

Workshop Discussion: California LNBA Update

September 20th, 2017

+ Context for Distribute	ed Resource Planning (DRP)
B) Agenda	
<u>_</u>	

- Locational Net Benefits Analysis (LNBA)
- + Methodology for Distribution Avoided Costs
 - References, formulas, elements of the approach
- + Implementation in Public LNBA Tool
 - Data and definitions
 - Tool overview
- + Discussion
 - Next steps in California

+ Doing non-wires studies since 1989...

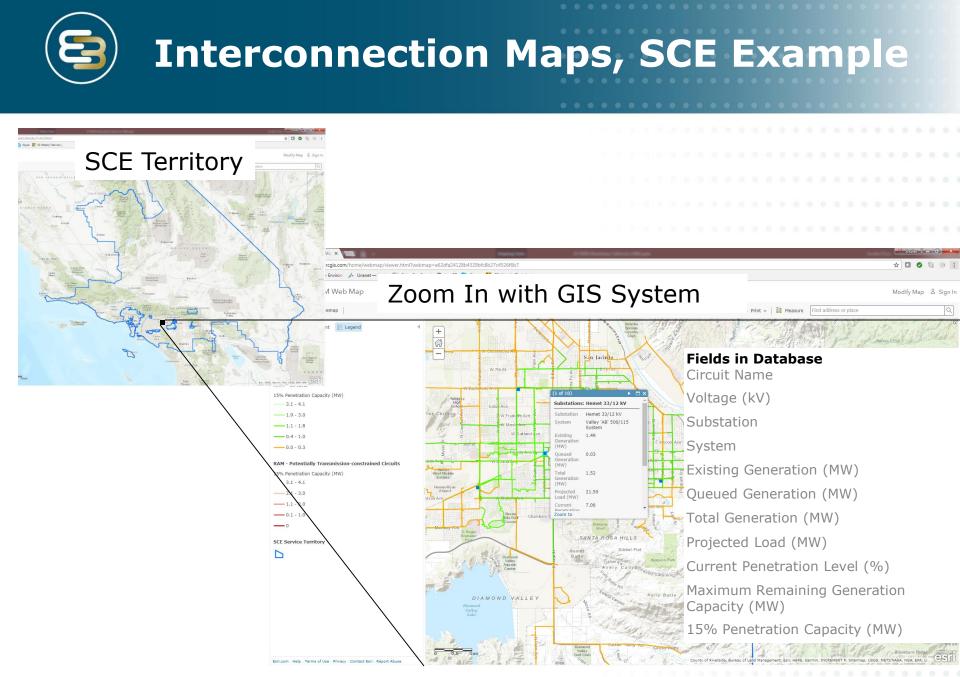
 California has a long history of looking at the local value of distributed energy resources

In 2004, local value integrated into the avoided costs for utility DER programs


 Local value differentiated by climate zone included in the avoided costs of energy efficiency, expanded to solar rooftop, demand response, storage, and other DERs

+ Legislated in 2014 Assembly Bill (AB) 327

 Requires each utility "to identify optimal locations for the deployment of distributed resources..." based on "locational benefits and costs of distributed resources"


Utility	Study Name	Year
PG&E	Kerman PV Study	1990
PG&E	EPRI Delta Study	1992
Ontario Hydro	Collingwood	1993
PG&E	Integrated Generation, Transmission, and Distribution (IGTD) Study	1994
CSW -CP&L	Laredo	1994-1995
Ontario Hydro	Toronto Integrated Electric Supply (TIES) Study	1995
WEPCO	Strategic Distribution Planning Study	1995
TVA	Nashville Electric Service	1996
Commonwealth Edison	Far Northwest Planning Area	1997
Orange and Rockland Utilities	Middletown Tap	1999
PG&E	Tri-Valley	1999
Consolidated Edison of New York	Rainey-E 75th	2000
PG&E	San Francisco Jefferson-Martin	2001
Consolidated Edison of New York	DG RFP	2002
PG&E	Delta 21kV	2003
BPA	Olympic Peninsula Non-wires Alternative	2003
BPA	Kangley-Echo Lake	2003
CEC Renewable DG Assessment	Sacramento Municipal Utility District, City of Palo Alto, Alameda Power and Telecom, SF Hetch-Hetchy	2004-2006
CEC PIER	San Francisco Distributed Energy Resources Testbed	2004-2007
Vermont PSC	Transmission deferral	2009
Orange and Rockland Utilities	Orangeburg Substation	2010
BPA	Hooper Springs	2011
BPA	I-5 Corridor	2011

+ Two Areas of Focus

- Demo A on interconnection, integrated capacity analysis (ICA) working group to develop common utility process
- Demo B on local capacity value,
- + Utility non-wires solutions solicitations (current)
- + Maps of targeted areas and LNBA tool development
- Website with materials and the publicly available LNBA tool (that E3 developed)

http://on.sce.com/derim

Energy+Environmental Economics

7

California Emerging Applications Next Steps

- + Integrate local avoided cost in DER program costeffectiveness, target date of May 31, 2018
 - Up to 500 distribution planning areas are possible
- Develop iDSM tool with particular focus on solar plus storage for targeted DER deployment.
 - Optimal least cost portfolio versus the traditional solution
- + Grow offerings of targeted local demand response programs, both price- and utility control-based

+ NY Restructuring Agreement 20 Years Ago

 The Company agrees to address certain restructuring-related issues raised by the Natural Resources Defense Council and others as follows:

Deferral of T&D Capital Projects:

The Company will continue to develop detailed annual forecasts of transmission and distribution ("T&D") capital budget requirements and will identify for each major T&D project (i.e., projects of \$10 million or more), the location, reason for project, scope of project, projected capital costs, appropriate load and other data. The Company will also perform load monitoring consisting of monitors at a significant sample of the transmission and area substations scheduled for expansion/upgrade in the five-year T&D capital plan. The Company will evaluate and implement cost-effective measures as alternatives to major T&D projects that defer major T&D system projects through the use of technologies or services that could reduce peak T&D loads. For such cost-effective projects, consideration will be given to technologies or services that minimize the environmental impacts of electricity usage including demand side and other new technologies where practicable. Con Edison will continue to seek to minimize costs and environmental impacts for T&D projects that are not major T&D projects.

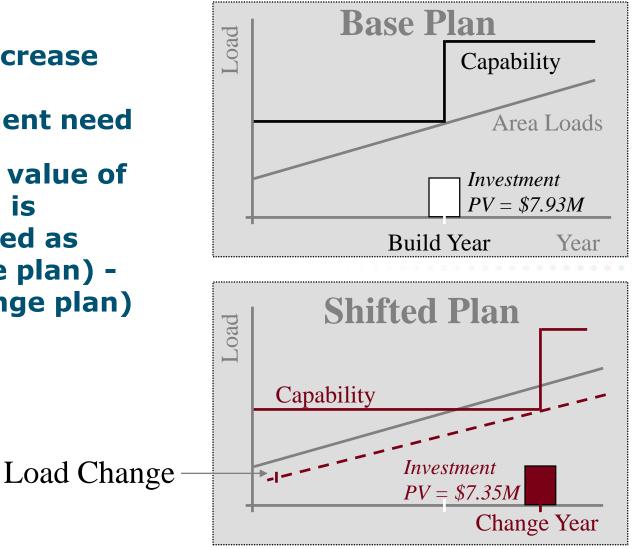
9

METHODOLOGY	FOR
DISTRIBUTION	
DISINIDUITON	VALUL
	10

+ Select Publications of Local Area Distribution Marginal Capacity Cost

- R. Orans, "Area-Specific Marginal Costing for Electric Utilities: A Case Study of Transmission and Distribution Costs", Ph.D. Dissertation, Stanford University Dept. of Civil Engineering, 1989
- C.K. Woo, R. Orans, B. Horii, R. Pupp, G. Heffner "Area- and Time-Specific Marginal Capacity Costs of Electricity Distribution" Energy Vol. 19., No. 12, pp. 1213-1218, 1994
- J. Swisher, R. Orans "The Use of Area-Specific Utility Costs to Target Intensive DSM Campaigns" Utility Policy Vol. 5, No. 3/4, 1995
- C.K. Woo, D. Lloyd-Zanneti, R. Orans, B. Horii, and G. Heffner, "Marginal Capacity Costs of Electricity Distribution and Demand for Distributed Generation", The Energy Journal, Vol. 16, No.2, 1995
- G. Heffner, C.K. Woo, B. Horii, and D. Lloyd-Zannetti, "Variations in Area- and Time-Specific Marginal Capacity Costs of Electricity Distribution", IEEE Transactions on Power Systems, v13n2, May 1998, pp 560-565.

- + Core valuation element is the "differential revenue requirement" or "present worth method"
- + Marginal distribution capacity avoided cost


$$PW \ Value \ (\frac{\$}{kW}) = \frac{\text{Capital Cost}(\$) * \text{RR Adj} \left(1 - \left(\frac{1+i}{1+r}\right)^{\Delta t}\right)}{\text{Required Load Reduction (kW)}}$$

+ Levelized Value

Annual PW Value
$$\left(\frac{\$}{kW - year}\right) = PW$$
 Value $\left(\frac{\$}{kW}\right) * RECC$
$$RECC = \frac{(r-i)}{(1+r)} \frac{(1+r)^n}{[(1+r)^n - (1+i)^n]}$$

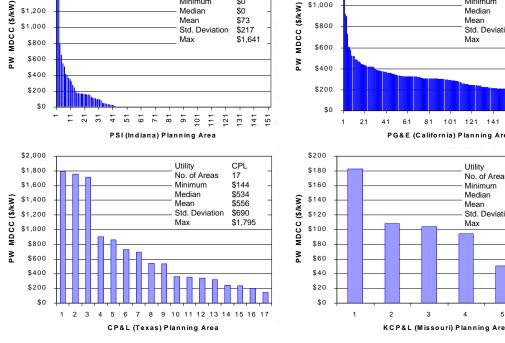
Present Worth Method is Based on Deferral of Investments

- Load decrease delays investment need
- Present value of deferral is calculated as PV(base plan) -PV(change plan)

+ Differentiate plans/costs by geographic area.

+ Resolution set by circuit boundaries usually distributio planning area.

+ Reveals tremendous **locational variation** and high-value areas for DR.


Survey of Distribution Costs System Wide

\$1,400

\$1,200

2 3 CP&L (Texas) Planning Area KCP&L (Missouri) Planning Area G. Heffner, C.K. Woo, B. Horii, and D. Lloyd-Zannetti, "Variations in Area- and Time-Specific Marginal Capacity Costs of Electricity Distribution", IEEE Transactions on Power Systems, v13n2, May 1998, pp 560-565.

Utility

No. of Areas

Minimum

Areas@ \$0/kW 72%

PSI

152

\$0

Historical Examples of 4 Utilities

\$1,800

\$1.600

\$1,400

101 121

Utility

No. of Areas

Std. Deviation

Minimum

Median

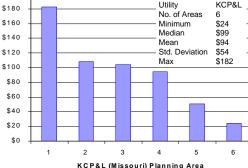
Mean

Max

Areas @ \$0/kW 19%

PG&E

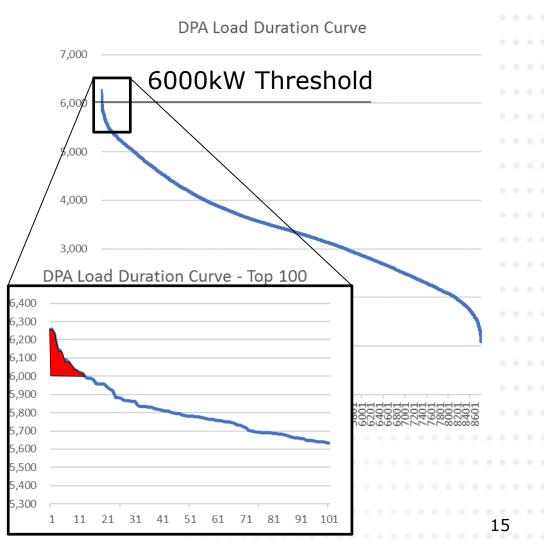
201

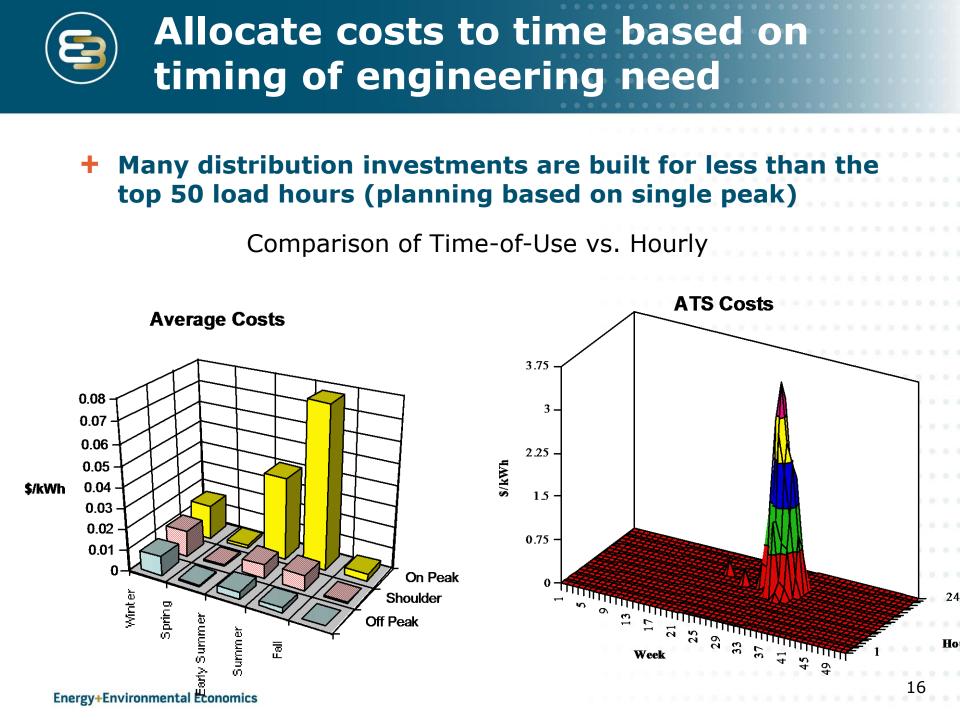

\$0

\$289

\$267

\$179


\$1,330



Allocation to hours for distribution similar to loss of load probability (LOLP)

- Allocate the full distribution capacity cost to hours based on the probability of exceeding peak
- Formulation is used to evaluate probability in each hour based on historical load

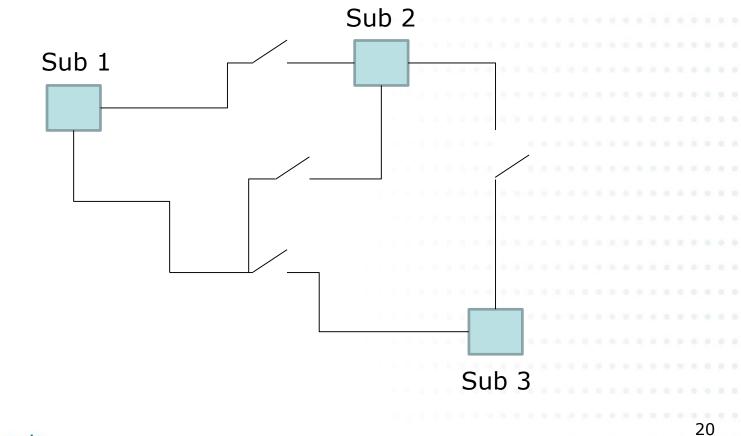
Distributional Marginal Costing Methods Comparisons

Present Worth Method is the only method to isolate forward looking avoided cost at a particular location and time, area- and time-specific value

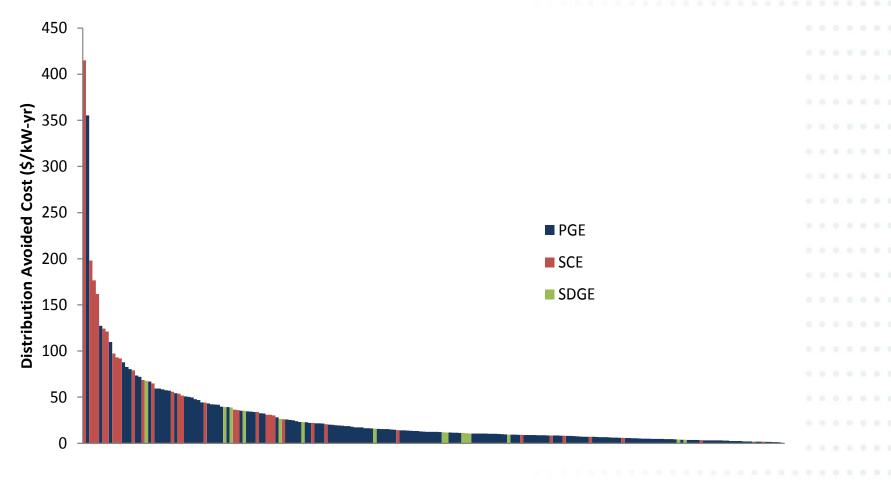
Marginal Costing	Description	Comments						
Method								
Total Investment Method - TIM	Discounted capital budget cash flow divided by additional peak	Longer time horizon appears less expensive. Cannot compare						
	demand.	areas with different timing.						
Discounted Total Investment Method –	Discounted capital budget cash flow divided by discounted	Equivalent to constant \$/kW payment needed to match cash						
DTIM	additional peak demand.	flow. Does not capture avoided						
		cost of a kW saved.						
Present Worth – PW	Deferment value from shifting optimal capital plan in time due	Captures avoided cost of a kW saved.						
	to change in peak demand from base case.							
Regression Method (NERA) – RM	Slope of linear regression based on historical and forward-	Historical costs skew results. Does not capture avoided cost						
	looking cost vs. demand.	of a kW saved.						
Replacement Cost New – RCN	Average cost based on cost to	Does not reflect actual costs.						
New – KCN	replace. Marginal cost based on "engineering elasticity" derived							
	from simulation.							

Table 10: Marginal Costing Methods

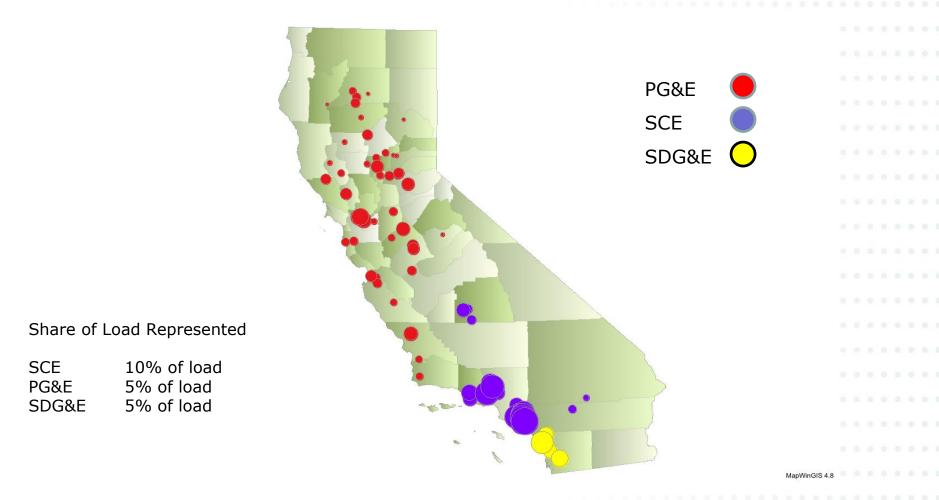
IMPLEMENTATIO			-									
	ų.		ē.,	6 (6)	0 0	10 1	6 (6	• •				
DATA AND DEFI			ė		.0							
		•	80 ⁷))	9%G	• •	0.0	0	0 0	0	D. 10		

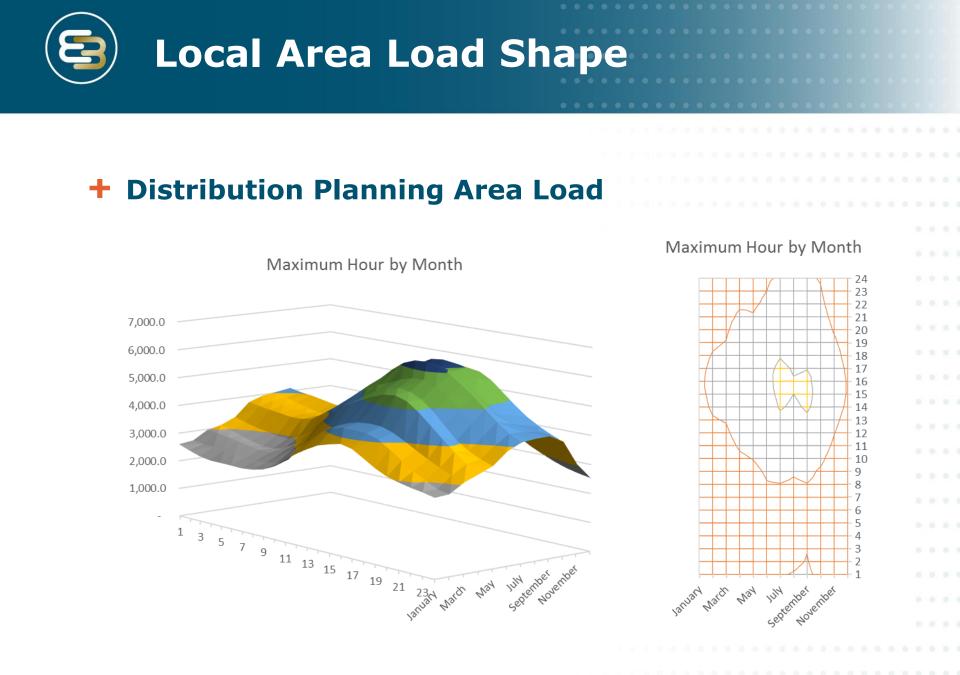

ΙΟ			Ť	ř																
			1																	
	Ľ	•	•		6	0	0	0	0	0	0	•	0	•	0					
IN		•			•				9											
		•			10	•	۰	.0	0	0	0	0	0	0						

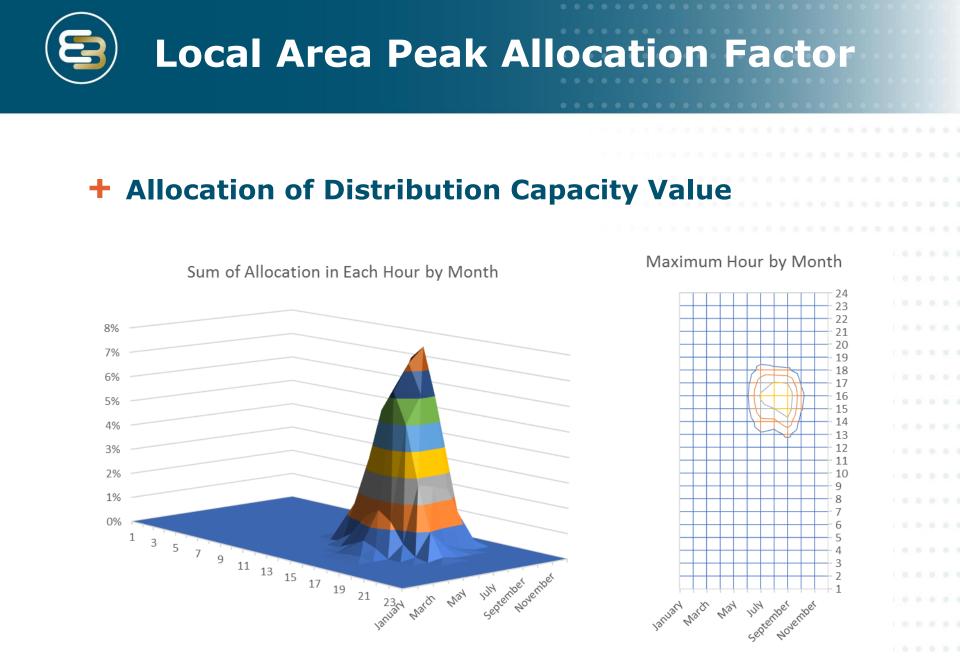
+		pital budget plans and load growth sponse to CPUC data request	pro	vi	de	d	by	/ e	ea	cł	1	IC	DL	Ji	n			
	•	Capital budget plans isolated to load growth	n driv	/en	in	ves	stn	ne	nt	S								
	•	Load growth by area provided in data reque	est															
+	De	fining "Distribution Areas"																
	•	SCE defined by SYS ID areas; broader than	othe	er I	OU	S												
	•	PG&E defined by DPAs																
	•	SDG&E by distribution substation																
+	Lo	cal area load data																
	•	Aggregated hourly bank loads for target DP	As															
	•	SCADA and hourly data not available for all	area	IS														
rgy+Er	vironn	nental Economics														19	9	



+ Distribution Planning Area (DPA) is an area where load cannot be easily switched outside of the area




Distribution Avoided Costs by Planning Area (\$/kW-year):



* Proposal is that each utility identify the 'hot spots' in their service territory

IMPLEMENTATIO		6 6 T												
IMPLEMENIALIC														
		• •		0	6 / 6		•	• •	•		0 0	. •		
LNBA TOOL & NE		•	• •							X				
	1 03	en) est		0	0 10	0 4	•	• •		0 0	0.0			

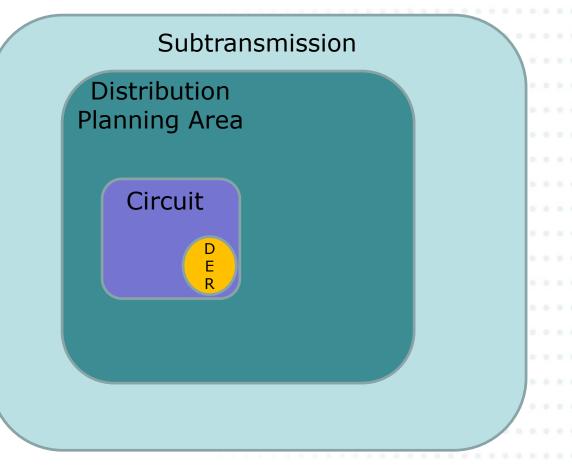
•	•	•	•	•	•	•	•	•	•	•	۲	•	•	•	•	•	•	•	•	•	9	•			

- Joint California IOU standardized methodology for all components of the avoided cost
- + Example publicly available on LNBA Working Group
 - URL <u>http://drpwg.org/sample-page/drp/</u>
- Includes hourly costs and benefits for the life of the DER Resource up to 30 years, using standardized avoided cost calculator (ACC) method
- + Designed for non-wires solution RFO submission

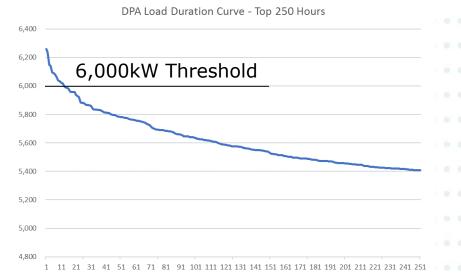
+ MS Excel, Multiple tabs

)· Ç - ÷						LNBA v2.11 - E	xcel				Sn	uller Price	<u> -</u>	- 0	/×
File	Home Insert D	raw Page La	ayout Formı	ılas Data Re	eview View	Add-ins	♀ Tell me what you	want to do							<u></u>	≩ Share
P32	× - 4	s fx														~
A B	С	D	E	F	G	н	I	J	к	L	М	N		0		P 🔺
1 DER	Settings and Full Local	T&D Avoided (Cost								1			1	/ersion 2.11	
2																
3	DER Location and Ann	ual Inputs				DER Type			SOLAR							
4	DER Location			Circuit 1102		Integration cos	t adder (\$/MWh)		\$ 3.00)						
5	Dependability in loc		0%)	90%												
6	DER Useful Life (yrs)		20			woided Cost (\$/kW of	DER)	\$0.00	(Default = 0)						
7	DER install year			2018	InstallYr	Generation Cap	acity LCR Multiplier		1.0	(Default = 1.0)						
8	Defer T&D to this ye	ear (Max 2026)		2020												
9																
10																
	impact on local T&D										1					
12																
13	T&D Value Basis:		Allocation-	based average						ak reduction is sufficient						
14										The user can "exclude" o			attributed	value to zero.		
15										ited to discrete integer y						
16					"Allocation-ba	sed average" ca	Iculates value using p	eak capacity	allocation	factors (see below for	a description	of PCAEs)				
17 18																
	DER Peak Reductions		Need after	Denendable	Sufficient	Determine	Include or	Attributed		DER kW output stat	TISTICS					
19 20			Dependable	Dependable DER	for	Potential Deferral	Exclude Deferral	Deferral		DER Max Output (k)	A.(`)	2,739				
20		kW Needed	Dependable DER (kW)	Reduction (kW)	deferral?	Value (\$)	Value (?)	Value (\$)		DER Max Output (KV	<i>N</i>)	2,/39				
22	Circuit 1102	2812	3189	-377	FALSE	\$396,370	Include	\$161,241			Project Area	All Affected Areas				
23	Other affected T&D Pr		5105	-577	TABL	\$350,370	include	<i>9101,241</i>		Minimum	0	515	Min DEP	output during	the neak per	riod
24	Circuit 1107	512	0	512	TRUE	\$360,327	Include	\$1,058,438		5%	-	663		w this 5% of t		100
25	Dist Infra 2	6211	5889	623	FALSE	\$000,527	Include	\$0		10%		729		w this 10% of		
26	DISC IIII I Z	512	-109	621	TRUE	\$0	Include	\$0		25%		1,188		w this 25% of		
27	0	0	0	0	TRUE	\$0	Include	\$0		Simple Average	963	1,599		DER during pe		
28	0	0	0	0	TRUE	\$0	Include	\$0		PCAF Wtd Average	1.210	1,535	_	DER during pe		
29	0	0	0	0	TRUE	\$0	Include	\$0 \$0		i CAF With Average	1,210	1,520	wiu nvy i	DER during pe	uk periou	
30	0	0	0	0	TRUE	\$0	Include	\$0		Peak capacity allocati	on factors (PC	AE) wolaht oach haw	du output h	acad on the		
30	0	0	0	0	TRUE	\$0	Include	\$0		amount of relative de				useu on the		
51							and the second second	1.			mana readcuo	n neeueu in euch no	ur.			
• - •	Overview DE	R Dashboard	Project Ir	nputs & Avoided	Costs Are	eaPeaks Sys	temAC Flex RA	ReM	(+) =	•						
Ready															+	85%

+ Distribution Capital Plan Inputs and MW Requirement

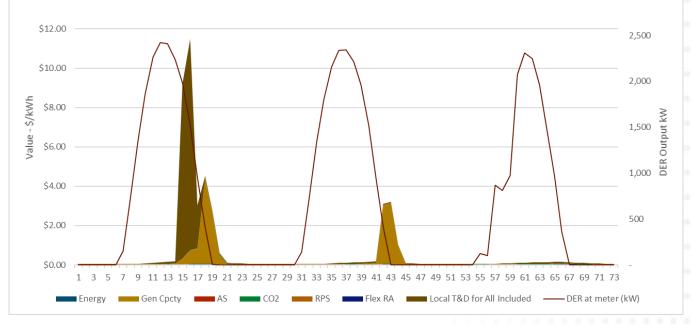

ار ب	· 6 - =				LNBA v2.11 -	Excel					Snuller Price	雨 —	
File I	Home Insert Draw Page Layout	Formulas Data	Review	View Add-	ins 🛛 🖓 Tell me what you	want to do							R₁ Sh
A17	\cdot : $\times \checkmark f_x$												
A A	ost and need information	В			с	D	E	F	G	Н	Ι	J	К
	ipment Information				ltem 1					ltem 2			
	ocation Identifier (user text)				DPA 1				-	Circuit 1102			
	Location Mapping info (User text) Equipment type				Location 1234 Primary Feeder					Location 1235 Substation			
20 21	Equipment Inflation (%/yr)				2.0%					2.0%	1		
22	Revenue Requirement Multiplier				165.0%					155.0%			
23	O&M Inflation Rate (%/yr)				2.0%					2.0%			
24	Book life (yrs)				25					30			
25	O&M Factor (Annual O&M\$/Project Cost \$	i)			12.0%	0.12	0.12			10.0%	0.1	0.1	
	t Information Capital Cost (\$000)				Base	Low \$1,800.0	High			Base	Low	High	
	Incremental O&M Cost (\$000)				\$2,000.0 \$240.0	\$1,800.0	\$3,000.0 \$360.0			\$1,000.0 \$100.0	\$800.0 \$80.0	\$1,200.0 \$120.0	
	Cost yr basis				2015	\$210.0	\$500.0			2016	380.0	\$120.0	
	ject install/commitment year				2013	_				2010	-		
31	,, , ,, , ,, , ,, , , , , , , , , , , , , , , , , , , ,										1		
32 Cum	nulative MW reduction needed for deferral				Base					Base			
	2017				0.2					2.56			
	2018				0.3					2.68			
	2019				0.5					2.81			
	2020				0.0					2.94			
	2021 2022				0.7					3.07 3.21			
	2022				1.0					3.35			
	2024				1.1					3.49			
	2025				1.3					3.63			
	2026				1.4					3.78			
43													
44													
	apping and Flow Factors												
46													
• - •	Overview DER Dashboard Pro	oject Inputs & Av	oided Costs	AreaPeaks	SystemAC Flex R	A ReM (+ : •						►
Ready													+ 859
-													

Generation Capacity


Local capacity values stack

- load shape and marginal costs can different in each nest
- Marginal costs
 linked to capital
 investment plan
 for upgrades

Peak Allocation Factors

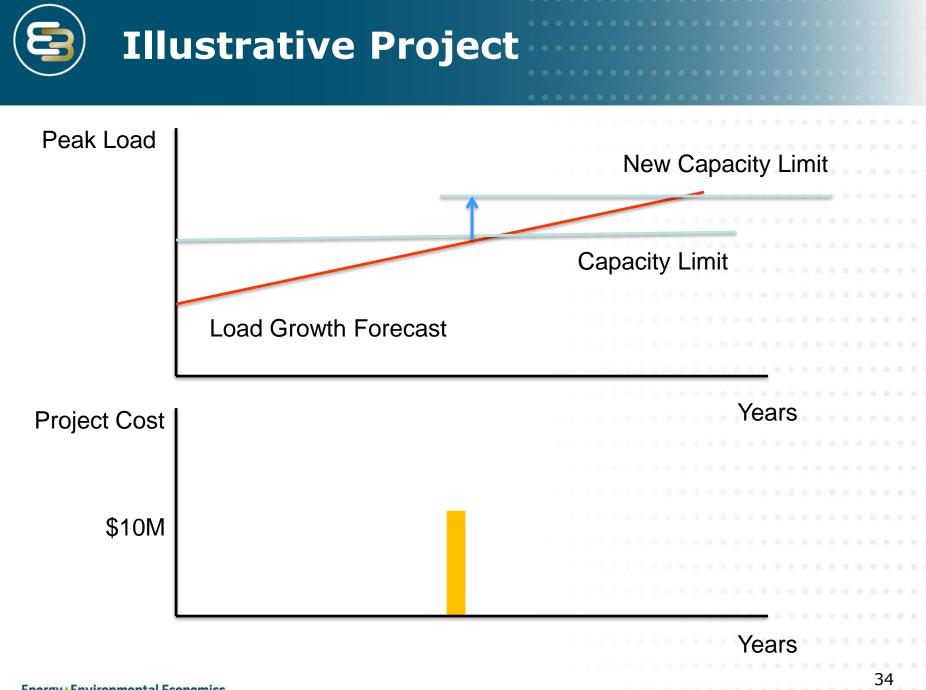

- + Allocation of T&D Value in hours with peak loads
- Define a threshold level of concern, can be defined by ratings or judgement level

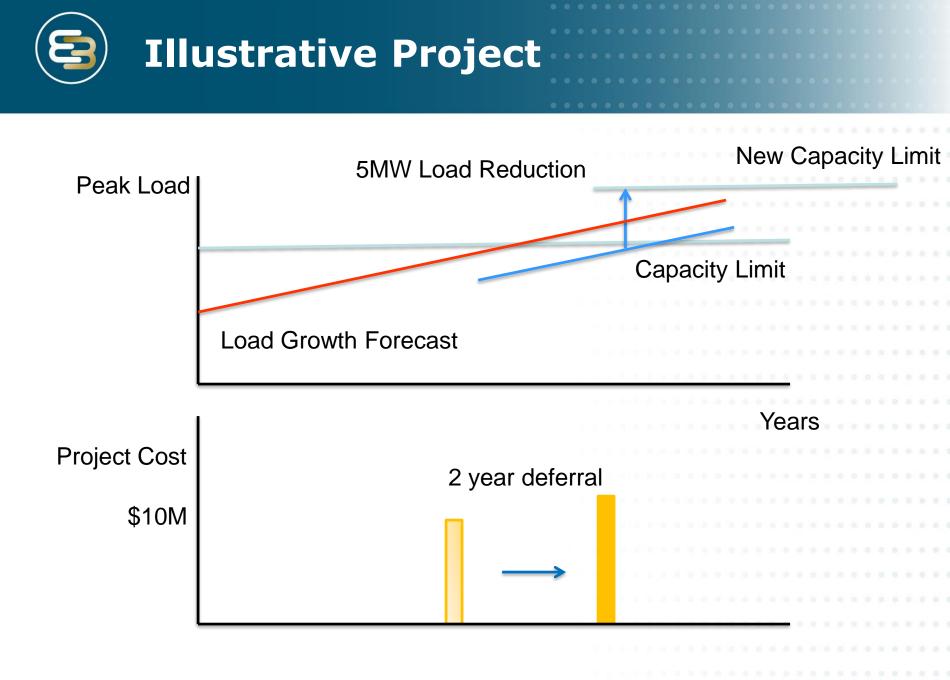
Individual										F	lour of t	he Year	(hour sta	arting PS	T)									
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Jan	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apr	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0	0	1	1	1	2	2	2	2	1	1	1	0	0	0	0
Jun	0	0	0	0	0	0	0	0	0	1	1	2	2	2	2	2	2	2	2	1	1	1	0	0
Jul	0	0	0	0	0	0	0	0	1	1	2	2	2	3	3	3	3	2	2	2	1	1	1	0
Aug	0	0	0	0	0	0	0	0	0	1	1	2	2	3	3	3	3	3	2	2	1	1	1	0
Sep	0	0	0	0	0	0	0	0	0	1	1	2	2	3	3	3	3	2	2	2	1	1	1	0
Oct	0	0	0	0	0	0	0	0	0	0	1	1	2	2	2	2	2	2	1	1	1	0	0	0
Nov	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
Dec	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Lifecycle Value from DER b	y Component (\$)	
	<u>Circuit 1102</u>	All Affected Areas
Energy	\$129,098	\$129,098
Gen Capacity	\$43,793	\$43,793
Ancillary Services	\$1,054	\$1,054
CO2	\$31,462	\$31,462
RPS	\$67,385	\$67,385
Flex RA	-\$10,512	-\$10,512
Integration Cost	-\$14,647	-\$14,647
System Transmission	\$0	\$0
3 - Days of Local T&D	\$161,241	\$1,219,680
\$14.00 Total Avoided Cost (\$)	\$408,875	\$1,467,313
	· · · · ·	0 0 0 0 0 7

COMPLEXITIES OF DELIVERING VALUE TO RATEPAYERS

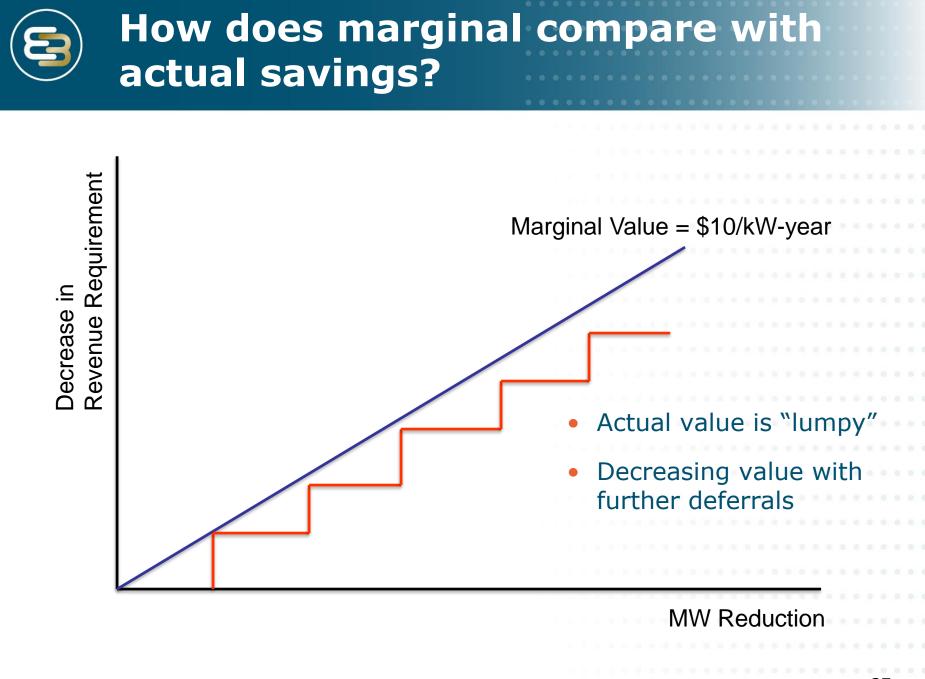
+ Load forecast of growth in an area


 Local area load forecast shows need for capacity expansion, or upgrades to meet reliability criteria


+ Develop distribution upgrade

 Preferred alternative is developed to solve the problem, minimum lifecycle revenue requirement

+ Establish capital budgeting plan

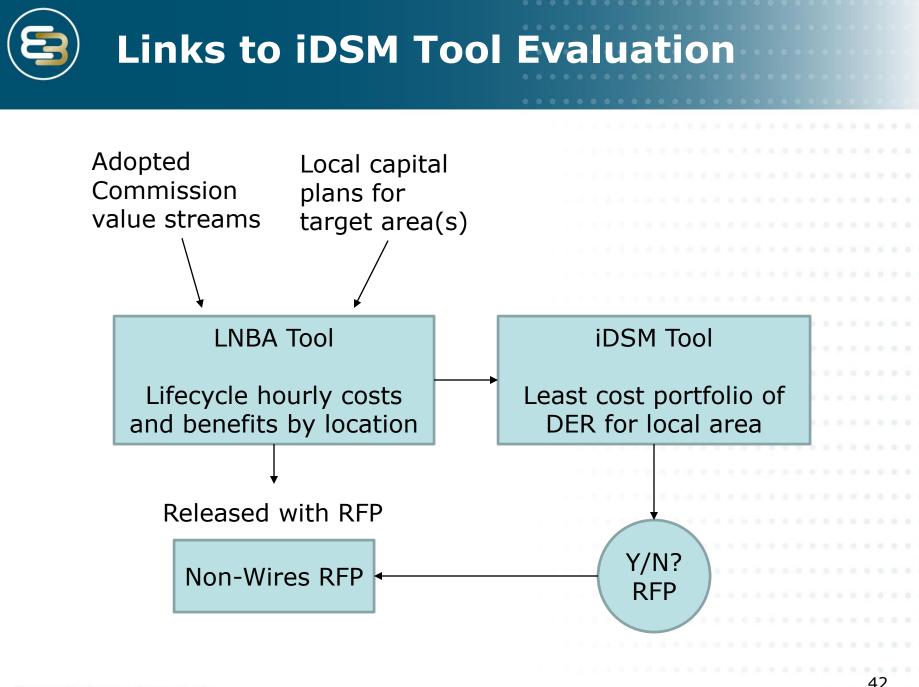

 Expected projects are compiled into a capital budgeting plan. Period of the plan depends on the utility, typically 5 to 10 years

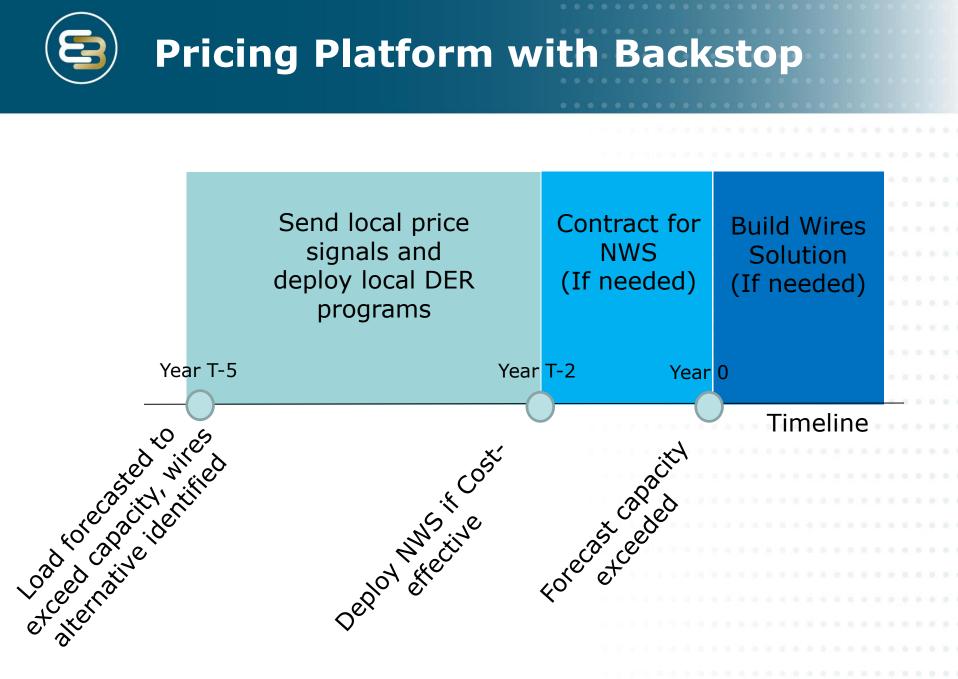


what was Saved	
	· · · · · · · · · · · · · · · · · · ·
+ Original PV of revenue re	quirement (PVRR)
 \$10 million 	
+ Deferred PV of revenue re	equirement (PVRR)
• \$9 million	
+ Savings of approximately	
• \$1 million	= \$10 million * $\frac{(1+2\%)^2}{(1+7.5\%)^2}$
• \$200/kW	= \$1 million / 5,000kW
 \$20/kW-year for 20 years 	= \$200/kW amortized over 20 years
Assumptions: Inflation = 2% ,	, WACC = 7.5%
zv+Environmental Economics	36

- Distribution engineer feels confident in reliability when they actually delay the investment decision
 - Sufficient peak load is reduced to defer the investment
 - Utility planning process accommodates embedded load




- There must be a minimum amount of load reduction must be achieved to defer an investment
 - Non-wires solicitation, or pricing-based approaches that test marketplace for reduction strategies
- Sufficient time to deploy non-wires solutions before distribution engineer implements alternative
 - Extend the distribution planning horizon out to 5 to 10 years
- Planned deferral is likely to be less time than the life of the renewable DG
 - Make initial contract a fixed period, allow utility option to recontract with DER
- + Early solicitations limit the near term flexibility and changing plans since contracts are entered earlier


NEXT STEPS & DISCUSSION

43

Thank You!

Contact Information

Snuller Price, Senior Partner Energy and Environmental Economics, Inc

(415)391-5100 snuller@ethree.com

nc	•													