STATE OF NEW YORK

PUBLIC SERVICE COMMISSION

Proceeding on Motion of the Commission as to the Rates, Charges, Rules and Regulations of Consolidated Edison Company of New York, Inc. for Gas Service

DIRECT TESTIMONY OF VIRGINIA E. PALACIOS ENVIRONMENTAL DEFENSE FUND

Dated: May 27, 2016

New York, New York

Elizabeth B. Stein, Esq. Environmental Defense Fund 257 Park Avenue South, 17th Floor New York, NY 10010 estein@edf.org (212) 616-1327

1 2	I.	BACKGROUND
3	Ç	2. Please state your name, title, and business address. By whom are you employed and in what
4		capacity?
5	A	A. My name is Virginia Palacios. I am a Senior Research Analyst in the US Climate and Energy
6		Program at the Environmental Defense Fund ("EDF"). My business address is 301 Congress
7		Avenue, Austin, TX 78701.
8	Ç	2. On whose behalf are you submitting testimony in this proceeding?
9	A	A. I am submitting this testimony on behalf of EDF.
10	Ç	2. Please provide a summary of your education and experience.
11	A	A. I hold a Masters of Environmental Management from Duke University and a B.S. in Aeronautical
12		Science from Embry-Riddle Aeronautical University. I have worked at EDF for four years,
13		having joined the organization in 2012 as a Research Associate, later promoted to Research
14		Analyst, and currently serve as Senior Research Analyst. In all, I have five years of experience
15		working on issues relating to the natural gas sector.
16		In my current role, I provide technical expertise on scientific and regulatory concepts related to
17		local distribution pipeline safety, lost and unaccounted for gas, and quantification of methane
18		emissions from local distribution system pipelines. I also analyze quantitative and geospatial data
19		related to methane leakage in the natural gas sector.
20		In my previous position as a Research Analyst at EDF I investigated local, state, and federal rules
21		related to local distribution pipelines safety and lost and unaccounted for gas, and developed an
22		understanding of how methane emissions from local distribution system pipelines can be
23		quantified. Some of my work, which involved geospatial attribution of methane emission data,
24		was published in two peer-reviewed articles. (Lyon, D., et. al. (2015). Constructing a Spatially
25		Resolved Methane Emission Inventory for the Barnett Shale Region. Environmental Science and
26		Technology. http://doi.org/10.1021/es506359c; Zavala-Araiza, D., et. al. (2015). Towards a

VIRGINIA E. PALACIOS

1	Functional Definition of Methane Super-Emitters: Application to Natural Gas Production Sites.
2	Environmental Science and Technology. <u>http://doi.org/10.1021/acs.est.5b00133</u> .) Additionally, I
3	reviewed reports on regulatory frameworks for controlling methane emissions in the natural gas
4	sector, and a report on the costs of lost and unaccounted for gas. (Paranhos, E., et. al. (2015).
5	Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State
6	Regulatory Frameworks Governing Production, Gathering, Processing, Transmission, and
7	Distribution. Golden, CO; Webb, R. (2015). Lost but not forgotten: The hidden environmental
8	costs of compensating pipelines for natural gas losses. Austin, Texas.)
9	When I began working for EDF as a Research Associate, I conducted regulatory comparisons and
10	data analysis related to the oil and gas industry, with a particular focus on federal and state
11	regulations on distribution system integrity management, Supervisory Control And Data
12	Acquisition ("SCADA") leak detection systems, cost recovery mechanisms, lost and unaccounted
13	for gas, and pipeline mileage and leakage data provided in Pipeline and Hazardous Materials
14	Safety Administration ("PHMSA") Annual Distribution System reports.
15	In 2014, I presented at and participated in the PHMSA Research and Development Forum
16	Working Group on Leak Detection and Fugitive Methane. The Forum Working Group provided
17	recommendations on research priorities for leak detection and fugitive methane to PHMSA, for
18	federal funding of potential research and development projects. After the Forum, PHMSA
19	awarded nearly \$3 million in grants for projects including an emissions quantification validation
20	process, and a natural gas pipeline leak rate measurement system.
21	Prior to my time at Environmental Defense Fund, I was a Research and Campaign Associate at
22	Rio Grande International Study Center in Laredo, Texas where I researched and presented
23	information on potential environmental and community-level risks of oil and gas development to
24	community members and elected officials. I also coordinated town halls, hosting panels with state
25	agency representatives, industry representatives, and citizens.

CASE 16-G-0061 VIRGIN

VIRGINIA E. PALACIOS

1		At Duke University, I held a position as a Soil Nutrient Analysis Technician in the Jackson
2		Laboratory. In this position I compiled data from peer-reviewed journal articles for a meta-
3		analysis on the inorganic carbon content of grassland soils. I also collected and prepared soil
4		samples for carbon-nitrogen analysis.
5	Q.	Please provide a summary of your testimony.
6	A.	EDF is proposing that the New York Public Service Commission ("Commission") require
7		Consolidated Edison Company of New York, Inc. ("Con Edison" or the "Company") to
8		incorporate spatially-attributed leak flow rate data in leak repair and pipeline replacement
9		prioritization activities. Spatial attribution of leak flow rate data involves recording an observed
10		leak flow rate with the geographic coordinates (e.g. latitude and longitude) of the leak.
11		EDF and the Company are currently collaborating on a pilot project aimed at demonstrating the
12		benefits of using data on leak flow rate to prioritize leak repairs, and minimizing leaks from the
13		Company's distribution system. As part of this project, a team that includes EDF staff and
14		researchers from Colorado State University ("CSU") is managing and executing a survey of areas
15		identified by the Company in its service territory where it is targeting the repair of its Type 3 leak
16		backlog in order to quantify gas flow rate from those leaks, so that this data can be used by Con
17		Edison to prioritize leaks for repair.
18		The new survey methodology being used in the pilot, will provide the Company, the Commission
19		and other parties with quantitative information about the condition of Con Edison's subsurface
20		mains, including spatially-attributed leak flow rate and leak density. The data will enhance the
21		Company's ability to implement and manage such efforts and can potentially assist the
22		Commission in rendering determinations regarding allocation of customer money for the
23		Company's leak abatement activities.
24		As described later in my testimony, incorporating leak flow rate data into leak repair and pipeline
25		replacement prioritization provides enhanced efficiency and cost-effectiveness for capital

VIRGINIA E. PALACIOS

1	investments, thereby benefitting ratepayers, and also presents environmental benefits. Spatially-
2	attributed leak flow rate data can aid the Commission in tracking and verifying these benefits.
3	EDF has collaborated with other utilities to demonstrate the benefits of incorporating leak flow
4	rate data into leak repair and pipeline replacement prioritization. For example, EDF recently
5	collaborated with Public Service Gas & Electric ("PSE&G"), New Jersey's largest and oldest
6	publicly owned utility, to incorporate leak flow rate data in prioritizing leak repair and pipeline
7	replacement. The New Jersey Board of Public Utilities, PSE&G, and other parties recognized the
8	safety, ratepayer and environmental benefits of using data on leak flow rate to prioritize large
9	scale system modernization efforts. There are significant benefits to be gained from using a
10	similar approach in designing and implementing Con Edison's leak repair and pipe replacement
11	efforts.
12	The Company's proposal to test new and advanced leak detection technology that has higher
13	sensitivity thresholds will enhance leak detection capabilities and leak survey datasets and is a
14	step in the right direction. Several utilities across the country have already started integrating such
15	new technological solutions into their regular operations. (See, e.g. PSE&G example above; See,
16	e.g. case study in Wei, J., Menzie, M., & Jenkins, L. (2016). A new view on pipeline risks -How
17	spatial analytics can empower asset management for gas utility companies. Available at:
18	http://www.pwc.com/us/en/power-and-
19	utilities/publications/assets/pwc_gas_pipeline_spatial_analytics_april_2016.pdf.)
20	The use of performance metrics for leak management, as described in Con Edison's testimony
21	(Gas Policy Panel Testimony. P. 26, lines 8 – 19), is beneficial and can potentially play a
22	significant role in advancing utility performance. However, to the extent that advanced leak
23	detection technology is integrated into the Company's operations, any such metrics must be
24	thoughtfully constructed.
25	As utilities transition to advanced leak detection technologies that are more sensitive than

traditional leak detection equipment, they are likely to experience an overall surge in the number

VIRGINIA E. PALACIOS

1		of leaks detected on their systems, all else being equal. Such an increase in leak backlogs may
2		necessitate a new baseline or framework for measuring progress in pipeline integrity
3		management.
4	Q.	Are you sponsoring any exhibits to your testimony?
5	A.	Yes. I offer Exhibit (VP-1), which is a compilation of the discovery responses from the
6		Company that we relied upon in preparing our testimony, some of which we expressly reference.
7		I also offer Exhibit (VP-2), which includes sample leak attribution maps developed by EDF in
8		collaboration with PSE&G, New Jersey. I lastly offer Exhibit (VP-3), which is the Framework
9		Agreement between Con Edison and EDF. This Framework Agreement, as discussed further
10		below, sets forth the broad context and contours of a pilot project between EDF and the Company
11		to address the repair of Con Edison's type 3 leak backlog.
12	II.	PURPOSE AND SCOPE OF TESTIMONY
13 14 15	Q.	What is the purpose and scope of your testimony?
16	A.	The Company's request for funding to accelerate its pipe replacement and leak repair activities
17		and to explore the use of advanced leak detection equipment is necessary and appropriate. The
18		purpose of my testimony is to explain the nature and results of EDF's collaborative leak survey
19		pilots, including with the Company, that demonstrate the benefits of using advanced leak
20		detection and quantification methods to better prioritize leak repair and pipe replacement efforts.
21		In addition to adopting advanced leak detection technology, the Company would optimize the
22		benefits associated with its system maintenance and modernization efforts by using leak flow rate
23		quantification methodologies with geospatial attribution of leaks to more efficiently prioritize
24		leak repairs and the replacement of leak-prone gas infrastructure.
25	Q.	Please summarize your understanding of Con Edison's proposed Distribution Supply
26		Improvement Programs, and other initiatives proposed by the Company to minimize leaks
27		and methane emissions from its pipes.

VIRGINIA E. PALACIOS

-4 25	Q.	Are utilities currently using leak flow rate to prioritize leak abatement and pipeline
23 24	III.	EXISTING UTILITY PRACTICE AND REGULATORY CONTEXT
22		revenue adjustments for this and other performance metrics capped at ten basis points.
21		basis points for exceeding the 2016 established metric for leak management, with total positive
20		other aspects of its operations that would allow it to earn a positive revenue adjustment of two
19		Company also proposes an incentive performance metric, with respect to leak management and
18		and find better ways to survey leaks. On page 150 of the Company's GIOP Testimony, the
17		leak detection equipment in order to better understand the technology's leak detection capabilities
16		Testimony states on page 21 that the Company is seeking funding to purchase and test Picarro
15		methane emissions from the Company's gas distribution system. In addition, the Company's GPP
14		wide leak rate, which will advance ratepayer and environmental interests by reducing the rate of
13		flow rate data to prioritize the repair of non-hazardous leaks, thereby reducing the overall system-
12		Gas Policy Panel ("GPP") Testimony on page 23, is to demonstrate the benefits of using leak
11		leaks backlog (see Exhibit_ (VP-3)). The objective of this project, as provided in the Company's
10		Con Edison is partnering with EDF to quantify methane emissions from its non-hazardous gas
9		Rehabilitation of Large Diameter Gas Mains."
8		this goal include Supply Main Planned Reinforcement, Emerging Supply Mains Reliability, and
7		potentially leak." According to the GIOP Testimony on page 39, "programs that directly achieve
6		plans to "target replacement or rehabilitation of cast iron and unprotected steel mains that can
5		operational excellence. The Company's GIOP Testimony additionally states on page 38 that it
4		Panel ("GIOP") Testimony, are to improve safety, reduce risk, and maintain or enhance
3		Edison's programs, as stated on page 38 of the Company's Gas Infrastructure and Operations
2		under the umbrella of its Distribution System Improvement Program. Some of the goals of Con
1	А.	Con Edison is seeking approval of a surcharge mechanism to finance several projects falling

26

replacement activities?

VIRGINIA E. PALACIOS

1	А.	Utilities do not routinely use leak flow rate to prioritize their leak abatement or pipeline
2		replacement activities, although Con Edison currently considers operating pressure as a factor
3		that accounts for the volume of gas leaking from pipeline segments in order to calculate a main
4		replacement prioritization risk score (See Exhibit_ (VP-1), at page 3). Con Edison has indicated
5		on page 23 of the GIOP Testimony that it sees merit to using leak quantification as part of its leak
6		abatement activities in order to achieve environmental benefits and improve system safety.
7		Several utilities, such as PSE&G, are beginning to explore the use of leak flow rate quantification
8		methods. As a part of its 2013 rate case, Con Edison announced four collaborative projects with
9		technical experts and other utilities, one of which is evaluating methods to quantify gas leaked
10		from its system in order to maximize the benefits of efforts spent repairing and abating Type 3
11		leaks, some of which might otherwise indefinitely persist without repair. (Con Edison Media
12		Relations. December 17, 2014. Con Edison Steps Up Gas Safety Patrols, Studying New Ways To
13		Quantify Methane Emissions, Accelerate Gas Main Replacement. Available at:
14		http://www.coned.com/newsroom/news/pr20141217.asp.) Similarly, in California, Pacific Gas &
15		Electric Co. ("PG&E") is exploring how to integrate leak quantification technology into its leak
16		management efforts. (See generally: PG&E. January 26, 2015. PG&E Launches Next Phase of its
17		Industry-Leading Gas Leak Management Strategy. Available at:
18		http://www.pge.com/en/about/newsroom/newsdetails/index.page?title=20150126 pge launches
19		next_phase_of_its_industry-leading_gas_leak_management_strategy; See generally PG&E.
20		November 1, 2012. PG&E's Use Of Picarro Technology Enhances Natural Gas System Safety
21		Throughout PG&E Service Area. Available at:
22		http://www.pge.com/about/newsroom/newsreleases/20121101/pgampes_use_of_picarro_technolo
23		gy_enhances_natural_gas_system_safety_throughout_pgampe_service_area.shtml.)
24	Q.	Please explain any relevant aspects of the prevailing regulatory and policy context as it
25		relates to the use of leak quantification technology by utilities.

VIRGINIA E. PALACIOS

1	A.	The federal rules establishing integrity management requirements for gas distribution pipeline
2		systems (the "Distribution Integrity Management Program for Natural Gas Distribution Sector"
3		("DIMP")) came into effect in 2011, and are codified at 49 C.F.R. 192 (2009). Under the rules,
4		operators are required to develop and implement a distribution integrity management program.
5		While the rules do not explicitly require utilities to quantify leaks, they state that (a) pipeline
6		operators must consider all reasonably available information to identify threats to pipeline
7		integrity and (b) the number and severity of leaks can be important information in evaluating the
8		risk posed by a pipeline in a given location (49 C.F.R. §192.1007 (2009)). Under the rules,
9		operators are required to consider the following categories of threats to each gas distribution
10		pipeline: corrosion, natural forces, excavation damage, other outside force damage, material or
11		welds, equipment failure, incorrect operations, and other concerns that could threaten the integrity
12		of its pipeline (Id.). Sources of data may include, but importantly, are not limited to, incident and
13		leak history, corrosion control records, continuing surveillance records, patrolling records,
14		maintenance history, and excavation damage experience (Id.).
15		With technology evolving to make leak quantification methods commercially available and
16		viable, and PHMSA rules requiring operators to consider all relevant data points in identifying
17		threats to pipeline integrity, it is clear that the prevailing regulatory framework not only allows
18		for leak flow rate to be considered in evaluating threats to pipeline integrity, but in fact,
19		underscores the need to do so. Utilities are already making use of leak quantification technology,
20		as reflected in the examples discussed above.
21	IV.	EDF'S ONGOING COLLABORATIONS WITH THE COMPANY AND OTHER
22		UTILITIES ON THE USE OF LEAK QUANTIFICATION TO PRIORITIZE UTILITY
23		LEAK REPAIR AND PIPE REPLACEMENT PROJECTS
24		
25	Q.	Please provide a brief overview of the EDF-Google mobile methane leak survey project and
26		EDF's engagement with utilities on the use of leak quantification methodology to prioritize
27		pipe replacement and leak repair programs.

VIRGINIA E. PALACIOS

1	A.	In collaboration with Google Earth Outreach, CSU, and a number of natural gas utilities, EDF is
2		managing a project that uses Google Street View cars equipped with Picarro methane
3		concentration analyzers to quantify methane leaks from distribution pipelines in cities. The data
4		collected from this project is being used to create spatially-resolved analyses of the location and
5		size of leaks in utilities' distribution systems. These maps have been referenced in several reports
6		and presentations, including, for instance, the U.S. Department of Energy's ("DoE") Quadrennial
7		Energy Review ("QER"), which was released in April, 2015. Further explanation of the
8		methodological approach and scientific research underpinning this project is contained in the
9		direct testimony of EDF expert witness Dr. Joe von Fischer.
10		The objectives of this project are (1) to enhance the efficiency of processes that utilities and other
11		stakeholders use reduce the volumes of wasted natural gas and methane emissions from leaks,
12		and (2) to demonstrate the means by which utilities can consider leak flow rate in prioritizing the
13		replacement of leak-prone gas infrastructure and the repair of leaks on their systems. By allowing
14		utilities to focus on abating the largest leaks first, all else being equal, leak quantification can
15		enhance the cost effectiveness of leak repair and pipe replacement programs, thereby advancing
16		ratepayer interests and benefitting the environment.
17		As an example of spatially-referenced leak flow rates, Exhibit_ (VP-2) contains a sample leak
18		map based on fictitious and randomly generated data, reflecting the type of spatially-attributed
19		leak data and visual tool that can be produced using mobile methane surveys. This sample map
20		illustrates a layer of data that can be used to optimize the economic and environmental outcomes
21		of utilities' leak management efforts.
22		As part of a collaborative pilot project between EDF and PSE&G, similar data on leak flow rate
23		relating to sections of PSE&G's service territory was collected by EDF using advanced leak
24		detection and leak quantification methods. In November 2015, the New Jersey Board of Public
25		Utilities ("BPU") approved a settlement agreement among PSE&G, EDF, and other parties
26		relating to a proceeding in which PSE&G sought approval for an accelerated pipe replacement

VIRGINIA E. PALACIOS

1		program. As part of this settlement, PSE&G has received BPU approval to implement a \$905
2		million accelerated pipe replacement program over a three year time frame.
3		Under the collaborative arrangement between the two entities, PSE&G shared information with
4		EDF on the location and type of its pipelines, enabling the collection of leak flow rate data that
5		was spatially-attributed to specific pipes targeted for replacement by PSE&G. Under the terms of
6		the settlement, PSE&G will, after taking safety considerations into account, use data gathered by
7		EDF on the flow rate of methane emissions leaked from its pipes to help prioritize pipeline
8		replacement. EDF is in the process of engaging with other utilities across the country in order to
9		advance the integration of this methodological approach into utilities' regular leak operations.
10	Q.	Please explain how the new survey methodology developed by EDF and its partners can
11		assist the Commission and the Company in assessing the extent of need for and benefits
12		from leak abatement and pipeline repair projects.
13	A.	The scope of each of the Company's pipeline replacement projects has not yet been finalized.
14		(See Exhibit (VP-1) at, page 28.) An opportunity is thus available to consider leak flow rate in
15		main replacement prioritization.
16		Spatially-attributed leak data that are developed by connecting leak flow rates with information
17		on the nature and location of utility infrastructure can aid in effective and transparent decision
18		making, offering significant benefits to utilities and regulatory agencies. For instance, spatially-
19		attributed leak flow rate data can help to characterize the condition of pipeline systems, and
20		highlight where the needs for leak repair and pipeline replacement programs are greatest.
21		Quantitative and spatially-referenced leak data can improve the design and implementation of
22		such programs by allowing utilities to focus on the sections of their infrastructure with the largest
23		leaks or the highest leak density, where appropriate.
24		Leak quantification and spatial attribution allows utilities and regulatory agencies to evaluate the
25		progress, management, and implementation of leak repair and pipeline replacement programs.
26		This is achieved first through the generation of a verifiable format that identifies known spatially-

CASE 16-G-0061 VIRGINIA E. PALACIOS

1	referenced leaks. Con Edison already plans to incorporate Picarro leak survey data, including
2	geographic coordinates into its Gas Work and Asset management system, which will facilitate
3	these objectives. (See Exhibit_ (VP-1) at page 7.)
4	Second, evaluation can include comparison of reductions in leaked gas volumes before and after
5	the leak repair or pipeline replacement program is implemented. Currently, Con Edison uses
6	emission factors associated with cast iron and unprotected steel mains to estimate methane
7	emissions reductions from pipeline replacement activities, as reported under the U.S.
8	Environmental Protection Agency's Subpart W of the Clean Air Act. (See Exhibit_ (VP-1) at
9	page 4.) However, actual methane emission reductions would likely be different when measured,
10	and this method does not take into account leak sizes that can arise on other pipeline materials.
11	Leak quantification methodologies, and the leak maps and other visual tools that can be
12	developed using these methods, allow regulatory agencies responsible for allocating ratepayer
13	money to better assess the need for pipeline replacement or leak repair on different pipeline
14	materials.
15	The evaluation of proposed pipeline replacement programs by state regulatory entities
16	necessitates a robust cost-benefit analysis, requiring careful scrutiny of all available information,
17	
	including negative external social costs of methane emissions. (Case 14-M-0101, Proceeding on
18	including negative external social costs of methane emissions. (Case 14-M-0101, <i>Proceeding on Motion of the Commission in Regard to Reforming the Energy Vision</i> , Order Establishing the
18 19	including negative external social costs of methane emissions. (Case 14-M-0101, <i>Proceeding on Motion of the Commission in Regard to Reforming the Energy Vision</i> , Order Establishing the Benefit Cost Analysis Framework (issued January 21, 2016).) Leak quantification will facilitate
18 19 20	including negative external social costs of methane emissions. (Case 14-M-0101, <i>Proceeding on Motion of the Commission in Regard to Reforming the Energy Vision</i> , Order Establishing the Benefit Cost Analysis Framework (issued January 21, 2016).) Leak quantification will facilitate such cost-benefit analysis by providing new information on the size of methane leaks in utilities'
18 19 20 21	including negative external social costs of methane emissions. (Case 14-M-0101, <i>Proceeding on Motion of the Commission in Regard to Reforming the Energy Vision</i> , Order Establishing the Benefit Cost Analysis Framework (issued January 21, 2016).) Leak quantification will facilitate such cost-benefit analysis by providing new information on the size of methane leaks in utilities' distribution systems that was not previously available.
18 19 20 21 22	 including negative external social costs of methane emissions. (Case 14-M-0101, <i>Proceeding on Motion of the Commission in Regard to Reforming the Energy Vision</i>, Order Establishing the Benefit Cost Analysis Framework (issued January 21, 2016).) Leak quantification will facilitate such cost-benefit analysis by providing new information on the size of methane leaks in utilities' distribution systems that was not previously available. The Commission, as is the case with other state utility commissions around the country, is being
18 19 20 21 22 23	 including negative external social costs of methane emissions. (Case 14-M-0101, <i>Proceeding on Motion of the Commission in Regard to Reforming the Energy Vision</i>, Order Establishing the Benefit Cost Analysis Framework (issued January 21, 2016).) Leak quantification will facilitate such cost-benefit analysis by providing new information on the size of methane leaks in utilities' distribution systems that was not previously available. The Commission, as is the case with other state utility commissions around the country, is being asked by utilities to allocate significant amounts of customer money to fund expanded leak
18 19 20 21 22 23 24	 including negative external social costs of methane emissions. (Case 14-M-0101, <i>Proceeding on Motion of the Commission in Regard to Reforming the Energy Vision</i>, Order Establishing the Benefit Cost Analysis Framework (issued January 21, 2016).) Leak quantification will facilitate such cost-benefit analysis by providing new information on the size of methane leaks in utilities' distribution systems that was not previously available. The Commission, as is the case with other state utility commissions around the country, is being asked by utilities to allocate significant amounts of customer money to fund expanded leak abatement programs, which include leak-prone pipe replacement and leak repair projects. The
18 19 20 21 22 23 24 25	including negative external social costs of methane emissions. (Case 14-M-0101, <i>Proceeding on Motion of the Commission in Regard to Reforming the Energy Vision</i> , Order Establishing the Benefit Cost Analysis Framework (issued January 21, 2016).) Leak quantification will facilitate such cost-benefit analysis by providing new information on the size of methane leaks in utilities' distribution systems that was not previously available. The Commission, as is the case with other state utility commissions around the country, is being asked by utilities to allocate significant amounts of customer money to fund expanded leak abatement programs, which include leak-prone pipe replacement and leak repair projects. The policy context for such programs is described at length in the DoE's 2015 Quadrennial Energy

VIRGINIA E. PALACIOS

1	Department of Transportation for gas distribution utilities to accelerate their activities to replace
2	and remove leak prone pipe from their systems. (U.S. Department of Transportation. 2011. Call
3	to Action To Improve the Safety of the Nation's Energy Pipeline System. Available at:
4	http://www.phmsa.dot.gov/staticfiles/PHMSA/DownloadableFiles/110404%20Action%20Plan%
5	20Executive%20Version%20_2.pdf.) As the Commission is well aware, natural gas leaks pose a
6	safety and environmental threat and squander customer money for gas purchased but then leaked
7	While the impetus for accelerated pipeline replacement programs is clear and is supported by
8	federal regulations (49 C.F.R. 192 (2009)), this Commission and its counterparts around the
9	country are required to balance customer costs and interests with the need for pipe replacement
10	and leak abatement. However, the details relating to the specific subsurface conditions and the
11	magnitude of underground main leaks are not available, which complicates the task of both
12	assessing the extent of need for leak repair or pipeline replacement, and overseeing the
13	implementation and progress of programs once approved. The leak detection and quantification
14	methods that EDF helped to pioneer provide additional data and perspective around underground
15	infrastructure condition, leak magnitude, and program need. These methods serve as tools that
16	can help the Company and the Commission to better balance program need with cost.
17	This is particularly relevant with respect to the additional leaks that the Company has found by
18	increasing its leak survey frequency. From October 2014 through April 2016, the Company
19	surveyed for leaks once per month, finding additional leaks – a total of 799 during that time
20	period (see Exhibit_ (VP-1) at page 2). The Company has noted that repairing these additional
21	leaks ultimately improves public safety. To the extent that some of these leaks are non-hazardou
22	but warrant repair as a means of improving system reliability and integrity, the Company can
23	efficiently reduce lost gas through prioritizing the largest non-hazardous leaks for repair.
24	Q. Please explain the benefits of using leak quantification to prioritize pipeline replacement
25	and leak repairs.

VIRGINIA E. PALACIOS

1	A.	The benefits of using spatially-attributed leak flow rate to prioritize pipeline replacement and leak
2		repairs include (1) efficient use of ratepayer funding for infrastructure improvements; (2)
3		availability of data that enhances system condition assessments, risk assessments, and decision
4		making capability; (3) transparency for utilities, regulators, and ratepayers; and (4) avoided social
5		costs of climate change.
6		Spatially-attributed leak flow rate data has a valuable role to play in the management of non-
7		hazardous leaks. Because utilities are required to repair hazardous leaks immediately, or
8		otherwise schedule hazardous leaks for prompt repair, one of the most natural initial applications
9		for spatially-attributed leak flow rate data is for non-hazardous leaks that could persist unrepaired
10		for long periods of time.
11		In fact, data gathered through EDF's mobile methane surveys of various utilities' service
12		territories suggests that the majority of methane emissions from natural gas distribution systems
13		are attributable to a relatively small number of large, persistent leaks, as opposed to clusters of
14		small leaks. This finding is supported by multiple independent sources. A 2014 Stanford
15		University paper, which was based on a meta-analysis of methane leaks across the natural gas
16		supply chain, noted that a small number of large leaks are responsible for a large proportion of the
17		leakage across several sectors of the natural gas supply chain, including distribution systems. (A.
18		R. Brandt et. al. (2014). Methane Leaks from North American Natural Gas Systems, Science, Vol.
19		343, available at http://www.novim.org/images/pdf/ScienceMethane.02.14.14.pdf.) These
20		findings help to demonstrate how including leak flow rate as a parameter in prioritizing leak
21		repair and pipeline replacement can more quickly reduce large leaks that would otherwise persist
22		for long periods of time. Thus, leak flow rate data can improve cost-effectiveness by capturing
23		the highest volumes of gas per dollar spent on leak repair. The larger reductions in lost gas
24		improve the cost-effectiveness of infrastructure improvements for ratepayers, who generally pay
25		the costs of gas lost on the pipeline system.

VIRGINIA E. PALACIOS

1	A recent report by researchers at Pricewaterhouse Coopers discusses the benefits of using spatial
2	analytics to predict when and where pipeline leaks will occur. (Wei, J., Menzie, M., & Jenkins, L.
3	(2016). A new view on pipeline risks -How spatial analytics can empower asset management for
4	gas utility companies. p. 3 Available at: <u>http://www.pwc.com/us/en/power-and-</u>
5	utilities/publications/assets/pwc_gas_pipeline_spatial_analytics_april_2016.pdf.) The report
6	explains that using quantitative data on failure histories, customer calls, and condition-
7	assessments can enable utilities to transparently manage their system, reduce human error, and
8	cost-effectively improve decision making. (Id. at 2 and 6.) Traditional risk assessment has relied
9	heavily on subject-matter experts who may use subjective data to make decisions about
10	prioritizing risk mitigation actions. The solution to this problem, as the report proposes, is to
11	integrate spatial analytics with condition assessment data to obtain a quantitatively rigorous
12	snapshot of asset risks in near real-time to inform investment planning and pipeline replacement
13	project prioritization. The report further indicates that a Picarro device can be used to provide
14	data on leak density that can be integrated into a predictive model for leaks, further enabling
15	capital prioritization. Such an approach can lead to efficiency and cost savings. For example, a
16	case study presented in the report found that the client's quantitative spatial analytics model
17	"delivered an estimated 3.9X more leaks avoided, 3.6X greater leaks/mile replaced, and 4.1X
18	more O&M expense cost savings for the same capital investment." (Id. at 6.)
19	Improved leak detection using a Picarro device can provide useful information that aids in leak
20	location prediction, while leak flow rate is an important parameter that can be used in the leak
21	repair or pipeline replacement prioritization process. While leak density (i.e., leaks per mile) can
22	be used in spatial analysis of pipeline condition, leak flow rates that are measured through the
23	combined use of mobile leak detection devices and leak quantification methodologies can be
24	incorporated at a later stage in the leak repair and pipeline replacement prioritization scheme.
25	From a longer term perspective, there is value in considering the potential for leak flow rate to be
26	incorporated as a distinct variable, with the appropriate weight, into the Company's hazard

VIRGINIA E. PALACIOS

1	ranking algorithm. Many major utilities use proxy variables for leak flow rate (e.g. a combination
2	of pipe diameter and pressure) in their hazard ranking models to get a broad understanding of the
3	volume of leaking gas that could accumulate in an enclosed space, which is a necessary parameter
4	to include in risk assessments. (Advantica and Philadelphia Gas Works. 2008. Benchmarking
5	Analysis, Risk Analysis and Model, Replacement Analysis and Computerized Main Prioritization
6	and Ranking Program. p. 91-92, available at
7	http://media.philly.com/documents/Advantica_+PGW_BenchmarkingAnalysisReview_Final.pdf.
8) As mentioned earlier, Con Edison currently considers operating pressure as a factor that
9	accounts for the volume of gas leaking from pipeline segments in order to calculate a main
10	replacement prioritization risk score (See Exhibit_ (VP-1) at page 3).
11	With leak quantification methodologies now becoming commercially available, there is reason to
12	use actual, measured leak flow rate instead of estimates generated using a proxy variable.
13	Measured leak flow rates that can be geographically attributed to infrastructure allow a more
14	direct risk assessment to be made than would be possible with the use of proxy variables, and can
15	therefore serve as a valuable parameter in main replacement prioritization.
16	Finally, there are societal benefits from reducing the amount of gas leaked. Methane makes up
17	about 90% of pipeline quality natural gas (A. Demirbas. (2010). Natural Gas. In Methane Gas
18	Hydrate, pp. 47, Springer, available at: <u>http://doi.org/10.1007/978-1-84882-872-8)</u> , and is a
19	greenhouse gas 84 times more potent than carbon dioxide over a 20-year time horizon.
20	Considering impacts on climate, methane emissions therefore come with a cost to society. (IPCC.
21	(2013). Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change
22	2013: The Physical Science Basis, available at:
23	http://www.ipcc.ch/report/ar5/wg1/#.Ut_4FxDna00.) The social cost of methane has been
24	estimated at \$140 - \$1730/ton of methane, depending mainly on modeling assumptions and the
25	types of damages included in the calculations. (This range is based on estimates culled from the
26	following sources. All such estimates have been converted to 2011 dollars. Hope, Chris W. The

VIRGINIA E. PALACIOS

1		marginal impacts of CO2, CH4 and SF6 emissions. Climate Policy 6.5 (2006): 537-544; Marten,
2		Alex L., and Stephen C. Newbold. Estimating the social cost of non-CO 2 GHG emissions:
3		Methane and nitrous oxide. Energy Policy 51 (2012): 957-972; Marten, Alex L., et. al.
4		Incremental CH4 and N2O mitigation benefits consistent with the US Government's SC-CO2
5		estimates. Climate Policy 15.2 (2015): 272-298; Waldhoff, Stephanie, et al. The Marginal
6		Damage Costs of Different Greenhouse Gases: An Application of FUND. Economics 8.31
7		(2014).) This Commission has previously considered costs of climate change, which are currently
8		external to the costs of natural gas, in an order establishing the benefit cost analysis framework of
9		Reforming the Energy Vision. (Case 14-M-0101, Proceeding on Motion of the Commission in
10		Regard to Reforming the Energy Vision, Order Establishing the Benefit Cost Analysis Framework
11		(issued January 21, 2016)). Therefore, some consideration of the social cost of methane has merit
12		in this rate case.
12	0.	In your understanding, what methodology do utilities generally use to prioritize leak repairs
13	χ.	in your understanding, what methodology do utilities generally use to prioritize leak repairs
14	χ.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its
14 15	×.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its accelerated pipe replacement efforts?
14 15 16	A.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its accelerated pipe replacement efforts? PHMSA offers non-binding guidance to operators on how to grade leaks based on safety risk
13 14 15 16 17	A.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its accelerated pipe replacement efforts? PHMSA offers non-binding guidance to operators on how to grade leaks based on safety risk (PHMSA. (2000). <i>Gas Leakage Control Guidelines for Petroleum Gas Systems. Available at:</i>
14 15 16 17 18	A.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its accelerated pipe replacement efforts? PHMSA offers non-binding guidance to operators on how to grade leaks based on safety risk (PHMSA. (2000). <i>Gas Leakage Control Guidelines for Petroleum Gas Systems. Available at:</i> http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_7AECD83839CEA51DE56B663CCC0F5DD937F
14 15 16 17 18 19	A.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its accelerated pipe replacement efforts? PHMSA offers non-binding guidance to operators on how to grade leaks based on safety risk (PHMSA. (2000). <i>Gas Leakage Control Guidelines for Petroleum Gas Systems. Available at:</i> http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_7AECD83839CEA51DE56B663CCC0F5DD937F A0000/filename/smalllpgas-chapt10.pdf.) This guidance establishes leak repair priority and
14 15 16 17 18 19 20	A.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its accelerated pipe replacement efforts? PHMSA offers non-binding guidance to operators on how to grade leaks based on safety risk (PHMSA. (2000). <i>Gas Leakage Control Guidelines for Petroleum Gas Systems. Available at:</i> http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_7AECD83839CEA51DE56B663CCC0F5DD937F A0000/filename/smalllpgas-chapt10.pdf.) This guidance establishes leak repair priority and assists operators in complying with federal safety rules that require them to "evaluate and rank
14 15 16 17 18 19 20 21	А.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its accelerated pipe replacement efforts? PHMSA offers non-binding guidance to operators on how to grade leaks based on safety risk (PHMSA. (2000). <i>Gas Leakage Control Guidelines for Petroleum Gas Systems. Available at:</i> http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_7AECD83839CEA51DE56B663CCC0F5DD937F A0000/filename/smalllpgas-chapt10.pdf.) This guidance establishes leak repair priority and assists operators in complying with federal safety rules that require them to "evaluate and rank risk" posed by their distribution pipeline systems. (49 C.F.R. 192.1007 (2009)). Some states,
14 15 16 17 18 19 20 21 22	A.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its accelerated pipe replacement efforts? PHMSA offers non-binding guidance to operators on how to grade leaks based on safety risk (PHMSA. (2000). <i>Gas Leakage Control Guidelines for Petroleum Gas Systems. Available at:</i> http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_7AECD83839CEA51DE56B663CCC0F5DD937F A0000/filename/smalllpgas-chapt10.pdf.) This guidance establishes leak repair priority and assists operators in complying with federal safety rules that require them to "evaluate and rank risk" posed by their distribution pipeline systems. (49 C.F.R. 192.1007 (2009)). Some states, including New York, have incorporated or adapted PHMSA's leak grading guidance into their
14 15 16 17 18 19 20 21 22 23	A.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its accelerated pipe replacement efforts? PHMSA offers non-binding guidance to operators on how to grade leaks based on safety risk (PHMSA. (2000). <i>Gas Leakage Control Guidelines for Petroleum Gas Systems. Available at:</i> http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_7AECD83839CEA51DE56B663CCC0F5DD937F A0000/filename/smalllpgas-chapt10.pdf.) This guidance establishes leak repair priority and assists operators in complying with federal safety rules that require them to "evaluate and rank risk" posed by their distribution pipeline systems. (49 C.F.R. 192.1007 (2009)). Some states, including New York, have incorporated or adapted PHMSA's leak grading guidance into their rules and statutes (16 CRR-NY 255.811 through 16 CRR-NY 255.817.) The grading categories
14 15 16 17 18 19 20 21 22 23 24	A.	and pipe replacement efforts? What methodology is Con Edison proposing to prioritize its accelerated pipe replacement efforts? PHMSA offers non-binding guidance to operators on how to grade leaks based on safety risk (PHMSA. (2000). <i>Gas Leakage Control Guidelines for Petroleum Gas Systems. Available at:</i> http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_7AECD83839CEA51DE56B663CCC0F5DD937F A0000/filename/smalllpgas-chapt10.pdf.) This guidance establishes leak repair priority and assists operators in complying with federal safety rules that require them to "evaluate and rank risk" posed by their distribution pipeline systems. (49 C.F.R. 192.1007 (2009)). Some states, including New York, have incorporated or adapted PHMSA's leak grading guidance into their rules and statutes (16 CRR-NY 255.811 through 16 CRR-NY 255.817.) The grading categories are based solely on an evaluation of the risk to persons or property, primarily considering
14 15 16 17 18 19 20 21 22 23 24 25	A.	and pipe replacement efforts? What methodology do dunites generally use to prioritize its accelerated pipe replacement efforts? PHMSA offers non-binding guidance to operators on how to grade leaks based on safety risk (PHMSA. (2000). <i>Gas Leakage Control Guidelines for Petroleum Gas Systems</i> . <i>Available at:</i> http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_7AECD83839CEA51DE56B663CCC0F5DD937F A0000/filename/smalllpgas-chapt10.pdf.) This guidance establishes leak repair priority and assists operators in complying with federal safety rules that require them to "evaluate and rank risk" posed by their distribution pipeline systems. (49 C.F.R. 192.1007 (2009)). Some states, including New York, have incorporated or adapted PHMSA's leak grading guidance into their rules and statutes (16 CRR-NY 255.811 through 16 CRR-NY 255.817.) The grading categories are based solely on an evaluation of the risk to persons or property, primarily considering proximity to building envelopes (PHMSA. (2000). <i>Gas Leakage Control Guidelines for</i>

VIRGINIA E. PALACIOS

1		http://phmsa.dot.gov/pv_obj_cache/pv_obj_id_7AECD83839CEA51DE56B663CCC0F5DD937F
2		A0000/filename/smalllpgas-chapt10.pdf.) Under the existing regulatory framework, utilities are
3		generally not required to repair non-hazardous leaks that do not pose immediate hazard to persons
4		or property within a specific timeframe. As a result, some of these non-hazardous leaks (Type 3,
5		in the case of New York's regulatory framework) may continue unabated for decades, thereby
6		wasting a valuable resource and hurting the economic interests of ratepayers, who bear the costs
7		of leaked gas. For example, in California, leak data made available by through California Public
8		Utilities Commission ("CPUC") R. 15-01-008 - Natural Gas Leakage Abatement Rulemaking
9		indicates that as of May 22, 2015, there were some leaks that were discovered in the 1990's that
10		had still not been scheduled for repair.
11		Utilities, including Con Edison, are already characterizing leak history on their pipelines,
12		including the leak history of non-hazardous leaks, for the purposes of prioritizing main
13		replacement (Wei, J., Menzie, M., & Jenkins, L. (2016). A new view on pipeline risks -How
14		spatial analytics can empower asset management for gas utility companies. Available at:
15		http://www.pwc.com/us/en/power-and-
16		utilities/publications/assets/pwc gas pipeline spatial analytics april 2016.pdf.) For instance,
17		Con Edison's main replacement prioritization model incorporates active leaks, leak hazard
18		ranking, historical leak density, historical leak cause, and historical leak severity based on leak
19		repair records (See Exhibit_ (VP-1) at page 4).
20	Q.	Please describe the pilot project that EDF is conducting in collaboration with Con Edison in
21		order to characterize the Company's Type 3 leak backlog.
22	A.	During its 2013 rate case, Con Edison and other rate case participants, including state and city
23		agencies as well as non-governmental organizations such as EDF, formed a collaborative to
24		consider methane leak reduction opportunities. This collaborative has since developed a project to
25		test leak quantification methods, with the objective of identifying a method for the quantification
26		of leaks on Con Edison's system to facilitate the prioritization of such leaks for repair using leak

1

VIRGINIA E. PALACIOS

flow rate, in conjunction with other factors. NYSEARCH, a collaborative research, development

2	and demonstration organization serving gas utility member companies, and other utilities,
3	including National Grid, have since joined this effort.
4	In order to facilitate the development of a program to prioritize the repair of Type 3 leaks on Con
5	Edison's system with the goal of minimizing the overall release of methane emissions from its
6	pipes, Con Edison, EDF, and EDF's collaborators at CSU will commence a pilot program in 2016
7	(see Exhibit_ (VP-3), the Framework Agreement between Con Edison and EDF). Under this
8	program, researchers from CSU will survey Con Edison's backlog of approximately 300 Type 3
9	leaks, and characterize these leaks into "small", "medium", and "large" emitters. In order to
10	facilitate this survey exercise, the Company will provide EDF with location information for its
11	Type 3 leak backlog, including information on underground infrastructure locations, under the
12	terms of a non-disclosure agreement. The Company will prioritize the repair of a specified
13	percentage of these Type 3 leaks classified based on emissions flow rate and/or leaks totaling a
14	specified percentage of emissions; this specified percentage will be determined by the Company
15	in consultation with relevant stakeholders in the broader Methane Collaborative with
16	NYSEARCH. That is, the Company will consider leak size as a factor when selecting backlog
17	leaks for rapid repair.
18	In the meantime, the Company's Research and Development team will continue its efforts to
19	make technical progress to advance methane emissions quantification technology, and to integrate
20	emissions measurement technology and methodology into its leak repair process.
21	Compared to other utilities serving New York, the Company's system has the second highest
22	number of miles of mains that are considered "highly corrodible" based on the materials of which
23	they are constructed (PHMSA 2014 Annual Distribution Report). Pipes which are made of these
24	materials, namely cast iron and steel, make up the majority of the Company's system (52%).
25	Forty percent of the non-hazardous leaks that the Company repaired in 2014 were caused by

26 corrosion (*id.*). However, this leak data that is available through the federal Pipeline and

CASE 16-G-0061 VIRGINIA E. PALACIOS

1		Hazardous Materials Safety Administration represents only those leaks that were scheduled for
2		repair (id., Form PHMSA F 7100.1-1 (rev 1-2011) instructions), whereas the EDF-CSU team will
3		be surveying Type 3 leaks that are not required to be scheduled for repair within a specified time
4		period (see 16 CRR-NY 255.817), and are therefore likely to persist for longer periods of time,
5		emitting considerable amounts of methane into the atmosphere.
6	Q.	What are the anticipated benefits of this pilot project?
7	А.	Through participation in this pilot project, the Company has the opportunity to realize and ensure
8		benefits including:
9		• Increased emission reductions through prioritizing repairs and replacements using leak flow
10		rate, in addition to other relevant considerations;
11		• Potentially improved efficiency in lost gas reduced per unit of resources spent on leak repair
12		or pipeline replacement;
13		• Characterization of typical Type 3 leak emissions by unique factors including leak type (e.g.
14		corrosion, material or welds), leak repair history, pipeline material, operating pressure, depth
15		of cover, or pavement characteristics;
16		• Ability to perform validation studies to evaluate technology;
17		• Experience with the operational aspects of using new and advanced leak detection
18		equipment/technology, which is employed by EDF-CSU for the purposes of conducting the
19		leak survey, including by identifying limits of deployment such as traffic, atmospheric
20		conditions, GPS availability, etc.;
21		• A basis for development of an operational program to prioritize the repair of Type 3 leaks
22		with the goal of minimizing the overall release of methane; and
23		• A baseline from which to measure any future greenhouse has reduction efforts.

VIRGINIA E. PALACIOS

1		These benefits are consistent with Con Edison's objectives as stated in its GPP Testimony on
2		page 23 – that is, to accelerate reductions of methane leakage in Con Edison's distribution
3		system.
4	Q.	Please explain the current status of EDF's methane mapping in Con Edison's service
5		territory in New York.
6	A.	EDF has dispatched a Google Street View car specially-equipped with methane concentration
7		analyzers to Con Edison's service territory. The vehicle is currently conducting test drives of the
8		service area which began on May 10, 2016.
9	Q.	Has EDF performed any scientific research on the quantification of methane leaks from
10		natural gas distribution systems?
11	A.	In 2012, EDF launched its largest scientific project to date to better understand and quantify
12		methane emissions across the natural gas supply chain in the U.S. As part of this effort, EDF has
13		managed 16 research projects involving collaboration with about 100 universities, research
14		institutions and companies, and is employing a variety of sophisticated technology and scientific
15		techniques. Four of these projects focused specifically on tracking methane emissions from local
16		distribution systems. These projects have resulted in the publication of 27 papers in peer
17		reviewed journals, two of which include observations of methane emissions from local
18		distribution systems. (McKain, K., et. al. (2015). Methane emissions from natural gas
19		infrastructure and use in the urban region of Boston, Massachusetts. Proceedings of the National
20		Academy of Sciences, 112 (7), 1941–1946. <u>http://doi.org/10.1073/pnas.1416261112</u> ; Lamb, B.,
21		et. al. (2015). Direct Measurements Show Decreasing Methane Emissions from Natural Gas
22		Local Distribution Systems in the United States. Environmental Science & Technology, 49(8),
23		5161-5169. http://doi.org/10.1021/es505116p.)
24	V.	ENHANCED LEAK DETECTION AND IMPLICATIONS FOR LEAK MANAGEMENT
25		PERFORMANCE METRICS

1	Q.	What are the implications of utilities transitioning from the use of traditional leak detection
2		equipment to new and advanced leak detection technologies?
3	A.	Several utilities across the country are adopting new and advanced leak detection equipment that
4		is more sensitive than traditional leak detection equipment and is thus capable of finding more
5		leaks. For instance, PG&E piloted the use of Picarro analyzers in 2013. PG&E notes that this
6		technology is 1000 times more sensitive than any other commercially available instrument, with
7		the pilot indicating that the Picarro technology finds many more leaks than traditional leak survey
8		instruments (A.15-09-001, 2016 California PG&E General Rate Case, Gas Operations
9		Technology Panel at 9-24 (filed September 1, 2015)).
10		Along similar lines, a California Air Resources Board and CPUC Joint Staff Report (Mrowka, A.,
11		et. al. (2016) Analysis of the Utilities' May 15 th , 2015, Methane Leak and Emissions Reports
12		Required by Senate Bill (SB) 1371 (Leno) and Rulemaking (R.) 15-01-008) found that utilities
13		experienced a 21% increase in the number of leaks detected from 2013 to 2014, due partly to the
14		use of advanced leak detection technologies being employed. As utilities start adopting more
15		sensitive surveying equipment, leak backlogs are likely to grow, increasing the need for, and
16		benefits of, prioritizing leak abatement activities by considering leak flow rate. PG&E, for
17		instance, plans to test this technology for the purposes of analyzing flow rate to identify and
18		quantify the volume of fugitive emissions associated with PG&E's facilities, recognizing that this
19		would improve site efficiency and safety, minimize losses and reduce greenhouse gas emissions
20		(see CPUC Docket A.15-09-001, 2016 California PG&E General Rate Case, Gas Operations
21		Technology Panel at 9-24 (filed September 1, 2015)).
22	Q.	Please comment on Con Edison's proposal to test new and advanced leak detection
23		equipment.
24	A.	Using advanced, highly sensitive leak detection technologies will likely result in an increased
25		number of leaks discovered (see A.15-09-001, 2016 California PG&E General Rate Case, Gas
26		Operations Technology Panel at 9-24 (filed September 1, 2015); Centers, T. and Coppedge, B.

VIRGINIA E. PALACIOS

1 (2015). Picarro Leak Surveyor – A Step Change in Leak Detectino Capability. Centerpoint 2 Energy. Slide 9, available at: https://southerngas.org/images/PSC Tal Centers.pdf). In fact, Con Edison has noted that using advanced leak detection technology "provided greater capability to 3 detect leaks in the field trial areas," where it has conducted pilot tests thus far (See Exhibit___ 4 (VP-1) at page 5). In these tests, the advanced technology was able to find 73 out of 79 gradeable 5 6 leaks, whereas traditional survey technology was only able to find 36 out of 79 gradeable leaks. As leak inventories increase with the use of more sensitive leak detection equipment, it will 7 8 become all the more important for the Company to consider ways to better prioritize its leak repair and pipe replacement efforts in order to balance the costs of leak repair and pipeline 9 replacement. 10 To the extent that the Company is incentivized to meet or exceed performance metrics for leak 11 12 management, the Commission should keep in mind that the current performance metrics based on comparisons to existing or historic leak backlogs may no longer be achievable. For example, the 13 Company is proposing that leak management year-end total backlog thresholds remain the same 14 as they were when established in 2014 (See Exhibit__ (VP-1) at page 8). That is, in order to earn 15 16 a positive revenue adjustment of two basis points for leak management, the Company will have to reduce its leak backlog to at least 10 percent less than 750 leaks per year and maintain a leak 17 backlog lower than what was achieved in the three prior annual measurement periods. (Case 13-18 E-0030 et. al., Proceeding on Motion of the Commission as to the Rates, Charges, Rules and 19 Regulations of Consolidated Edison Company of New York, Inc. for Electric Service, Order 20 Approving Electric, Gas and Steam Rate Plans in Accord with Joint Proposal (issued February 21 21, 2014); Company GIOP Testimony, p. 150.) 22 The Company has a Type 3 leak backlog that consists of 13 leaks that were discovered between 23 five and eleven years ago (see Exhibit (VP-1) at pages 10-26). The vast majority of the 24 Company's Type 3 leak backlog, totaling 672 leaks, consists of leaks that were discovered after 25 26 2014 (id.). This indicates that Con Edison is generally keeping up with its leak backlog, and that

1		the performance metric has been easily met. Nonetheless, the leak backlog is likely to change as
2		Con Edison transitions to using advanced leak detection technology, such as Picarro.
3	VI.	CONCLUSION
4	Q.	Please summarize your recommendations and conclusions.
5	A.	Based on my review of Con Edison's testimony, my conclusions and recommendations are as
6		follows:
7		(1) Con Edison's proposed program to reduce methane emissions on its distribution system at an
8		increased pace through accelerated pipe replacement efforts, use of advanced leak detection,
9		is necessary and appropriate;
10		(2) Con Edison would enhance the cost-effectiveness of its leak repair and pipe replacement
11		programs by using spatially-attributed data on leak flow rate, such as that being provided by
12		EDF, as a factor in prioritizing pipeline replacement and leak repair. Focusing on the largest
13		leaks first, after addressing those that pose a safety threat, will provide enhanced benefits to
14		ratepayers by reducing the amount of lost gas, and will also provide environmental benefits.
15		Additionally, the collection of spatially-attributed leak flow rate data can help provide
16		unbiased, transparent information to both the Company and the Commission, helping to
17		reduce human error and aiding in improved decision making;
18		(3) The Company's proposal to test, and ultimately integrate, new and advanced leak detection
19		technology into its operations has the potential to improve the overall effectiveness of its leak
20		abatement operations; and
21		(4) Any leak management performance metrics must be designed thoughtfully, keeping in mind
22		that the Company is likely to experience a surge in the number of leaks detected on its
23		system, as it transitions away from traditional leak detection equipment to more sensitive
24		technologies.
25	Q.	Does this conclude your testimony?
26	A.	Yes.