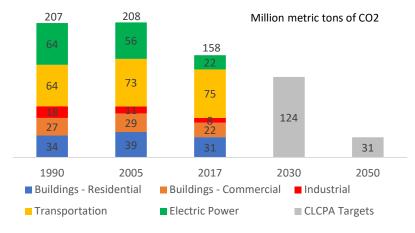

# **Electric Vehicle Supply Equipment** and Infrastructure Deployment

## **Regulatory History**

- April 2018- Proceeding Regarding EVSE&I- directed Staff to host a technical conference and expeditiously issue a whitepaper
- July 2018- Technical conference as directed in April order
- Nov. 2018- Residential EV Tariff Order- traditional residential customer charge for customers with EVs who sign up for TOU rates
- Feb. 2019- DCFC Program Order- established six-year per-plug incentive program
  - July 2019- Order Modifying DCFC Program- removed technology specific rules
  - March 2020- Order Modifying DCFC Program- extended maximum incentive level through 2021, among other things


## **NYS Clean Energy Goals Impacting Transportation**

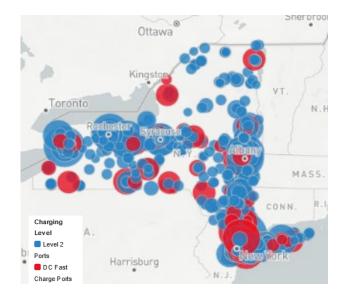
#### **Zero Emissions Vehicles MOU**



- 850,000 EVs on NY roads by 2025 (~8%)
- Sept. 2019: ~45,000 EVs (<1%)

#### **CLCPA GHG Targets**




• 40% GHG  $\downarrow$  by 2030... 85% by 2050

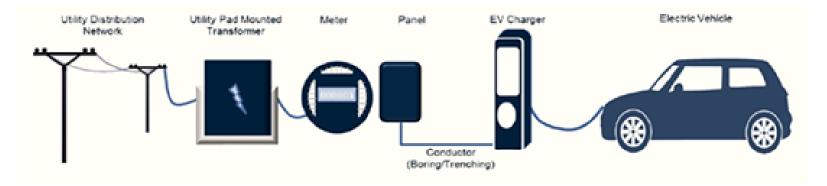


3

Source: NYSERDA, DPS, EIA

## **New York Charging Landscape**




| Current EVSE | Level 2           | DCFC            |
|--------------|-------------------|-----------------|
| NYC          | 1,045 (643 Tesla) | 92 (76 Tesla)   |
| Statewide    | 3,503 (875 Tesla) | 499 (354 Tesla) |

| EVSE Needed For: | Workplace L2 | Public L2 | DCFC  |
|------------------|--------------|-----------|-------|
| 400,000 EVs      | 41,100       | 28,000    | 1,800 |
| 850,000 EVs      | 80,900       | 52,200    | 3,800 |
| 1.1 million EVs  | 102,000      | 65,500    | 5,200 |

Source: National Renewable Energy Laboratory's (NREL) Electric Vehicle Infrastructure Projection Tool (EVI-Pro Lite), DPS, NYSERDA



## **Make-Ready Program**



| Eligible  | Distribution System | Panel, Trenching<br>& Conductor | EV Charger     |  |
|-----------|---------------------|---------------------------------|----------------|--|
| Costs and | Utility owned       | Customer owned                  | Customer owned |  |
| Ownership | Eligible            | Eligible                        | Not eligible   |  |



## **Estimate of Program Cost**

- Level 2 budget estimate: \$431,506,192
- DCFC budget estimate: \$150,789,496
- Maximum program budget: ~\$582 million



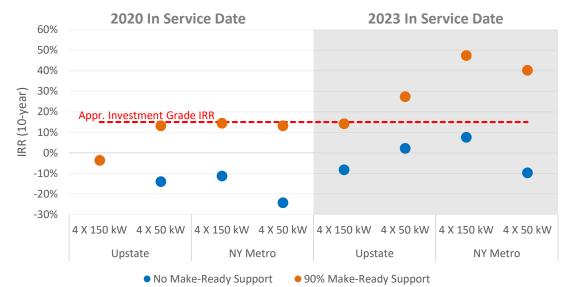
|                            | Level 2 Eligibility                                                                                                                                                                                          | DCFC Eligibility |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| Accessibility              | Must be accessible to the public (no access fee or restricted access)                                                                                                                                        |                  |  |  |  |  |
| Station Maturity           | Must be a new station, without firm commitment to take service-<br>evidenced by building permit issuance or CIAC payment after Commission ruling on proposed program                                         |                  |  |  |  |  |
| Standard Plug Type         | SAE J plug CCS                                                                                                                                                                                               |                  |  |  |  |  |
| Standards to be considered | <ul> <li>International Electrotechnical Commission (IEC) accepted OpenADR 2.0b</li> <li>International Organization for Standardization (ISO)/IEC 15118</li> <li>Open Charge Point Protocol (OCPP)</li> </ul> |                  |  |  |  |  |
| Future-proofing            | Must oversize all components that can be done with minimal incremental cost to accommodate upgrades to the quantity or charging capacity of the station                                                      |                  |  |  |  |  |
| Location Capacity          | <ul> <li>4 to 10 plugs per location</li> <li>Maximum charging capacity of 2 MW</li> </ul>                                                                                                                    |                  |  |  |  |  |
| Support Level              | upport Level•90% of eligible make-ready costs if all criteria met<br>•50% if has SAE J plug but does not meet<br>accessibility criteria•90% of eligible make-ready costs if all criteria                     |                  |  |  |  |  |



## **Bundling and Cost Management**

- Whitepaper recommended cost management measures:
- L2 and DCFC
  - Limit incentive to 90% of utility's average installation

- DCFC
  - Bundling proposal




## **Future Proofing**

- White paper recommends that stations developed under this program be future proofed for all components that can be oversized at minimal cost.
  - L2
    - Oversizing of conductor for increased charger capacity
    - Trenching and conduit for expansion
  - DCFC
    - L2 futureproofing items plus Transformers



# Impact of make-ready support on developer economics varies by location and over time



- Poor 2020 IRRs attributable to low station utilization
- Make-ready support is adequate to jumpstart market for all 2020 scenarios but Upstate 150kW stations ... <u>add'l</u> <u>support needed Upstate</u>
- Stations developed in later years expected to have improved economics due to increased EV adoption & station utilization



## Upstate Regional Economic Development Councils

- Early-year upstate economics are challenging for DCFC due to low EV densities
- Seven Upstate REDCs designated "strategic locations" for additional incentives
- Competitive procurement during first year of program for at least 4 locations with four 150 kW DCFC each per REDC



## **Environmental Justice**

- The DCFC Make-Ready Program is designed to increase electric miles driven in and around environmental justice areas.
- Dedicated 20 percent of each utility's budget within 10 miles of disadvantaged communities.

12



## **Planning and Site Prioritization**

EV Charging Infrastructure Forecast developed by JU to identify the existing and potential EV charging scenarios

Suitability Criteria to be used during planning process:

|  | Load Serving<br>Capacity Available                   | Charging<br>Business Case | Strategic<br>Location | Utility Action              |
|--|------------------------------------------------------|---------------------------|-----------------------|-----------------------------|
|  | YES                                                  | YES                       | YES                   | Torgeted site bact outroach |
|  | Add to load serving                                  | TES                       | NO                    | Targeted site host outreach |
|  | capacity map for<br>Developer site<br>prioritization | NO                        | YES                   | Strategic Evaluation        |
|  |                                                      |                           | NO                    | No additional action        |
|  |                                                      | YES                       | YES                   | Churchania Evoluation       |
|  | NO                                                   | No                        | YES                   | Strategic Evaluation        |
|  |                                                      | NO                        | NO                    | Do Nothing                  |



## **Cost Recovery**

- Goals of Cost Recovery approach:
  - Balance need for EVSE infrastructure with timing of rate plans
  - Minimize soft costs such as carrying charges, tax impacts
  - Align cost recovery with useful lives of assets
- Propose recovery through a combination of rate base treatment and existing surcharges
- Maximum Incentive Level (MIL) offsets utility-owned MR costs first
  - If utility-owned MR costs exceed MIL, developer pays balance + customer-side costs
  - If utility-owned MR costs are less than MIL, balance provided to developer as a rebate



# **Cost Recovery**

- Utility Owned
  - Treat MR work as traditional plant investment
  - Cost recovery via traditional ratemaking methodology
  - Associated costs recovered over a oneyear period via surcharge
    - Return on the average unrecovered investment net of deferred income taxes
    - Related depreciation expense

- Customer Owned
  - Expenses related to rebates deferred as a regulatory asset
    - Including carrying charges
  - Recovered via surcharge
    - Collection begins at the end of the first program year
    - Annual updates
    - Amortized for 15 years



## **Cost Recovery**

|                                                          |     | <u>Ex</u> | ample 1   |   | <u>Ex</u> | ample 2   | <u>Ex</u> | ample 3 | <u>Exa</u> | ample 4 |
|----------------------------------------------------------|-----|-----------|-----------|---|-----------|-----------|-----------|---------|------------|---------|
|                                                          |     | Ave       | rage Cost |   | Ave       | rage Cost | Lc        | ow Cost | Hi         | gh Cost |
| Eligible MR Costs                                        | _   | 9         | 0% MIL    |   | 5         | 0% MIL    | 9         | 0% MIL  | 90         | 0% MIL  |
| Utility-Side                                             | [A] | \$        | 20,000    |   | \$        | 10,000    | \$        | 10,000  | \$         | 60,000  |
| Customer-Side                                            | [B] | \$        | 20,000    |   | \$        | 30,000    | \$        | 10,000  | \$         | 20,000  |
| Total Site MR [A+B]                                      | [C] | \$        | 40,000    |   | \$        | 40,000    | \$        | 20,000  | \$         | 80,000  |
| MIL<br>Assumes four plugs per site,<br>\$9K MIL per plug | [D] | \$        | 36,000    |   | \$        | 20,000    | \$        | 18,000  | \$         | 36,000  |
| Developer Responsibility                                 |     |           |           |   |           |           |           |         |            |         |
| Payment or (Rebate) [A-D]                                | [E] | \$        | (16,000)  |   | \$        | (10,000)  | \$        | (8,000) | \$         | 24,000  |
| Net MR Cost [C-D]                                        | [F] | \$        | 4,000     |   | \$        | 20,000    | \$        | 2,000   | \$         | 44,000  |
| Utility Treatment                                        |     |           |           |   |           |           |           |         |            |         |
| Traditional Plant [A, or A-E]                            | [G] | \$        | 20,000    |   | \$        | 10,000    | \$        | 10,000  | \$         | 36,000  |
| Regulatory Asset [E*]                                    | [H] | \$        | 16,000    | * | \$        | 10,000 *  | \$        | 8,000 * | \$         | _ *     |

\* plus certain costs associated with traditional plant investments (depreciation expense and ROI net of deferred income taxes)



### Impact of Make-Ready Program on Station Economics in Y1 - 2020

|                                            | Upst        | tate       | NY Metro    |             |  |
|--------------------------------------------|-------------|------------|-------------|-------------|--|
|                                            | 4 X 150 kW  | 4 X 50 kW  | 4 X 150 kW  | 4 X 50 kW   |  |
| Assumed Initial Utilization Factor         | 3.68%       | 6.50%      | 6.25%       | 10.40%      |  |
| Assumed Annual Utilization Growth Rate     | 11.0%       | 11.0%      | 13.0%       | 13.0%       |  |
| Cost per Site, Public                      | \$400,000   | \$232,500  | \$563,881   | \$324,760   |  |
| Utility Funded Make-Ready per Site, Public | \$180,000   | \$101,250  | \$327,493   | \$184,284   |  |
| Developer 10yr NPV no Utility funding      | (\$181,249) | (\$53,137) | (\$148,676) | (\$112,934) |  |
| Developer IRR no Utility funding           | NA          | -14.0%     | -11.3%      | -24.3%      |  |
| Developer 10yr NPV w Utility funding       | (\$15,284)  | \$36,146   | \$123,186   | \$47,801    |  |
| Developer IRR w Utility funding            | -3.6%       | 13.2%      | 14.4%       | 13.2%       |  |
| 10yr NPV Improvement thru Utility funding  | \$165,965   | \$89,283   | \$271,862   | \$160,735   |  |
| IRR Improvement thru Utility funding       | NA          | 27.2%      | 25.7%       | 37.5%       |  |

The Make-Ready Program makes most DCFC stations economically viable in Year 1.



### Impact of Make-Ready Program on Station Economics in Y4 - 2023

|                                           | Upst                 | tate      | NY Metro   |            |  |
|-------------------------------------------|----------------------|-----------|------------|------------|--|
|                                           | 4 X 150 kW 4 X 50 kW |           | 4 X 150 kW | 4 X 50 kW  |  |
| Assumed Initial Utilization Factor        | 5.03%                | 8.89%     | 9.02%      | 15.01%     |  |
| Assumed Annual Utilization Growth Rate    | 11.0%                | 11.0%     | 13.0%      | 13.0%      |  |
| Cost per Site, Public                     | \$400,000            | \$232,500 | \$563,881  | \$324,760  |  |
| Utility funding per Site, Public          | \$180,000            | \$101,250 | \$327,493  | \$184,284  |  |
| Developer 10yr NPV no Utility funding     | (\$71,556)           | \$11,575  | \$108,436  | (\$39,328) |  |
| Developer IRR no Utility funding          | -8.2%                | 2.2%      | 7.6%       | -9.7%      |  |
| Developer 10yr NPV w Utility funding      | \$86,368             | \$95,999  | \$376,068  | \$110,029  |  |
| Developer IRR w Utility funding           | 14.2%                | 27.4%     | 47.4%      | 40.2%      |  |
| 10yr NPV Improvement thru Utility funding | \$157,924            | \$84,424  | \$267,632  | \$149,357  |  |
| IRR Improvement thru Utility funding      | 0.224                | 25.2%     | 39.8%      | 49.9%      |  |

NYC Metro area economics may improve to point where support can be significantly reduced.





**EV Make-Ready Technical Conference** (Session One)

April 1, 2020

draft for discussion





Orange & Rockland







**Rockland Electric Company** 

### Framework for Discussion

- We support New York's ambitious transportation electrification goals. We are willing to do our part in meeting the State's emission reduction targets
- Flexibility, creativity, and simplicity will be necessary to meet these goals
- Stakeholders (such as developers, site hosts, trade allies, community groups) look at this opportunity differently. The scale of the challenge necessitates a variety of solutions and business models, participation of diverse players, and a structure that will allow these many stakeholders to engage in the program.
- An iterative, comprehensive, and multi-pronged strategy will facilitate increased cross-sector customer adoption, continued integration of new technologies, and the ability to adjust the grid and changing ecosystem over time.





RG&E

2

### Make-Ready Program: Core Principles

- Flexibility of program design parameters that recognizes evolving market needs
- Ease of use from host/developer perspective that recognizes diversity of their business models
- **Simplicity** of program design that recognizes need for smooth and clearly understandable process
- Sufficient incentive which would make the business case for host/developer
- Accountability through clear targets, and appropriately designed performance incentives (e.g. EAMs or program-specific metrics) and reporting

Applying these principles to the EV Make-Ready program design will increase the likelihood that goals are achieved

draft for discussion



NYSEG











RG&E

3

#### **Flexibility for Success**

- Flexibility is important due to uncertainty and variability around costs and utilization
- Program design flexibility can avoid unintended outcomes
  - Example: Allow higher cost projects with higher station utilization
- Site eligibility constraints should consider utility service territory characteristics
- Developers have **different needs**, which drive business decisions
  - Example: Allow for diversity of approaches when market is still at an early stage of development
- With proper performance metrics and incentives, the framework will drive utilities to deliver results

#### **Program Design Parameters**

- Site eligibility
  - Public and Private
  - **Proprietary and Standardized**
- Incentive structure and methodology for DCFC and L2
- Number of plugs for DCFC and L2
- Methodology for NYC Metro, rest of New York State
- Minimum and maximum number of chargers per site



JOINT UTILITIES



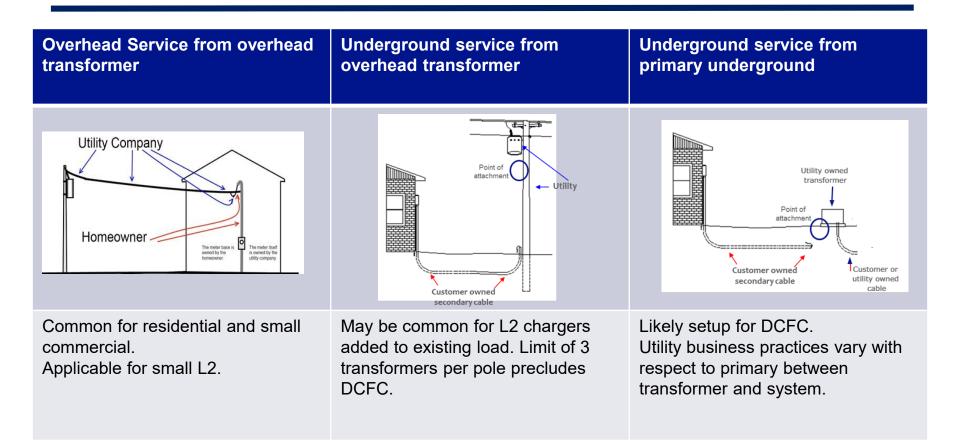
Orange & Rockland **Rockland Electric Company** 

draft for discussion








RG&E

## Make-Ready Definitions and Concepts

- Make-ready can apply to investments by customers or by utilities
  - Therefore, make-ready budgets need to account for costs borne by both parties.
- The structure of make-ready treatment in the Staff Whitepaper is sound with caveats
  - Utilities should capitalize make-ready infrastructure that would otherwise have been owned by the utility
  - Other make-ready costs which would otherwise be borne by customers should be treated as regulatory assets
- The overall level of incentives are important to drive charger installation
  - Make-ready is only one type of incentive for the installation of EVSE including incentives on chargers, and other favorable tax treatment



## Make-Ready Infrastructure will Vary by Service Type



EV Infrastructure will also vary by service territory based on grid architecture and landuse patterns

draft for discussion













RG&E

The Joint Utilities are prepared to implement Make-Ready programs in a timely manner

- Experience (i.e., with the DCFC program) has demonstrated that we can begin implementation quickly, but we also note:
  - The scale and speed of New York's make-ready program is unprecedented
  - There will be challenges and constant learning during the period of implementation
- Providing sufficient time to collaborate among the Joint Utilities and consult with other stakeholders in advance of rolling-out program elements will be beneficial
- Certain tools/resources to aid developers may be available sooner than others, but it may not be necessary for every element to fall into place before sponsors/developers can participate in the Make-Ready program

Guidance on issues through the Commission Order will shape the way programs are designed and deployed

- Utility budgets, targets, and cost recovery
- Encourage effective and cost-efficient solutions to reaching the State's goals (i.e., flexible program incentives)

draft for discussion

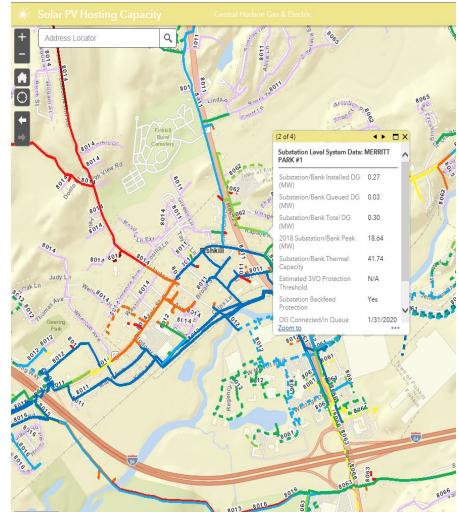
• More detail on objectives related to serving low-income communities












RG&E

## Load Serving Capacity – EV Charger Sites

- DPS recommends utilities evolve load serving capacity data to the industry's needs.
- Joint Utilities should publish granular load serving capacity maps.
- Primarily an issue for DCFC, L2 chargers will not likely result in capacity issues.
- Utilities have Hosting Capacity and System Data Portals today.
- Circuit level data already available.
- Granular data and maps will need to be developed and will be on a timeline consistent to Hosting Capacity Maps.

nationalgrid



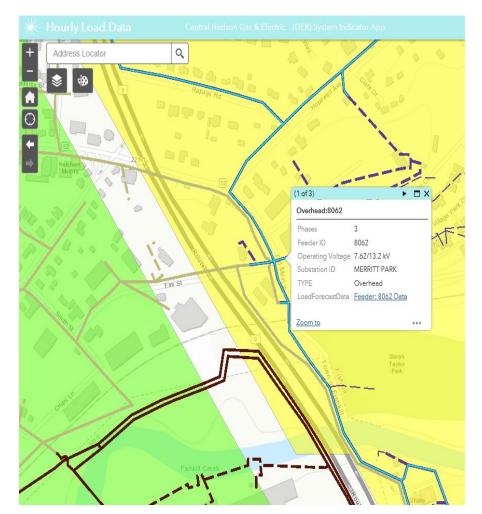




NYSEG












## Data Needs and Visualization – EV Charger Sites

- JU is willing to work to provided needed data.
- Much of the data needed is already available.
- How to portray available load serving capacity in a map can vary widely.
- Load Serving Capability at the:
  - Feeder level easy
  - Granular level harder
- There is no load "queue", so what is available now may not be available in the future.









draft for discussion





#### A common new service portal is not needed

- Utility processes are aligned with the systems and procedures for each utility
- Utilities will be playing an active role in supporting EV charging infrastructure and will have processes that consider needs of EV charging infrastructure

#### For NYSEG and RG&E this will include:

- Developer or customer will submit a single application for program participation
  - Includes new service application
  - Includes make-ready program application
  - Program staff will act as single point of contact
    - Answer questions and facilitate information sharing
    - Coordinate activity between multiple parties
      - Utility field engineering
      - Utility distribution engineering
      - Utility field crews
      - Customer's electrician or project manager

draft for discussion











10

- The Joint Utilities support New York's goals related to environmental leadership
- The more the ultimate program design embraces the concepts of flexibility, creativity, and simplicity, the greater will be the progress toward the State's transportation electrification objectives





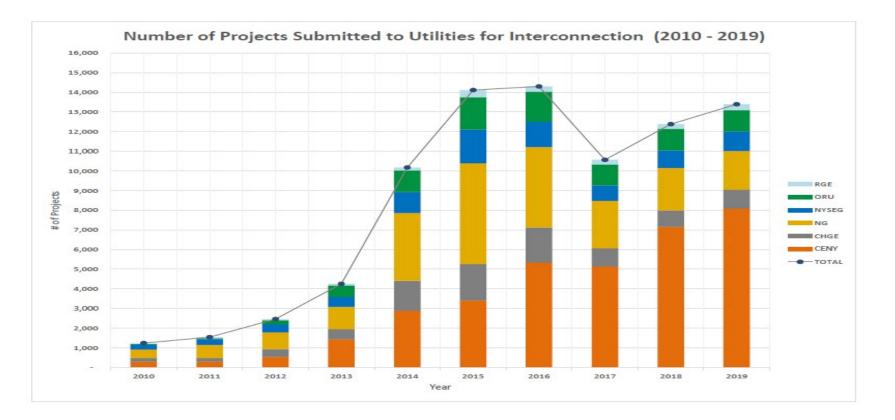


draft for discussion










## Lessons Learned: DER Interconnection Experience April 1, 2020

# The DER queue crisis

- New policies for DER announced
- Utilities were overwhelmed by the response
- DER interconnections stalled
- Lesson: State policy objectives may be missed if you don't account for implementation issues







# **Resolving the Crisis**

- Here's what we had to do
  - Emergency interventions for individual projects
  - Quickly learned we had a broader queuing problem that required cooperative effort
  - Established stakeholder groups to figure out a solution to the systemic problem
- Here's how long it took to work out queue backlog
  - New CDG policy went into effect July 17, 2015
  - Queue management proposal approved January 25, 2017
  - Queue clean up period 2017-2018



# Process Lessons Learned

- Before incentive program launches:
  - Have rules in place for utility actions and developer responsibilities
  - Set up an automated process to handle applications and communications
  - Provide a consistent point of contact at the utility to oversee program
  - Ensure utility billing back office will be ready with any new processes
- As the program rolls out:
  - Utilities should clear the queue promptly in accordance with the rules
  - Queue information should be transparent and up to date



# **Technical Lessons**

- Technical uncertainties can impede progress
- Varying responses among utilities can also be a problem
- Identify appropriate technical standards
- Consider tasking an expert consultant or working group with addressing common technical issues as they arise
- This has been the function of the DER ITWG
- Information at <u>http://www3.dps.ny.gov/W/PSCWeb.nsf/All/DEF2BF0A236B9</u> <u>46F85257F71006AC98E?OpenDocument</u>



# Recommendations

- Establish statewide rules to manage applications to connect stand alone EV charging stations
  - Utility current practice relies on new load application process
    - No timelines/deadlines
    - No queue management guidelines
  - EV plus ESS installations are covered by the SIR



## Recommendations

- Establish on line application portal
- Publish the application queue and make regular updates
- Assign utility ombudspersons
- Consider creating a technical working group
- Use available standards, such as
  - International Electrotechnical Commission (IEC)
  - International Organization for Standardization(ISO)/IEC 15118
  - Open Charge Point Protocol (OCPP)



### **DPS/NYSERDA Interconnection Team**

### Interconnection Technical Working Group Issues:

Jason Pause (DPS) 518-486-2889 jason.pause@dps.ny.gov Sumit Bose (NYSERDA) 518-862-1090 <u>sumit.bose@nyserda.ny.gov</u>

### Interconnection Ombudsperson(s) & Policy Working Group Issues:

Elizabeth Grisaru (DPS) 518-486-2653 elizabeth.grisaru@dps.ny.gov Houtan Moaveni (DPS) 518-486- 2464 houtan.moaveni@dps.ny.gov

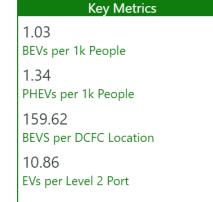


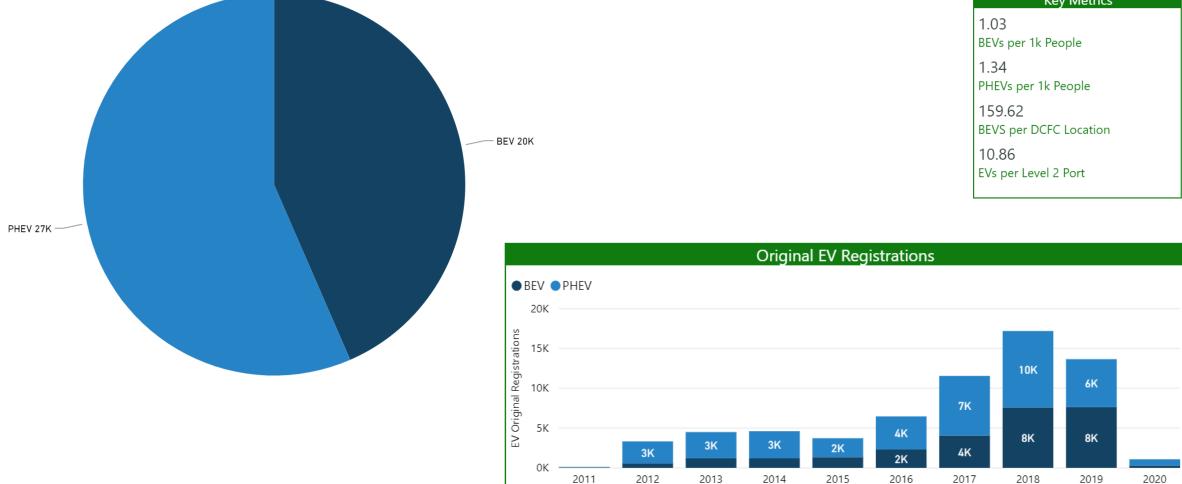


1

## EV Make-Ready Conference EV Readiness Working Group

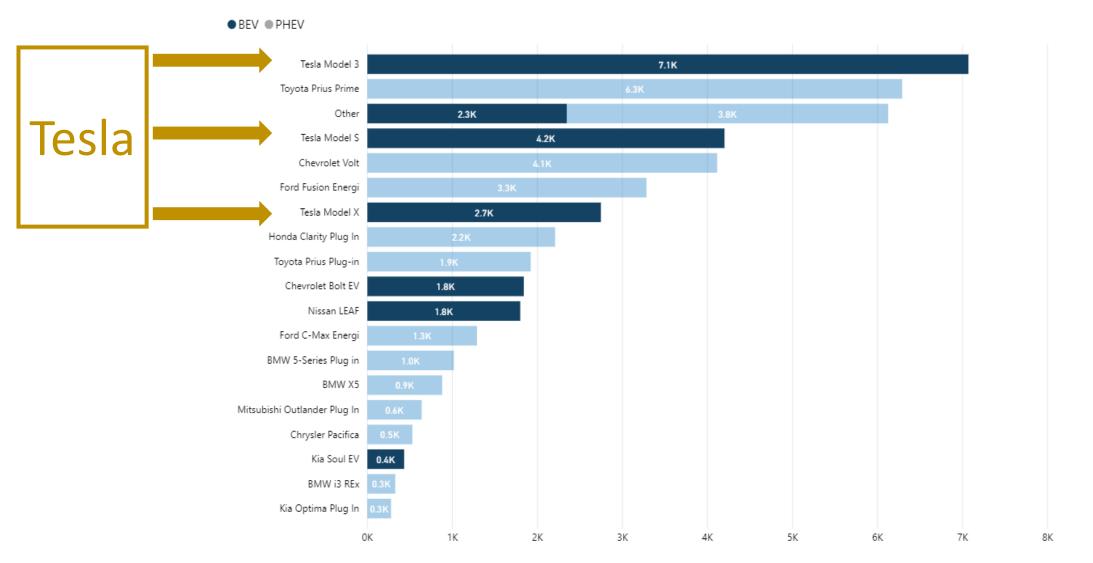
April 1, 2020


# Reduced travel due to COVID-19 highlights the impact of our transportation system on our environment




TORONTO TORONTO BOSTON, MA BOSTON, MA DETROIT DETROIT NEW YORK CITY NEW YORK CITY WASHINGTON DC WASHINGTON DC **JANUARY 20, 2020** MARCH 20, 2020

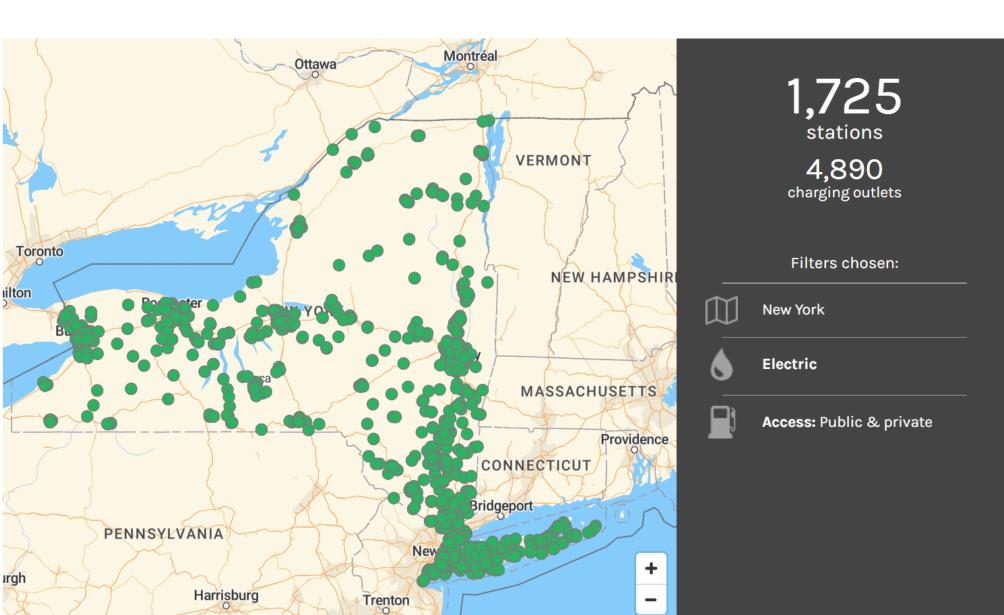
## 47K total plug-in electric vehicles in New York State, 20K of which are Battery Electric.





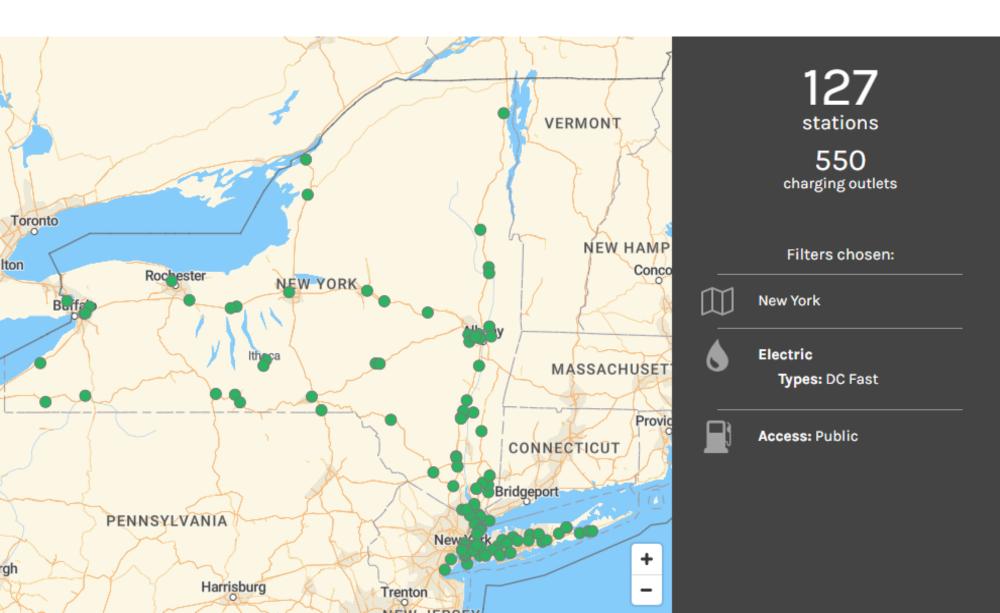



## Teslas currently comprise 70%+ of the BEV market in New York State.



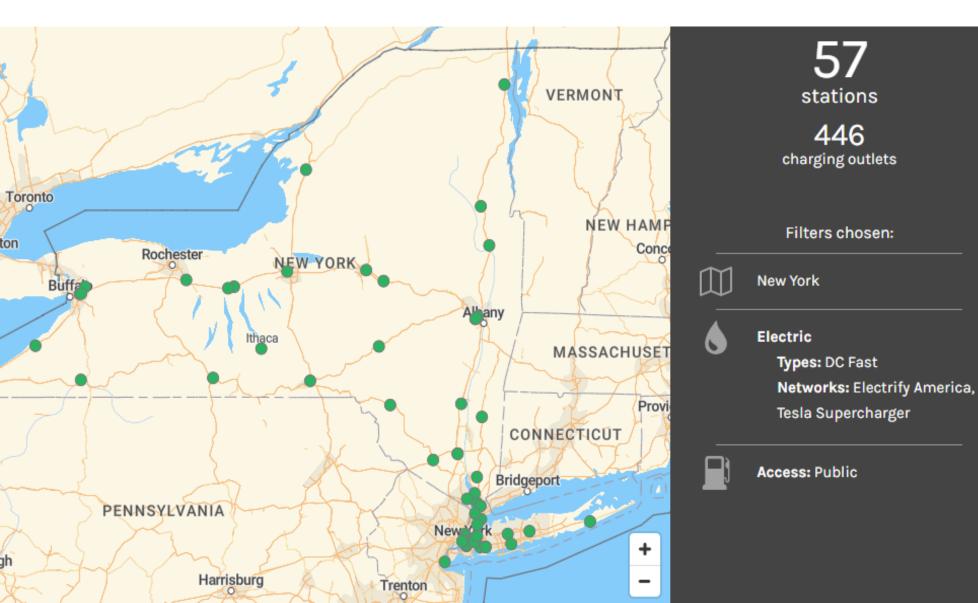



4


## Number of L2 and DC Fast Chargers in NY State.



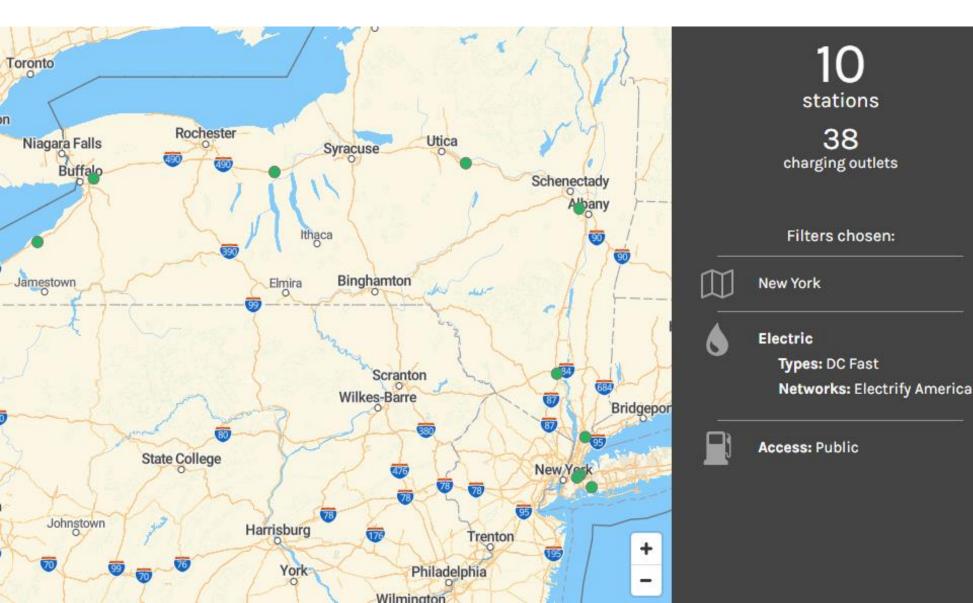



### Number of 20kw+ DC Fast Chargers in NY State.





6

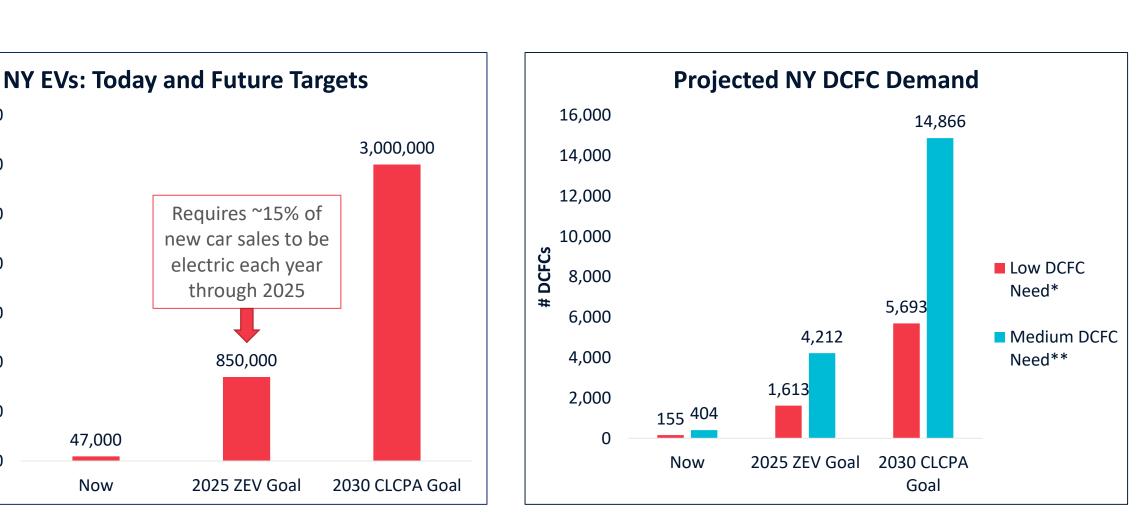

# Number of DC Fast Chargers in NY State at 150kw or greater.





## Number of 150kw DC Fast Chargers available to non-Tesla drivers.






## Current ratio of electric vehicles to DC Fast Chargers in NY State.



| Category                | Tesla  | Non-Teslas* |
|-------------------------|--------|-------------|
| Vehicles                | 14,000 | 5,800       |
| 150kW+ DCFC             | 408    | 38          |
| Ratio (DCFC per 1k EVs) | 29     | 7           |

## Projecting the number of DC Fast Chargers required in NY State between now and 2030.



\*Equates to 2 DCFC per 1k EV ratio, based on 100% access to home charging for EV drivers (Source: AFDC EVI-Pro Lite Tool) \*\*Equates to 5 DCFC per 1k EV ratio, based on 80% access to home charging for EV drivers (Source: AFDC EVI-Pro Lite Tool)

3,500,000

3,000,000

2,500,000

2,000,000

1,500,000

1,000,000

500,000

0

**ZEVs Needed** 

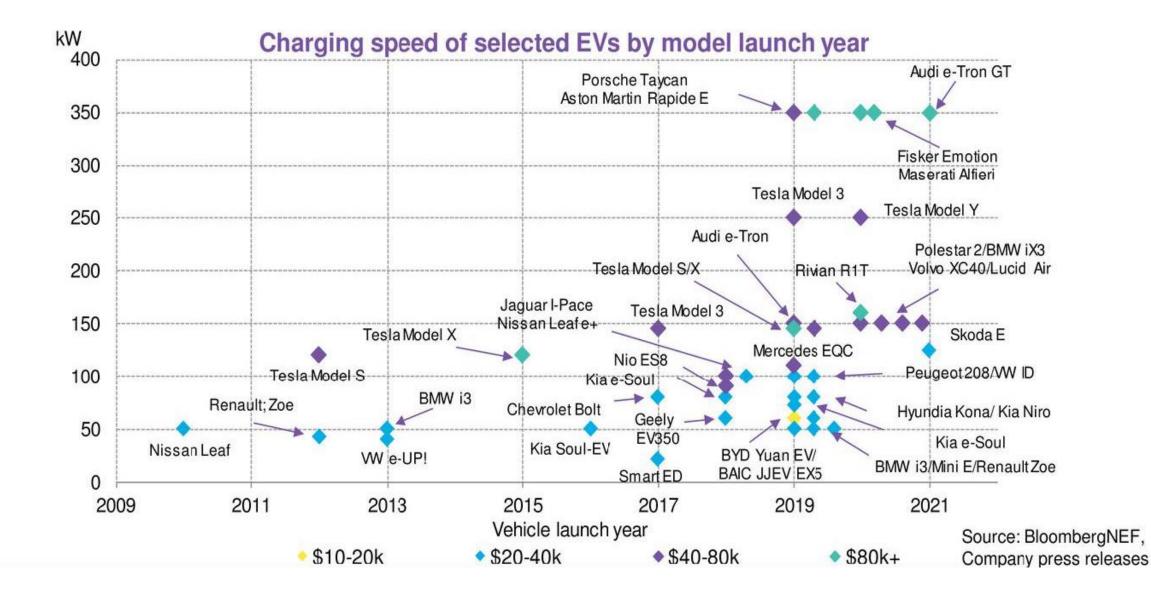
NEW YORK EVolve NY

STATE OF

## The potential impact of rideshare demand on future DC Fast Charging needs.



### 1.3B Global Rideshare Users


### 60M Global Rideshare Drivers

## 80,000 rideshare drivers in NY City

5% of all passenger-miles from shared mobility in 2018 20% of all passenger-miles from shared mobility in 2040 Increasing Electric Rideshare Demand (e.g. Uber EV-only in London by 2025)

## Average EV charging speed is increasing.





# Government entities have an interest in owning EVSE and decarbonizing transportation.

### L2 charging in municipal parking lots:

 New York City, Yonkers, Albany, Rochester and Buffalo

Workplace L2 charging:

• NYSOGS

DCFC on highways and in urban centers:

• Thruway and NYCDOT

### Transit bus electrification:

- MTA plan
  - 500 buses in 2025
  - 5,700 buses in 2040
- 2020 SOTS for other transit fleets
  - 25% by 2025
  - 100% by 2035







In an age of convenient deliveries, the needs & benefits



- Emissions from cars and trucks increased 30% since 1990
  - The region is the largest contributor of driving-related emissions in the country
- ~36 million trucks on tolled crossing in 2019
- Warehouses, including last mile delivery hubs are increasingly moving closer to residential areas

## In Summary.



- **1. Vehicles with greater charging speeds are coming and will become the new norm:** represents a huge opportunity and need to build fast chargers quickly and at scale
- **2. DCFC investment at several times current rates** will be required over the next 10 years
- 3. We must build for the future and not just for today
- **4. There are several forms of catalyst** required to adequately address the risks that are preventing the necessary private sector investment in 150kw+ DC Fast Charging
- **5. The need goes beyond public fast charging:** many businesses and governmental agencies want to decarbonize their fleets today



### NY EV READINESS WORKING GROUP: OEM AND CHARGING OPERATOR PERSPECTIVE April 1, 2020

#### OUR MISSION

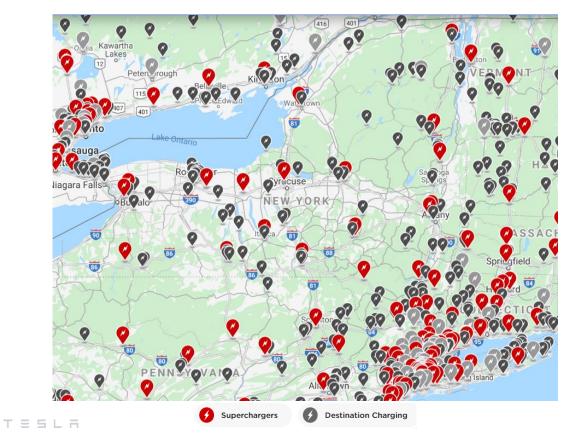
### Accelerate the world's transition to sustainable energy

### THE TESLA FAMILY



### IMPORTANCE OF CHARGING INFRASTRUCTURE FOR EV ADOPTION

### CHARGING MUST BE A GREAT EXPERIENCE


#### AFFORDABLE

#### RELIABLE

TESLR

CONVENIENT

#### TESLA CHARGING IN NEW YORK



Superchargers 48 locations 420 charging stalls

Destination chargers 446 locations 1046 charging stalls

#### CHARGE WHERE YOU PARK



At Home

At Work

Around Town

### ENABLING MULTIPLE EV USE CASES



### CONSIDERATIONS FOR MAKE READY PROGRAM

#### Customer experience

Deployment process and timelines

Encourage continued innovation and cost reductions

Balance "future proofing" objectives without gold plating equipment & locations

Enable multiple use cases



