BEFORE THE STATE OF NEW YORK PUBLIC SERVICE COMMISSION

In the Matter of

Liberty Utilities (St. Lawrence Gas) Corp. Case 24-G-0668

April 1, 2025

Prepared Testimony of:

Daniel S. Gadomski Associate Economist

Office of Regulatory Economics State of New York Department of Public Service Three Empire State Plaza Albany, New York 12223-1350

- 1 Q. Please state your name, employer, and business
- 2 address.
- 3 A. My name is Daniel S. Gadomski. I am employed by
- 4 the New York State Department of Public Service,
- 5 referred to as the Department. My business
- 6 address is Three Empire State Plaza, Albany, New
- 7 York 12223-1350.
- 8 Q. Mr. Gadomski, what is your position in the
- 9 Department?
- 10 A. I am employed as an Associate Economist in the
- 11 Office of Regulatory Economics.
- 12 Q. Please briefly state your educational background
- and professional experience.
- 14 A. I received a Bachelor of Arts degree in
- 15 Economics from the State University of New York
- at Albany in 2014. I have been employed by the
- 17 Department since 2014.
- 18 Q. Please briefly describe your current
- 19 responsibilities at the Department.
- 20 A. My current responsibilities at the Department
- 21 include analyzing inflation and sales
- forecasting issues in rate proceedings.
- 23 Q. Have you previously testified in proceedings
- 24 before the Commission?

1 A. Yes. I have testified before the Commission in

2		many rate proceedings regarding sales
3		forecasting and inflation. Most recently, I
4		testified in Cases 22-E-0317, 22-G-0318, 22-E-
5		0319, and 22-G-0320 regarding New York State
6		Electric & Gas Corporation and Rochester Gas &
7		Electric Corporation; Case 21-G-0577 regarding
8		Liberty Utilities (St. Lawrence Gas) Corp.,
9		referred to as the Company or Liberty SLG; Cases
10		20-G-0101, 21-G-0394, and 24-G-0447 regarding
11		Corning Natural Gas Corporation; Cases 20-E-0428
12		and 20-G-0429, and Cases 23-E-0418 and 23-G-0419
13		regarding Central Hudson Gas & Electric
14		Corporation; Case 23-G-0225 and 23-G-0226
15		regarding The Brooklyn Union Gas Company d/b/a
16		National Grid NY and KeySpan Gas East
17		Corporation d/b/a National Grid; and Case 23-G-
18		0627 regarding National Fuel Gas Distribution
19		Corporation.
20		Summary of Testimony
21	Q.	What is the purpose of your testimony?
22	Α.	In my testimony, I will describe the Company's
23		forecasts of natural gas sales and customer
24		counts. I will then discuss my recommendations

for the natural gas sales and customer co	unts
---	------

- forecasts for the Rate Year, or 12-months ending
- 3 October 31, 2026. Finally, I will address how
- 4 the Company used the Blue Chip Economic
- 5 Indicators forecast of the Gross Domestic
- 6 Product Price Index, referred to as GDP-PI, to
- 7 escalate various cost of service elements.
- 8 Q. In your testimony, will you refer to, or
- 9 otherwise rely upon, any information produced
- during the discovery phase of this proceeding?
- 11 A. Yes. I will refer to, and have relied upon,
- 12 several responses to information requests.
- 13 These responses are provided in Exhibit (DSG-
- 1). I will refer to these responses by the
- designation assigned to them by Department of
- Public Service staff, referred to as Staff, for
- 17 example "DPS-123."
- 18 Q. Are you sponsoring any other exhibits in support
- of your testimony?
- 20 A. Yes. I am sponsoring three additional exhibits.
- 21 Exhibit (DSG-2) contains a summary of my
- 22 natural gas sales and customer count forecasts
- as compared to the Company's forecasts gas sales
- 24 and customers counts. Exhibit (DSG-3) provides

1		my estimated forecasting models and summary
2		statistics. Exhibit(DSG-4) contains my
3		calculation of inflation for the 12-months
4		ending June 30, 2024, referred to as the
5		Historic Test Year, through the Rate Year; the
6		12-months ending October 31, 2027; and the 12-
7		months ending October 31, 2028. I base the
8		calculations on the latest available Blue Chip
9		Economic Indicators forecasts of the Gross
LO		Domestic Product Price Index, or GDP-PI,
L1		inflation published March 10, 2025.
L2		Company's Forecast and Methodology
L3	Q.	Please summarize the Company's gas sales
L 4		forecast.
L 5	Α.	The Company forecasts total gas sales for
L 6		Service Classifications, or SCs, SC-1, SC-2, SC-
L 7		2A, which is also referred to as SC-2L or SC-2
L 8		Large in the Company's sales forecasting model
L 9		included in the response to DPS-123, SC-3, SC-4,
20		and SC-5 to be 75,120,305 therms for the Rate
21		Year. The Company also forecasts total
22		customers for the Rate Year to be 17,369.35. As
23		described in DPS-85, the Company defines a
24		customer as the number of bills rendered in a

4	. 1
	month.
_	IIIOII CII .

- Q. Please discuss how the Company developed its gas sales forecast.
- 4 A. As presented in the Company's response to DPS-
- 5 123, "Attachment DPS-123 Revenue and Gas Cost
- 6 RY1.xlsx," for each rate group, the Company
- 7 calculated the average total number of bills for
- 8 each month in the past five year time period.
- 9 The Company then took the differences between
- 10 each month's average number of total bills and
- the prior month's average number of total bills
- 12 to calculate an average change per month. The
- 13 Company then applied the average change per
- 14 month to the latest actual count of bills to
- forecast the total number of bills for the Rate
- 16 Year. The Company's response to DPS-127 states
- 17 that it did not anticipate any significant
- 18 changes in customer counts, as measured in total
- bills, to occur during the linking period, the
- 20 period between the Historic Test Year and the
- 21 Rate Year. Finally, the Company forecast
- 22 overall sales by multiplying weather normalized
- average use per customer by the forecast number
- of customers to arrive at a forecast of total

- sales volume, which is measured in therms.
- 2 O. What is weather normalization?
- 3 A. Weather normalization is a process used to
- 4 adjust the actual historical sales for any
- 5 variations due to warmer or colder than normal
- 6 weather.
- 7 Q. What is the Company's definition of normal
- 8 weather?
- 9 A. The Company defines normal weather as the 30-
- 10 year average of heating degree days. The
- 11 Company provided its calculation of normal
- weather in response to DPS-123.
- 13 Q. Did the Company make any other adjustments?
- 14 A. Yes. In response to DPS-135, the Company states
- that it decreased the average customer growth
- rate by 10.78 percent for residential customers
- 17 and 8.03 percent for commercial customers to
- 18 account for the All-Electric Buildings Act,
- which will prohibit fossil fuel equipment in
- certain new buildings starting in 2026.
- 21 Q. How did the Company determine these adjustments?
- 22 A. In response to DPS-541, the Company explained
- that it analyzed historical data on residential
- and commercial customer additions, categorized

- 1 by new construction and fuel conversions, to
- 2 determine the necessary percentage reductions in
- 3 customer forecasts for each class.
- 4 Staff Forecast
- 5 Q. Did you develop your own forecast for gas sales
- 6 volume and the number of customers for the Rate
- 7 Year?
- 8 A. Yes. A summary of my forecast and a comparison
- 9 to the Company's forecast are provided in
- 10 Exhibit (DSG-2).
- 11 Q. Like the Company, do you also define a customer
- as the number of bills rendered in a month?
- 13 A. Yes.
- 14 Q. Please summarize your sales forecast
- 15 recommendations.
- 16 A. I recommend that the Commission adopt my
- forecast of Liberty SLG's combined gas sales for
- 18 SC-1, SC-2, and SC-2A of 37,002,271 for the Rate
- 19 Year.
- 20 Q. To what degree does your forecast differ from
- 21 the Company's in the Rate Year?
- 22 A. My forecast for total bills is 132 customers
- above the Company's forecast and my forecast for
- total sales volume is 145,644 therms below the

- 2 Q. What methodology did you use to develop your
- 3 forecasts for the Residential and Commercial
- 4 SCs?
- 5 A. I used econometric models to generate my
- 6 forecasts.
- 7 Q. Please describe the basic functioning of your
- 8 econometric models.
- 9 A. My econometric models relate gas sales and the
- 10 number of customers to a set of explanatory or
- independent variables. These explanatory
- variables include weather variables, and other
- 13 seasonal and cyclic variables. Weather
- variables are represented by heating degree
- 15 days. The relationship between these
- 16 explanatory variables and gas sales or customer
- 17 counts over time constitutes the structural
- 18 components of the forecasting models. Also,
- 19 because gas customer and usage data are time
- 20 series data, the models may also include a non-
- 21 structural component to explain variations over
- time that are not explained by the structural
- components of the model. For example, seasonal
- and monthly dummy variables are included to

1		adjust for calendar month or other billing cycle
2		related variations. Other non-structural
3		components are represented by a procedure that
4		relates the present time series values and model
5		estimation errors to the historical time series
6		values and model estimation errors. This is
7		performed through the inclusion of moving
8		average and autoregressive variables to the
9		model specification. I include these non-
LO		structural components to capture the remaining
L1		variations, including time trends and
L2		seasonality in gas sales or number of customers,
L3		which are not explained by the structural
L 4		explanatory variables.
L5	Q.	Did you notice any anomalies in the historical
L 6		data the company provided?
L 7	Α.	Yes. In response to DPS-115, the Company
L 8		provided historical actual sales and customer
L 9		data from January 2013 through October 2024.
20		However, as described in the Company's response
21		to DPS-326, there were large fluctuations in the
22		data primarily due to changes in the Company's
23		billing systems. The Company states, "Liberty
24		SLG converted systems from READI to Cogsdale in

1	September	2020,	and	Liberty	SLG	converted

- 2 systems in May 2022 from Cogsdale to SAP. Both
- 3 these conversions caused billing irregularities
- 4 that were corrected in subsequent months." As
- 5 described in response to DPS-559, the Company
- 6 adjusted its historical data based on the
- 7 historical average changes by month to account
- 8 for billing fluctuations in its data.
- 9 Q. Did you apply these adjustments to the
- 10 historical data before you used it to estimate
- 11 your econometric models?
- 12 A. Yes. I used the same adjustments the Company
- applied to correct for the billing fluctuations.
- 14 Q. Please discuss your residential and commercial
- forecasting models.
- 16 A. I use econometric models to forecast sales for
- three service classes, SC-1, SC-2, and SC-2A
- 18 Large. These sales models include monthly
- billed therm sales as the dependent variable.
- The explanatory variables in the three models
- 21 include the heating degree days. I also
- developed two customer bill forecasting models
- for SC-1 and SC-2. For the SC-1 Residential
- 24 model, I use monthly historical data from

23

24

GADOMSKI

1		January 2013 through October 2024. For the SC-
2		2, I use monthly historical data from September
3		2020 through September 2024, given that the SC-
4		2A Large classification was established in
5		September 2020. The historical sales and bill
6		data was provided by the Company in the
7		responses to DPS-115 and DPS-123.
8	Q.	Do the summary statistics of your estimated
9		forecasting models indicate that your models
10		perform well?
11	Α.	Yes. As shown in Exhibit(DSG-3), all of my
12		models have high adjusted R-squared with values.
13		The R-squared statistic is the proportion of the
14		total sample variation in the dependent variable
15		that is explained by the independent variable.
16		The R-squared statistic, ranging from zero to
17		one, measures the degree of goodness-of-fit of
18		the regression model, with zero being the least
19		fit and one being the best fit. The adjusted R
20		squared of the 5 models ranges from 0.78 to
21		0.97, suggesting that more than 78 to 97 percent
22		of the variations in sales and customer counts

are explained by the explanatory variables

included in the models. The Durbin-Watson

1 statistics are between 1.65 and 2.12
--

- that none of the models have serial correlation
- 3 in their residual errors which would bias the
- 4 models' results.
- 5 Q. Why do you recommend using a 10-year heating
- degree day average instead of the Company's use
- of a 30-year heating degree day average to
- 8 forecast gas sales under the assumption of
- 9 normal weather?
- 10 A. A 10-year average weather normalization more
- 11 reasonably reflects anticipated weather trends
- 12 relevant to forecasting monthly billed sales for
- 13 rate setting purposes.
- 14 Q. Has the Commission previously relied on a 10-
- 15 year heating degree day average in developing a
- 16 gas sales forecast?
- 17 A. Yes. On page 15 of its Order Adopting
- 18 Recommended Decision with Modifications, issued
- on June 22, 2009, in Cases 08-E-0887, 08-G-0888,
- and 09-M-0004, the Commission adopted the most
- 21 recent 10-year averages as the appropriate
- 22 normal heating and cooling degree day inputs to
- use for rate case sales forecasts, and noted its
- expectation that a 10-year average for weather

1 normalization would be used for forecastir	ng
--	----

- 2 purposes in future rate proceedings.
- 3 Q. Why is the proper modelling of weather
- 4 conditions important in developing gas sales
- 5 forecasts for rate design purposes?
- 6 A. The purpose of a sales forecast is to predict
- 7 sales with the highest degree of accuracy in
- 8 order to develop reasonable retail delivery
- 9 rates for ratepayers. Weather is often the
- 10 significant driver of retail sales. Thus, using
- 11 the most accurate forecast of normal weather is
- 12 essential to making the most accurate and
- unbiased forecast of future sales.
- 14 Q. Did you incorporate any adjustments to reflect
- the All-Electric Buildings Act?
- 16 A. Yes. I applied the 10.78 percent residential
- and 8.03 percent for commercial factors the
- 18 Company provided in its response to DPS-135, and
- as described in the Company's response to DPS-
- 20 541.
- 21 Q. Please summarize your recommended forecast.
- 22 A. I recommend the Commission adopt my forecast of
- total gas sales for SC-1, SC-2, and SC-2A of
- 37,002,271 therms for the Rate Year. Thus, I

1	recommend	the	Commission	adopt	а	total	combined

- gas sales forecast for SC-1, SC-2, SC-2A, SC-3,
- 3 SC-4, and SC-5 of 74,974,661 therms and 17,501
- 4 average bills for the Rate Year.
- 5 Q. Why do you contend your forecasts are more
- for reasonable than the Company's?
- 7 A. My econometric forecasts are superior in that
- 8 they follow a recognized methodology for
- 9 statistical modeling which allows for the
- 10 robustness of the drivers included in the
- 11 forecasting models to be individually tested,
- and for the statistical significance of the
- models to be assessed. As previously discussed,
- 14 my forecasts are also based on the Commission's
- expectation of using a 10-year average weather
- normalization rather than the 30-year average
- weather normalization used by the Company.

18 Inflation

- 19 Q. Please describe how the Company escalated costs
- 20 due to inflation.
- 21 A. As discussed on page 19 of the Company's Direct
- 22 Testimony of Revenue Requirement Panel and
- 23 presented in Company Exhibit (RR-1), Schedule
- 24 6-4-1, the Company used an inflation rate of

	1 4.85	percent t	to	escalate	costs	from	the	Historio
--	--------	-----------	----	----------	-------	------	-----	----------

- 2 Test Year through the Rate Year. The Company
- 3 based this inflation rate on the Blue Chip
- 4 Financial Forecast of GDP-PI, issued November 1,
- 5 2024.
- 6 Q. How do you recommend the Commission calculate
- 7 inflation?
- 8 A. I recommend that inflation be calculated based
- 9 on the latest available inflation forecasts in
- 10 the Blue Chip Economic Indicators issue
- 11 published March 10, 2025. Based on these latest
- 12 available forecasts, I recommend that inflation
- be projected as an increase of 5.877 percent
- 14 from the Historic Test Year to the Rate Year, an
- increase of 2.399 percent for the 12-months
- ending October 31, 2027, and an increase of
- 17 2.233 percent for the 12-months ending October
- 18 31, 2028. This calculation is presented in
- 19 Exhibit (DSG-4). However, I recommend the
- 20 Commission update the estimate of inflation
- 21 prior to the conclusion of this proceeding using
- the latest Blue Chip Consensus forecasts.
- 23 Q. Does this conclude your testimony at this time?
- 24 A. Yes, it does.