ICAP Market Price and Payment Estimate (1)

NYCA Capability Period NYC Weighted Average Price (\$/kW-Month)
5.75 2.14
Winter 2006-07
12.54 2.87
Summer 2007 4.54 1.93
Summer 2008 5.98 2.65
Winter 2008-09 1.83 1.47
Summer 2009 8.31 3.49
Average 6.49 2.42
Con Edison Service Area ICAP Price 5.95
(2008 NYC/Westchest split: 86.8% vs 13.2%.)
Total ICAP Requirement for Con Edison 200 MW Load (MW) 233
(200 MW plus 16.5\% reserve margin)
In-City ICAP Requirement for NYC portion of 200 MW Load (MW) 162
(232 MW x 80\% x 86.8\%)
ROS ICAP Requirement for 200 MW Load (MW) 71
(Total requirement minus In-City reqirement)
In-City Annual ICAP Payment (\$) 12,603,819
(In-City requirement x NYC price)
ROS Annual ICAP Payment (\$)$2,071,928$
(ROS requirement x ROS price)
Total ICAP Payment (\$)14,675,748
(1) Source of price data: NYISO. Listed are UCAP prices, which are adjusted for outage rates.On average the ICAP prices would be about 6% lower. However, accounting for more purchases thanthe ICAP requirement due to the demand curve adjustment, the ending payment is about the same asestimated above. For demonstration purposes, the 14.7 million is used as the ICAP payment estimate.
(2) ROS $=$ Rest of State.

Increasing and Decreasing Load Response to Temperature - An Illustration

Base Load Insensitive to Temperature

Average MW Difference in Early June 2008 from Sample Period 2008

| | --- TV Occurred in June (6/1-6/15) | --- | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TV Difference | $\underline{70.6}$ | $\underline{71.9}$ | $\underline{72.4}$ | $\underline{75.7}$ | $\underline{78.4}$ | |
| | | | | | 158 | |
| 0.1 | | | 536 | 148 | -191 | |
| 0.2 | -187 | -596 | 335 | 181 | -170 | |
| 0.3 | | | | | | |
| Average | -187 | -596 | 435 | 162 | -180 | |

Average MW Difference in June 2008 from Sample Period 2008

TV Difference	70.6	71.9	--- TV Occurred in June (6/1-6/30) -----					76.2	78.4
			72.4	74.7	74.9	$\underline{75.7}$	75.8		
0.1					-85	141	141	-33	
0.2			536	-276	-122	131	175	-100	-191
0.3	-187	-405	283	-174	-172	164	114	68	-170
Average	-187	-405	409	-225	-126	145	143	-21	-180

Data source: Con Edison response to Staff IR DPS-286.
Sample period 2008 = July 1 - August 15.

Staff Pooled Regression Analysis

Dependent Variable: LOAD Method: Least Squares Sample: 1127 Included observations: 127				
Variable	Coefficie	td. Error	Statistic	Prob.
D2005	167501.3	43404.15	3.859108	0.0002
D2006	167623.8	43414.20	3.861036	0.0002
D2007	167723.0	43408.72	3.863808	0.0002
D2008	167808.5	43412.94	3.865402	0.0002
TV	-6465.767	1699.023	-3.805581	0.0002
TV^2	84.95248	22.11152	3.842001	0.0002
TV^3	-0.356338	0.095685	-3.724068	0.0003
R -squared	0.975419	Mean dep	ndent var	11015.75
Adjusted R-squared	0.974190	S.D. dep	ndent var	1062.347
S.E. of regression	170.6720	Akaike	fo criter	13.17090
Sum squared resid	3495471.	Schwarz	riterion	13.32767
Log likelihood	-829.3525	Durbin-W	tson stat	1.810193

Estimated Load at Design of 86 Degree TV

Regression 2-3 $3^{\text {rd }}$ Order Polynomial Model with Period Effect on Constant and Slope

Dependent Variable: LOAD				
Method: Least Squares				
Sample: 1127				
Included observations: 127				
Convergence achieved after 24 iterations				
$\begin{aligned} \mathrm{LOAD}=(1+ & \mathrm{C}(1) * \mathrm{D} 2006+\mathrm{C}(2) * \mathrm{D} 2007+\mathrm{C}(3) * \mathrm{D} 2008) *(\mathrm{C}(4)+\mathrm{C}(5) \star \mathrm{TV} \\ & \left.+\mathrm{C}(6) * \mathrm{TV} \wedge 2+\mathrm{C}(7) * \mathrm{TV}^{\wedge} 3\right) \end{aligned}$				
C (1)	0.010915	0.003970	2.749379	0.0069
C (2)	0.020578	0.004130	4.982453	0.0000
C (3)	0.028921	0.004229	6.839445	0.0000
C (4)	158943.3	42280.77	3.759233	0.0003
C (5)	-6118.799	1655.291	-3.696509	0.0003
C (6)	80.32805	21.54850	3.727779	0.0003
C (7)	-0.336048	0.093286	-3.602360	0.0005
R -squared	0.975922	Mean dep	ndent var	11015.75
Adjusted R-squared	0.974718	S.D. dep	ndent var	1062.347
S.E. of regression	168.9154	Akaike	fo criter	13.15021
Sum squared resid	3423890.	Schwarz	riterion	13.30698
Log likelihood	-828.0386	Durbin-	tson stat	1.836794

Estimated Load at Design of 86 Degree TV

obs	REG4F05	REG4F06	REG4F07	REG4F08
150	13087.49	13230.34	13356.81	13466.00

Sensitivity Analysis - 2008 Quadratic Model

Case 1. Observations Con Edison used

Dependent Variable: LOAD08 Method: Least Squares Sample: 136 Included observations: 36				
Variable	CoefficienStd. Errort-Statistic Prob.			
C	2776.271	8921.039	0.311205	0.7577
TV08	-72.46723	232.6781	-0.311448	0.7575
TV08^2	2.321624	1.515861	1.531554	0.1355
FRI08	-221.5944	57.59917	-3.847180	0.0005
R-squared	0.981037	Mean dependent var 10893.04		
Adjusted R-squared	0.979259	S.D. dep	endent var	946.6818
S.E. of regression	136.3387	Akaike	nfo criter	12.77260
Sum squared resid	594823.7	Schwarz	criterion	12.94855
Log likelihood	-225.9068	F-stati		551.8256
Durbin-Watson stat	2.324368	Prob (F-	tatistic)	0.000000

Case 2. Manufactured data removed

Dependent Variable: LOAD08				
Method: Least Squares				
Sample: 133				
Included observations: 33				
Variable CoefficienStd. Errort-Statistic Prob.				
C	4290.504	12034.41	0.356520	0.7240
TV08	-113.2907	318.2921	-0.355933	0.7245
TV08^2	2.596424	2.103401	1.234393	0.2270
FRI08	-223.3713	59.20100	-3.773099	0.0007
R -squared	0.972887	Mean de	endent var	10728.55
Adjusted R-squared	0.970082	S.D. dep	endent var	801.6947
S.E. of regression	138.6683	Akaike i	fo criter	12.81526
Sum squared resid	557638.2	Schwarz	criterion	12.99665
Log likelihood	-207.4518	F -statis	ic	346.8601
Durbin-Watson stat	2.313461	Prob (F-s	atistic)	0.000000

Case 3. Manufactured data and $1^{\text {st }}$ observation removed

Dependent Variable: LOAD08				
Method: Least Squares				
Sample: 233				
Included observations: 32				
Variable	Coefficie	d. Erro	Statistic	Prob.
C	-8714.853	17301.40	-0.503708	0.6184
TV08	223.6516	452.7786	0.493954	0.6252
TV08^2	0.415546	2.961094	0.140335	0.8894
FRI08	-210.6656	60.34606	-3.490959	0.0016
R-squared	0.968351	Mean dep	endent var	10787.01
Adjusted R-squared	0.964960	S.D. dep	endent var	739.6284
S.E. of regression	138.4502	Akaike	nfo criter	12.81537
Sum squared resid	536716.7	Schwarz	criterion	12.99858
Log likelihood	-201.0459	F-stati	tic	285.5706
Durbin-Watson stat	2.244476	Prob (F-	tatistic)	0.000000

Sensitivity Analysis - 2008 Quadratic Model

Case 4. Data added for 7/10/07 with load inflated 1.1%

Dependent Variable: LOAD08
Method: Least Squares
Sample: 137
Included observations: 37

$==$				
Variable	CoefficienStd. Errort-Statistic	Prob.		
$==$				
C	-1828.309	8622.350	-0.212043	0.8334
TV08	50.99620	224.1244	0.227535	0.8214
TV08^2	1.495164	1.454965	1.027629	0.3116
FRI08	-218.1714	58.85343	-3.707029	0.0008

R-squared	0.981370	Mean dependent var 10940.95	
Adjusted R-squared	0.979677	S.D. dependent var 977.8803	
S.E. of regression	139.4060	Akaike info criteri12.81446	
Sum squared resid	641323.1		Schwarz criterion
Log likelihood	-233.0676	F-statistic	58862
Durbin-Watson stat	2.361102	Prob(F-statistic)	0.000000

Case 5. Data added for 7/10/07 with load inflated 1.1% and $1^{\text {st }}$ observation removed
Dependent Variable: LOAD08
Method: Least Squares
Sample: 237
Included observations: 36

Variable	CoefficienStd. Errort-Statistic			Prob.
C	-11795.93	11590.99	-1.017682	0.3165
TV08	304.8251	298.5088	1.021160	0.3148
TV08^2	-0.118597	1.920074	-0.061767	0.9511
FRI08	-208.6147	58.79107	-3.548408	0.0012
R -squared	0.979629	Mean dep	endent var	10998.81
Adjusted R-squared	0.977719	S.D. dep	endent var	925.2919
S.E. of regression	138.1170	Akaike	fo criter	12.79852
Sum squared resid	610442.2	Schwarz	criterion	12.97447
Log likelihood	-226.3733	F-stati	ic	512.9455
Durbin-Watson stat	2.324250	Prob (F-	tatistic)	0.000000

Case 6. Case 4 with adjusted two peak loads from June 2008

Sensitivity Analysis - 2008 Quadratic Model

Estimated loads at design of 86 degree TV

obs	QUAD1F	QUAD2F	QUAD3F	QUAD4F	QUAD5F	QUAD6F
56	13714.82	13750.65	13592.56	13615.60	13541.88	13448.28

Forecasting errors at 95% confidence

obs	QUAD1E	QUAD2E	QUAD3E	QUAD4E	QUAD5E	QUAD6E
56	190.9935	266.9118	306.4587	184.4548	191.7132	173.0247

