (Gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
Tank Rupture	500	Gradual to Instantaneous	TBD	TBD

Table 3-1: Potential Discharge Volumes and Direction of Flow

*Assumes a maximum of 1.5 hours before discovery. In the event of a complete tank rupture, a maximum of 90 gallons could potentially be released before facility response personnel are able to mitigate the discharge. The large spill kits at the Laydown Yard (absorption capacity of XX gallons) as well as the readily-available small spill kits in on-site vehicles (absorption capacity of XX gallons) would be sufficient to clean up an oil spill of this size.

**Please refer to the Drainage Map in the <u>Facility Location Figures</u> for general drainage patterns from the Remote Sites.

3.4 Containment Drainage

Drainage from the containment pits surrounding tanks, drums, and transformers at the Laydown Yard, Batch Plant, Substation, and Switchyard are controlled by the impervious sides of the tubs and pits. The areas are drained by Bluestone Wind by manually activated pumps. The retained rainwater is inspected by Bluestone Wind prior to draining to ensure that only oil-free water is discharged. A sorbent filter boom will be used to absorb any oils in the containment area. Drainage events are recorded in the log included in <u>Appendix E</u>.

3.5 Containment and Diversionary Structures

Methods of secondary containment at this Facility include a combination of prefabricated structures and land-based spill response to prevent oil from reaching navigable waters and adjoining shorelines. All secondary containment structures shall be sized to hold a minimum of 110% of the volume of the single largest tank within the containment area. Calculations for the secondary containment capacities are included in <u>Appendix F.</u>

Double-walled Tanks

All ASTs will be double-walled to meet EPA SPCC secondary containment requirements under 40 CFR Part 112.7(c). Any ASTs with a storage capacity of 660 gallons or more storing Class I, II, or IIIA combustible liquids is required to have vent pipe outlets located twelve (12) feet above ground level under the International Fire Code.

Tubs, Totes, Pits, and Earthen Berms

The ASTs and other storage containers may be stored within tubs, pits, or earthen berms at the Laydown Yard, Batch Plant, and Switchyard. The bottom and sides are impermeable to restrict the flow of oil outside the containment area. The height of the containment must be a minimum of twelve inches, which provides adequate freeboard for precipitation.

In transfer areas and other parts of the Facility, such as the Remote Sites where a discharge could occur, the following measures shall be implemented:

Drip Pans

During fueling operations outside of the secondary containment structures, drip pans may be utilized to contain small leaks from piping/hose connections. Drip pans may also be utilized during field repair and maintenance of oil-filled construction operational equipment.

Sorbent Material

Spill cleanup kits that include sorbent material, booms, or other portable barriers shall be located near the oil storage area in the Laydown Yard. Portable spill kits shall be located in lube trucks and mechanics trucks. The spill kits are located within close proximity of the oil product storage and handling areas for rapid deployment in the event of a discharge outside the containment area or at the turbine sites.

3.6 Practicability of Secondary Containment

It has been determined that secondary containment is practicable at this facility at the Laydown Yard, Batch Plant, Substation, and Remote Sites. In lieu of providing sized secondary containment for the mobile refueler at the Laydown Yard, this SPCC Plan meets the requirements of an Oil Contingency Plan as an Alternative Requirement to General Secondary Containment as set forth in 40 CFR 112.7(k)(2). The additional Oil Contingency Plan establishes the procedures for preventing, detecting, and responding to equipment failure and/or discharges. The Oil Contingency Plan meets the requirements set forth in 40 CFR 109.5.

3.7 Inspections, Tests, and Records

Visual inspections of tanks and containment areas are conducted monthly. Inspection of the outside of the container for signs of deterioration, discharges, or accumulation of oil inside containment areas is conducted.

3.7.1 Monthly Inspections

The monthly inspection checklist is provided in <u>Appendix G</u>. The monthly inspections cover the following key elements:

- Observing the exterior of aboveground storage tanks, pipes, and other equipment for signs of deterioration, leaks, corrosion, and thinning;
- Observing the exterior of portable containers for signs of deterioration or leaks;
- Observing the tank fill and discharge pipes and hoses for signs of poor connection that could cause a discharge, and tank vent for obstructions and proper operation;
- Verifying the proper functioning of overfill prevention systems; and
- Checking the inventory of discharge response equipment and restocking as needed.

Each aboveground tank will be tested for integrity on a regular schedule and whenever material repairs are made. The regulations require visual inspections combined with another testing technique such as hydrostatic testing, radiographic testing, ultrasonic testing, acoustic emissions testing, or another system of non-destructive shell testing. For small, non-regulated aboveground tanks, such as those in use at the Facility, the testing can be substituted by a more detailed visual inspection in accordance with the Steel Tank Institute (STI) Standard for the Inspection of Aboveground Storage Tanks, SP-001, latest version (Appendix G). This inspection will be performed annually.

Visual inspection is considered sufficient for drum storage. The containers are visually examined on a daily basis (cursory observations) and monthly basis (written inspection) for signs of deterioration or leaks and are immediately replaced if signs of deterioration or leaks are apparent.

The tanks and drums are not equipped with visual gauges or high level alarms. In order to provide equivalent environmental protection, the operator determines the volume of oil in the container prior to transferring oil into the tank or drum. Additionally, trained oil-handling personnel are present during loading/unloading activities.

Fire extinguishers will be visually inspected monthly and certified annually. Level gauge accuracy will be verified by a comparison to a stick test at least annually.

All problems regarding tanks, piping, containment, or response equipment will be immediately reported to the SPCC Emergency Coordinator listed in <u>Section 1.3</u>. Visible oil leaks from tank walls, piping, or other components must be repaired as soon as possible to prevent a larger spill or discharge to navigable waters or adjoining shorelines. Pooled oil shall be removed immediately upon discovery.

3.8 Personnel, Training, and Discharge Prevention Procedures

The SPCC Emergency Coordinator will be the facility designee and will be responsible for oil discharge prevention, control, and response preparedness activities at this facility. Bluestone Wind management will instruct oil-handling facility personnel in the operation and maintenance of oil pollution prevention equipment, discharge procedure protocols, applicable pollution control laws, rules and regulations, general facility operations, and the content of this SPCC Plan. Any new Facility personnel with oil-handling responsibilities shall be provided with this same training prior to being involved in any oil operation associated with the Project. The site spill clean-up contractor designated by Bluestone Wind is Safety-Kleen. In the event of a larger spill

(defined as one that cannot be safely controlled or cleaned up by facility personnel), Bluestone Wind will contact the designated site spill clean-up contractor and/or 911 to provide emergency response services.

Annual discharge prevention briefings shall be held by the SPCC Emergency Coordinator for all Facility personnel involved in oil operations. The briefings are aimed at ensuring adequate understanding of the SPCC Plan. The briefing will highlight and describe known discharge events or failures, malfunctioning components, and any recently developed precautionary measures.

Records of the briefing and discharge prevention training shall be kept on the form contained in <u>Appendix H</u> and maintained with this SPCC Plan for a period of three (3) years from the briefing/ training date.

3.9 Spill Response Equipment

The following spill response equipment will be maintained at the site, at the Laydown Yard:

- Fire extinguisher;
- Shovel;
- Tank patch kit; and
- Sorbent materials, such as booms, pads, granular material, etc.

These materials will be inspected on a monthly basis, as described in <u>Section 3.7</u>.

3.10 Security

Fencing is generally not provided at the Facility. Instead, environmental equivalent protection is being provided by the temporary nature of the construction, the remote locations, full-time Facility personnel at the Laydown Yard [insert work days and hours], security guards, and locked storage tanks at night. Pole lighting will be installed around the yard. Security will be present whenever the Contractor is not present on site (normally nights on weekdays and twenty-four (24) hours on the weekends).

Drain valves shall be locked in the closed position to prevent unauthorized opening at all times. Fill caps on the tanks are locked at all times when not in operation. The fuel dispenser is chained and locked at night so that it cannot be removed when the Facility is not attended. With the dispenser locked in place, the fuel dispensing pump shall be turned off.

3.11 Loading/Unloading

There is no dedicated loading/unloading rack at the Facility during the construction phase of the Project. Tank truck loading/unloading procedures conform to regulations established by the U.S. Department of Transportation. Bluestone Wind will ensure that vendors understand the site layout, that they know the protocols for unloading oil products, and that they have the necessary equipment to respond to a discharge from the vehicle or fuel delivery hose. This applies to loading/unloading at the Laydown Yard, Batch Plant, and Switchyard.

Vehicle filling and unloading operations at the Laydown Yard, Batch Plant, and Switchyard shall be performed by Facility personnel trained in proper discharge prevention procedures. The truck driver or Facility personnel shall stay with and monitor the vehicle at all times while fuel is being transferred. Transfer operations shall be performed according to the procedures listed in the table below.

Prior to loading	g/ Unloading
Vi	isually check hoses for leaks and wet spots.
Ve	erify the sufficient volume is available in the storage tank or truck.
Lo	ock, in the closed position, all drainage valves of the secondary containment cructure.
Se	ecure the tank vehicle/set parking brakes.
Ve	erify proper alignment of valves and proper functioning of the pumping system.
lf	filling a tank truck, inspect the lowest drain and all outlets.
Es po	stablish adequate bonding/grounding prior to connecting to the bulk fuel transfer oint.
Τι	urn off cell phone.
N	o smoking.

During loadi	ng/ Unloading
	Driver must stay with the vehicle at all times during loading/unloading.
	Periodically inspect all systems, hoses, and connections.
	When loading, keep internal and external valves on the receiving tank open along with the pressure relief valves.
	When making a connection, shut off the vehicle engine. When transferring flammable liquid, shut off the engine unless it is used to operate a pump.
	Maintain communication with the pumping and receiving stations.
	Monitor the liquid level in the receiving tank to prevent overflow.
	Watch for any leaks or spills. Any small leaks or spills should be immediately stopped and then absorbed and disposed of properly.

After Loading/ Unloading		
	Make sure the transfer operation is complete.	
	Close all tank and loading valves before disconnecting.	

Secure all hatches.
Disconnect all grounding/bonding wires from the bulk fuel transfer point.
Make sure the hoses are drained to remove remaining oil before moving them away from the connection. Use a drip pan.
Cap the end of the hose and other connecting devices before moving them to prevent uncontrolled leakage.
Inspect the lowest drain and other outlets on tank truck prior to departure. If necessary, tighten, adjust, or replace caps, valves, or other equipment to prevent oil leaking while in transit.
Inspect the loading/unloading point and tank to verify that no leaks have occurred or that any leaked or spilled material has been cleaned up and disposed of properly.

3.12 Brittle Fracture Evaluation

There are no field constructed tanks at the Facility.

3.13 Conformance with State and Local Applicable Requirements

Each responsible Owner or Operator at the Facility is required to get all necessary tanks approved, registered, and permitted with applicable Federal, State, and Local Agencies, including the New York Department of Environmental Conservation (NY DEC).

Each responsible Owner or Operator at the Facility is required to immediately notify the NY DEC Hotline (1-800-457-7362 in state or 518-457-7362 out of state) in the event of all spills unless the spill meets all of the following criteria:

- 1. The quantity is known to be less than 5 gallons;
- 2. The spill is contained and under control of the spiller;
- 3. The spill has not and will not reach the State's water or any land; and
- 4. The spill is cleaned up within 2 hours of discovery.

For spills not deemed reportable, it is strongly recommended that the facts concerning the incident be documented by the spiller and a record be maintained for one year.

Diesel exhaust fluid, herbicides, and other non-petroleum chemicals are not included in this SPCC Plan as they are not oil-based products and are therefore not subject to SPCC regulations. Potential spills from these containers will be subject to the New York DEC spill reporting requirements listed above and in <u>Section 4.4</u>.

Refer to <u>Section 4.4</u> for Discharge Notification requirements.

4.0 DISCHARGE RESPONSE

The steps and information below outline to respond and implement cleanup procedures in the event of an oil discharge. The uncontrolled discharge of oil to groundwater, surface water, or soil is prohibited by state and/or federal laws. Immediate action must be taken to control, contain, and recover discharged product.

In general, the following steps shall be taken:

- Eliminate potential spark sources;
- If possible and safe to do so, identify and shut down the source of discharge to stop the flow;
- Contain the discharge with containers, sorbents, berms, trenches, sandbags, or other material;
- Contact the SPCC Emergency Coordinator or his/her alternate;
- Collect and dispose of recovered products according to regulation;
- Contact regulatory authorities and the response organization and report the release; and
- Ensure refuse materials are hauled off by a permitted hauler to a permitted facility.

For purposes of establishing appropriate response procedures, this SPCC Plan classifies discharges as either "minor" or "major", depending on the volume and characteristics of the material released.

A list of Emergency Contacts is provided in <u>Appendix C</u>. This list identifies personnel to be contacted in case of emergency and shall be posted on the information board in the Laydown Yard.

4.1 Response to a Minor Discharge

A "minor" discharge is defined as one that poses no significant harm (or threat) to human health and safety or to the environment. Minor discharges are generally those where:

- The quantity of product discharged is small;
- Discharged material is easily stopped and controlled at the time of discharge;
- Discharge is localized near the source;
- Discharged material is not likely to reach water, groundwater, or field drains;
- There is little risk to human health and safety; and
- There is little risk of fire or explosion.

Minor discharges can usually be cleaned by Facility personnel. The following procedures apply:

- Immediately notify the SPCC Emergency Coordinator;
- Under direction of the SPCC Emergency Coordinator, contain the discharge with discharge response materials and equipment. Place discharge debris in properly labeled waste containers; and
- The SPCC Emergency Coordinator will complete the discharge notification form in <u>Appendix D</u> and attach a copy to this SPCC Plan.

4.2 **Response to a Major Discharge**

A "major" discharge is defined as one that cannot be safely controlled or cleaned up by Facility personnel, such as when:

- The discharge is large enough to spread beyond the immediate discharge area;
- The discharged material enters water, groundwater, or sewer drains;
- The discharge requires special equipment or training to clean up;
- The discharge material poses a hazard to human health or safety; or
- There is a danger of fire or explosion.

In the event of a major discharge, the following guidelines apply:

- Safety of personnel is the primary concern. No countermeasures that risk the health or safety of personnel should be undertaken;
- If the SPCC Emergency Coordinator is not present at the Facility, the senior on-site person shall notify the SPCC Emergency Coordinator of the discharge and has the authority to initiate notification and response;
- No smoking, open flames, cell phones, or other spark-inducing equipment is permitted in the area of a flammable material spill;
- Facility personnel should stop the source of the leak or spill if possible by closing a valve, turning off a pump, sealing a hole, etc. Facility personnel should take the following actions to contain the spill: use absorbent pads, booms, sand, and/or speedi-dri materials to stop the spread of the spill. Contaminated soil should be placed on an impermeable liner for containment;
- Emergency medical treatment and first aid shall be administered by personnel certified in first aid/CPR. The SPCC Emergency Coordinator (or senior on-site person) must call for medical assistance if workers are injured;
- Establish fire prevention measures in the vicinity of the spill. Divert traffic (vehicular and pedestrian) from the area. The SPCC Emergency Coordinator (or senior on-site person) must call the local Fire Department or Police Department;
- If Facility personnel are unsure of the hazards involved, the amount of the spill is too large, or a release to navigable waters or adjoining shorelines is threatened, the SPCC Emergency Coordinator (or senior on-site person) shall call for outside assistance from a spill response/cleanup contractor;
- For spills to land, the SPCC Emergency Coordinator (or senior on-site person) will immediately, but no later than two hours after discovery, call the NY DEC Hotline 1-800-457-7362. For spills to water, the SPCC Emergency Coordinator will also immediately call the National Response Center (800-424-8802);
- The SPCC Emergency Coordinator (or senior on-site person) will complete the discharge notification form in <u>Appendix D</u> and attach a copy to this SPCC Plan; and
- The SPCC Emergency Coordinator (or senior on-site person) will coordinate cleanup and contract a cleanup contractor as necessary.

If the SPCC Emergency Coordinator is not available at the time of the discharge, then the next highest person in seniority assumes responsibility for coordinating response activities.

4.3 Waste Disposal

Waste resulting from a minor discharge response will be contained in impervious bags, drums, or buckets. The SPCC Emergency Coordinator will characterize the waste for proper disposal and ensure it is removed from the Facility by a licensed waste hauler.

Wastes resulting from a major discharge response will be removed and disposed of by a licensed cleanup contractor. Waste materials will be disposed of in accordance with federal, state, and local regulations.

Bluestone Wind has contracted with Safety-Kleen (315-455-1426) in the event that hazardous material needs to be removed from the site.

4.4 Discharge Notification

The individual identifying the release shall immediately contact the facility SPCC Emergency Coordinator. The SPCC Emergency Coordinator or designee will be responsible for notifying the appropriate regulatory agencies and, if necessary, the spill clean-up contractor. Any size discharge that affects or threatens to affect navigable waters (i.e. one that creates an oil film, sheen, emulsion, or sludge upon navigable waters or adjoining shorelines) must be reported immediately (within fifteen (15) minutes) to the National Response Center (800-424-8802). The National Response Center is staffed twenty-four (24) hours a day.

Upon discovery of a spill, the SPCC Emergency coordinator is required to immediately notify the NY DEC Hotline (1-800-457-7362 in state or 518-457-7362 out of state) **unless** the spill meets all of the following criteria:

- 1. The quantity is known to be less than 5 gallons;
- 2. The spill is contained and under control of the spiller;
- 3. The spill has not and will not reach the State's water or any land; and
- 4. The spill is cleaned up within 2 hours of discovery.

For spills not deemed reportable, it is strongly recommended that the facts concerning the incident be documented by the spiller and a record be maintained for one year.

In addition, 40 CFR 112.4 requires that information be submitted to the United States Environmental Protection Agency (EPA) Regional Administrator for Region 2 (212-637-4040) and the appropriate state agency in charge of oil pollution control activities, in this case, the NY DEC Spill Hotline (1-800-457-7362), whenever the Facility discharges more than 1,000 gallons of oil to a navigable water in a single event or discharges more than forty-two (42) gallons of oil to navigable waters in each of two (2) discharge incidents within a twelve (12) month period.

Contact information for reporting the discharge to the appropriate authorities is listed in <u>Appendix C</u> and is also posted at the information board in the Laydown Yard.

A summary sheet is included in <u>Appendix D</u> to facilitate the reporting. The person reporting the discharge will provide the following information:

- Name, location, organization, and telephone number;
- Name and address of the party responsible for the incident;
- Date and time of the incident;
- Source and cause of the release or discharge;
- Type of material(s) released or discharged;
- Quantity of materials released or discharged;
- Danger or threat posed by the release or discharge;
- Number and type of injuries, if any;
- Media affected or threatened by the discharge (i.e. water, land, or air);
- Action used to stop, remove, and mitigate the effects of the discharge;
- Whether an evacuation is needed;
- Names of individuals and/or organizations who have been contacted;
- Weather conditions at the incident location; and
- Any other information that may help emergency personnel respond to the incident.

FACILITY LOCATION FIGURES

\bigwedge

0

Bluestone Wind Project Broome County, New York

──── Miles

Figure 1: Vicinity Map

January 29, 2020

Ν \wedge

0

Bluestone Wind Project Broome County, New York

Figure 2: Drainage Map

January 29, 2020

──── Miles 0.5

N

A

Bluestone Wind Project Broome County, New York

____ Feet 2,400 Figure 3: Remote Sites Layout Map

January 29, 2020

APPENDIX A: SUBSTANTIAL HARM DETERMINATION

Facility Name: Blue Stone Wind Project Facility Address: William Law Road and Rector Road, Sanford, NY 13754

Substantial Harm Determination

Does the Facility transfer oil over water to or from vessels and does the Facility have a total oil storage capacity greater than or equal to 42,000 gallons?	No
Does the Facility have a total oil storage capacity greater than or equal to one million gallons and does the Facility lack secondary containment that is sufficiently large to contain the capacity of the largest aboveground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground oil storage tank area?	No
Does the Facility have a total oil storage capacity greater than or equal to one million gallons and is the Facility located at a distance (as calculated using the appropriate formula in 40 CFR Part 112 Appendix C, Attachment C-III or a comparable formula) such that a discharge from the Facility could cause injury to fish and wildlife and sensitive environments?	No
Does the Facility have a total oil storage capacity greater than or equal to one million gallons and is the Facility located at a distance (as calculated using the appropriate formula in 40 CFR Part 112 Appendix C, Attachment C-III or a comparable formula) such that a discharge from the Facility would shut down a public drinking water intake?	No
Does the Facility have a total oil storage capacity greater than or equal to one million gallons and has the Facility experienced a reportable oil spill in an amount greater than or equal to 10,000 gallons within the last five years?	No

Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Signature & Date	
Printed Name	
Company and Title	

APPENDIX B: PLAN REVIEW LOG

Five (5) Year Review Log (not anticipated to be needed)

I have completed a review and evaluation of the SPCC Plan for this Facility and will/will not amend this SPCC Plan as a result.

	Five (5)	Year Review	Log (not	anticipated	to be	needed)
--	----------	-------------	----------	-------------	-------	---------

Review Date	SPCC Plan Amendment	Name and Signature of Person Authorized to Review This SPCC Plan

Technical Amendment Log

Any technical amendments to this SPCC Plan will be re-certified by a licensed Professional Engineer.

Technical Amendment Log

Review Date	Description of Technical Amendment	Name and Signature of Person Certifying This Technical Amendment

APPENDIX C: EMERGENCY CONTACTS

EMERGENCY CONTACTS

Person responsible for spill prevention: Jeffrey Nemeth, Bluestone Wind, LLC Project Development Director

EMERGENCY TELEPHONE NUMBERS

Facility:		
Jeffrey Nemeth, Bluestone Wind, LLC, Project Development Director	+1-309-531-0440 30 St. Clair Ave W, Toronto, ON M4V 3A1, Canada	
, Bluestone Wind, LLC,	30 St. Clair Ave W, Toronto, ON M4V 3A1, Canada	
Jeffrey Nemeth, Bluestone Wind, LLC, Project Development Coordinator	+1-309-531-0440 30 St. Clair Ave W, Toronto, ON M4V 3A1, Canada	
Designated Spill Contractor:		
Safety-Kleen	315-455-1426	
Local Emergency Response:		
Broome County 911	911	
Broome County Sheriff	607-778-1911 155 Lt Vanwinkle Drive, Binghamton, NY 13905	
Deposit Volunteer Fire Department	607-467-2894 130 2nd Street, Deposit, NY 13754	
Notification:		
National Response Center	800-424-8802	
New York DEC Reporting Hotline	1-800-457-7362 625 Broadway, Albany, NY 12233	
U.S. Environmental Protection Agency, Region 2	212-637-4040 Ted Weiss Federal Building, 290 Broadway, New York, NY 10007	

APPENDIX D: DISCHARGE NOTIFICATION FORM

Discharge Notification Form

In the event of a discharge to navigable waters or adjoining shorelines, the following information will be provided to the National Response Center. See also the notification information provided in Section 4.4 of the SPCC Plan.

Facility Name:	Blue Stone Wind Project
Address:	William Law Road and Rector Road Sanford, NY 13754
Telephone:	SITE PHONE
Operator:	Bluestone Wind, LLC
Primary Contact:	Jeffrey Nemeth, Project Development Director +1-309-531-0440
Discharge Date:	Discharge Time:
Weather Conditions and Temperature:	
Name of reporting individual:	
Type of material:	
Quantity released:	
Estimated quantity released to navigable waters:	
Cause of discharge:	
Action taken to stop, remove, and mitigate the effects of the discharge:	
Media affected:	

Discharge Information

Damages or Injuries

Organizations and Individuals Contacted

Fire/Police/Ambulance	911	Time:
Deposit Volunteer Fire Department	607-467-2894	Time:
National Response Center	800-424-8802	Time:
New York DEC Reporting Hotline	1-800-457-7362	Time:
U.S. Environmental Protection Agency, Region 2	212-637-4040	Time:

Signature

Signature	
Printed Name	
Company & Title	

APPENDIX E: RECORD OF SECONDARY CONTAINMENT

This record will be completed when rainwater from secondary containment is drained from or pumped out of secondary containment. The bypass valve will normally be sealed in a closed position. It will be opened and resealed following drainage under responsible supervision.

Rainwater is not to be drained if oil or an oil sheen is present.

Date	Time	Area Drained	Presence of Oil (Y/N)	Signature

APPENDIX F: CALCULATION OF SECONDARY CONTAINMENT

All secondary containment shall be sized to accommodate a minimum of 110% of the volume of the single largest container within each individual containment area. Secondary containment shall be in place prior to placing any tanks into service. Specific secondary containment capacities will be measured and included in Appendix F upon completion of the site inspection.

Location	Secondary Containment Type	Secondary Containment Capacity	Largest Container Volume	110% of Largest Container	Sufficient? (Y/N)	

APPENDIX G: MONTHLY FACILITY INSPECTION

The following checklist is to be used for monthly inspections. Completed checklists must be signed by the inspector and maintained at the Facility, with the SPCC Plan, for at least three (3) years. Any item that receives a "yes" answer must be described and addressed immediately.

Inspection Item	Y	Ν	Description and Comments
Storage Tanks			
Tank surfaces show signs of leakage			
Tanks are damaged, rusted, or			
deteriorated			
Bolts, rivets, or seams are damaged			
Tank supports are deteriorated or			
buckled			
Level gauges are inoperable			
Vents are obstructed			
Containment Areas			
Secondary containment is damaged or			
stained	_		
Standing water in containment			
Drainage valve is open or not secure			
Evidence of oil release from tank			
Transformers			
Transformer surfaces show signs of leakage			
Transformer is damaged, rusted, or deteriorated			
Bolts, rivets, or seams are damaged			
Transformer supports are deteriorated or buckled			
Transformer foundations have eroded or settled			
Safety			
Safety equipment missing or inoperable			
Spill response equipment used and not replaced			
Fire extinguisher not present/operational			
Fuel tank not grounded			
Signature:			
Date:			

Appendix *G* Steel Tank Institute SP001 Checklist

STI SP001 AST Record

OWNER INFORMATION	FACILITY INFORMATION	INSTALLER INFORMATION	
Name	Name	Name	
Number and Street	Number and Street	Number and Street	
City, State, Zip Code	City, State, Zip Code	City, State, Zip Code	

TANK ID							
SPECIFICATIO	N:						
Design:			Horizontal	Vertical	Rectangular		
	🗌 API	Other					
	Unknown						
Manufacturer:		Contents:	Construction	Date:	Last Repair/Reconstruction Date:		
Dimensions:		Capacity:	Last Change	of Service Date:	×		
Construction:	Bare Steel	Cathodically Prote	ected (Check one: A. 🗌 Galvar	iic or B. 🗌 Impresse	ed Current) Date Installed:		
	Coated Steel	Concrete	Plastic/Fiberglass	☐ Other			
	Double-Bottom	Double-Wall	Lined Date Installed:				
Containment:	Earthen Dike	Steel Dike	rete Synthetic Liner	Other			
CRDM:		Date Installed:	Туре:				
Release Prever	ntion Barrier:	Date Installed:	Туре:				

TANK ID						
SPECIFICATIO	N:					
Design:			Horizontal	Vertical	☐ Rectangular	
	🗆 API	Other				
	Unknown					
Manufacturer:		Contents:	Construction	Date:	Last Repair/Reconstruction Date:	
Dimensions:		Capacity:	Last Change	e of Service Date:		
Construction:	Bare Steel	Cathodically Prote	cted (Check one: A. 🗌 Galvar	nic or B. 🗌 Impres	ssed Current) Date Installed:	
	Coated Steel	Concrete	Plastic/Fiberglass	Other		
	Double-Bottom	Double-Wall	Lined Date Installed:			
Containment:	Earthen Dike	Steel Dike	rete D Synthetic Liner	Other		
CRDM:		Date Installed:	Type:			
Release Prever	ntion Barrier:	Date Installed:	Туре:			
TANK ID						
SPECIFICATIO	N:					
Design:			Horizontal	Vertical	Rectangular	
	🗆 API					
	Unknown	Other				
Manufacturer:		Contents:	Construction	Date:	Last Repair/Reconstruction Date:	
Dimensions:		Capacity:	Last Change	e of Service Date:		
Construction:	Bare Steel	Cathodically Prote	cted (Check one: A. 🗌 Galvar	nic or B. 🗌 Impres	ssed Current) Date Installed:	
	Coated Steel	Concrete	Plastic/Fiberglass	☐ Other		
	Double-Bottom	Double-Wall	Lined Date Installed:			
Containment:	Earthen Dike	Steel Dike	rete 🔲 Synthetic Liner	Other		
CRDM:		Date Installed:	Туре:			
Release Prever	ntion Barrier:	Date Installed:	Туре:			
AST INSPECT	ION STANDARD		27		Septeme	3EF

TANK ID					
SPECIFICATIO	N:				
Design:	🗆 UL		Horizontal	Vertical	☐ Rectangular
	🗌 API				
	Unknown	Other			
Manufacturer:		Contents:	Construction	Date:	Last Repair/Reconstruction Date:
Dimensions:		Capacity:	Last Change	e of Service Date:	
Construction:	Bare Steel	Cathodically Protect	ted (Check one: A. 🗌 Galvar	nic or B. 🗌 Impres	ssed Current) Date Installed:
	Coated Steel	Concrete	Plastic/Fiberglass	☐ Other	
	Double-Bottom	Double-Wall	Lined Date Installed:		
Containment:	Earthen Dike	Steel Dike	ete 🔲 Synthetic Liner	Other	
CRDM:		Date Installed:	Type:		
Release Prever	ntion Barrier:	Date Installed:	Туре:		
SPECIFICATIO	N:				
Design:			Horizontal	Vertical	Rectangular
	🗆 API				
	Unknown	Other			
Manufacturer:		Contents:	Construction	Date:	Last Repair/Reconstruction Date:
Dimensions:		Capacity:	Last Change	e of Service Date:	
Construction:	Bare Steel	Cathodically Protect	cted (Check one: A. 🗌 Galvar	nic or B. 🗌 Impres	ssed Current) Date Installed:
	Coated Steel	Concrete	Plastic/Fiberglass	Other	
	Double-Bottom	Double-Wall	Lined Date Installed:	<u> </u>	
Containment:	Earthen Dike	Steel Dike	ete 🔲 Synthetic Liner	Other	
CRDM:		Date Installed:	Туре:		
Release Prever	ntion Barrier:	Date Installed:	Туре:		
AST INSPECT	ION STANDARD		28		Septembe

AST INSPECTION STANDARD

STI SP001 Annual Inspection Checklist

General Inspection Information:						
Inspection Date:	Retain Until Date:	(36 months from inspection date)				
Prior Inspection Date:	Inspector Name:					
Tanks Inspected (ID #'s):						

Inspection Guidance:

- > For equipment not included in this Standard, follow the manufacturer recommended inspection/testing schedules and procedures.
- The periodic AST Inspection is intended for monitoring the external AST condition and its containment structure. This visual inspection does not require a Certified Inspector. It shall be performed by an owner's inspector who is familiar with the site and can identify changes and developing problems.
- Remove promptly upon discovery standing water or liquid in the primary tank, secondary containment area, interstice, or spill container. Before discharge to the environment, inspect the liquid for regulated products or other contaminants and disposed of it properly.
- In order to comply with EPA SPCC (Spill Prevention, Control and Countermeasure) rules, a facility must regularly test liquid level sensing devices to ensure proper operation (40 CFR 112.8(c)(8)(v)).
- > (*) designates an item in a non-conformance status. This indicates that action is required to address a problem.
- Non-conforming items important to tank or containment integrity require evaluation by an engineer experienced in AST design, a Certified Inspector, or a tank manufacturer who will determine the corrective action. Note the non-conformance and corresponding corrective action in the comment section.
- > Retain the completed checklists for 36 months.
- Complete this checklist on an annual basis supplemental to the owner monthly-performed inspection checklists.
- Note: If a change has occurred to the tank system or containment that may affect the SPCC plan, the condition should be evaluated against the current plan requirement by a Professional Engineer knowledgeable in SPCC development and implementation.

ltem	Task	Status	Comments
1.0 Tank Containment			
1.1 Containment structure	Check for: Holes or cracks in containment wall or floor Washout Liner degradation Corrosion Leakage Paint failure Tank settling	Yes* No N/A	
2.0 Tank Foundation and Supports			
2.1 Foundation	Settlement or foundation washout?	Yes* No	
2.2 Concrete pad or ring wall	Cracking or spalling?	Yes* No N/A	

Item	Task	Status	Comments
2.3 Supports	Check for corrosion, paint failure, etc.	Yes* No N/A	
2.4 Water drainage	Water drains away from tank?	Yes No* N/A	
2.5 Tank grounding	Strap secured and in good condition?	Yes No* N/A	
3.0 Cathodic Prot	ection		
3.1 Gavlvanic cathodic protection system	Confirm system is functional, includes the wire connections for galvanic systems	Yes No* N/A	
3.2 Impressed current system	a. Inspect the operational components (power switch, meters, and alarms).	Yes No* N/A	
	b. Record hour meter, ammeter and voltmeter readings.	Yes No* N/A	
4.0 Tank Shell, He	eads, Roof		
4.1 Coating	Check for coating failure	Yes* No	
4.2 Steel condition	Check for: • Dents • Buckling • Bulging • Corrosion • Cracking	Yes* No	
4.3 Roof slope	Check for low points and standing water	Yes* No N/A	
5.0 Tank Equipment			
5.1 Vents	 Verify that components are moving freely and vent passageways are not obstructed for: Emergency vent covers Pressure/vacuum vent poppets Other moving vent components 	Yes* No	

Item	Task	Status	Comments
5.2 Valves	Check the condition of	Yes* No	
	all valves for leaks,		
	damage		
5.2.1 Anti-siphon,	Cycle the valve open	Yes No* N/A	
check and	and closed and check		
gate valves	for proper operation.		
5.2.2 Pressure	Check for proper	Yes No* N/A	
regulator	operation. (Note that		
valve	there may be small,		
	the bottom of the valve		
	that are not visible by		
	looking from above		
	only)		
5.2.3 Expansion	Check that the valve is	Yes No* N/A	
relief valve	in the proper		
	orientation. (Note that		
	fuel must be		
	tank via a separate		
	pipe or tubing.)		
5.2.4 Solenoid	Cycle power to valve	Yes No* N/A	
valves	to check operation.		
	(Electrical solenoids		
	can be verified by		
	listening to the plunger		
	opening and closing. If		
	confirmation the valve		
	should be inspected		
	for the presence and		
	operation of the		
	plunger.)		
5.2.5 Fire and	a. Manually cycle the	Yes No* N/A	
snear valves	valve to ensure		
	moving freely and that		
	the valve handle or		
	lever has clearance to		
	allow valve to close		
	completely.		
	b. Valves must not be	Yes No* N/A	
	wired in open position.		

ltem	Task	Status	Comments
	c. Make sure fusible	Yes No* N/A	
	element is in place		
	and correctly		
	positioned.		
	d. Be sure test ports	Yes No* N/A	
	are sealed with plug		
	after testing is		
	complete and no		
	temporary test fixture		
	or component remains		
E 2 Interatitial	Connected to valve.	Voo No* N/A	
5.3 Interstitial		res no" n/A	
	equipment, including.		
equipment	 The window is clean and clear in 		
	sight leak gauges		
	 The wire 		
	connections of		
	electronic gauges		
	for tightness and		
	corrosion		
	Activate the test		
	button, if		
	applicable.		
5.4 Spill	a. If corrosion,	Yes* No N/A	
containment	damage, or wear has		
boxes on fill	compromised the		
pipe	ability of the unit to		
	perform spill		
	containment functions,		
	replace the unit.		
	b. Inspect the	Yes^ NO N/A	
	AST IOI lightness, as		
	nuts washers for		
	condition and replace		
	if necessary.		
	c. Drain valves must	Yes* No N/A	
	be operable and		
	closed		
5.5 Strainer	a. Check that the	Yes No* N/A	
	strainer is clean and in		
	good condition.		

ltem	Task	Status	Comments
5.5 Strainer	b. Access strainer basket and check cap	Yes No* N/A	
	and gasket seal as well as bolts.		
5.6 Filter	a. Check that the filter is in good condition and is within the manufacturer's expected service life. Replace, if necessary. b. Check for leaks and	Yes No* N/A	
	decreased fuel flow		
5.7 Flame arrestors	Follow manufacturer's instructions. Check for corrosion and blockage of air passages.	Yes* No N/A	
5.8 Leak detector for submersible pump systems	Test according to manufacturer's instructions and authority having jurisdiction (AHJ). Verify leak detectors are suited and properly installed for aboveground use.	Yes No* N/A	
5.9 Liquid level equipment	a. Has equipment been tested to ensure proper operation?	Yes No* N/A	
	b. Does equipment operate as required?	Yes No* N/A	
	c. Follow manufacturer's instructions	Yes No* N/A	
5.10 Overfill equipment	a. Follow manufacturer's instructions and regulatory requirements for inspection and functionality verification.	Yes No* N/A	
	b. Confirm device is suited for above ground use by the manufacturer	Yes No* N/A	

AST INSPECTION STANDARD

Item	Task	Status	Comments	
6.0 Insulated Tanl	6.0 Insulated Tanks			
6.1 Insulation	Check condition of insulation for: • Missing sections • Areas of moisture • Mold • Damage	Yes* No N/A		
6.2 Insulation	Check for damage that	Yes* No N/A		
cover or	will allow water			
jacket	intrusion			
7.0 Miscellaneous				
7.1 Electrical wiring and boxes	Are they in good condition?	Yes No* N/A		
7.2 Labels and tags	Ensure that all labels and tags are intact and readable.	Yes No* N/A		

Additional Comments:

AST INSPECTION STANDARD

APPENDIX H: DISCHARGE PREVENTION BRIEFING AND TRAINING LOG

Annual discharge prevention briefings will be held to ensure adequate understanding of the SPCC Plan. The briefings will also highlight and describe known discharge events or failures, malfunctioning components and any recently developed precautionary measures. Oil-handling personnel shall be trained in the operation and maintenance of oil pollution prevention equipment, discharge procedure protocols, applicable pollution control laws, rules and regulations, general facility operations, and the content of the SPCC Plan.

Project Name:	
Project Location:	
Instructor's Name(s):	
Instructor's Title(s):	
Course Location:	
Date of Course:	
Course Length	
(nours):	

Specific Training Objectives:

Attendee Roster (attach additional pages as necessary)

No.	Name of Attendee	Company
	-	

