APPENDIX E

PHASE 1B ARCHEOLOGICAL INVESTIGATION
Phase IB Archaeological Investigations for the Rochester Area Reliability Project

Addendum 1
Station 255 Alternate Site 20

Town of Henrietta, Monroe County, New York

OPHRP Project No.: 13PR02927

Prepared for:
Rochester Gas and Electric Corporation
1300 Scottsville Road
Rochester, New York 14624

Prepared by:
Andrew Wyatt, M.A.
James Burton, B.A.

URS Corporation
437 High Street
Burlington, New Jersey 08016

August 2015
OPRHP Management Summary

SHPO Project Review Number: 13PR02927

Involved State and Federal Agencies: Public Service Commission

Phase of Survey: Phase IB

Location Information
 Minor Civil Division: Town of Henrietta
 County: Monroe

Survey Area (Metric & English)
 Length: 687 meters (2,253 feet) north to south
 Width: 774 meters (2,538 feet) west to east
 Depth: Variable
 Number of Acres Surveyed: ~53 hectares (131 acres)

USGS 7.5 Minute Quadrangle Map: West Henrietta

Archaeological Survey Overview
 Number and Interval of Shovel Tests: 1269 shovel test pits at 15.0-meter (49.2-foot) intervals

Results of Archaeological Survey
 Number and name of sites identified: Station 255 Alt. 20 Site 1 (Prehistoric) A055.07.
 Station 255 Alt. 20 Site 2 (Prehistoric)
 Station 255 Alt. 20 Site 3 (Historic)

 Number and name of sites recommended for Phase II/Avoidance: None

Report Authors: Andrew Wyatt and James Burton

Date of Report: August 2015
Abstract

URS Corporation (URS) conducted a Phase IB archaeological investigation for Rochester Gas and Electric Corporation’s (RG&E) Station 255 Alternate Site 20, which is a component of RG&E’s larger Rochester Area Reliability Project (RARP). The Phase IB archaeological investigation was part of a larger environmental investigation to determine the feasibility of constructing a new electric substation (Station 255) east of the Genesee River. The study area for the project is located on gently rolling uplands in the Town of Henrietta, Monroe County, New York and encompasses 53 hectares (131 acres). Because the location of Station 255 and any associated wetland mitigation areas within the study area have not been selected at this date, an area of potential effects (APE) has not been defined.

Ground surface visibility was negligible within the study area; therefore, field survey methods were limited to shovel-testing at 15-meter (49.2-foot) intervals. A total of 29 hectares (71.7 acres) of the study area was surveyed by this method. A total of 1269 shovel test pits were excavated in the study area. The remaining 24 hectares (59.3 acres), primarily wetlands, slopes greater than 15 percent, and disturbed areas was covered by pedestrian survey. Three archaeological sites were identified during the survey. Station 255 Alt. 20 Site 1 was a small prehistoric site that yielded one chert tool and one chert flake from the plowzone. Station 255 Alt. 20 Site 2 consisted of a single chert flake recovered from the plowzone. Station 255 Alt. 20 Site 3 included two concrete foundations and a surface refuse disposal area located on the eastern boundary of the study area. The site is part of a nineteenth through twentieth century farmstead that extends outside of the study area boundary to the east.

It is URS’s opinion that Station 255 Alt.20 Sites 1 and 2 are not eligible for listing on the National Register of Historic Places (NRHP) due to their low artifact counts and lack of temporally diagnostic artifacts or features. It is also URS’s opinion that the portion of Station 255 Alt. 20 Site 3 within the study area is unlikely to contribute to the NRHP eligibility of the larger site based on the recent date of the foundations and recovered artifacts. Thus, it is URS’s recommendation that no further archaeological investigations are necessary within the study area.

Artifacts and documentation from the Phase IB investigation are temporarily housed at the URS Archaeology Laboratory, Burlington, New Jersey, pending the landowner’s decision regarding donation and the identification of a permanent repository.
Table of Contents

OPRHP Management Summary ... i
Abstract ... ii
List of Figures, Tables, and Photographs .. iv

1 Introduction ... 1

2 Project Setting ... 3

3 Background Research and Archaeological Sensitivity Assessment 9

4 Methods ... 12
 Field Survey Methods ... 12
 Laboratory Analysis Methods .. 12

5 Field Survey Results ... 13

6 Summary and Recommendations ... 30

7 References ... 31

List of Figures, Tables, and Photographs

Figures
1 Project Location (West Henrietta Quadrangle) ... 2
2 Satellite Image of the Study Area ... 4
3 Soil Mapping Units in the Study Area ... 10
4 Study Area in 1872 (Beers 1872) .. 11
5a-c Survey Coverage Map ... 14
6 Representative STP Profiles, Section 1 ... 17
7 Representative STP Profiles, Section 2, 3, and 4 .. 21
8 Representative STP Profiles, Section 2 ... 22
9 Map of Station 255 Alt. 20 Site 1 ... 25
10 Map of Station 255 Alt. 20 Site 2 .. 26
11 Map of Station 255 Alt. 20 Site 3 .. 29
Tables

1. Study Area Soil Descriptions
2. Station 255 Alt. 20 Site 3 Artifact Inventory

Photographs

1. Kame/drumlin flank in southeastern portion of study area, facing west
2. Slope from wetland to level ridge, southwestern portion of study area, facing south
3. Undulating ridge surface in southwestern portion of study area, facing south
4. Western edge of ridge in southwestern portion of study area, facing south
5. Wetland in eastern portion of study area, facing south
6. View from NYPA ROW to gas pipeline ROW, facing southeast
7. Parking lot in Section 1, facing west
8. Former Kodak maintenance buildings in Section 1, facing north
9. Slope to Genesee River floodplain taken from STP MM-37, facing north
10. Genesee River floodplain from STP MM-37, facing west
11. Forested wetland in Section 2 taken from STP AA-23, facing south
12. Forested wetland surfaces in Section 3, taken from STP AA-15, facing south
13. Undulating ridge surface in Section 3 taken from STP G-46, facing west
14. Section 4, Station 255 Alt. 20 Site 3, Foundation A, facing west
URS Corporation (URS) conducted a Phase IB archaeological investigation for Rochester Gas and Electric Corporation’s (RG&E) Station 255 Alternate Site 20, which is a component of RG&E’s larger Rochester Area Reliability Project (RARP). The purpose of the RARP is to improve the reliability and stability of the high-voltage electrical supply in the Rochester area by adding capacity to RG&E’s existing circuits. The present Phase IB archaeological investigation was part of a larger environmental investigation to determine the feasibility of constructing a new electric substation (Station 255) east of the Genesee River (Figure 1). The study area for the project is located on gently rolling uplands in the Town of Henrietta, Monroe County, New York and encompasses 53 hectares (131 acres). Because the location of Station 255 and any associated wetland mitigation areas within the study area have not been selected at this date, an area of potential effects (APE) has not been defined.

In April 2013, RG&E received a Certificate of Environmental Compatibility and Public Need from the New York State Public Service Commission (PSC) for the RARP under Article VII, “Siting of Major Utility Transmission Facilities,” of the New York State Public Service Law (PSC Case 11-T-0534). RG&E’s preferred location for Station 255 is in an agricultural field west of the Genesee River. This preferred location was the subject of Phase IA and IB archaeological surveys by Borstel (2013a, b). Phase IB archaeological investigations of the RARP transmission line support structures were reported in Wyatt and Harris (2013). This report is an addendum to Wyatt and Harris (2013). In April 2015, the PSC required RG&E to perform additional environmental and engineering studies at Alternate Site 20 east of the Genesee River in order to determine the feasibility of constructing Station 255 at that location. As of this date, no decision has been made regarding the final siting of Station 255.

Among other provisions, the implementing regulations of Article VII require the applicant to document the project’s potential effects to historical and archaeological resources and to make a good faith effort to avoid those effects. The PSC reviews a project’s potential effects on cultural resources in consultation with the New York State Office of Parks, Recreation, and Historic Preservation (OPRHP), which serves as the State Historic Preservation Office (SHPO). RG&E submitted a project description for Alternate Site 20 to the OPRHP in May 2015, and in June 2015, the OPRHP recommended that RG&E conduct a Phase I archaeological survey of Alternate Site 20.

The study area for Alternate Site 20 is approximately 53 hectares (~131 acres); however, the proposed size of Station 255 is approximately 4.17 hectares (~10.3 acres). The larger size of the study area was selected to give RG&E greater flexibility in substation siting, avoidance of resources, and the opportunity for on-site wetland mitigation if Alternate Site 20 was selected for construction of Station 255.

This archaeological investigation was conducted in compliance with Section 106 of the National Historic Preservation Act, the Advisory Council on Historic Preservation’s Protection of Historic Properties (36 CFR 800), and the New York State Historic Preservation Act of 1980. The survey followed the Standards for Cultural Resource Investigations and the Curation of Archaeological Collections in New York State, prepared by the New York Archaeological Council and adopted by the New York State Office of Parks, Recreation, and Historic Preservation (1994). This report follows the State Historic Preservation Office’s Phase I Archaeological Report Format Requirements (2005).

Andrew Wyatt, M.A. served as the Principal Investigator for this project. Mr. Wyatt meets the Secretary of the Interior’s Professional Qualifications Standards (36 CFR 61 and Federal Register 48:44738-44739). The report was written by Andrew Wyatt and James Burton. Mr. Burton supervised and conducted the survey with Archaeological Field Technicians Todd Kemmler, Ethan Mott, Fernando Ramirez-Cotto, Cameron Robinson, and Michael Way between July 6 and 24, 2015. Nina Shinn produced the graphics for this report.
Figure 1: Project Location (West Henrietta Quadrangle)
Project Setting

The study area is located at the western edge of the Ontario Drumlins section of the larger Erie-Ontario Lowland near its contact with the Appalachian Plateau to the south, and is located entirely within the Genesee River basin. The Erie-Ontario Lowland is generally characterized by low relief; however the Ontario Drumlins section, which extends from Syracuse to Rochester, exhibits more moderate relief (Cressey 1966). As its name implies, the Ontario Drumlins section contains numerous closely-packed drumlins which typically trend north to south in the direction of ice advance. The drumlins were formed by subglacial erosion of till sheets, possibly during stillstand of the Laurentide Ice Sheet ca. 18,000 years B.P. Areas between drumlins were subsequently covered by finer-grained glaciolacustrine sediments from glacial Lake Iroquois (Kerr and Eyles 2007).

The study area is drained by a small first-order Genesee River tributary which originates in the southwestern portion of the study area. The study area is mapped as glacial till by Muller and Caldwell (1986); however, soils mantling the till are primarily glaciolacustrine in origin (Web Soil Survey 2015). Bedrock underlying the study area is mapped as the Vernon Formation, which is composed of shale and interbedded dolostone (USGS 2015).

The study area includes large delineated wetlands, a perennial first-order stream, and several intermittent drainages (Figure 3). Elevations range from 520 to 620 feet above mean sea level (amsl.). The highest elevation is in the southeastern corner of the study area which is the western flank of a kame or drumlin. From this point, the study area slopes westward to a sharper drop to the Genesee River floodplain. The floodplain is approximately two to three meters (6.5 to 10 feet) above the river with a steep eroded edge along the riverbank. The width of the floodplain varied across the study area. In the north, the floodplain was approximately 30 meters (98 feet) wide, while areas to the south were closer to 15 meters (49 feet). Multiple sinuous backchannels were present on the floodplain. A buried sewer line is also present on the floodplain.

As noted above, the southeast portion of the study area is located on the flanks of a kame or drumlin at an elevation of 620 feet and has a ground surface that slopes slightly (approximately three to eight percent) to the northwest (Photograph 1). The flank was a fallow agricultural field during the survey and included dry intermittent drainage channels with exposed cobbled bottoms. The channels appeared to direct runoff to the northeast and west into the adjacent wetlands and first-order stream. Slopes increased in proximity to the stream. Surrounding the creek on both sides were wide forested wetlands with inundated surfaces.

The southwest portion of the study area is dominated by a narrow, level ridge that was planted in corn during the survey. Along the eastern edge of the field, closest to the stream and the surrounding wetland, the elevation is approximately 560 feet amsl. and then rises slightly out of the wetland onto the well drained surface and flanks of the ridge (Photograph 2). The ridge slopes downward to the west with undulating surfaces and intermittent drainage channels that exposed cobbles and gravels (Photograph 3). At the base of the ridge’s western edge, approximately 61 meters (200 feet) from the Genesee River, the ground surface leveled out enough to allow for standing water in some locations and soils that appeared poorly drained in others (Photograph 4).

North of the creek and west of East River Road, the study area includes a broad wetland with low brush and wetland vegetation (Photograph 5). The elevation is approximately 550 feet amsl. with higher elevations to the south and a slight rise to the north. The rise to the north is cut from east to west by the Empire State natural gas pipeline right-of-way (ROW) and the New York Power Authority (NYP) ROW (Photograph 6). There is a small portion of that area that appeared not to have any major disturbances and has a slight slope to the southeast. The area contained small wetland pockets, but to the west, contained a large amount of previous disturbances from parking lot construction, roadways, transmission line installations, and fill/push piles. At the base of the slope, running parallel to the river all the way down to the southern extent of the study area, is the floodplain described above.
Figure 2: Satellite Image of the Study Area
Photograph 1: Kame/drumlin flank in southeastern portion study area, facing west

Photograph 2: View of slope from wetland to level ridge in southwestern portion of study area, facing south.
Photograph 3: Undulating ridge surface in southwestern portion of study area, facing southwest

Photograph 4: Western edge of ridge in southwestern portion of study area, facing south.
Photograph 5: Wetland in eastern portion of study area

Photograph 6: View from NYPA ROW to gas pipeline ROW, facing southeast
Continuing south of the NYPA ROW and north of the cornfield, a dense forest with pockets of swamp and standing water were scattered throughout the area. The forest included disturbances that created unintentional “manmade” drainages that have cut into the existing landforms and sloping surfaces. These drainages have eroded away at the surface and feed the backchannel and wetlands along the river’s edge and floodplain.

Eleven soil series are mapped within the study area. These are subdivided into 17 mapping units based primarily on slope percentage and texture (Web Soil Survey 2015). Table 1 lists salient data on each series, and Figure 3 depicts the location of mapping units within the study area. The majority of these series were developed from glaciolacustrine deposits. Soils of the Hilton and Ontario developed in glacial till deposited on till plains. Eel and Genesee soils are alluvial in origin and are present on the Genesee River floodplain. Churchville, Cosad, Lakemont, and Odessa soils are somewhat poorly drained to poorly drained. Mapping units of these soils correspond to wetlands within the study area.

Table 1: Study Area Soil Descriptions

<table>
<thead>
<tr>
<th>Soil Series Name</th>
<th>Soil Horizon Depth (cm)</th>
<th>Color</th>
<th>Texture, Inclusions</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cayuga</td>
<td>Ap 0-20 E 20-30 Bt 30-64 C 64-183</td>
<td>Dk G Brn Brn RBrn Brn</td>
<td>SiLo SiLo SiCl Lo to Sa Grl</td>
<td>Moderately Well</td>
</tr>
<tr>
<td></td>
<td>Ap 0-23 E 23-28 BE 28-38 Bt 38-66 2C 66-203</td>
<td>VDk G Brn Pk G R Brn R Brn RG</td>
<td>SiLo SiLo SiCl Lo SiCl Lo Sa</td>
<td>Somewhat Poor</td>
</tr>
<tr>
<td></td>
<td>Ap 0-20 Bw1 20-33 Bw2 33-56 BC 56-81 2C 81-182</td>
<td>V Dk G Brn YBrn YBrn Brn RBrn</td>
<td>LoSa LoSa LoSa LoSa SiCl w/ varves</td>
<td>Moderately Well</td>
</tr>
<tr>
<td></td>
<td>Ap 0-23 Bw1 23-53 Bw2 53-76 2C 76-182</td>
<td>V Dk Brn Brn Brn Brn RBrn</td>
<td>LoSa LoSa LoSa SiCl w/ varves</td>
<td>Somewhat Poor</td>
</tr>
<tr>
<td></td>
<td>Ap 0-25 Bw1 25-45 Bw2 45-60 BCg 60-96 Cg 60-183</td>
<td>V Dk G Brn Dk G Brn Brn G Brn Dk G Brn</td>
<td>SiLo SiLo SiLo w/ iron masses SiLo w/ iron masses SiLo w/ iron masses</td>
<td>Moderately Well</td>
</tr>
<tr>
<td></td>
<td>Ap 0-23 Bw1 23-51 Bw2 51-91 C 91-216</td>
<td>Dk G Dk G Brn Brn Dk G Brn</td>
<td>SiLo SiLo SiLo w/ iron masses</td>
<td>Well</td>
</tr>
<tr>
<td></td>
<td>Ap 0-22 (0-9) E 22-61 (9-17) Bt 61-91 (24-36) C 91-183 (36-72)</td>
<td>Dk G Brn Brn RBrn RBrn</td>
<td>Lo, 10% Grl Lo, 10% Grl Lo, 20% Grl Lo, 20% Grl</td>
<td>Moderately Well</td>
</tr>
</tbody>
</table>

Key: Shade: Lt – Light, Dk – Dark, V - Very
Texture: Lo – Loam, Si – Silt, Cl – Clay, Sa - Sand
Other: Grl – Gravel, Cbs – Cobbles
Table 1: Study Area Soil Descriptions

<table>
<thead>
<tr>
<th>Soil Series Name</th>
<th>Soil Horizon Depth (cm)</th>
<th>Color</th>
<th>Texture, Inclusions</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakemont Ap</td>
<td>0-20 (0-8)</td>
<td>Blk</td>
<td>SiClO</td>
<td>Poor to Very Poor</td>
</tr>
<tr>
<td></td>
<td>Btg 20-66 (8-26)</td>
<td>Gry</td>
<td>SiCl, w/ iron masses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C 66-162 (26-60)</td>
<td>Dk RGry</td>
<td>SiClO</td>
<td></td>
</tr>
<tr>
<td>Odessa Ap</td>
<td>0-20 (0-8)</td>
<td>Dk GBrn</td>
<td>SiLo</td>
<td>Somewhat Poor</td>
</tr>
<tr>
<td></td>
<td>Bt/E 20-25 (8-10)</td>
<td>Brn</td>
<td>SiClO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bt 25-63 (10-25)</td>
<td>RBrn</td>
<td>SiCl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C 63-183 (25-72)</td>
<td>D RGry</td>
<td>SiCl</td>
<td></td>
</tr>
<tr>
<td>Ontario loam Ap</td>
<td>0-20 (0-8)</td>
<td>Dk Brn</td>
<td>Lo, 10% Grl, Cbs</td>
<td>Well</td>
</tr>
<tr>
<td></td>
<td>E 20-36 (8-14)</td>
<td>Brn</td>
<td>Lo, 10% Grl, Cbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bt 36-99 (14-39)</td>
<td>Brn to RBrn</td>
<td>Lo, 20% Grl, Cbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C 99-183 (39-72)</td>
<td>Brn</td>
<td>Lo, 20% Grl, Cbs</td>
<td></td>
</tr>
</tbody>
</table>

Key: Shade: Lt – Light, Dk – Dark, V - Very
Texture: Lo – Loam, Si – Silt, Cl – Clay, Sa - Sand
Other: Grl – Gravel, Cbs – Cobbles

3

Background Research and Archaeological Sensitivity Assessment

Native American and Euro-American historic contexts, previously recorded archaeological sites, and archaeological surveys in proximity to the RARP were reported in Borstel (2013) and in Wyatt and Harris (2013) and are not repeated here. There are no previously recorded archaeological sites in the study area. Previous archaeological surveys in the study area include Wyatt and Harris (2013) and Weir et al. (1992). Wyatt and Harris (2013) examined the proposed locations of transmission line support structures for the RARP adjacent to the NYPA transmission lines. Weir et al. (1992) surveyed the Empire State gas pipeline ROW, also adjacent to the NYPA transmission lines. No archaeological sites were identified in the study area by either survey.

Based on data from the recorded archaeological sites within 3.2 kilometers (two miles) of the RARP in landscape settings similar to those in the study area, small, short-term resource procurement camps were expected to be the most prevalent site type encountered. Known Late Woodland period villages in the local area appear to be located on broad drumlin summits. Nevertheless, the presence of a perennial stream, level areas, and gentle slopes within the study area together with the proximity of the Genesee River indicated that the study area possessed a high probability to contain a variety of Native American site types. Based on this assessment, the majority of the study was tested at 15-meter (49.2-foot) intervals.

Browne’s 1858 Map of Monroe County, New York (Browne 1858) depicts two structures along on the east side of East River Road. These structures are labeled “L. Search” and “M.E. Church.” Figure 4 is an overlay of the study area on F.W. Beer’s 1872 Atlas of Monroe County, New York (Beers 1872) and shows the same two structures as out-parcels adjacent to the current study area. Based on historic mapping, the portions of the study area adjacent to these out parcels have an high probability to contain archaeological sites associated with the map documented structures.
Figure 3: Soil Series in the Study Area
Figure 4: Study Area in 1872 (Beers 1872)
FIELD SURVEY METHODS

In order to facilitate the survey, a grid of potential shovel test pit (STP) locations was established in the project GIS across the study area along 46 east to west transects (Transects A through TT). Spacing between transects and potential STP locations along a given transect measured 15 meters (49.2 feet). Accurate navigation to pre-designated STP locations in the field was accomplished using sub-meter-accurate GPS equipment. Results of excavations or visual inspections at each location were recorded in the field on the GPS unit.

Archaeological fieldwork was conducted using hand-excavated STPs. STPs measured 0.40 meters (~1.3 feet) in diameter and were excavated according to natural soil horizons. All excavated soils were screened through 6-millimeter (0.25-inch) hardware mesh for systematic artifact recovery. Recovered artifacts were placed in zip lock bags labeled with all relevant provenience information. Munsell® readings for soil color, descriptions of soil texture, inclusions, and the presence and types of artifacts recovered were recorded on standardized forms. Field conditions were recorded using digital photography. After excavation, STPs were backfilled, leveled, and left as close to original condition as possible.

LABORATORY ANALYSIS METHODS

Artifacts recovered during this investigation were processed, analyzed, and inventoried. All artifacts underwent standard processing in preparation for their subsequent analysis and interpretation. During this stage of work all artifacts were washed with soft-bristle brushes using water mixed with Orvus® (a neutral pH synthetic anionic detergent) and air-dried on racks. Once artifacts had been allowed to thoroughly dry, those from each depositional context were sorted by gross raw material category (e.g., ceramic, glass, metal, etc.) and then labeled with assigned catalog numbers using archival ink. After artifacts were labeled, they were placed in 4-mil polyethylene bags labeled on the outside with appropriate provenience information using permanent markers.

Basic analyses performed on recovered historic artifacts included the identification of key characteristics for each object, including general form and function (e.g., cut nail – architectural), material composition (ceramic, glass, metal, etc.), ware type (creamware, lead glass, white ball clay, etc.) manufacturing technique, decoration, date of manufacture, and maker’s marks (if present). Additional artifact characteristics were recorded for selected objects, including those related to details of decoration, use-wear, and specific functions. All recorded artifact data was entered into a Microsoft Access® data base and maintained as part of the permanent record of this study. Debitage and stone tools were classified according to lithic material and stage in the lithic reduction sequence.
Field Survey Results

Fieldwork was conducted between July 6 and 24, 2015 by a seven person archaeological team. Weather conditions were primarily sunny and warm. Survey coverage is depicted in Figure 5a through 5c. For ease of discussion, the study area was divided into four sections based on natural and man-made boundaries.

Section 1 consisted of the area within and north of the NYPA ROW as well as the area encompassed within the Empire State gas pipeline that ran east west through transects LL and MM. Much of Section 1 was previously disturbed by either the construction or installation of the pipeline, the construction of the NYPA transmission lines, or the parking lot and maintenance buildings formerly owned by the Kodak Company (Photographs 7 and 8). The largest testable portion of Section 1 was located west of East River Road between the pipeline ROW and the vacated Kodak office complex located north of the study area. Excavations revealed uniform soils of an upper dark yellowish brown (10YR 3/4) to brown (10YR 4/3) sandy loam Ap horizon overlying a yellowish brown (10YR 5/4 to 5/6) sandy silt loam, B horizon (Figure 6). Transect TT ran through a wooded area parallel to the parking lot and NYPA ROW. The soils consisted of the same upper A horizon and lower B horizon observed in the previously mentioned STPs. The area immediately west of the existing parking lot contained mostly disturbed soils from construction, surface grading, and push piles of soil.

West of the large disturbed area was a steep drop in elevation with a slope greater than 15 percent (Photographs 9 and 10). The slope leveled out at the Genesee River floodplain. At the base of the slope was a backchannel with inundated surfaces and wetland vegetation. Continuing west of the back channel, there was a slight rise in elevation before dropping again to the river. STPs PP-41, OO-41, and NN-42 were excavated on the floodplain rise. The results were uniform in STPs PP-41 and OO-41 with three strata consisting of an upper brown (10YR 4/3) sandy silt Ac horizon, then a yellowish brown (10YR 5/4) fine silt Bw1 horizon, and a third stratum of yellowish brown (10YR 5/4) silt clay Bw2 horizon (Figure 6). STP NN-42 was set closer to the backchannel and revealed an upper brown (10YR 4/3) silt clay A horizon and a lower yellowish brown (10YR 5/4) silt clay Bg horizon with heavy iron oxidation. No artifacts were recovered during the investigations of Section 1.

Section 2 was located south of Section 1 and began with Transect KK, running parallel to and south of the pipeline ROW. The section’s southernmost Transect X used the first-order stream as its southern boundary. The eastern extent of Section 2 fell within and around a large forested wetland (Photograph 11). The majority of test locations that fell in the wetland were either inundated and not excavated or revealed soils consisting of an upper Ag horizon with heavy oxidation and gleyed soil (e.g. STP GG-5) (Figure 7). West of the large wetland was an open field with gently sloping surfaces to the southwest. Excavations revealed uniform soils consisting of an upper brown (10YR 4/3) silt loam Ap horizon overlying a yellowish brown (10YR 5/6) silt loam B horizon. West and south of the field was a heavily forested area that continued west to the Genesee River. Testing within the forest yielded an upper very dark grayish brown (10YR 3/2) silt loam A horizon and a lower yellowish brown (10YR 5/6) silt loam B horizon. The uniform soils continued through the wooded portions of the segment with the exception of STPs located on Transects X and Y.

Some of test locations on Transect Y and the majority of X were disturbed by demolition fill and soil/stone piles. There were intermittent ditches and push piles from the agricultural field to the south in Section 3. At STPs X-42 and X-43, the area was more disturbed than others with an obvious refuse pile of cinder blocks and recently discarded trash. After further investigation of the area it was apparent the location was a dumping zone for a recent demolition project. Continuing west, the ground surface sloped downward to the Genesee River floodplain. A sewer line was present on the floodplain that ran northeast and southwest parallel to the river. The line was cut through the woods in a 7.5 meter (25 foot) wide corridor and featured protruding manhole covers. Much like the floodplain in Section 1, the area between the slope and river contained a backchannel/wetland and a slightly higher elevated portion before the drop to the river. Two STPs (JJ-44 and KK-44) were excavated on the floodplain rise (Figure 8). The soils in STP JJ-44 consisted of an upper dark yellowish brown (10YR 3/4) silt loam A horizon and an underlying pale brown (10YR 6/3) silt loam B horizon. STP KK-44 was located slightly closer to the bank of the river and displayed evidence of frequent high-energy flooding. Excavations yielded two strata with an upper very dark grayish brown (10YR 3/2) sand Ac horizon with 20 percent pebbles and a lower yellowish brown (10YR 5/4) sand Bc horizon with 20 percent pebbles throughout.