

TEST REPORT FOR THE PATTERN AND CONSTRUCTION OF ELECTRICITY METERS

MANUFACTURER	:	Schneider Electric
TYPE	:	PM55**
CLASS	:	0.2s (kWh) & 2(kvarh)
DESCRIPTION	:	Polyphase, Active Import/Export (kWh), Reactive Import/Export (kvarh), Transformer Operated, Electricity Meter

Tested in accordance with IEC 62052-11: 2003, Electricity metering equipment (AC) – General requirements, tests and test conditions. Part 11: Metering equipment.

And IEC 62053-22: 2003, Electricity metering equipment (AC) – Particular requirements Part 22: Static meters for active energy (classes 0.2s and 0.5s).

And IEC 62053-23: 2003, Electricity metering equipment (AC) – Particular requirements Part 23: Static meters for reactive energy (classes 2 & 3).

The meters tested satisfied the required specification.

ISSUED BY:

CHECKED BY:

K. Hunter Test Engineer P. Fairless Test Engineer VERIFIED BY:

R. Jackson Metering Manager

REPORT ISSUE DATE: 25th July 2013

"This document is issued by the Company subject to its General Conditions of Service available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law." "Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 28 days only." Tests marked * are not covered under our UKAS scope.

File Reference No. EMA175578/1

Page 1 of 67

EMA QUAL 0362052-11&62053-22&62053-23/Rev11

SGS United Kingdom Ltd., Units 12A & 12B, Bowburn South Industrial Estate, Bowburn, Durham DH6 5AD Tel +44 (0)191 377 2000 Fax +44 (0)191 377 2020 Registered in England No. 1193985 Rossmore Business Park, Ellesmere Port, Cheshire CH65 3EN www.sgs.com

Member of SGS Group (SGS SA)

CONTENTS

INTRODUCTION

INFORMATION OF THE ELECTRICITY METER TESTED

SUPPORTING DOCUMENTATION

SUMMARY OF TEST RESULTS

- 1.1 Impulse Voltage Test
- AC Voltage Test 1.2
- 2 ACCURACY REQUIREMENTS
- 2.1 Meter Constant
- 2.2 **Starting Conditions**
- Running with no load 2.3
- Influence of ambient temperature 2.4
- Influence Quantities -2.5
- **Current Variation** 2.5.1
- Voltage Variation 2.5.2
- Frequency Variation 2.5.3
- 2.5.4 **Reverse Phase Sequence**
- Voltage Unbalance 2.5.5
- **Continuous Magnetic Induction** 2.5.6
- Magnetic Induction of 0.5mT 2.5.7
- Auxiliary Power Supply Voltage Variation 2.5.8

Accuracy test in the Presence of Harmonics 26

- Harmonic Components in the Current and Voltage Circuits 2.6.1 2.6.2
 - Influence of Odd and Sub Harmonics in the AC Current Circuit
- 3 ELECTRICAL REQUIREMENTS
- 3.1 Power Consumption
- 3.2 Influence of Supply Voltage - Interruptions and Dips.
- Influence of Short-Time Over-currents 3.3
- Influence of Self Heating 3.4
- 3.5 Influence of Heating

4 ELECTROMAGNETIC COMPATIBILITY (EMC)

- Immunity to Electrostatic Discharges 4.1
- 4.2 Immunity to Electromagnetic HF Fields
- Fast Transient Burst Test 4.3
- Immunity to Conducted Disturbances 4.4
- 4.5 Surge Immunity
- 4.6 Immunity to Damped Oscillatory Waves

5	CLIMATIC INFLUENCES
5.1	Dry Heat Test
5.2	Cold Test
5.3	Damp Heat Cyclic Test
6	MECHANICAL REQUIREMENTS
6.1	Spring Hammer
6.2	Shock
6.3	Vibration
6.4	Resistance to Heat & Fire
ANNEX A	Radiated Immunity Test – Graphical plots of results
ANNEX B	Conducted Immunity Test – Graphical plots of results
ANNEX C	Photographs of Meter Under Test

INTRODUCTION

The type tests described were carried out in the SGS (Durham) measurement laboratory on behalf of:

CLIENT DETAILS:	Schneider Electric 44P Electronic City East Phase Hosur Road Bangalore 560100 India		
ORDER No's:	133576, 133577, 132957		
APPLICATION RECEIVED DATE: 19th April 2013			
DATE OF RECEIPT	OF SAMPLES: 12 th April 2013		
DATE OF TESTS:	23 rd April 2013 to 27 th June 2013		

In the cases where no or only limited tests have been conducted on the submitted samples, tests carried out during previous OFGEM approval (or by other accredited bodies) on meters of similar construction and designs have been taken to confirm that the meter satisfies the requirements of the relevant standard. See supporting documentation for reference.

Conditions under which the type tests took place:

Unless otherwise stated, the meters were examined at an ambient temperature of $23^{\circ}C \pm 2^{\circ}C$, and after the voltage circuits had been connected to reference voltage for at least 1 hour.

Unless otherwise stated, Polyphase tests were tested with a standard phase sequence of L1-L2-L3 (corresponding to the Red, Yellow & Blue phases).

The tests were conducted using equipment, traceable to National and International Standards.

INFORMATION ON THE ELECTRICITY METERS TESTED

Manufacturer	:	Schneider Electric
Туре	:	PM5500
Class	:	0.2s (kWh) & 2(kvarh)
Type of circuit	:	3 phase 4 wire
No. of Elements	:	3
Basic Current (In)	:	5A
Maximum Current (Im)	:	10A
Reference Supply Voltage	:	3x230/400V
Auxiliary Voltage	:	100-480V
Rated Frequency	:	50Hz
Pulse output constant	:	10000 imp/kWh & kvarh
Manufacturers Serial No's	:	2271226, 2271222, 2271235, JB1310419000037

GENERAL REQUIREMENTS

Sealing Arrangements

The meter shall have a case which can be sealed in such a way that the internal parts of the meter are accessible only after breaking the seal(s)

The cover shall not be removable without the use of a tool. Non permanent deformation may not influence the meter.

Display of Measured Values

The principal unit is (kWh)

The active tariff shall be indicated.

The identification of each tariff applied shall be possible. The register shall be able to record and display, starting from zero, for a minimum of 1500 h, the energy corresponding to maximum current at reference voltage and unity power factor.

Non-volatile memory shall have a minimum retention time of four months.

In the case of multiple values presented by a single display, it shall be possible to display the content of all relevant

memories. Automatic sequencing displays shall display each value for at least 5 s.

Every numerical element of an electronic display shall be able to show all numbers from "zero" to "nine":

Inspection of Markings

The requirements are met for the marking of the meter samples with respect to both name-plates and connection diagrams.

IEC 62052-11 X-Ref. 5.10

Complied
Complied

IEC 62052-11 X-Ref. 5.12

Complied

SUPPORTING DOCUMENTATION

Accredited Laboratory tests reports:

Radio Interference Suppression
Labtest Certification Inc

X-Ref. 7.5.8 Report No.: 11162-1E

Issued: 2nd January 2013

SUMMARY OF TEST RESULTS

EN 62052-11 Clause	Test	Performed	Result
5.2.2.1	Spring hammer	Yes	Complied
5.2.2.2	Shock	Yes	Complied
5.2.2.3	Vibration	Yes	Complied
5.8	Resistance to heat and fire	Yes	Complied
5.9	Penetration of dust and water	No	-
6.3.1	Dry heat	Yes	Complied
6.3.2	Cold	Yes	Complied
6.3.3	Damp heat cyclic	Yes	Complied
6.3.4	Solar radiation	No	-
7.1.2	Voltage dips and short interruptions	Yes	Complied
7.2	Influence of heating	Yes	Complied
7.3.2	Impulse voltage	Yes	Complied
7.5.2	Electrostatic discharge immunity	Yes	Complied
7.5.3	Radiated immunity	Yes	Complied
7.5.4	Fast transient bursts immunity	Yes	Complied
7.5.5	Conducted immunity	Yes	Complied
7.5.6	Surge immunity	Yes	Complied
7.5.7	Damped oscillatory waves immunity	Yes	Complied
7.5.8	Radio interference suppression	No*	-

IEC 62052-11: 2003 General Requirements:

IEC 62053-22: 2003 Particular Requirements:

EN 62053-22 Clause	Test	Performed	Result
7.1	Power consumption	Yes	Complied
7.2	Influence of short-time over-currents	Yes	Complied
7.3	Influence of self-heating	Yes	Complied
7.3.3	AC voltage	Yes	Complied
8.1	Current variation	Yes	Complied
8.2	Variation of error due to voltage variation	Yes	Complied
8.2	Variation of error due to frequency variation	Yes	Complied
8.2	Reverse Phase Sequence	Yes	Complied
8.2	Voltage Unbalance	Yes	Complied
8.2	Operation of accessories	No	-
8.2	Auxiliary voltage variation	Yes	Complied
8.2	Variation of error due to temperature variation	Yes	Complied
8.2	Variation of error due to harmonics	Yes	Complied
8.2	Sub-harmonics in the AC circuit	Yes	Complied
8.2	Continuous magnetic induction of external origin	Yes	Complied
8.2	Magnetic induction of external origin (0.5mT)	Yes	Complied
8.3	Starting and no-load condition	Yes	Complied
8.4	Meter constant	Yes	Complied

SUMMARY OF TEST RESULTS (cont.)

EN 62053-23 Clause	Test	Performed	Result
7.1	Power consumption	No	-
7.2	Influence of short-time overcurrents	No	-
7.3	Influence of self-heating	No	-
7.4	AC voltage	No	-
8.1	Current variation	Yes	Complied
8.2	Variation of error due to voltage variation	Yes	Complie
8.2	Variation of error due to frequency variation	Yes	Complie
8.2	Operation of accessories	No	-
8.2	Variation of error due to temperature variation	No	-
8.2	DC Component in the current circuit	No	-
8.2	Continuous magnetic induction of external origin	No	-
8.2	Magnetic induction of external origin (0.5mT)	No	-
8.3	Starting and no-load condition	Yes	Complie
8.4	Meter constant	Yes	Complie

IEC 62053-23: 2003 Particular Requirements:

No*: Tests performed at Labtest Certification Inc Report No: 11162-1E

File Reference No. EMA175578/1

1 INSULATION

IEC 62052-11 X-Ref. 7

1.1 Impulse Voltage Test

X-Ref. 7.3.2

Test Results ID / Sample No.	Test Procedure: EN62052-11 Impulse Voltage
Impulse / 2271226	19EMA TP12

Environmental Conditions

Temperature	23°C
Relative Humidity	44%
Barometric Pressure	998mB

Impulse specification:

Test level 6kV @ 0.5J open circuit Time between impulse's 3s

The meter samples were placed on a flat conducting earth surface with the case wrapped in a conductive foil.

The test voltage was applied 10 times in each polarity between the points listed below:-

- 1) With one terminal of the voltage circuit connect to earth, the impulse voltage was applied between the common voltage/current meter terminal and earth.
- 2) With all meter terminals connected together, impulse voltage was applied between the meter terminals and earth.

During the tests auxiliary circuits with reference rated voltage ≤ 40 V were connected to earth.

On completion of the above tests, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions, with no signs of damage or degradation in the meter's insulation properties.

1.2 AC Voltage Test

IEC 62053-22 X-Ref. 7.4

Test Results ID / Sample No.	Test Procedure: EN62052-22 AC Voltage
AC / 2271226	19EMA TP13

Environmental Conditions

Temperature	23°C
Relative Humidity	44%
Barometric Pressure	998mB

Test level 2kV & 4kV Test duration 1 minute.

The a.c. voltage tests were conducted as follows:

- 1) Between all meter voltage and current circuits connected together, and earth.
- 2) Between all circuits not intended to be connected together in service, and earth.

The earth consisting of a conductive foil wrapped around the meter and connected to a flat conducting earth surface, upon which the meter was placed.

During the tests auxiliary circuits with reference rated voltage ≤ 40 V were connected to earth.

On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions, with no signs of damage or degradation in the meter's insulation properties.

2 ACCURACY REQUIREMENTS

IEC 62053-22 X-Ref. 8

2.1 Meter Constant

X-Ref. 8.4

The relation between the test output and the meter energy registers were checked to ensure the constant marking on the meter nameplate.

Measurement mode - Active Import Energy kWh

Test Results ID / Sample No.	Test Procedure: Meter Constant (1h @ Im)
Meter Constant / 2271222	19EMA TP37

Test conditions:	Un: 3x230/400V	Imax: 10A	<i>Cos.</i> $\phi = 1.0$, 50 <i>Hz</i>
------------------	----------------	-----------	---

Test Circuit: *3 phase 4 wire*

Measurement mode: *Active Import Energy kWh*

Number of Pulses Recorded	Pulse Constant (p/ kWh)	LED Test Output (kWh)	Energy Registered By Meter (kWh)	Percentage difference between Energy Registered and LED Test Output (%)
69067	10000	6.9067	6.9090	0.03

Limit of % Error Variation: ±0. 2% for Class 0.2

Measurement mode - Active Export Energy kWh

Test Results ID / Sample No.	Test Procedure: Meter Constant (1h @ Im)
Meter Constant / 2271222	19EMA TP37

Test conditions:	Un: 3x230/400V	Imax: 10A	Cos. $\phi = 1.0$, 50Hz
------------------	----------------	-----------	--------------------------

Test Circuit: 3 phase 4 wire

Measurement mode: *Active Export Energy kWh*

Number of Pulses Recorded	Pulse Constant (p/ kWh)	LED Test Output (kWh)	Energy Registered By Meter (kWh)	Percentage difference between Energy Registered and LED Test Output (%)
69042	10000	6.904	6.904	0.00

Limit of % Error Variation: ±0. 2% for Class 0.2

During the registration tests, rate registers not active were found not to have been corrupted.

Meter Constant (cont.)

IEC 62053-23 X-Ref. 8.4

Measurement mode - Reactive Import Energy kvarh

Test Results ID / Sample No.Test Procedure: Meter Constant (1h @ Im)Meter Constant / 227122619EMA TP37
--

Test conditions:	Un: 3x230/400V	Imax: 10A	Cos. $\phi = 1.0$, 50Hz

Test Circuit: *3 phase 4 wire*

Measurement mode: Reactive Import Energy kvarh

Number of Pulses Recorded	Pulse Constant (p/ kWh)	LED Test Output (kWh)	Energy Registered By Meter (kWh)	Percentage difference between Energy Registered and LED Test Output (%)
69051	10000	6.905	6.905	0.00

Limit of % Error Variation: $\pm 2\%$ for Class 2

Measurement mode - Reactive Export Energy kvarh

Test Results ID / Sample No.	Test Procedure: Meter Constant (1h @ Im)
Meter Constant / 2271226	19EMA TP37

Test conditions: Un: 3x120/208V Imax: 10A Cos. $\phi = 1.0$, 50Hz

Test Circuit: 3 phase 4 wire

Measurement mode: *Reactive Export Energy kvarh*

Number of Pulses Recorded	Pulse Constant (p/ kWh)	LED Test Output (kWh)	Energy Registered By Meter (kWh)	Percentage difference between Energy Registered and LED Test Output (%)
69023	10000	6.9023	6.906	0.05

Limit of % Error Variation: $\pm 2\%$ for Class 2

During the registration tests, rate registers not active were found not to have been corrupted.

Starting and No-Load condition

Initial Start-up of the meter

Test Results ID / Sample No. Start Up / 2271222	Test Procedure: Start-up
5 mil 0 p / 22 / 1222	

The meter sample was fully functional within 5s after rated voltage Un was applied to the meter terminals.

2.3 **Running with No-Load**

Test Results ID / Sample No.	Test Procedure: Non Registration Test 115(%U)
No Load / 2271222,	19EMA TP36

Tests were conducted as follows;

Test conditions: 115% Un, current circuits open

The minimum test duration in minutes being given by

 $\Delta t \ge \frac{900 \times 10^6}{\text{k} \cdot \text{m} \cdot \text{Un} \cdot \text{Imax}}$ [min] for meters of class 0.2s

 $\Delta t \ge \frac{600 \times 10^6}{k \cdot m \cdot Un \cdot Imax}$ [min] for meters of class 0.5s

where

is the meter output constant (pulses per kWh) k

is the number of measuring elements m

The meter sample was tested for a period of at least Δt minutes, on completion of which, no changes in the energy registers were recorded, and the test output did not produce more than one pulse.

Page 14 of 67

X-Ref. 8.3.1

IEC 62053-22 X-Ref. 8.3

X-Ref. 8.3.2

2.2

Running with No-Load (cont)

X-Ref. 8.3.2

Test Results ID / Sample No.	Test Procedure: Non Registration Test 115(%U)
No Load / 2271222	19EMA TP36

Test conditions: 115% Un, current circuits open

The minimum test duration in minutes being given by

 $\Delta t \ge \frac{480 \times 10^6}{\text{k} \cdot \text{m} \cdot \text{Un} \cdot \text{Imax}}$ [min] for meters of class 2

 $\Delta t \ge \frac{300 \times 10^6}{k \cdot m \cdot \text{Un} \cdot \text{Imax}}$ [min] for meters of class 3

where

k is the meter output constant (pulses per kvarh)

m is the number of measuring elements

The meter sample was tested for a period of at least Δt minutes, on completion of which, no changes in the energy registers were recorded, and the test output did not produce more than one pulse.

EMA QUAL 0362052-11&62053-22&62053-23/Rev 11

Initial Start-up of the meter

Starting and No-Load condition

 Test Results ID / Sample No.
 Test Procedure: Start-up

 Start Up / 2271226
 Test Procedure: Start-up

The meter sample was fully functional within 5s after rated voltage Un was applied to the meter terminals.

Starting

Test Results ID / Sample No.	Test Procedure: Starting Current 0.1(% Ib)
Starting Current / 2271222	19EMA TP36

The meter commenced and continued to measure the active power in both the import and export directions.

Test conditions for Transformer Operated meters Class 0.2s Active meters : Umin, 0.1%In, Cos. $\phi = 1.0$, 50Hz

Test Results ID / Sample No.	Test Procedure: Starting Current 0.3(% Ib)
Starting Current / 2271226	19EMA TP36

The meter commenced and continued to measure the applied reactive power in both the import and export directions.

Test conditions for Transformer Operated meters Class 2 Reactive meters : Umin, 0.3%In, Sin $\phi = 1.0$, 50Hz

X-Ref. 8.3.1

X-Ref. 8.3.3

2.4 Influence of Ambient Temperature

IEC 62053-22 X-Ref. 8 X-Ref. 8.2

Test Results ID / Sample No.	Test Procedure: EN62053-22 Temperature Variation
Temperature Var. / 2271226	19EMA TP31

Test conditions:	Un: 3x230/400V	Ux: 230V	Fn: 50Hz
	In: 5A	Im: 10A	

Test Circuit: 3 phase 4 wire

Measurement mode -	Active Im	port Energy kWh

Temperature	Current	PF Cos. ø	% Error	Mean
∕°C				Temperature
				coefficient %/K
33	0.05In	1.0	0.00	-0.0025
13	0.05In	1.0	0.05	
33	0.1In	0.5ind	0.04	0.005
13	0.1In	0.5ind	-0.06	
33	In	1.0	-0.01	-0.0025
13	In	1.0	0.04	
				0.00/5
33	In	0.5ind	0.04	0.0045
13	In	0.5ind	-0.05	
	_		0.01	0.002
33	Im	1.0	-0.01	-0.002
13	Im	1.0	0.05	
	Ŧ		0.04	0.002
33	Im	0.5ind	0.04	0.003
13	Im	0.5ind	-0.02	

Limit of Mean Temperature coefficient for: Class 0.2s

 $\pm 0.01\%/K$ @ Cos. $\phi = 1.0$ $\pm 0.02\%/K$ @ Cos. $\phi = 0.5$ ind

Influence of Ambient Temperature (cont.)

Operation of meter at the limit of the specified operating temperature range (Indoor meters) IEC 62053-22 X-Ref. 6.1

Test conditions:		Un: 3x230/400V Ux: 230 In: 5A Im: 10A		
	1			
Temperature /°C	Current	PF Cos. ø	% Error	
-10°C	0.1In	1.0	0.10	
45°C	0.1In	1.0	-0.02	
-10°C	0.2In	0.5ind	-0.15	
45°C	0.2In 0.2In	0.5ind 0.5ind	0.11	
-10°C	In	1.0	0.09	
45°C	In	1.0	-0.03	
-10°C	In	0.5ind	-0.13	
45°C	In	0.5ind	0.10	
-10°C	Im	1.0	0.10	
-10 C 45°C	Im	1.0	-0.04	
1000	т	0.5: 1	-0.11	
-10°C 45°C	Im Im	0.5ind 0.5ind	0.09	

Limits of % Error: Class accuracy.

Operation of meter at the Limit of temperature range X-Ref. 6.1 (Indoor meters)

Test conditions:

Un: 3x230/400V In: 5A Ux: 230V Im: 10A Fn: 50Hz

Fn: 50Hz

Temperature /°C	Current	% Error
70°C	In	-0.11
-25°C	In	0.08

On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions.

2.5 **Influence Quantities**

IEC 62053-22 X-Ref. 8

.5.1	Variation	in	Current

		~ .	
х.	-Ref.	8.1	
2 x -	TUUI.	0.1	

	2.5.1 Variation in Current	X-Ref. 8.1
	Test Results ID / Sample No.	Test Procedure: EN62053-22 Acc3P4W kWh +P
Current Variation / 2271222 19EMA TP25	Current Variation / 2271222	19EMA TP25

Test conditions:	Un: 3x230/400V	In: 5A	Im: 10A	Fn: 50Hz
	Ux: 230V			

Measurement mode - Active Import Energy kWh	Test Circuit:	3 phase 4 wire
	Measurement mode - A	ctive Import Energy kWh

			Limit of % Error		
CURRENT	PF Cos. ø	% Error	Accuracy		
			Class 0.2s	Class 0.5s	
0.01 In	1.0	0.03	±0.4	±1.0	
0.02 In	-	0.01	±0.4	±1.0	
0.05 In	-	0.02	±0.2	±0.5	
0.1 In	-	0.02	±0.2	±0.5	
0.2 In	-	0.02	±0.2	±0.5	
0.5 In	-	0.00	±0.2	±0.5	
In	-	0.00	±0.2	±0.5	
0.4 Im	-	0.02	±0.2	±0.5	
0.6 Im	-	0.01	±0.2	±0.5	
0.8 Im	-	0.01	±0.2	±0.5	
Im	-	0.01	±0.2	±0.5	
0.02 In	0.5ind	0.06	±0.5	±1.0	
0.05 In	-	0.04	±0.5	±1.0	
0.1 In	-	0.05	±0.3	±0.6	
0.2 In	-	0.03	±0.3	±0.6	
0.5 In	-	0.00	±0.3	±0.6	
In	-	0.03	±0.3	±0.6	
Im	-	0.04	±0.3	±0.6	
0.1 In	0.25ind	0.11	±0.5	±1.0	
0.2 In	-	0.06	±0.5	±1.0	
0.5 In	-	0.00	±0.5	±1.0	
In	-	0.06	±0.5	±1.0	
0.1 In	0.8cap	0.00	±0.3	±0.6	
0.1 III 0.2 In	-	0.01	± 0.3 ± 0.3	± 0.0 ± 0.6	
0.2 III 0.5 In	_	0.00	± 0.3	± 0.0 ± 0.6	
In	_	-0.01	± 0.3 ± 0.3	± 0.6	
		_	-0.5	_0.0	
0.1 In	0.5cap	-0.02	±0.5	±1.0	
0.2 In	-	-0.01	±0.5	±1.0	
0.5 In	-	-0.01	±0.5	±1.0	
In	-	-0.02	±0.5	±1.0	

Polyphase meter carrying a single-phase load, with balanced voltage applied to the voltage's circuits. X-Ref. 8.1

	Ux: 230V Im: 10A	Fn: 50Hz
--	---------------------	----------

Test Circuit: *3 phase 4 wire*

Measurement mode - Active Import Energy kWh

Elements/Line	es	I1	I2	I3		
		Element	Element	Element	Lim	it of
		L1	L2	L3	% E	Error
CURRENT	PF Cos. ø	% Error	% Error	% Error	Accu	uracy
					Class 0.2s	Class 0.5s
0.05 In	1.0	0.00	0.01	0.02	±0.3	±0.6
0.1 In	-	0.02	0.02	0.02	±0.3	±0.6
0.2 In	-	0.00	0.00	0.02	±0.3	±0.6
0.5 In	-	0.00	0.00	0.00	±0.3	±0.6
In	-	0.01	0.02	0.01	±0.3	±0.6
Im	-	0.02	0.01	0.01	±0.3	±0.6
0.1 In	0.5ind	0.05	0.05	0.06	±0.4	±1.0
0.2 In	-	0.01	0.02	0.05	± 0.4	± 1.0 ± 1.0
0.5 In	-	0.01	0.02	-0.03	± 0.4	± 1.0
In	-	0.01	0.04	0.01	±0.4	±1.0
Im	-	0.02	0.04	0.02	±0.4	±1.0
0.2 In	0.5cap	-0.01	-0.03	-0.01	-	-
In	-	0.00	-0.03	-0.02	-	-
Im	-	0.00	-0.02	-0.03	-	-

Variation in Current(cont.)

X-Ref. 8.1

Test Results ID / Sample No. Current Variation / 22271226		Test Proced	ure: Acc 3P4W kWh -P 19EMA TP25	
Test conditions:	Un: 3x230/400V In: 5A	Ux: 230V Im: 10A	Fn: 50Hz	

Test Circuit:3 phase 4 wire

Measurement mode - Active Ex	xport Energy kWh
------------------------------	------------------

			Limit of	f % Error
CURRENT	PF Cos. ø	% Error	Accuracy	
			Class 0.2s	Class 0.5s
0.01 In	1.0	0.04	±0.4	±1.0
0.02 In	-	0.04	±0.4	±1.0
0.05 In	-	0.04	±0.2	±0.5
0.1 In	-	0.02	±0.2	±0.5
0.2 In	-	0.02	±0.2	±0.5
0.5 In	-	0.03	±0.2	±0.5
In	-	0.03	±0.2	±0.5
Im	-	0.04	±0.2	±0.5
0.02 In	0.5ind	0.43	±0.5	±1.0
0.05 In	-	0.11	±0.5	±1.0
0.1 In	-	0.05	±0.3	±0.6
0.2 In	-	0.04	±0.3	±0.6
0.5 In	-	0.03	±0.3	±0.6
In	-	0.03	±0.3	±0.6
Im	-	0.04	±0.3	±0.6
0.1 In	0.8cap	0.01	±0.3	±0.6
0.2 In	-	0.02	±0.3	±0.6
0.5 In	-	0.04	±0.3	±0.6
In	-	0.03	±0.3	±0.6
		0.00		
0.1 In	0.5cap	0.00	±0.5	±1.0
0.2 In	-	0.01	±0.5	±1.0
0.5 In	-	0.04	±0.5	±1.0
In		0.04	±0.5	±1.0

Polyphase meter carrying a single-phase load, with balanced voltage applied to the voltage's circuits. X-Ref. 8.1

Test conditions:	Un: 3x230/400V	Ux: 230V	Fn: 50Hz
	In: 5A	Im: 10A	

Test Circuit: 3 phase 4 wire

Measurement mode - Active Export Energy kWh

Elements/Lin	es	I1	I2	I3		
		Element	Element	Element	Lim	it of
		L1	L2	L3	% E	error
CURRENT	PF Cos. ø	% Error	% Error	% Error	Accu	uracy
					Class 0.2s	Class 0.5s
0.1 In	1.0	0.00	0.03	0.03	±0.3	±0.6
In	-	0.03	0.03	0.04	±0.3	±0.6
Im	-	0.03	0.03	0.03	±0.3	±0.6
0.2 In	0.5ind	0.02	0.04	0.06	±0.4	±1.0
In	-	0.02	0.03	0.04	±0.4	±1.0
Im	-	-0.01	0.05	0.04	±0.4	±1.0
0.2 In	0.5cap	0.03	0.02	0.02	-	-
In	-	0.03	0.04	0.03	-	-
Im	-	0.03	0.02	0.03	-	-

Variation in Current (cont.)

IEC 62053-22X-Ref. 8 X-Ref. 8.1

Test Results ID / Sample No. Current Variation / 2271226		Test Procedure: EN62053-23 Acc 3P4W kvarh +Q 19EMA TP25		
Test conditions:	Un: 3x230/400V	Ux: 230V	Fn: 50Hz	

Im: 10A

T (<u><u> </u></u>	• ,
D OCT	Circi	11111
Test	UIU	un.

3 phase 4 wire

In: 5A

	n		
Measurement mode -	- Reactive	Import Energy	kvarh
mousurement moue	I Cucii ve I	import Linergy	n v ai ii

			Limit of	% Error	
CURRENT	PF Sin ø	% Error	Accuracy		
			Class 2	Class 3	
0.05 In	1.0	0.02	±2.5	±4.0	
0.1 In	-	0.02	±2.0	±3.0	
0.2 In	-	0.02	±2.0	±3.0	
0.5 In	-	0.01	±2.0	±3.0	
In	-	0.01	±2.0	±3.0	
0.4 Im	-	0.01	±2.0	±3.0	
0.6 Im	-	0.11	±2.0	±3.0	
0.8 Im	-	0.01	±2.0	±3.0	
Im	-	-0.09	±2.0	±3.0	
0.1 In	0.5ind	-0.03	±2.5	±4.0	
0.2 In	-	-0.02	±2.0	±3.0	
0.5 In	-	-0.01	±2.0	±3.0	
In	-	-0.01	±2.0	±3.0	
Im	-	-0.02	±2.0	±3.0	
0.2 In	0.25ind	-0.08	±2.5	± 4.0	
0.5 In	-	0.04	±2.5	± 4.0	
In	-	-0.15	±2.5	± 4.0	
0.2 In	0.5cap	0.03	±2.0	±3.0	
0.5 In	-	0.01	±2.0	±3.0	
In	-	0.04	±2.0	±3.0	
Im	-	0.05	±2.0	±3.0	
0.2 In	0.25cap	0.06	±2.5	±4.0	
0.5 In	-	0.05	±2.5	±4.0	
In	-	0.00	±2.5	±4.0	

Polyphase meter carrying a single-phase load, with balanced voltage applied to the voltage's circuits. X-Ref. 8.1

Test conditions:	Un: 3x230/400V	Ux: 230V	Fn: 50Hz
	In: 5A	Im: 10A	

Test Circuit:3 phase 4 wire

Measurement mode - Reactive Import Energy kvarh

Elements/Lines		I1	I2	I3	Limit of	f% Error
		Element	Element	Element		
		L1	L2	L3		
CURRENT	PF Sin ø	% Error	% Error	% Error	Acc	uracy
					Class 2	Class 3
0.1 In	1.0	0.01	0.02	0.02	±3.0	±4.0
In	-	0.01	0.02	0.01	±3.0	±4.0
Im	-	0.01	0.02	0.01	±3.0	±4.0
0.2 In	0.5ind	-0.02	-0.02	0.00	±3.0	±4.0
In	-	0.00	-0.01	-0.01	±3.0	±4.0
Im	-	-0.02	0.00	-0.01	±3.0	±4.0
0.2 In	0.5cap	0.03	0.03	0.06	±3.0	±4.0
In	-	0.02	0.04	0.02	±3.0	±4.0
Im	-	0.01	0.04	0.03	±3.0	±4.0

Variation in Current(cont.)

X-Ref. 8.1

Test Results ID / Sample No. Current Variation / 2271226	Test Procedure: EN62053-23 Acc 3P4W kvarh -Q 19EMA TP25			
Test conditions:	Un: 3x230/400V In: 5A	Ux: 230V Im: 10A	Fn: 50Hz	

Test Circuit:3 phase 4 wire

l	Measurement mode - Rea	ctive Exp	port Ener	gy kvarh
F				.

			Limit of	% Error
CURRENT	PF Sin ø	% Error	Accuracy	
			Class 2	Class 3
0.05 In	1.0	0.01	±2.5	±4.0
0.1 In	-	0.02	±2.0	±3.0
0.2 In	-	0.01	± 2.0	±3.0
0.5 In	-	0.00	± 2.0	±3.0
In	-	0.01	±2.0	±3.0
Im	-	0.01	±2.0	±3.0
0.1 In	0.5ind	-0.02	±2.5	± 4.0
In	-	0.00	± 2.0	±3.0
Im	-	-0.02	± 2.0	±3.0
0.1 In	0.5cap	0.06	±2.0	± 4.0
In	-	0.04	± 2.0	±3.0
Im	-	0.05	±2.0	±3.0

Polyphase meter carrying a single-phase load, with balanced voltage applied to the voltage's circuits. X-Ref. 8.1

Test conditions:	Un: 3x230/400V	Ux: 230V	Fn: 50Hz
	In: 5A	Im: 10A	

Test Circuit:3 phase 4 wire

Measurement mode - Reactive Export Energy kvarh

Elements/Lines		I1	I2	I3	Limit of	f % Error
		Element	Element	Element		
		L1	L2	L3		
CURRENT	PF Sin ø	% Error	% Error	% Error	Acc	uracy
					Class 2	Class 3
In	1.0	0.01	0.01	0.00	±3.0	± 4.0
In	0.5ind	-0.01	-0.01	-0.01	±3.0	± 4.0
In	0.5cap	0.00	0.06	0.03	±3.0	±4.0

2.5.2 Voltage Variation

IEC 62053-22 X-Ref. 8.2

Specified Operating Range

Test Results ID / Sample No.		Test Procedure: EN62053-22 Voltage Variation P		
Voltage Variation / 2271222		19EMA TP26		
Test conditions:	Un: 3x230/400V In: 5A	Ux: 230V Im: 10A	Fn: 50Hz	

Test Circuit: *3 phase 4 wire*

Measurement mode - Active Energy kWh

		110%	100%	90%	Limit of	% Error
		Un	Un	Un	Varia	ation
Current	PF Cos. ø	% Error	% Error	% Error	Accu	iracy
					Class 0.2s	Class 0.5s
0.05 In	1.0	-0.01	-0.02	-0.01	±0.1	±0.2
In	-	-0.03	-0.02	-0.02	±0.1	±0.2
Im	-	-0.02	-0.02	-0.02	±0.1	±0.2
0.1 In	0.5ind	0.06	0.07	0.06	±0.2	±0.4
In	-	0.05	0.07	0.04	±0.2	±0.4
Im	-	0.04	0.05	0.06	±0.2	±0.4

Limit Range of Operation

		115%	80%		% Error
		Un	Un	Vari	ation
Current	PF Cos. ø	% Error	% Error	Accu	uracy
				Class 0.2s	Class 0.5s
In	1.0	-0.02	-0.02	±0.3	±0.6
In	0.5ind	0.03	0.03	±0.6	±1.2

Voltage Variation (cont.)

IEC 62053-23 X-Ref. 8.2

Specified Operating Range

Test Results ID / Sample No. Voltage Variation / 2271226		Test Pro	cedure: EN62053-23 Voltage Variation Q 19EMA TP26	
Test conditions:	Un: 3x230/400V	Ux: 230V	Fn: 50Hz	

Im: 10A

Test Circuit:

3 phase 4 wire

In: 5A

Measurement mode - Reactive Energy kvarh

		110%	100%	90%	Limit of	% Error
		Un	Un	Un	Varia	ation
Current	PF Sin ø	% Error	% Error	% Error	Accu	iracy
					Class 2	Class 3
0.05 In	1.0	0.02	0.02	0.02	±1.0	±2.0
In	-	0.01	0.01	0.01	±1.0	±2.0
Im	-	0.01	0.02	0.02	±1.0	±2.0
0.1 In	0.5ind	-0.02	-0.02	-0.02	±1.5	±3.0
In	-	-0.01	0.00	0.00	±1.5	±3.0
Im	-	0.00	-0.01	0.00	±1.5	±3.0

Limit Range of Operation

		115% Un	80% Un		% Error ation
Current	PF Sin ø	% Error	% Error	Accu	uracy
In	1.0	0.01	0.01	Class 2 ± 3.0	Class 3 ±6.0
In	0.5ind	0.00	0.00	±4.5	±9.0

2.5.3 Frequency Variation

IEC62053-22 X-Ref. 8.2

Test Results ID / Sample No.Test Procedure: EN62053-22 Frequency 51Hz to 49Hz PFrequency Variation / 227122219EMA TP27
--

Test conditions:	Un: 3x230/400V	Ux: 230V	Fn: 50Hz
	In: 5A	Im: 10A	

Test Circuit: 3 phase 4 wire

Measurement mode - Active Import Energy kWh

		102% Fn	100% Fn	98% Fn		% Error ation
Current	PF Cos. ø	% Error	% Error	% Error	Accı	iracy
					Class 0.2s	Class 0.5s
0.05 In	1.0	-0.02	-0.01	-0.02	±0.1	±0.2
In	1.0	-0.02	-0.02	-0.03	±0.1	±0.2
Im	1.0	-0.01	-0.02	-0.02	±0.1	±0.2
0.10 In	0.5ind	0.00	0.06	0.12	±0.1	±0.2
In	0.5ind	-0.02	0.04	0.08	±0.1	±0.2
Im	0.5ind	0.00	0.05	0.09	±0.1	±0.2

Frequency Variation(cont)

IEC62053-22 X-Ref. 8.2

Test Results ID / Sample No.	Test Procedure: EN62053-23 Frequency 51Hz to 49Hz Q
Frequency Variation / 2271226	19EMA TP27

Test conditions: $Un: 3x230/400V$ $Ux: 230$ $In: 5A$ $Im: 10A$	
--	--

Test Circuit: *3 phase 4 wire*

Measurement mode - Reactive Import Energy kvarh

		102% Fn	100% Fn	98% Fn		% Error ation
Current	PF Sins ø	% Error	% Error	% Error	Accu	uracy
					Class 2	Class 3
0.05 In	1.0	0.01	0.01	0.01	±2.5	±2.5
In	1.0	0.06	0.01	0.01	±2.5	±2.5
Im	1.0	0.02	0.01	0.01	±2.5	±2.5
0.10.1	0.5.1	0.02	0.02	0.14	12.5	12.5
0.10 In	0.5ind	-0.02	-0.02	-0.14	±2.5	±2.5
In	0.5ind	0.00	-0.01	-0.12	±2.5	±2.5
Im	0.5ind	-0.02	-0.01	-0.10	±2.5	±2.5

2.5.4 Reversed Phase Sequence

IEC 62053-22 X-Ref. 8.2

Test Results ID / Sample No. Reverse Phase / 2271222		Test Procedure: EN62053-22 Reverse Phase Sequence 19EMA TP28		
Test conditions:	Un: 3x230/400V	Ux: 230V	Fn: 50Hz	

Im: 10A

Test Circuit:3 phase 4 wire

Measurement mode - Active Import Energy kWh

		Limit of	% Error
		Vari	ation
Phase Sequence	% Error		
Current		Accu	uracy
		Class 0.2s	Class 0.5s
Sequence L1-L2-L3 0.1 In	-0.02	-	-
Sequence L1-L3-L2 0.1 In	-0.02	±0.05	±0.1

In: 5A

2.5.5 Voltage Unbalance

IEC 62053-22 X-Ref. 8.2

Test Results ID / Sample No. Voltage Unbalance / 2271222		Test Pro	cedure: EN62053-22 Phase Interruption 19EMA TP29
Test conditions:	Un: 3x230/400V In: 5A	Ux: 230V Im: 10A	Fn: 50Hz

Test Circuit: *3 phase 4 wire*

Measurement mode - Active Import Energy kWh

			% Error ation
Network Phase/Lines connected	% Error	Accı	iracy
		Class 0.2s	Class 0.5s
L1 & L2 & L3	-0.02	-	-
L2 & L3	-0.03	±0.5	±1.0
L1 & L3	-0.31	±0.5	±1.0
L1 & L2	-0.43	±0.5	±1.0
L3	-0.03	±0.5	±1.0
L2	-0.03	±0.5	±1.0
L1	0.15	±0.5	±1.0

2.5.6 Continuous Magnetic Induction of External Origin

IEC 62053-22 X-Ref. 8.2

Test Results ID / Sample No. DC Mag. Field / 2271226		Test Procedure: EN62053-22 DC Magnetic Field P 19EMA TP33		
Test conditions:	Un: 3x230/400V In: 5A	Ux: 230V Im: 10A	Fn: 50Hz	

Test Circuit: 3 phase 4 wire

Measurement mode - Active Import Energy kWh

		Limit of	f % Error
		Vari	ation
Electromagnetic Position	% Error	Accu	iracy
		Class 0.2s	Class 0.5s
No field applied	0.00	-	-
Left side of meter	0.00	±2.0	±2.0
Front of meter	0.00	±2.0	±2.0
Right side of meter	0.00	±2.0	±2.0
Top of meter	0.00	±2.0	±2.0

2.5.7 Magnetic Induction of External Origin 0.5mT IEC 62053-22 X-Ref. 8.2

Ac magnetic induction of external origin, produced by a coil of one metre diameter, field strength at its centre 0.5mT (400 Ampere turns)

Test Results ID / Sample No.		Test Procedure: T/T +P X-X FAIRY RING T/T +P Y-Y FAIRY RING T/T +P Z-Z FAIRY RING
AC Mag. Fields / 2271222		19EMA TP34
Test conditions:	Un: 3x230/400V	Fn: 50Hz
	In: 5A	<i>PF</i> : <i>Cos</i> . $\phi = 1.0$
Test Circuit:	3 phase 4 wire	

Measurement mode - Active Import Energy kWh

Phase angle of the field with respect to U3 (Vph)	Dire	ction of field orie	entation
	X - X	Y - Y	Z - Z
	% Error	% Error	% Error
No Field			
Applied	0.02	-0.02	-0.01
0°	0.01	-0.02	-0.02
30°	0.00	-0.02	-0.03
60°	0.01	-0.01	-0.02
90°	0.01	-0.01	-0.01
120°	0.02	-0.01	-0.01
150°	0.02	-0.01	0.00
180°	0.01	-0.02	0.00
210°	0.02	-0.02	-0.01
240°	0.01	-0.02	-0.01
270°	0.01	-0.02	-0.01
300°	0.00	-0.02	-0.01
330°	0.00	-0.02	-0.01
360°	0.00	-0.02	-0.01

Limit of % Error Variation for

Class $0.2s \pm 0.5\%$ Class $0.5s \pm 1.0\%$

2.5.8 Auxiliary Power Supply Voltage Variation

IEC 62053-22 X-Ref. 8.2

	Test Results ID / Sample No. Aux Voltage Var / 2271226	Test Procedure: EN62053-22 Aux Voltage Variation (PLE)
--	---	--

Test conditions:	Un: 3x230/400V	Ux: 100V	Fn: 50Hz
	0.01In: 0.05A	PF: Cos. $\phi =$	1.0

Measurement mode - Active Energy kWh

Auxiliary Power Supply		Limit of % Error	
Voltage Level	% Error	Variation Accuracy	
		Class 0.2s	Class 0.5s
100%	-0.01	-	-
115%	0.02	±0.05	±0.1
85%	0.00	±0.05	±0.1

Test conditions:	Un: 3x230/400V	Ux: 230V	Fn: 50Hz
	0.01In: 0.05A	PF: Cos. $\phi =$	1.0

Measurement mode - Active Energy kWh

Auxiliary Power Supply		Limit of % Error	
Voltage Level	% Error	Variation Accuracy	
		Class 0.2s	Class 0.5s
100%	0.02	-	-
115%	-0.02	±0.05	±0.1
85%	0.00	±0.05	±0.1

Test conditions:Un: 3x230/400VUx: 480VFn: 50Hz0.01In: 0.05A $PF: Cos. \phi = 1.0$

Measurement mode - Active Energy kWh

Auxiliary Power Supply		Limit of % Error	
Voltage Level	% Error	Variation Accuracy	
		Class 0.2s	Class 0.5s
100%	0.03	-	-
115%	0.02	±0.05	±0.1
85%	0.00	±0.05	±0.1

Accuracy test in the Presence of Harmonics IEC 62053-23 X-Ref. 8.2 2.6

2.6.1 Harmonic Components in the Current and Voltage Circuits X-Ref. 8.2

Test Results ID / Sample No. Harmonics / 2271222		Test Procedure: EN62053-22 Harmonics Tests 19EMA TP32		
Test conditions:	Un: 3x230/400V In: 5A	Ux: 230V Im: 10A	Fn: $50Hz$ PF: Cos. $\phi = 1.0$	

Fundamental frequency current:	$I_0 = 0.5 \text{ Imax}$
Fundamental frequency voltage:	$U_0 = Un$
content of 5 th harmonic current:	$I_5 = 40\%$ of I_0
content of 5 th harmonic voltage:	$U_5 = 10\%$ of Un

Resulting harmonic power due to the 5th harmonic presence: $P_{resultant} = 1.04 P_0$

3 phase 4 wire Test Circuit:

Measurement mode - Active Energy kWh

		Limit of % Error Variation	
Waveform	% Error	Accuracy	
Fundamental Only (P ₀) 0.5 Imax	-0.03	Class 0.2s -	Class 0.5s -
Fundamental + 5^{th} Harmonic (P _{resultant} = 1.04 P ₀)	-0.04	±0.4	±0.5

2.6.3 Influence of Odd and Sub Harmonics in the AC Current Circuit X-Ref. 8.2

Test Results ID / Sample No. Harmonics / 2271222		Test Procedure: EN62053-22 Harmonics Tests 19EMA TP32	
Test conditions:	Un: 3x230/400V In:5A	Ux: 230V Fn: 50Hz: PF: Cos. $\phi = 1.0$	
Reference current v Reference voltage:	101	= 0.5 In = Un	

Test current Phase-fired waveform: $I_{test} = \sqrt{2} \cdot I_{ref}$ Firing points = 5ms and 15ms ± 1ms Test current Burst fired waveform: $I_{test} = 2 \cdot I_{ref}$ Distortion factor on the voltage waveform: < 0.5 % THD

Test Circuit: *3 phase 4 wire*

Measurement mode - Active Energy kWh

		Limit of % Error	
		Variation	
Waveform	% Error	Accuracy	
		Class 0.2s	Class 0.5s
Fundamental Only 0.5 In	-0.02	-	-
Waveform Phase-fired Test current	0.04	±0.6	±1.5
Waveform Burst fired Test current	0.03	±0.6	±1.5

3 ELECTRICAL REQUIREMENTS

IEC 62053-22 X-Ref. 7

3.1 Power Consumption

X-Ref. 7.1

Test Results ID / Sample No. Power Consumption / 2271226 Test Procedure: EN62053-22 Power Consumption 19EMA TP22

	Volts/V	Amps/A	VA	Watts/W
Auxiliary Power Supply				
<u>Wiring Configuration:</u> <u>Single Phase Two Wire</u>				
Voltage Circuit: L1	480V	0.231A	11.28	3.84

Power consumption limits for auxiliary power supply circuits shall not exceed the following based on IEC 62053-61: 1998-02

Voltage Circuits	Single	e Phase	Two	Element	Three E	Element
Basic Meter	2W	10VA	2W	10VA	2W 10V	/A
multi-energy meter	3W	15VA	2.5W	12.5VA	2W 10V	VA
Multi-function meter	5W	25VA	3.5W	17.5VA	3W 15V	VA

3.2 Influence of Supply Voltage

IEC 62052-11 X-Ref. 7

Voltage dips and interruptions

X-Ref. 7.1.2

Test Results ID / Sample No.	Test Procedure: EN62052-11 Voltage Dips
Voltage Dips / 2271222	19EMA TP10

Environmental Conditions

Power Supply	230V, 50Hz
Temperature	21°C
Relative Humidity	38%
Barometric Pressure	1004mB

Test Circuit:1 phase 2 wire, in the case of Polyphase meters tests were conducted on
each voltage circuit in turn.

The tests were applied under the following conditions;

- voltage and auxiliary circuits energised with reference voltage - current circuits open.

Test a)	Voltage interruption of: Interruption time: Number of interruptions: Restoring time between interruption:	V = 100% 1s 3 50ms
Test b)	Voltage interruption of: Interruption time: Number of interruptions:	V = 100% 20ms 1
Test c)	Voltage depression of: Depression time: Number of depressions:	V=50% 60s 1

The application of the above test did not produce a change in the meter registers of more than x kWh/kvarh, and the test output did not produce a signal equivalent of more than x kWh/kvarh, where x is given by

$$x = 10^{-6} \cdot m \cdot Un \cdot Imax$$

3.3 Test of Influence of Short-Time Over-Currents IEC 62053-22 X-Ref. 7.2

Test Results ID / Sample No.	Test Procedure: EN62053-22 Short-Time Over-Current
STOC / 2271226	19EMA TP23

Environmental Conditions

Temperature	21°C
Relative Humidity	45%
Barometric Pressure	1010mB

Test Conditions: Im: 10A Fn: 50Hz

Test Circuit: *3 phase 4 wire*

The test was applied under the following conditions;

Meter for connection through current transformer:

An impulse currents were applied = 20 x ImaxAt rated frequency for 0.5 second duration Applied to each current phase

On completion of the test, the meters voltage circuits were energised at reference voltage for 1 hour.

Power Factor	Current	% Error
$\cos.\phi = 1.0$	In	0.04

Limit of % Error: Class $0.2s \pm 0.05\%$ for connection through a current transformer Class $0.5s \pm 0.05\%$ for connection through a current transformer

The meter showed no signs of damage and functioned correctly.

3.4 Test of Influence of Self Heating

IEC 227122262053-22 X-Ref. 7 X-Ref. 7.3

Test conditions:- The meter voltage circuits were energised at reference voltage for at least 2 hours, without any current in the current circuits, after which the meter's maximum rated current was applied and the meter error determined every 5 minutes. The test was conducted at power factors of both Cos. $\phi = 1.0$ and Cos. $\phi = 0.5$ ind.

Test Results ID / Sample No.Test Procedure: EN62053-22 Self HeatingSelf Heating / 227122219EMA TP24

Test conditions:	Un: 3x230/400V	Ux: 230V
	Im: 10A	Fn: 50Hz

Test Circuit: *3 phase 4 wire*

Measurement Mode Active Energy kWh

Elapsed Test time	Un Im $\cos\phi = 1.0$	Un Im $\cos\phi = 0.5$
(minutes)	% Error	% Error
1	-0.01	0.02
5	-0.02	0.06
10	-0.03	0.09
15	-0.04	0.10
20	-0.04	0.11
25	-0.04	0.11
30	-0.05	0.11
35	-0.03	0.11
40	-0.04	0.10
45	-0.05	0.12
50	-0.05	0.11
55	-0.03	0.12
60	-0.04	0.10

Limit of % Error Variation: Class 0.2s Class 0.5s $\pm 0.1\%$ @ Cos. $\phi = 1.0$ & Cos. $\phi = 0.5$ ind $\pm 0.2\%$ @ Cos. $\phi = 1.0$ & Cos. $\phi = 0.5$ ind

3.5 Test of Influence of Heating

IEC 62052-11 X-Ref. 7.2

Test Results ID / Sample No.	Test Procedure: EN62052-11 Heating
Heating / JB1310419000037	19EMA TP11

The tests were conducted with the meter cover and terminal cover in place

Test conditions: 115%Un: 3x448.5V Im: 10A Fn: 50Hz

Ambient Temperature :	40°C
Test Duration :	2 hours
Surface Temperature Rise:	Current Circuit: 6.1K
	Voltage Circuit: 4.9K

Permissible temperature rise: 25K

Surface temperature of the meter was measured on the meter back, approximately 10mm above the meter current circuit and voltage circuit terminal block.

On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions, with no signs of damage or degradation in the meter's insulation properties.

4 ELECTROMAGNETIC COMPATIBILITY (E.M.C.) IEC 62052-11 X-Ref. 7.5

4.1 Immunity to Electrostatic Discharges (ESD)

X-Ref. 7.5.2

Test Results ID / Sample No.	Test Procedure: EN62052-11 Electrostatic Discharge
ESD / 2271222	19EMA TP14

The meter was tested in accordance with IEC 61000-4-2 as follows:

Environmental Conditions

Power Supply	230V, 50Hz
Temperature	20°C
Relative Humidity	39%
Barometric Pressure	989mB

E.S.D Generator specification: Test level severities: 8kV contact, conductive surfaces / coupling planes 15kV air gap discharge - non conducting surfaces Positive / Negative polarity Number of discharges: 10 at each polarity Rise time of discharge current: <1ns Pulse duration (50%) 30ns Time between discharges: 1s

Meter in operating condition with the voltage and auxiliary circuits energised. Current circuits open.

The application of the electrostatic discharge did not produce a change in the meter registers of more than x kWh, and the test output did not produce a signal equivalent of more than x kWh, where x is given by

where

 $\boldsymbol{x} = 10^{-6} \cdot \mathbf{m} \cdot \mathbf{Un} \cdot \mathbf{Imax}$

x is the critical change value in kWh *m* is the number of measuring elements *Un* is the reference voltage *Imax* is the maximum current

4.2 Immunity to Electromagnetic HF Fields

X-Ref. 7.5.3

Test Results ID / Sample No.	Test Procedure: EN62052-11 Radiated Immunity
RI / 2271222	19EMA TP15

The meter was tested in accordance with IEC 61000-4-3 in the SGS Anechoic chamber as follows:

Environmental Conditions

Power Supply	230V, 5A, 50Hz
Temperature	19°C
Relative Humidity	41%
Barometric Pressure	998mB

Port:	Enclosure
Test Level:	10 V/m (80-2000MHz) & 1V/m (2000-2700MHz) (test 1) &
	30 V/m (test 2)
Frequency Range:	80-2000 MHz & 2000-2700MHz*
Dwell Time:	6 Seconds for Test 1, 2 Seconds for Test 2
Frequency Step Size	::1%
Modulation:	80%, 1 kHz Amplitude Modulation.

*2000-2700MHz:At the request of the client, the radiated immunity test was performed across an additional frequency range of 2000-2700MHz

Operating Mode:

- Mode 1) Voltage and auxiliary circuits energised with reference voltage, without any current in the current circuits
- Mode 2) Voltage and auxiliary circuits energised with reference voltage and with basic current Ib applied

Test Results (Radiated Immunity 80-2700MHz)

EUT Face	Polarity	Test 1 Maximum % Error Observed	Test 2	Critical Change % Error Limit	
		Error coscived		Accu	ıracy
				Class 0.5	Class 0.2
Front	Horizontal	0.18	Note 1	± 2.0	± 1.0
Front	Vertical	0.18	Note 1	± 2.0	± 1.0
Rear	Horizontal	0.18	Note 1	± 2.0	± 1.0
Rear	Vertical	0.18	Note 1	±2.0	± 1.0
LHS	Horizontal	0.18	Note 1	±2.0	± 1.0
LHS	Vertical	0.18	Note 1	± 2.0	± 1.0
RHS	Horizontal	0.18	Note 1	± 2.0	± 1.0
RHS	Vertical	0.18	Note 1	±2.0	± 1.0

Immunity to Electromagnetic HF Fields (cont)

X-Ref. 7.5.3

Note 1: The application of the RF electromagnetic field did not produce a change in the meter registers of more than x kWh, and the test output did not produce a signal equivalent of more than x kWh, where x is given by

$$x = 10^{-6} \cdot m \cdot Un \cdot Imax$$

where

x is the critical change value in kWh *m* is the number of measuring elements *Un* is the reference voltage *Imax* is the maximum current

4.3 Fast Transient Burst Test

X-Ref. 7.5.4

Test Results ID / Sample No.	Test Procedure: EN62052-11 Fast Transient Bursts
FTB / 2271235	19EMA TP16

The meter was tested in accordance with IEC 61000-4-4 as follows:

Environmental Conditions

Power Supply	230V, 5A, 50Hz
Temperature	19°C
Relative Humidity	40%
Barometric Pressure	996 mB

Transient/Burst specification:

Pulse level severity 2kV & 4kV Rise time 5ns Width 50ns Repetition Rate 5 kHz & 2.5 kHz Burst Duration 15ms Burst Period 300ms Burst Generation Asynchronous (Common mode)

Operating mode: The meter voltage circuits were energised at reference voltage Un, with Ib/In Cos. $\phi = 1.0$ in the current circuits.

Test voltage severity level $\pm 4kV$, Repetition Rate 5kHz voltage and current circuits Test voltage severity level $\pm 2kV$, Repetition Rate 5kHz auxiliary circuits > 40V

The test voltage was applied on the current and voltage circuits in common mode, for a test duration of 60 seconds at each polarity.

Fast Transient Burst Test (cont)

X-Ref. 7.5.4

Test conditions:	Un: 3x230/400V In: 5A	Fn: 50Hz PF: Cos. φ = 1.0
Test Circuit:	3 phase 4 wire	

М	easurement mode - Active Import	Energy kWh	
			Cr

		Critical Change % Error Limit	
Test Voltage (kV)	% Error	Accuracy	
No FTB applied	-0.026	Class 0.5	Class 0.2
+4 Voltage Circuit	-0.065	±2.0	±1.0
-4 Voltage Circuit	-0.057	±2.0	±1.0
-4 Current Circuit	-0.034	±2.0	±1.0
-4 Current Circuit	-0.08	±2.0	±1.0
+2 Auxiliary Circuit	-0.018	±2.0	±1.0
-2 Auxiliary Circuits	-0.049	±2.0	±1.0

On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions, with no signs of damage or corruption to meter register data.

4.4 Immunity to Conducted Disturbances

X-Ref. 7.5.5

Test Results ID / Sample No.	Test Procedure: EN62052-11 Conducted Immunity
CI / 2271222	19EMA TP17

The meter was tested in accordance with IEC 61000-4-6 as follows:

Environmental Conditions

Power Supply	230V, 5A, 50Hz
Temperature	23°C
Relative Humidity	43%
Barometric Pressure	1016mB

Ports:	Current, Voltage and Auxiliary Circuits
Test Level:	10 V
Frequency Range:	0.15 to 80 MHz
Dwell Time:	Function of Meter Pulses (≥ 2 Secs)
Frequency Step Size:	1%
Modulation:	80%, 1kHz Amplitude Modulation.

The compliance test was performed as follows:

Operating Mode

Voltage and auxiliary circuits energised with reference voltage and with basic current Ib applied

Test Results

MUT Port	Frequency Range (MHz)	% Error	Critical Change % Error Lim Accuracy	
Valtage 9	((()))		Class 0.5	Class 0.2
Voltage & Current Circuits	0.15 to 80	0.12	±2.0	±1.0
Auxiliary Circuits	0.15 to 80	0.24	±2.0	±1.0

4.5 Surge Immunity

X-Ref 7.5.6

Test Results ID / Sample No.	Test Procedure: EN62052-11 Surge
Surge / 2271222	19EMA TP18

The meter was tested in accordance with IEC 61000-4-5 as follows:

Ports:	Voltage and Auxiliary Circuits
Test Voltage:	4kV mains, 1kV auxiliary
Test Mode:	Differential
Phase Angle:	60° and 240° relative to zero crossing
Number of Tests:	5 positive and 5 negative
Repetition Rate:	1/min

Environmental Conditions

Power Supply	230V, 50Hz
Temperature	21°C
Relative Humidity	34 %
Barometric Pressure	988mB

The application of the surge immunity test voltage did not produce a change in the meter registers of more than x kWh and the test output did not produce a signal equivalent of more than x kWh, where x is given by

 $x = 10^{-6} \cdot m \cdot Un \cdot Imax$

4.6 Immunity to Damped Oscillatory Waves

X-Ref. 7.5.7

Test Results ID / Sample No.	Test Procedure: EN62052-11 Damped Oscillatory Waves
DOW / 2271235	19EMA TP19

The meter was tested in accordance with IEC 61000-4-12 as follows:

Environmental Conditions

Power Supply	230V, 5A, 50Hz
Temperature	20°C
Relative Humidity	42%
Barometric Pressure	1011mB

Ports:	Voltage and Auxiliary Circuits
Test Level:	Common Mode: 2.5kV
	Differential Mode: 1kV
Test Frequencies:	100 kHz, repetition rate: 40Hz
	1 MHz, repetition rate: 400Hz
Test Duration:	60s (15 cycles with 2s on, 2s off, for each frequency
Operating Mode:	The meter voltage and auxiliary circuits were energised at reference voltage Un, with Ib/In Cos. $\phi = 1.0$ in the current circuits.

The test voltage was applied on the voltage circuits in common & differential coupling, for a test duration of 60 seconds at each polarity.

Immunity to Damped Oscillatory Waves (cont.)

Test a)100kHz Test Frequency Results:

3 Phase Voltage Supply				`% Error ation
Test Voltage(kV)	Coupling	% Error		iracy
			Class 0.2	Class 0.5
No DOW's applied	-	-0.055	-	-
±1	L1-N	0.143	±1.0	±2.0
±1	L2-N	0.152	±1.0	± 2.0
±1	L3-N	0.143	±1.0	± 2.0
±1	L1-L2	-0.063	±1.0	± 2.0
±1	L1-L3	-0.063	±1.0	±2.0
±1	L2-L3	-0.063	±1.0	± 2.0
±2.5	<i>L1,L2,L3,N</i>	0.094	±1.0	±2.0

Auxiliary Power			Limit of % Error	
Supply			Vari	ation
Test Voltage(kV)	Coupling	% Error	Accu	uracy
			Class 0.2	Class 0.5
±1	<i>L1-L2</i>	-0.047	± 1.0	±2.0
±2.5	L1 & L2	-0.063	± 1.0	±2.0

Immunity to Damped Oscillatory Waves (cont.)

Test b) 1MHz Test Frequency Results:

3 Phase Voltage Supply				`% Error ation
Test Voltage(kV)	Coupling	% Error		iracy
			Class 0.2	Class 0.5
No DOW's applied	-	-0.055	-	-
±1	L1-N	0.135	±1.0	±2.0
±1	L2-N	0.143	±1.0	±2.0
±1	L3-N	0.135	±1.0	±2.0
±1	L1-L2	-0.072	± 1.0	± 2.0
±1	L1-L3	-0.055	± 1.0	± 2.0
±1	L2-L3	-0.063	±1.0	±2.0
±2.5	<i>L1,L2,L3,N</i>	-0.775	±1.0	±2.0

Auxiliary Power			Limit of	% Error
Supply			Vari	ation
Test Voltage(kV)	Coupling	% Error	Accu	iracy
			Class 0.2	Class 0.5
±1	L1-L2	-0.055	±1.0	±2.0
±2.5	L1 & L2	-0.072	±1.0	±2.0

5 CLIMATIC INFLUENCES

IEC 62052-11 X-Ref. 6

5.1 Dry Heat Test

X-Ref. 6.3.1

Test Results ID / Sample No.	Test Procedure: EN62052-11 Dry Heat
Dry Heat / 2271235	19EMA TP07

The meter was tested in accordance with IEC 60068-2-2 as follows:

Meter in the non-operating condition Temperature $+70^{\circ}C \pm 2^{\circ}C$ Duration of the test 72h

On completion of the above test the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions with no signs of damage or degradation in the meter's insulation properties.

5.2 Cold Test

X-Ref. 6.3.2

Test Results ID / Sample No.	Test Procedure: EN62052-11 Cold
Cold / 2271226	19EMA TP08

The meter was tested in accordance with IEC 60068-2-1 as follows:

Meter in the non-operating condition Temperature $-25^{\circ}C \pm 3^{\circ}C$ Duration of the test 72h

On completion of the above test the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions, with no signs of damage or corruption to meter register data.

5.3 Damp Heat, Cyclic Test

X-Ref. 6.3.3

Test Results ID / Sample No.	Test Procedure: EN62052-11 Damp Heat
Damp Heat / 2271226	19EMA TP09

The meter was tested in accordance with IEC 60068-2-30 as follows:

Meter with reference voltage applied Upper Temperature of +40°C Duration of the test: 6 cycles

On completion of the above test the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions with no signs of damage or degradation in the meter's insulation properties.

6 MECHANICAL REQUIREMENTS

IEC 62052-11 X-Ref. 5.2.2

6.1 Spring Hammer Test

X-Ref. 5.2.2.1

Test Results ID / Sample No.	Test Procedure: EN62052-11 Spring Hammer
Spring Hammer / 2271222	19EMA TP01

Environmental Conditions

Temperature	20°C
Relative Humidity	38%
Barometric Pressure	998mB

The meter was tested in accordance with IEC 60068-2-75 as follows:

Kinetic Energy of Spring Hammer 0.2 Nm \pm 0.05 Nm

The meter case and terminal cover where acted upon all external surfaces, including the display window. After the test no damage was evident and the meter continued to function correctly.

MECHANICAL REQUIREMENTS (cont)

IEC 62052-11 X-Ref. 5.2.2

6.2 Shock Test

X-Ref. 5.2.2.2

Test Results ID / Sample No.	Test Procedure: EN62052-11 Shock
Shock / 2271235	19EMA TP02

Environmental Conditions

Temperature	19°C
Relative Humidity	44%
Barometric Pressure	991mB

The meter was tested in accordance with IEC 60068-2-27 as follows:

Meter in the non-operating condition Half Sine Pulse Peak Acceleration of 30 gn (300 m/s²) Pulse Duration of 18 ms

On completion of the above tests the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions.

6.3 Vibration Test

X-Ref. 5.2.2.3

Test Results ID / Sample No.	Test Procedure: EN62052-11 Vibration
Vibration / 22712235	19EMA TP03

Environmental Conditions

Temperature	20°C
Relative Humidity	46%
Barometric Pressure	999mB

The meter was tested in accordance with IEC 60068-2-6 as follows:

Meter in the non-operating condition Test Procedure A Frequency Range of 10 Hz to 150 Hz (Transition frequency of 60 Hz) For F < 60 Hz, constant amplitude of movement 0.075 mm For F > 60 Hz, constant acceleration of 9.8 m/s² (1g) 10 sweep cycles per axis

On completion of the above test the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions.

6.4 **Resistance to Heat & Fire**

X-Ref. 5.8

Test Results ID / Sample No.	Test Procedure: EN62052-11 Heat & Fire
Heat & Fire / 2271235	19EMA TP04

The meter was tested in accordance with IEC 60695-2-11 as follows:

Terminal block tested at 960°C for 30 seconds.

Result: Flames extinguish with 30 seconds when glow wire removed.

Terminal cover and meter case tested at 650°C for 30 seconds.

Result: No flames or drips occur.

ANNEX A Radiated Immunity Test 80-2000MHz– Graphical plots of results

Radiated Immunity Test 80-2000MHz – Graphical plots of results (cont)

Radiated Immunity Test 80-2000MHz – Graphical plots of results (cont)

Radiated Immunity Test 80-2000MHz – Graphical plots of results (cont)

Radiated Immunity Test 2 – 2.7GHz – Graphical plots of results

Radiated Immunity Test 2 – 2.7GHz – Graphical plots of results (cont)

Radiated Immunity Test 2 – 2.7GHz – Graphical plots of results (cont)

Radiated Immunity Test 2 – 2.7GHz – Graphical plots of results (cont)

ANNEX B Conducted Immunity Test – Graphical plots of results

Photographs of Meter Under Test ANNEX E

Front View

Rear View

Photographs of Meter Under Test (cont)

RHS View

Photographs of Meter Under Test (cont)

Bottom View

