Energy Storage Roadmap for New York's Electric Grid

NEW YORK BATTERY AND ENERGY STORAGE TECHNOLOGY CONSORTIUM

William Acker Energy Storage Technical Conference May 26th, 2016

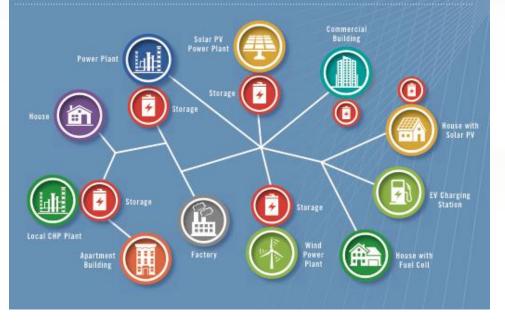
ENERGY Storage Roadmap

FOR NEW YORK'S ELECTRIC GRID

Changing Electricity Grid

Key Goals supported by Energy Storage

- Improving the efficiency and capacity factor (utilization) of the electric grid
- Integrating an increasing amount of renewable energy
- Enhancing the reliability and resilience of the electric grid


Electricity Grid Architecture

TOMORROW >> NETWORKED, CLEAN, LOCAL POWER

NEW YORK BATTERY

AND ENERGY S

Energy Storage Applications

DRIVERS	GUSTOMER-SITED (BEHIND THE METER)	DISTRIBUTION SYSTEM	GENERATION AND TRANSMISSION GRID
Capacity and Peak Load Reduction	 Demand charge reduction (peak shaving) Avoiding interconnection upgrades Permanent load shifting 	 Defer system upgrades (local capacity) Distributed peaker Circuit load relief/ demand response 	 Capacity (peaker plant replacement) Transmission congestion relief Transmission upgrade deferral
Renewables Integration	 Integrating distributed generation Microgrid stability Optimizing energy cost (Time shifting) 	 Increase renewable integration (circuit hosting capacity and prevent reverse power flow) Reduce renewables curtailments and congestion Circuit flexibility and stability 	 Frequency regulation Renewable firming Reduce renewables curtailments and congestion Spinning/non-spinning reserve Ramp rate reduction (duck curve issue) Time shift energy
Resilience and Reliability	 Uninterruptible Power Supply Maintaining power quality Microgrid stability Building emergency power 	 Circuit flexibility and stability Improve system reliability Voltage support and power quality (reactive power) 	 Spinning/non-spinning reserve Renewable firming Black start

Flatten the 100 hour peak

Flatten the peak 100 hours would save \$1.2 - \$1.7 billion annually according to the PSC

1GW/2GWh would eliminate over 30 hours

2GW/10GWh would provide over one-third of the total energy to flatten

Short time allows storage to perform multiple functions

Renewable Integration

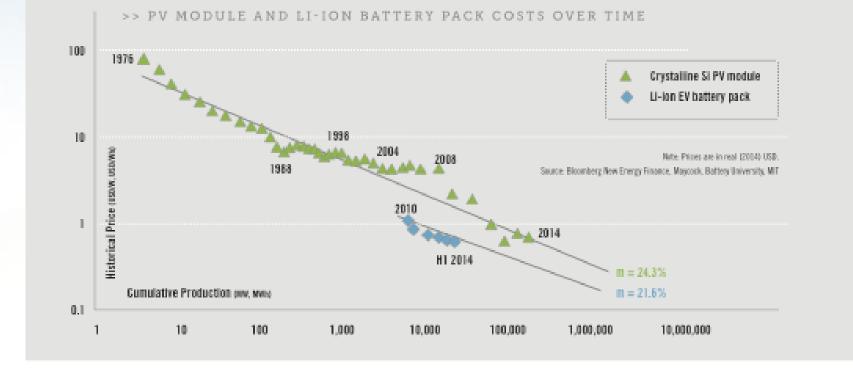
50% Renewable energy by 2030 and a need to go further to meet 80x50 greenhouse gas goal

Capacity factors drive high nameplate capacity requirement

Firming and smoothing

Energy shifting

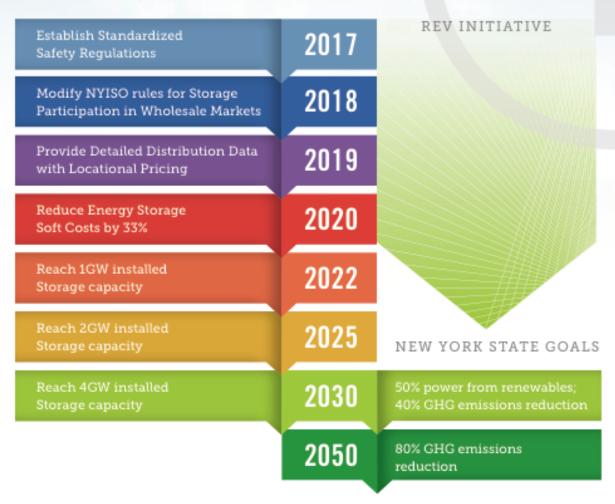
Project need for at least 4 GW of multi-hour storage and recommend detailed study



Key Challenges

- Inability to currently monetize full value of storage
 - Inability to participate in existing markets
 - Markets or other monetization mechanisms lacking
- Confidence in future revenue stream
- High soft costs
- Insufficient information availability

Battery Price Reduction



Battery prices decline with similar slope to PV

Roadmap

NY-BEST GOALS AND RECOMMENDATIONS

Storage capacity goals in GW are multi-hour systems with GWh levels discussed in Roadmap

Recommended Actions

LMP+D and peak load:

Extend existing programs

Interim programs to realize value – particularly of local capacity/load reduction

Clean Energy Standard:

- Establish Energy Storage goals
- Flexible Energy Credit

Address monetization of value in supporting REV, renewable energy and environmental goals along with revenue confidence

Thank you

NEW YORK BATTERY AND ENERGY STORAGE TECHNOLOGY CONSORTIUM

www.ny-best.org