

Power Systems Engineering Center



# Recommendations for Interoperability of Distributed PV Power Systems

### **David Narang**

National Renewable Energy Laboratory NY ITWG meeting on 3/29/2017

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

- Definition and scope of DER (PV) Interoperability
- Stakeholders & applications
- Examples of M&C requirements (summary of interviews with non-NYS JU utilities)
- Recommendations considering implications of NY REV and future coordination with bulk power

#### Solar Power (in Megawatts) and Projects Installed by Region Pre-NY-Sun and Under NY-Sun

| Region           | Total Installed<br>Through 2011 |                       | Total Installed<br>Through 2016 |                       | % MWs<br>Increase | % Projects<br>Increase |
|------------------|---------------------------------|-----------------------|---------------------------------|-----------------------|-------------------|------------------------|
|                  | MWs<br>Installed                | Projects<br>Installed | MWs<br>Installed                | Projects<br>Installed |                   |                        |
| Capital Region   | 9.91                            | 991                   | 113.26                          | 8,365                 | 1,043%            | 744%                   |
| Central New York | 1.75                            | <mark>1</mark> 85     | 23.56                           | 1,731                 | 1,246%            | 836%                   |
| Finger Lakes     | 2.36                            | 266                   | 37.38                           | 1,870                 | 1,487%            | 603%                   |
| Long Island      | 38.26                           | 4,756                 | 214.23                          | 24,428                | 460%              | 414%                   |
| Mid-Hudson       | 12.88                           | <b>1</b> ,353         | 162.74                          | 14,125                | 1,164%            | 944%                   |
| Mohawk Valley    | 1.59                            | 162                   | 26.95                           | 1,790                 | 1,597%            | 1,005%                 |
| New York City    | 7.35                            | 404                   | 88.42                           | 7,348                 | 1,102%            | 1,719%                 |
| North Country    | 1.51                            | 200                   | 13.98                           | <b>1</b> ,063         | 827%              | 432%                   |
| Southern Tier    | 2.28                            | 402                   | 29.23                           | 2,113                 | 1,182%            | 426%                   |
| Western New York | 5.18                            | 360                   | 33.88                           | 2,093                 | 554%              | 481%                   |
| Total            | 83.06                           | 9,079                 | 743.65                          | 64,926                | 795%              | 615%                   |

Residential/small commercial (35%), commercial/industrial (50%), competitive PV (15%)

https://www.nyserda.ny.gov/solarcapacity

NATIONAL RENEWABLE ENERGY LABORATORY

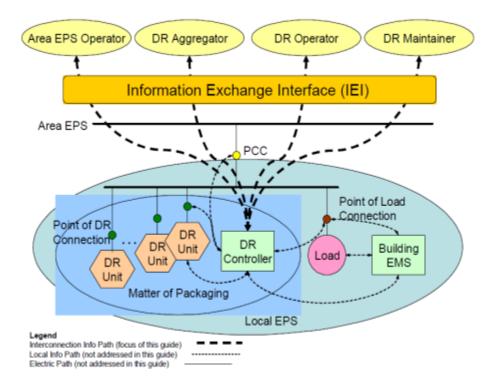
- 1. Consider future (REV-desired) state & configuration of electric system (DSP platform)
- 2. Consider roles & responsibilities of stakeholders (utility, DER operators/aggregators, bulk system operators)
- 3. Develop methods for collaborating & exchanging data among stakeholders to avoid duplication of effort and equipment
- 4. Develop capabilities in modeling & simulation to support field measurements (for load & generation)
- 5. Revise SIR to indicate & provide technical justification for interoperability at appropriate levels

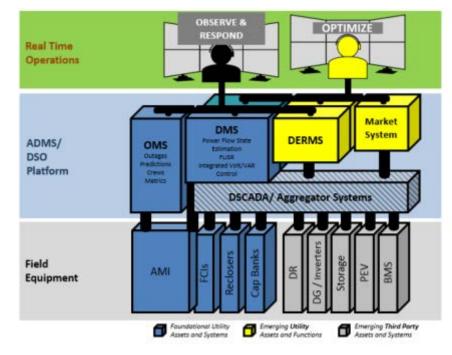
#### Presentation Terms – Scope of Discussion

- Interoperability The capability of two or more networks, systems, devices, applications, or components to externally exchange and readily use information securely and effectively.
- Measurement (typ. Metering) means of determining the energy production (kWh) of DER over time (e.g. monthly meter reads, 15 minute AMI data), newer systems may include other parameters
- Monitoring near real-time methods that communicate system status, output level (kW), etc., to the utility and possibly others
- **Control** direct utility control of a load-break element inline with DER grid connection (may include protection)
- Adv. Control control of the DER/plant directly using externally derived set points to meet specific control objectives










- Measurements
  - Metering (15 minute intervals, kWh)
  - Other measurements (some metering systems may provide additional parameters such as voltage & reactive power)
  - Measurements at key locations will provide information for modeling & simulation software
- Monitoring (typ. at PCC), near real-time
  - Supports Dist. Planning, Dist. Operations, ADMS, DSP,
- Control & advanced control
  - Supports Dist. Operations, high pen. DER scenarios, DSP, aggregation – grid services
- Modeling & Simulation

#### **Stakeholders & Interoperability**





IEEE 1547.3 Reference diagram for information exchange (source: IEEE 1547.3)

#### "Enabling Technologies" – JU supplemental DSIP, Nov 1, 2016

http://jointutilitiesofny.org/wpcontent/uploads/2016/10/3A80BFC9-CBD4-4DFD-AE62-831271013816.pdf

## Distribution System Operator

- planning
- operations
- protection

DER System Operators/ Aggregators

- planning
- operations
- protection

Bulk System Operator

- planning
- operations
- protection

#### Results from Interviews with non-NYS JU Utilities

- Six utilities gave responses (APS, SCE, Pepco, HECO, TEP, Xcel)
- Monitoring & control requirements differed widely
  - APS AMI production meters for all systems, telemetry at 1 MW (potential to go down to 400 kW for campuses)
  - Pepco metering threshold is at 2MW by state rules
  - SCE telemetry (real & reactive power) threshold is at 1MW
  - TEP no monitoring or control for < 50kW, engineering study after that
  - O Xcel currently telemetering required for ≥ 1MW, may go to 250kW in future, some control already for ≥ 5MW

#### Results from Non-NYS JU Utility Interviews

- Main Concerns
  - Performance (top issue)
  - Monitoring & control capability
  - Standardization and costs
  - Improved situational awareness
  - Cybersecurity
- Communications Options
  - Wireless/cellular
  - **AMI**
  - Other options (public switched telephone network, IWR, radios for mesh, several pilots underway)

#### **Bulk Power System Considerations**

### Summary of NERC DERTF Report (Feb 2017)

- DER and potential risks to reliability
  - Will become a concern as DER penetrations increase
  - Need more data for modeling (location, type, size, configuration, interconnection characteristics, disturbance response characteristics, operational date, DER generation profiles)
- Data and modeling needs (if DER is expected to have significant impact)
  - DER type, MVA rating, profile, operating power factor, real & reactive power control capability, PCC voltage, date of operation,
  - default equivalent impedances for various distribution grid types for input into WECC composite load model
  - DER stability models, voltage and frequency trip parameters
- Characteristics of nonsynchronous DER
  - Coordination of voltage ride-through, frequency ride-through
- NERC DERTF Recommendations
  - Guidelines for modeling & assessments, data sharing and coordination between distribution and transmission, modeling (steady-state power flow, short-circuit, dynamic disturbance ride-through, transient stability, dynamic models for DER technologies), industry collaboration with DER vendors & modeling software vendors

#### Source: NERC Distributed Energy Resources Task Force Report, Feb 2017

#### **Modeling & Simulation Can Provide Useful Information**

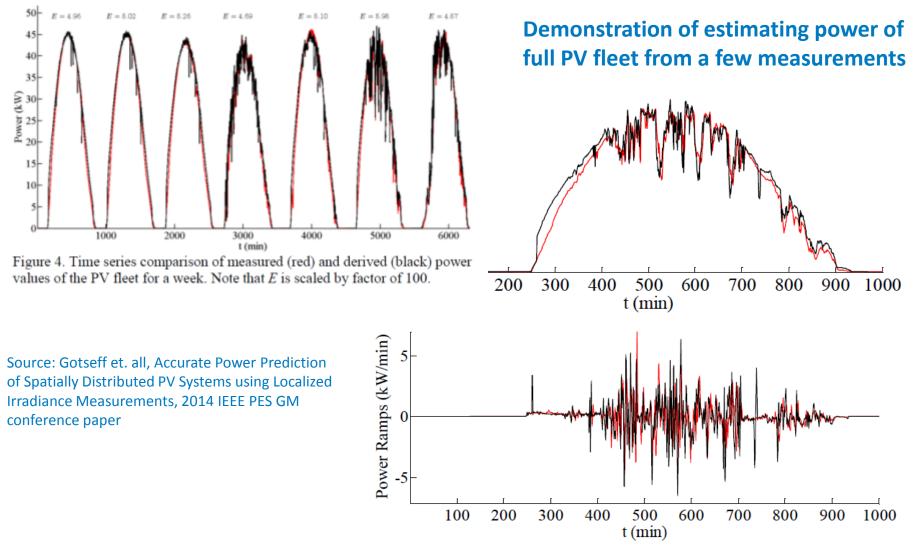



Figure 6. (a) Fleet power for a highly variable day, measured (red) and derived (black) (b) associated fleet power ramp comparison, measured (red) and derived (black).

#### Recommendations – considering REV

For all installations, recommend measurements at key locations to support modeling & simulation (kW, kVAr, V)

- Small scale ( < 50 kVA)
  - Utility: modeling & simulation based on measurements, no monitoring, no control
  - DER operator: may be part of future aggregation, needing more interoperability
- Medium scale to large scale (> 50 kVA)
  - Future grid-supportive inverters will be able to provide voltage regulation which may be beneficial or required in some locations (autonomous functions will most likely be sufficient therefore real-time communications may not be required for smaller installations)
  - Utility: add technical guidance step in SIR to determine need for monitoring electrical parameters (stiffness ratio, impedance, etc.) & connection status, likely no control needed for most small installations (50 kVA to 300 kVA)
  - DER operator: may be part of future aggregation, supply future grid services to distribution or bulk needing more interoperability



NREL Power Systems Engineering Center

## NREL ... Providing Solutions to Grid Integration Challenges

**Thank You!** 

www.nrel.gov



NREL is a national laboratory of the U.S. Department of Energy, Office

iciency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC.