Phase 1A Archaeological Resources Survey & Phase 1B Work Plan
Mohawk Solar Project
Towns of Canajoharie and Minden, Montgomery County, New York

Prepared for:
Mohawk Solar LLC
A subsidiary of Avangrid Renewables LLC
1125 NW Couch Street, Suite 700,
Portland, OR 97209

Prepared by:
Environmental Design & Research,
Landscape Architecture, Engineering & Environmental Services, D.P.C.
217 Montgomery Street, Suite 1000
Syracuse, New York 13202
P: 315.471.0688
F: 315.471.1061
www.edrdpc.com
Phase 1A Archaeological Resources Survey &
Phase 1B Fieldwork Plan

Mohawk Solar
Towns of Canajoharie and Minden, Montgomery County, New York

Prepared for:
Mohawk Solar LLC
A subsidiary of Avangrid Renewables LLC
1125 NW Couch Street, Suite 700,
Portland, OR 97209
Contact: Mark Eilers
Phone: (612) 804 0209

Prepared by:
Environmental Design & Research,
Landscape Architecture, Engineering & Environmental Services, D.P.C.
217 Montgomery Street, Suite 1000
Syracuse, New York 13202
P: 315.471.0688
F: 315.471.1061
www.edrdpc.com

September 2017
MANAGEMENT SUMMARY

SHPO Project Review Number: 17PR06371

Involved State/Federal Agencies: New York State Office of Parks Recreation and Historic Preservation (Section 14.09); New York State Department of Public Service (Article 10)

Phase of Survey: Phase 1A Archaeological Resources Survey and Phase 1B Work Plan

Location Information: Towns of Canajoharie and Minden, Montgomery County

Survey Area:
 Project Description: Utility-scale 90-megawatt solar facility consisting of ground-mounted photovoltaic arrays and associated infrastructure.
 Project Area: Approximately 6,625-acre Facility Area surrounding all Facility components (APE for Direct Effects = approximately 1,000 acres)

USGS 7.5-Minute Quadrangle: Canajoharie, NY, Fort Plain, NY, Sharon Springs, NY, and Sprout Brook, NY

Archaeological Survey Overview:
 Shovel tests: N/A
 Excavation units: N/A
 Surface survey: 133 acres (to date)

Results of Archaeological Survey:
 Pre-contact sites: 4
 Historic period sites: --

Report Authors: Nicholas P. Freeland, RPA, Jordon D. Loucks, RPA, and Andrew Roblee

Date of Report: September 2017
TABLE OF CONTENTS

1.0 INTRODUCTION .. 1
 1.1 Purpose of the Investigation ... 1
 1.2 Facility Location and Description ... 2
 1.3 NYSOPRHP Consultation ... 4
 1.4 Facility’s Area of Potential Effect and Proposed Construction Methods 4

2.0 BACKGROUND AND SITE HISTORY ... 8
 2.1 Geology and Soils ... 8
 2.2 Previous Archaeological Resource Surveys within 1 Mile of the Facility Area 11
 2.3 Previously Identified Archaeological Sites within 1 Mile of the Facility Area 12
 2.4 History of the Facility Area ... 15
 2.5 Existing Conditions .. 21

3.0 ARCHAEOLOGICAL SENSITIVITY ASSESSMENT .. 23
 3.1 Pre-Contact Native American Archaeological Sensitivity Assessment 23
 3.2 Historic Period Archaeological Sensitivity Assessment .. 24
 3.3 Ground Slope and Disturbance ... 24

4.0 PHASE 1 ARCHAEOLOGICAL SURVEY FIELDWORK ... 26
 4.1 Phase 1 Archaeological Survey Methodology ... 26
 4.2 Phase 1B Archaeological Survey Reports and Delivery of Electronic Data 27
 4.3 Results of Preliminary Phase 1 Archaeological Survey Fieldwork Conducted to Date 28
 4.3.1 B2.02 Pre-contact Isolate .. 30
 4.3.2 B4.03 Pre-contact Isolate .. 30
 4.3.3 Nestle Lithic Scatter 1 .. 31
 4.3.4 E3.01 Pre-contact Isolate .. 32

5.0 SUMMARY AND CONCLUSIONS .. 34
 5.1 Potential Effect on Archaeological Resources ... 34
 5.2 Summary of Archaeology Survey Work Plan .. 34
 5.3 Summary of Preliminary Phase 1 Archaeological Survey Fieldwork Conducted to Date 35
 5.4 Conclusions and Recommendations .. 36

6.0 REFERENCES ... 37
LIST OF TABLES
Table 1. Major Mapped Soil Units within the Facility Area (SCS, 1978; Esri and NRCS, 2017). ..9
Table 2. Previous Archaeological Surveys within 1 Mile (1.6 Kilometers) of the Facility Area.11
Table 3. Previously Recorded Archaeological Sites within 1 Mile (1.6 Kilometers) of the Facility Area13
Table 4. Summary of Archaeological Survey Results by EDR Survey Areas ...29

LIST OF FIGURES
Figure 1. Regional Facility Location
Figure 2. Facility Area Topography
Figure 3. Facility Area Soils
Figure 4. Previously Conducted Archaeological Surveys
Figure 5. 1853 Geil & Hunter Map of Montgomery County, New York
Figure 6. 1905 Century Map Co. Canajoharie and Minden, New York
Figure 7. 1944 USGS Canajoharie, Fort Plain, Sharon Springs, and Sprout Brook, New York 1:31,680 topographic quadrangles.
Figure 8. Preliminary Archaeological Survey Areas
Figure 9. Preliminary Archaeological Survey Results

LIST OF INSETS
Inset 1. Typical steel support beams for PV panels and pile-driver during construction. ..6
Inset 2. Installed PV panels on steel support beams in Somerset County Maryland. ..6
Inset 3. Trenching for collection line installation ..7
Inset 4. 1779 Sauthier Chorographical Map of The Province of New-York (left). ...18
Inset 5. 1829 Burr Map of the County of Montgomery (right) ...18

LIST OF APPENDICES
Appendix A. Photographs
1.0 INTRODUCTION

1.1 Purpose of the Investigation
Mohawk Solar LLC ("Mohawk Solar" or the "Applicant"), a wholly-owned subsidiary of Avangrid Renewables, LLC ("Avangrid"), Environmental Design & Research, Landscape Architecture, Engineering, & Environmental Services, D.P.C. (EDR) has prepared a Phase 1A archaeological resources survey and Phase 1B archaeological survey work plan for the proposed Mohawk Solar Facility (the Facility) located in the Towns of Canajoharie and Minden, Montgomery County, New York (Figure 1). The Phase 1A survey supports the Preliminary Scoping Statement (PSS) being prepared as part of review of the Project under Article 10 (Certification of Major Electrical Generating Facilities) of the New York State Public Service Law. The information and recommendations included in this report are intended to assist the Department of Public Service (DPS) and the New York State Office of Parks, Recreation and Historic Preservation (NYSOPRHP) in their review of the proposed Facility in accordance with Article 10. Please note that this report addresses only archaeological resources; information concerning the Facility's potential effect on historic-architectural resources has been (and will continue to be) provided to NYSOPRHP under separate cover.

As described in 16 NYCRR § 1001.20 (Exhibit 20: Cultural Resources), an Article 10 application must include:

(a) A study of the impacts of the construction and operation of the facility interconnections and related facilities on archaeological resources including:
 (1) a summary of the nature of the probably impact on any archaeological/cultural resources identified addressing how those impacts shall be avoided or minimized;
 (2) a Phase 1A archaeological/cultural resources study for the Area of Potential Effect (APE) for the facility site and any areas to be used for interconnections or related facilities, including a description of the methodology used for such study;
 (3) a Phase 1B study, if required, as determined in consultation with OPRHP;
 (4) where warranted based on Phase I study results as determined in consultation with OPRHP, a Phase II study based on intensive archaeological field investigations shall be conducted to assess the boundaries, integrity and significance of cultural resources identified in Phase I studies. Phase II shall be designed to obtain detailed information on the integrity, limits, structure, function, and cultural/historical context of an archaeological site, as feasible, sufficient to evaluate its potential eligibility for listing on the State or National Register of Historic Places. The need for and scope of work for such investigations shall be determined in consultation with OPRHP and DPS;
 (5) a statement demonstrating that all archaeological materials recovered during the facility cultural resources investigation shall be cleaned, catalogued, inventoried, and curated according to New York Archaeological Council standards; that to the extent possible, recovered artifacts shall be identified as to material, temporal or cultural/chronological associations, style and function; and that the facility archaeologists shall provide temporary storage for artifacts until a permanent curatorial facility is identified; and
 (6) an Unanticipated Discovery Plan that shall identify the actions to be taken in the unexpected event that resources of cultural, historical, or archaeological importance are encountered during the excavation process. This plan shall include a provision for work stoppage upon the discovery of possible archaeological or human remains. In addition, the plan shall specify the degree to which the methodology used to assess any discoveries follows the most recent Standards for Cultural Resource Investigations and Curation of Archaeological Collections in New York State. Such an assessment, if warranted, shall be conducted by a professional archaeologist, qualified according to the standards of New York State Archaeological Council.
The purpose of the Phase 1A cultural resources survey and Phase 1B work plan is to:

- define the Facility’s area of potential effect (APE) for Direct Effects relative to archaeological resources;
- determine whether previously identified archaeological resources are located within the APE for Direct Effects; and,
- propose a methodology to identify archaeological resources within the APE for Direct Effects, evaluate their eligibility for the State/National Register of Historic Places (S/NRHP), and assess the potential effect of the Facility on those resources.

All cultural resources studies undertaken by EDR in association with the Facility have been conducted by professionals who satisfy the qualifications criteria per the Secretary of the Interior’s (SOI) Standards for archaeology and historic preservation (36 CFR 61), as appropriate. The Phase 1A report was prepared in accordance with applicable portions of NYSOPRHP’s Phase 1 Archaeological Report Format Requirements (NYSOPRHP, 2005). All archaeological fieldwork was conducted under the supervision of a Registered Professional Archaeologist (RPA) in a manner consistent with the New York Archaeological Council’s Standards for Cultural Resources Investigations and the Curation of Archaeological Collections in New York State (the NYAC Standards; NYAC, 1994) and Section 106 of the National Historic Preservation Act of 1966 (as amended).

1.2 Facility Location and Description

The proposed Facility is a 90-megawatt solar project located within the Towns of Canajoharie and Minden in Montgomery County, New York. The Facility will include fixed-tilt racking or single axis-tracker photo-voltaic (PV) panels, together with the associated support infrastructure. The lands that are being evaluated for potential solar development encompass approximately 6,590 acres and are identified on Figure 2 as the “Facility Area”. It is important to note that not all the land identified as the “Facility Area” will be included in the Facility. Rather, the Facility Area represents the broader area within which selected parcels will be developed with solar facilities. This provides flexibility during the project development phase to minimize and avoid impacts to wetlands, cultural resources, visual resources, wildlife habitat, and other sensitive resources. The Facility will ultimately be sited on approximately 1,000 acres (ac.) (405 hectares [ha]) of leased private land within the Facility Area, which consists primarily of agricultural land.

The Facility will consist of the following components:

- A solar field of PV panels producing direct current (DC) electricity mounted on fixed-tilt racking structures or single-axis tracking structures that will follow the sun throughout the day;
• Inverters placed throughout the Facility (internal to the panel arrays) to convert DC electricity to alternating current (AC) electricity;
• A medium voltage collection system that will aggregate the AC output from the inverters;
• A substation where the Facility’s electrical output voltage will be combined and its voltage increased to the transmission line voltage of 115 kV via step-up transformers;
• A generation tie line (gen-tie) that will connect the Facility to the designated point of interconnection (“POI”);
• A switching station to be constructed by Niagara Mohawk Power Corporation (d/b/a National Grid) (“National Grid”), where the electricity will be injected into the existing bulk transmission system and delivered to homes and businesses;
• Internal infrastructure including access roads and fencing; and
• Temporary laydown areas for equipment staging during construction.

To deliver power to the New York State power grid, the Applicant proposes to interconnect with the existing St. Johnsville-Marshville 115-kV transmission line, which is operated by National Grid. An existing substation associated with this transmission line is located along Route 10, just east of the Facility Area (see Figure 2). Existing above ground transmission lines traverse the proposed Facility Area from this substation in an east-west and north-south orientation.

The following terms are used throughout this document to describe the proposed action:

Facility: Collectively refers to all components of the proposed project, including PV panels and support structures, inverters, access roads, buried and above ground collection lines, a gen-tie line, a substation, and staging areas.

Facility Area: An approximately 6,625-ac. (2,681 ha) polygon within which all Facility components will be contained and which serves as a basis for the analyses associated with the background research presented in this report (see Figure 2; Section 2.0).

Facility Site: Those parcels currently under, or being pursued, for lease (or other real property interests) with the Applicant for the location of all Facility components (which will be defined in the Article 10 Application).

APE for Direct Effects: The APE for Direct Effects for the Facility is the area containing all proposed soil disturbance associated with the Facility. As presently envisioned, the current Facility layout has an APE for Direct Effects of approximately 1,000 ac. (405 ha), although the proposed locations of specific components have not been defined yet. It is anticipated that the APE for Direct Effects will change as the Facility’s design advances and becomes more refined.
1.3 NYSOPRHP Consultation

On August 9, 2017, EDR and the Applicant met with the NYSOPRHP in their offices in Waterford, New York. During the meeting, EDR and the Applicant described the proposed Mohawk Solar Facility and discussed an appropriate approach to cultural resources studies in support of the Article 10 Application. NYSOPRHP indicated its preference that archaeological and historic resources studies for the Facility be presented in separate reports. Furthermore, Nancy Herter of NYSOPRHP indicated that NYSOPRHP considers the following types of Facility components or activities to result in minimal ground disturbance, and would not require archaeological survey in areas where these types of activities or components are proposed:

- the installation of posts (by pile-driver or similar device) for PV panel supports or fencing, and
- the installation of buried cables via cable plow or within trenches less than 1-foot (0.3 meters[m]) wide.

Therefore, NYSOPRHP indicated that Phase 1B archaeological survey would be necessary only for those areas of significant proposed disturbance (i.e., excavation, grading, or trenching greater than 1 foot [ft.] [0.3 meters [m]] in width) associated with the construction of access roads, inverter pads, and the substation, as well as any buried collection lines installed via an open trench greater than 1-ft. (0.3-m) wide, and any construction staging areas which require grading, and/or paving. These considerations are further described in Section 5.4 of this report.

1.4 Facility’s Area of Potential Effect and Proposed Construction Methods

Relative to conventional energy generation methods of a similar scale, solar facilities result in minimal impacts to the environment. Impacts from the construction and operation of solar generation are largely the result of the fact that utility-scale solar energy facilities require a large continuous area for the collection and distribution of energy. The Applicant has sited the Facility in a rural agricultural region in effort to minimize the need for land clearing and typical construction processes such as surface grading, and soil compaction. The Applicant is also choosing the least intrusive PV panel mounting systems available to minimize soil disturbance so that the land can return to its current agricultural use following the decommissioning of the Facility. Solar panels will be installed on a low-profile racking system, which typically consists of small I-beam posts driven into the ground, without the need for excavation, concrete, or other foundations. Limited grading may be necessary in some areas. In those limited areas where soil disturbance is necessary, topsoil will be stripped and stockpiled for restoration purposes. Following construction, any disturbed areas will be restored with topsoil, and a cover of native grass species will be established underneath and around the solar panels.

The Applicant is committed to minimizing soil disturbance associated with the proposed Facility as a way to minimize impacts to cultural and natural resources. Therefore, the following section includes a description of the components of
the proposed Facility and the proposed construction/installation methods associated with each component. These methods will minimize potential impacts to archaeological resources within the Facility Area.

It should also be noted that the areas proposed for development consist primarily of level to gently sloping agricultural fields (Appendix A, Photos 1-21). Due to the flat relief, minimal grading (if any) will be necessary for the Facility and, in general, no large areas of excavation or soil removal/disturbance are anticipated. Construction of the Facility will be accomplished with machines that are consistent in terms of size, weight, and tread with the agricultural machines that are currently used on these properties. Therefore, the existing conditions within the Facility Area, coupled with the specific construction/installation measures discussed below will serve to minimize impacts to archaeological resources within the APE for Direct Effects for the Facility.

As presently envisioned, it is anticipated that the Facility will include the following components:

- **PV Panels**: Solar energy will be captured by PV panels which will either be mounted on fixed pole structures or on single-axis tracking structures that will follow the sun throughout the day. The panels will have a small footprint, typically consisting of small I-beam posts driven into the ground by a pile-driving machine to a depth of approximately 5 to 8 ft. (approximately 1.5 to 2.4 m). As previously noted, because the areas proposed for PV arrays are relatively flat, no grading, grubbing, or excavation will be required for the installation of these components. Typical photos of the installation of posts for PV panels are shown in Insets 1 and 2. PV arrays will be constructed in groups within existing agricultural fields and will be surrounded by chain-link security fencing. Fence supports will typically consist of small-diameter round posts which will be driven into the ground with a similar amount of disturbance (although to a lesser depth) than the PV array support posts.

- **Electrical Inverters**: The PV panels produce direct current (DC) electricity. Inverters will be placed throughout the Facility (internal to the panel arrays) to convert DC electricity to alternating current (AC) electricity. These components will be built on concrete footers set on the ground surface with minimal associated excavation.

- **Electrical Collection System**: The Facility will require a network of cables, which will be located within the panel arrays and along access roads built to serve construction and maintenance of the Facility. These cables will be buried 36 to 48 inches (in.) (91 to 122 centimeters [cm]) below grade within trenches. The Applicant will seek to minimize the width of trenches and is considering the practicalities of installation via cable plough (see Inset 3). From each block of panel arrays, electricity will typically be conveyed via an underground Medium voltage collection system that will aggregate AC output from the inverters and will bring the electrical output to a collection substation (described below). The collection substation will be connected to the point of interconnect (POI) substation (described below) via a gen-tie which will be either underground or overhead.

Inset 2. Installed PV panels on steel support beams in Somerset County, MD. (Photo credit: EDR, 2015).

- **Collection Substation:** The Facility will require the construction of a collection substation where the Facility’s electrical output voltage will be combined and its voltage increased to the transmission line voltage of 115 kV via step-up transformers. Construction of the collection substation is anticipated to require significant excavation and grading.
Inset 3. Trenching for collection line installation (Photo credit: Hirons Cable Ploughing & Trenching). (http://www.pjhirontrenching.co.uk/)

- **Point-of-Interconnect (POI) Substation:** The Facility will require construction of a POI substation that will include transformers, breakers, switches, meters, a control room, security fence, and other related equipment. Construction of the POI substation is anticipated to require significant excavation and grading.

- **Access Roads:** The sites accommodating the solar panels (generating sites) will be served by a network of unpaved access roads. The roads will be built by adding crushed stone/gravel to the existing ground surface, with minimal (if any) need for excavation. Parking areas for maintenance vehicles within the Facility will be constructed in a similar fashion, with compacted gravel added to the ground surface with little to no excavation.

- **Construction Staging Areas:** During Facility construction, temporary construction staging areas will be used for storage of construction equipment and supplies. Similar to the lateral access roads and parking areas, laydown areas will be constructed by adding crushed stone/gravel to the existing ground surface with minimal, if any modification.

A Preliminary Facility Layout has been developed and Facility design and layout is currently ongoing. Subsequent Phase 1 archaeological survey (see Section 4 of this report) will be based on the Facility layout.
2.0 BACKGROUND AND SITE HISTORY

2.1 Geology and Soils
The proposed Facility is located in west-central Montgomery County, approximately 1 mile (mi.) (1.6 kilometers [km]) southwest of the Mohawk River. The Facility Area is situated within the rolling hills Mohawk Valley physiographic province, with elevations ranging from approximately 600 to 990 ft. (183 to 302 m) above mean sea level (AMSL) (Appendix A, Photos 1-5). The Mohawk River to the north is entrenched within its valley and is surrounded by a nearly level flood plain approximately 3,000 ft. (914 m) in the vicinity of the Facility Area. Further away from the river, where the Facility Area is located, topography becomes more rolling (see Figure 2) (Soil Conservation Service [SCS], 1978).

The final maximal extent of Pleistocene glaciers in New York occurred between approximately 28,000 and 24,000 calendar years before present (cal. BP). After that point, the Laurentide ice sheet began to recede, with minor periodic re-advances. By approximately 15,500 cal. BP the ice sheet had receded as far as modern-day Albany. After that point, the ice withdrawal occurred more quickly and the ice sheet receded into modern-day Quebec around 13,100 cal. BP. Immediately following the glacial retreat, between approximately 24,000 and 17,000 cal. BP, a series of small proglacial lakes formed within the Hudson River Valley and Central New York following the retreating ice sheet (Ridge, 2003; Lothrop and Bradley, 2012).

In Central New York, around 16,200 cal. BP in the Ontario Basin, proglacial Lake Iroquois formed against the receding ice front to the north. It received water input from the other Great Lakes to the west and eventually expanded beyond the footprint of modern-day Lake Ontario. Sometime between approximately 14,600 and 13,800 cal. BP, the retreating ice opened an outlet for Lake Iroquois near modern-day Rome, New York and the lake began to drain via the ancestral IroMohawk River Valley (essentially the same course as the modern Mohawk Valley) into the lower/later stages of Lake Albany in the Hudson Valley at much higher flow rates than occur within the Mohawk River in the modern era. Lake Iroquois’ discharge into Lake Albany lasted for between 100 and 300 years before the drainage shifted to the St. Lawrence Valley at the northeast end of the Ontario Basin (Wall, 2008; Lothrop and Bradley, 2012). The IroMohawk River’s higher rate of flow during the terminal Pleistocene account for the large trench the river currently occupies within the Mohawk Valley, which is much larger than could be accounted for by modern or historically documented rates of flow. Furthermore, the glacial history of the area means that many of the uplands within and surrounding the Mohawk River are blanketed by glacial till or soils formed in glacial till (SCS, 1978).

The Facility Area is situated on gently north- to northeast-sloping terrain overlooking the Mohawk River to the north. Much of the Facility Area consists of an undulating, roughly C-shaped ridge that trends approximately north/south with the open part of the “C” facing east. The west side of the ridge drains west and northwest into Otsquago Creek, a
tributary of the Mohawk River, and the east side of the ridge and the southern portion of the Facility Area (which is not part of the ridge) drain southeast into Canajoharie Creek (also a tributary of the Mohawk River).

Approximately 97% of the Facility Area is underlain by the black shales of the Middle Ordovician Utica Shale formation (approximately 460.9 to 471.8 million years old), with the remaining 3% underlain by the siltstone and shale of the Upper Ordovician Frankfort Formation (approximately 443.7 to 471.8 million years ago) (New York State Geological Survey, 1999; Dicken et al, 2005). EDR reviewed the Soil Survey of Montgomery and Schenectady Counties, New York (SCS, 1978) for data relating to soils within the Facility Area, as well as electronic data for the Mohawk subbasin from the Environmental Systems Research Institute (ESRI) and Natural Resources Conservation Service (NRCS) online SSURGO service (ESRI and NRCS, 2017). The Facility Area contains forty-six mapped soil units (Figure 3); however, only 13 soil units cover more than 2% of the Facility Area. These 13 soils units are summarized in Table 1 and depicted in Figure 3. The major mapped soil units consist primarily of silt loams and silty clay loams and range from poorly drained to well drained (see Table 1).

Table 1. Major Mapped Soil Units within the Facility Area (SCS, 1978; Esri and NRCS, 2017).

<table>
<thead>
<tr>
<th>Map Unit Name</th>
<th>% of Facility Area (acres)</th>
<th>Soil Horizon Depth</th>
<th>Color</th>
<th>Texture, Inclusions</th>
<th>Slope %</th>
<th>Drainage</th>
<th>Landform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darien silt loam, 3-8% slopes</td>
<td>20.1% (1,330)</td>
<td>Ap: 0-7 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td>3-8%</td>
<td>Somewhat poorly drained</td>
<td>Drumlinoid ridges, hills, and till plains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2: 7-10 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B21tg: 10-15 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B22tg: 15-31 in.</td>
<td>DkGrBr&LiOl Br</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: 31-56 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SiLo</td>
<td>SiLo</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appleton silt loam, 3-8% slopes</td>
<td>12.9% (855)</td>
<td>Ap: 0-11 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td>3-8%</td>
<td>Somewhat poorly drained</td>
<td>Drumlins and till plains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2: 11-17 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2t: 17-26 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: 26-50 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lansing silt loam, 8-15% slopes</td>
<td>8.5% (567)</td>
<td>Ap: 0-8 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td>8-15%</td>
<td>Well drained</td>
<td>Drumlinoid ridges, hills and till plains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2: 8-12 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A&B: 12-20 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2t: 20-32 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: 32-50 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madalin silty clay loam</td>
<td>7.2% (479)</td>
<td>Ap: 0-7 in.</td>
<td>V.DkGrBr</td>
<td>GrSiLo</td>
<td>Poorly drained</td>
<td>Depression</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blg: 7-9 in.</td>
<td>DkGrBr</td>
<td>GrSiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B21tg: 9-21 in.</td>
<td>DkGrBr</td>
<td>GrSiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B22tg: 21-30 in.</td>
<td>DkGrBr</td>
<td>GrSiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cg: 30-58 in.</td>
<td>DkGrBr</td>
<td>GrSiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lansing silt loam, 3-8% slopes</td>
<td>4.6% (307)</td>
<td>Ap: 0-8 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td>3-8%</td>
<td>Well drained</td>
<td>Drumlinoid ridges, hills, and till plains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2: 8-12 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A&B: 12-20 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2t: 20-32 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: 32-50 in.</td>
<td>DkGrBr</td>
<td>SiLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map Unit Name</td>
<td>% of Facility Area (acres)</td>
<td>Soil Horizon Depth</td>
<td>Color</td>
<td>Texture, Inclusions</td>
<td>Slope %</td>
<td>Drainage</td>
<td>Landform</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------</td>
<td>---------------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Ilion silt loam, 3-8% slopes</td>
<td>4.6% (305)</td>
<td>Ap: 0-9 in. A2: 9-14 in. IIB2gt: 14-39 in. IIC: 39-57 in.</td>
<td>V. DkGr OlGr OlGr DkGrBr</td>
<td>SiLo SiCl ChSiLo GrSiLo</td>
<td>3-8%</td>
<td>Poorly drained</td>
<td>Depressions</td>
</tr>
<tr>
<td>Ilion silt loam, 0-3% slopes</td>
<td>4.5% (298)</td>
<td>Ap: 0-9 in. A2: 9-14 in. IIB2gt: 14-39 in. IIC: 39-57 in.</td>
<td>V. DkGr OlGr OlGr DkGrBr</td>
<td>SiLo SiCl ChSiLo GrSiLo</td>
<td>0-3%</td>
<td>Poorly drained</td>
<td>Depressions</td>
</tr>
<tr>
<td>Burdett channery silt loam, 3-8% slopes</td>
<td>3.9% (261)</td>
<td>Ap: 0-9 in. IIB2t: 9-16 in. IIB2t: 16-26 in. IIB2t: 26-44 in. I1C: 44-54 in.</td>
<td>DkBr LiOlBr LiBrGr Gr OlBr & GrBr</td>
<td>ChSiLo ChSiLo GrSiClO GrSiClO GrSiClO GrSiClO</td>
<td>3-8%</td>
<td>Somewhat poorly drained</td>
<td>Drumlinoiird ridges, hills, and till plains</td>
</tr>
<tr>
<td>Fonda mucky silty clay loam</td>
<td>3.6% (241)</td>
<td>01: 4 in. to 3</td>
<td>Variable</td>
<td>Undecomposed leaves and twigs Granular humus Mucky SiClO SiCl SiCl</td>
<td>Very poorly drained</td>
<td></td>
<td>Depressions</td>
</tr>
<tr>
<td>Burdett Channery Silt Loam, 8-15% Slopes</td>
<td>2.2% (148)</td>
<td>Ap: 0-9 in. B21: 9-16 in. IIB2t: 16-26 in. IIB2t: 26-44 in. I1C: 44-54 in.</td>
<td>DkBr LiOlBr LiBrGr Gr OlBr & GrBr</td>
<td>ChSiLo ChSiLo GrSiClO GrSiClO GrSiClO</td>
<td>8-15%</td>
<td>Somewhat poorly drained</td>
<td>Drumlinoiird ridge, hills, and till plains.</td>
</tr>
</tbody>
</table>
2.2 Previous Archaeological Resource Surveys within 1 Mile of the Facility Area

EDR consulted the NYSOPRHP’s online Cultural Resources Information System (CRIS) database to determine if previous archaeological surveys have been conducted within 1 mile [1.6 km]) of the Facility Area. According to the CRIS database, 11 previously conducted archaeological projects occur within 1 mile of the Facility Area and four of these occur wholly or partially within the Facility. The previously conducted surveys are depicted in Figure 4 and summarized in Table 2. The previous surveys were conducted between 1990 and 2016 and consist of ten Phase 1 archaeological surveys and one archaeological monitoring project. The surveys were conducted for five wetlands restoration projects, four transportation projects, one natural gas transmission pipeline, and one municipal water system improvement project (see Table 2). If Facility-related development is proposed in areas previously subjected to Phase 1B archaeological survey, the areas will not be resurveyed; however, the locations of previously identified archaeological sites will be confirmed by field visits. Previously recorded sites are discussed further below in Section 2.4.

Table 2. Previous Archaeological Surveys within 1 Mile (1.6 Kilometers) of the Facility Area.

<table>
<thead>
<tr>
<th>Year</th>
<th>NYSOPRHP Survey Number</th>
<th>Report Name</th>
<th>Sites identified</th>
<th>Distance from Facility Area</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>02SR52363</td>
<td>Phase IA/IB Cultural Resources Investigation of Natural Resources Conservation Service Krutz Wetlands Reserve Program Project, Town of Canajoharie, Montgomery County, New York</td>
<td>None</td>
<td>Within Facility Area</td>
<td>CRMS Archaeological and Historical Consultants, 2002</td>
</tr>
<tr>
<td>2013</td>
<td>13SR62483</td>
<td>Phase IA/IB Cultural Resource Survey Shariff EQIP Project, Town of Canajoharie, Montgomery County, New York</td>
<td>None</td>
<td>Within Facility Area</td>
<td>BAS, 2013</td>
</tr>
<tr>
<td>2016</td>
<td>16SR00583</td>
<td>Cultural Resource Reconnaissance Survey Report PIN 2805.67.101 P.R. # 16PR01499 Replacement of Culvert CIN250055 NYS Route 10 Town of Canajoharie (MCD # 05702) Montgomery County, New York</td>
<td>None</td>
<td>0.5 miles east</td>
<td>NYSM CRSP, 2016</td>
</tr>
<tr>
<td>Year</td>
<td>NYSOPRHP Survey Number</td>
<td>Report Name</td>
<td>Sites identified</td>
<td>Distance from Facility Area</td>
<td>Reference</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>2012</td>
<td>12SR61011</td>
<td>Phase IA/IB Cultural Resources Survey, Mifsud WRP Easement Project, Town of Canajoharie, Montgomery County, New York.</td>
<td>None</td>
<td>Within Facility Site</td>
<td>Birchwood Archaeological Services (BAS), 2012</td>
</tr>
<tr>
<td>2001</td>
<td>01SR52132</td>
<td>Cultural Resources Reconnaissance Survey, Program Year 2001/2002: PIN 2095.35.101, NY 10 and NY 163 Slope Failure Stabilization, Town of Canajoharie, Montgomery County, New York</td>
<td>None</td>
<td>0.7 miles southeast</td>
<td>New York State Museum Cultural Resources Survey Program (NYSM CRSP), 2001</td>
</tr>
<tr>
<td>2015</td>
<td>15SR00582</td>
<td>Cultural Resources Monitoring, Water System Improvements, NYS Route 5S and Cardamone Crossing Component, Village of Canajoharie, Montgomery County, New York</td>
<td>None</td>
<td>0.7 miles north</td>
<td>Columbia Heritage, Ltd., 2015</td>
</tr>
<tr>
<td>2016</td>
<td>16SR00964</td>
<td>Phase IA/IB Cultural Resources Survey 157 Seebers Lane Solar Development Town of Canajoharie, Montgomery County, New York</td>
<td>05702.000148</td>
<td>0.2 miles northeast</td>
<td>BAS, 2016</td>
</tr>
<tr>
<td>2007</td>
<td>07SR58020</td>
<td>Cultural Resources Reconnaissance Survey Report, PIN 2804.81.121, Retaining Wall and Slope Contract 7, Villages of Fonda and Fort Plain, Montgomery County, New York.</td>
<td>None</td>
<td>0.9 miles east-northeast</td>
<td>NYSM CRSP, 2007</td>
</tr>
<tr>
<td>2008</td>
<td>08SR58599</td>
<td>Cultural Resources Reconnaissance Survey Report, PIN 2095.31.121, Intersection of State Route 163 and County Route 88, Town of Canajoharie, Montgomery County, New York.</td>
<td>None</td>
<td>1.0 mile south</td>
<td>NYSM CRSP, 2008</td>
</tr>
</tbody>
</table>

2.3 Previously Identified Archaeological Sites within 1 Mile of the Facility Area

EDR reviewed NYSORHP’s on-line CRIS database to determine whether previously recorded cultural resources are located within 1 mi. (1.6 km) of the Facility Area. According to the CRIS database, 40 previously recorded archaeological sites are located within approximately 1 mi. (1.6 km) of the Facility Area. As described in Table 3, the sites consist of 24 pre-contact Native American sites, nine historic-period sites, six late pre-contact/early historic-period (Native American) sites, and one site of unknown temporal affiliation.

Eight of the previously reported archaeological sites occur wholly or partially within the Facility Area. These sites consist of six pre-contact Native American sites, one late pre-contact/early historic-period site, and one historic-period site (Table 3). NYSM sites and areas are indications of historically reported archaeological materials, or areas of generally elevated archaeological sensitivity. Therefore, if Facility-related development is proposed in these areas, they will be revisited to evaluate the presence/absence of archaeological materials as part of the Phase 1B archaeological survey.
(discussed further in Section 4.0 of this report). The five NYSOPRHP sites located within the Facility Area consist of four sites that have not received formal determinations of eligibility for the State/National Register of Historic Places (SNRHP) eligibilities and one site that has been determined not eligible for listing on the SNRHP. The Applicant will attempt to avoid adverse impacts to all SNRHP-undetermined or eligible archaeological sites during ongoing design of the Facility layout (see additional discussion in Sections 4 and 5 of this report).

Table 3. Previously Recorded Archaeological Sites within 1 Mile (1.6 Kilometers) of the Facility Area.

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Site Name</th>
<th>S/NRHP-Eligibility</th>
<th>Time Period</th>
<th>Site Type</th>
<th>Distance from Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>05702.000120</td>
<td>IGTS-140-2-1</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>Lithic scatter</td>
<td>Within Facility Area</td>
</tr>
<tr>
<td>05702.000121</td>
<td>IGTS-140-2-2</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>Lithic scatter</td>
<td>Within Facility Area</td>
</tr>
<tr>
<td>05702.000122</td>
<td>IGTS 140-2-3</td>
<td>Undetermined</td>
<td>Pre-contact (Late Archaic)</td>
<td>Isolated projectile point</td>
<td>Within Facility Area</td>
</tr>
<tr>
<td>05702.000123</td>
<td>IGTS 140-2-4</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>Isolated biface fragment</td>
<td>Within Facility Area</td>
</tr>
<tr>
<td>05702.000124</td>
<td>IGTS 140A-4-1</td>
<td>Not Eligible</td>
<td>Historic-period</td>
<td>Small stone foundation/enclosure and debris scatter</td>
<td>Within Facility Area</td>
</tr>
<tr>
<td>NYSM Site 8969</td>
<td>--</td>
<td>Undetermined</td>
<td>Late pre-contact/early historic-period</td>
<td>Possible village and cemetery</td>
<td>Within Facility Area</td>
</tr>
<tr>
<td>NYSM Site 8975</td>
<td>--</td>
<td>Undetermined</td>
<td>Pre-contact (likely Late Woodland)</td>
<td>Village site w/human burials</td>
<td>Within Facility Area</td>
</tr>
<tr>
<td>NYSM Area 8219</td>
<td>--</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>Traces of occupation</td>
<td>Partially overlaps with Facility Area</td>
</tr>
<tr>
<td>NYSM Site 3992</td>
<td>Indian Hill</td>
<td>Undetermined</td>
<td>Pre-contact (likely Late Woodland)</td>
<td>Village/earthwork site</td>
<td>0.1 mile north</td>
</tr>
<tr>
<td>NYSM Site 3983</td>
<td>Allen (?)</td>
<td>Undetermined</td>
<td>Pre-contact (likely Late Woodland)</td>
<td>Village</td>
<td>0.1 mile north</td>
</tr>
<tr>
<td>05702.000148</td>
<td>Seegers Precontact Site</td>
<td>Not Eligible</td>
<td>Pre-contact</td>
<td>Lithic scatter</td>
<td>0.3 mile east</td>
</tr>
<tr>
<td>NYSM Site 3982</td>
<td>--</td>
<td>Undetermined</td>
<td>Late pre-contact or early historic-period</td>
<td>Possible village w/human burials</td>
<td>0.3 mile northeast</td>
</tr>
<tr>
<td>NYSM Site 8968</td>
<td>--</td>
<td>Undetermined</td>
<td>Early historic-period, possibly Native American</td>
<td>Possible camp or village w/trade beads</td>
<td>0.4 mile northeast</td>
</tr>
<tr>
<td>NYSM Area 8221</td>
<td>--</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>Native American Trail</td>
<td>0.4 mile northeast</td>
</tr>
<tr>
<td>05702.000099</td>
<td>Fiske Site (NYSM 1210)</td>
<td>Undetermined</td>
<td>Early historic-period Native American</td>
<td>Possible Mohawk Village</td>
<td>0.6 mile east-northeast</td>
</tr>
<tr>
<td>Site Number</td>
<td>Site Name</td>
<td>S/NRHP-Eligibility</td>
<td>Time Period</td>
<td>Site Type</td>
<td>Distance from Project</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>NYSM Site 3997</td>
<td>--</td>
<td>Undetermined</td>
<td>Pre-contact (likely Late Woodland)</td>
<td>Village site</td>
<td>0.6 mile northeast</td>
</tr>
<tr>
<td>NYSM Site 8220</td>
<td>--</td>
<td>Undetermined</td>
<td>Pre-contact (likely Late Woodland)</td>
<td>Village site (note: this site is digitized in two slightly different locations in the CRIS database; however, only one entry is provided in this table and distance to the Facility Area is measured from the closest of the two digitized locations.)</td>
<td>0.6 mile north</td>
</tr>
<tr>
<td>05702.000119</td>
<td>IGTS 139-2-1</td>
<td>Not Eligible</td>
<td>Pre-contact</td>
<td>Isolated chert flake</td>
<td>0.7 mile southwest</td>
</tr>
<tr>
<td>05741.000081</td>
<td>Allen Prehistoric/ NYSM 1223</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>Unknown (17th century) Native American</td>
<td>0.6 mile north</td>
</tr>
<tr>
<td>05706.000088</td>
<td>Darlin Stock Farm Site</td>
<td>Undetermined</td>
<td>Historic-period</td>
<td>Farmstead remains</td>
<td>0.7 mile northwest</td>
</tr>
<tr>
<td>NYSM Area 3973</td>
<td>--</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>Camps along river flat and ridge (Parker, 1922:621)</td>
<td>0.7 mile north</td>
</tr>
<tr>
<td>NYSM Site 3996</td>
<td>--</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>“Burial site” and “recent occupation” (Parker, 1922:623)</td>
<td>0.7 mile north</td>
</tr>
<tr>
<td>NYSM Area 8223</td>
<td>--</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>Traces of occupation</td>
<td>0.7 mile northeast</td>
</tr>
<tr>
<td>NYSM Site 8993</td>
<td>--</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>Unknown</td>
<td>0.8 mile northeast</td>
</tr>
<tr>
<td>05702.000096</td>
<td>Brown Site or Brown Flats (NYSM 1204)</td>
<td>Undetermined</td>
<td>Historic-period</td>
<td>Unknown (note: this site is digitized in three slightly different locations in the CRIS database; however, only one entry is provided in this table and distance to the Facility Area is measured from the closest of the three digitized locations.)</td>
<td>0.9 mile northeast</td>
</tr>
<tr>
<td>05702.000097</td>
<td>Swartz or Swatz #2 Site (NYSM 1208)</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>“Corn pits” (note: this site is digitized in two slightly different locations in the CRIS database; however, only one entry is provided in this table and distance to the Facility Area is measured from the closest of the two digitized locations.)</td>
<td>0.9 mile north</td>
</tr>
<tr>
<td>05702.000098</td>
<td>Swart-Farley Site (NYSM 1209)</td>
<td>Undetermined</td>
<td>Late pre-contact/early historic-period</td>
<td>Probable camp or village site (note: this site is digitized in two slightly different locations in the CRIS database; however, only one entry is provided in this table and distance to the Facility Area is measured from the closest of the two digitized locations.)</td>
<td>0.9 mile northeast</td>
</tr>
<tr>
<td>Site Number</td>
<td>Site Name</td>
<td>S/NRHP- Eligibility</td>
<td>Time Period</td>
<td>Site Type</td>
<td>Distance from Project</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>05702.000101</td>
<td>Rhinehart Flats #2 Site (NYSM 1221)</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>"Early Oak Hill [Late Woodland] pits destroyed by Thruway"</td>
<td>0.9 mile north</td>
</tr>
<tr>
<td>05741.000002</td>
<td>Iron Truss Bridge (Moved)</td>
<td>Eligible</td>
<td>Historic-period</td>
<td>Bridge</td>
<td>0.9 mile northeast</td>
</tr>
<tr>
<td>NYSM Area</td>
<td>Beekman’s Flats</td>
<td>Undetermined</td>
<td>Unknown</td>
<td>Unknown</td>
<td>0.9 miles east</td>
</tr>
<tr>
<td>1224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05702.000113</td>
<td>Unnamed Site (NYSM 1297)</td>
<td>Undetermined</td>
<td>Pre-contact</td>
<td>Unknown</td>
<td>1.0 mile north</td>
</tr>
<tr>
<td>05741.000236</td>
<td>Van Alstye House Historic Site</td>
<td>Undetermined</td>
<td>Eighteenth century</td>
<td>Site of a stone farmhouse, meeting place during Revolutionary War</td>
<td>1.0 mile northeast</td>
</tr>
<tr>
<td>NYSM Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9 mile northeast</td>
</tr>
<tr>
<td>05702.000136</td>
<td>Vanloan-GMI-MON-1 Historic Foundation</td>
<td>Undetermined</td>
<td>Historic-period</td>
<td>Farmstead remains</td>
<td>0.9 mile northeast</td>
</tr>
<tr>
<td>NYSM Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9 mile north</td>
</tr>
<tr>
<td>05702.000100</td>
<td>Rhinehart Flats #1 (NYSM 1220)</td>
<td>Undetermined</td>
<td>Late pre-contact/early</td>
<td>Village (note: this site is digitized in two slightly different locations in the CRIS database; however, only one entry is provided in this table and distance to the Facility Area is measured from the closest of the two digitized locations.)</td>
<td>1.0 mile northeast</td>
</tr>
<tr>
<td>NYSM Site</td>
<td></td>
<td></td>
<td>historic-period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3985</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0 mile northeast</td>
</tr>
<tr>
<td>3986</td>
<td>Upper Canajoharie</td>
<td>Undetermined</td>
<td>Late pre-contact/ early</td>
<td>"Village site at Canajoharie" with associated graves (Parker, 1922:621)</td>
<td>1.0 mile east</td>
</tr>
<tr>
<td>NYSM Site</td>
<td></td>
<td></td>
<td>historic-period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8964</td>
<td></td>
<td></td>
<td>Pre-contact (likely Late</td>
<td>Village</td>
<td>1.0 mile northeast</td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td>Woodland)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4 History of the Facility Area

Archives and repositories consulted during EDR’s historical research for the Facility included EDR’s in-house collection of reference materials, and online digital collections of the New York State Library, Ancestry.com, New York heritage, David Rumsey Map Collection, and the United States Geological Survey (USGS). Additionally, EDR reviewed the *Historical and Statistical Gazetteer of the State of New York* (French, 1860), *History of Montgomery and Fulton Counties* (Beers, 1878), *History of Montgomery County* (Frothingham, 1892), and *The Story of the New York State Canals: Historical and Commercial Information* (Finch, 1925) for the historical context of the Facility Area. Historical maps reproduced in the report include the 1779 Sauthier *Chorographical Map of The Province of New-York*, the 1829
The Facility is located in the Towns of Minden and Canajoharie, Montgomery County, New York, which are situated in the Mohawk Valley. The first humans to colonize the Mohawk Valley were large game hunters that arrived following the retreating continental glaciers approximately 13,000 years ago (Ritchie and Funk, 1973). Although populations during this time were never high, Central New York was densely settled relative to many other parts of the continent. By approximately 10,000 years ago, post-glacial conditions had stabilized and the people residing in northeastern North America began to reduce their mobility and exploit the diverse floral and faunal resources available to them in the newly emerging mixed deciduous/coniferous forests. Archaeological evidence for the development of Iroquoian\(^1\) culture points to a gradual in situ development in Central and Western New York, as opposed to the immigration of Iroquoian groups from outside the region (MacNeish, 1952; Tuck, 1971; Hart and Brumbach 2003; 2005; 2009; Brumbach, 2011; Hart, 2011). Haudenosaunee (formerly called the “Iroquois Confederacy”) oral history also supports a deep history of occupation within Central and Western New York (Dean, 1915; Wonderley, 2004). However, it should be noted that linguistic evidence indicates an immigration from Pennsylvania or somewhere nearby in the Mid-Atlantic region as recently as 1,000 years ago (Snow, 1994). Linguistically, the Mohawk language is most closely related to the Oneida language, and it appears that the ancestral Oneida and Mohawk were a single people with the western settlements of the group eventually moving toward the Onondaga Nation and becoming the Oneida Nation and the eastern settlements becoming the Mohawk Nation (Snow, 1994; Wonderley, 2004).

Sources differ on the specific date of the formation of the Haudenosaunee Confederacy, but most agree it occurred during the late-fifteenth or early-sixteenth century CE. The Mohawk Nation was the first to join the Five Nations of the Confederacy which also included the Oneida, Onondaga, Cayuga, and Seneca Nations (with the Tuscarora joining as the sixth nation in 1721). As the easternmost members of the Haudenosaunee, the Mohawk held the role as the “Keepers of the Eastern Door.” (Snow, 1994; Richter, 2005). From east to west, the Mohawk’s traditional territory encompasses the Mohawk River Valley midway between the Hudson River and present-day Oneida County, and from north to south it extended from the Saint Lawrence River to present-day Pennsylvania and New Jersey (Darlington, 2005b; Wright-Tekastiaks, 2005).

\(^1\) The terms Iroquois and Iroquoian are used here to describe indigenous groups with a suite of cultural traits (e.g., ceramic styles and settlement patterns) and linguistic traits. The term Haudenosaunee is used specifically to denote the five (and later) six nation confederacy present from approximately the sixteenth century, CE, onward.
In 1609, first European contact was made with the Mohawks by the explorer Samuel de Champlain, a violent encounter which precipitated nearly 100 years of rivalry between the French and the Mohawk (Wright-Tekastiaks, 2005). In 1610, Henry Hudson was hired by the Dutch to find a northerly passage to east Asia. He explored the Hudson River, traveling approximately half the distance from the Atlantic to the site of present day Albany. Although Hudson did conduct some trade with the Native Americans he encountered along his route, much of his interactions were hostile (Morgan, 1993). Following Hudson’s expedition, the Dutch established a permanent trading post, called Fort Nassau (and later Fort Orange) in 1614 or 1615 near modern-day Albany on land claimed by the Mohicans, enemies of the Mohawk. The Haudenosaunee were given a monopoly on Dutch trade in 1628, most certainly due to the Mohawk Nation’s relationship with the Dutch. As the Keepers of the Eastern Door, the Mohawk had direct access to Dutch traders and enjoyed prosperity as a result of this. However, in 1638 a smallpox epidemic reduced the Mohawk population by nearly three-quarters (Darlington, 2005a; Wright-Tekastiaks, 2005). In the aftermath of the population crash, the first French missionaries journeyed into Mohawk Nation territory in the mid-1640s (Frothington, 1892).

Through their relationship with Dutch traders at Ft. Orange, the Mohawk became some of the first Native Americans in the region with widespread access to firearms. European guns soon spread throughout the Five Nations of the Confederacy, allowing the Haudenosaunee to aggressively raid their European and Native rivals throughout the region. Conflicts throughout the second half of the seventeenth century were often with the French and their Wendat-Huron allies throughout the eastern Great Lakes and along the Saint Lawrence River (Richter, 2005; Viola, 1990).

In 1664, the English won control of New Netherlands and maintained the alliance the Dutch had with the Mohawk. Wielding their economic influence on the Haudenosaunee, the British pushed the Confederacy into renewed conflicts with the French and Wendat throughout the final quarter of the seventeenth century. One example was King William’s War between France and Great Britain, which began in 1689 and lasted until 1696. The war pitted colonial British forces and their native allies (primarily the Haudenosaunee) against French colonial forces and their native allies (primarily the Wendat-Huron and Algonquian) in northeastern North America. In 1696, the 76-year old colonial French governor, Louis de Baude de Frontenac, led a large force through Central New York, driving many Onondaga and Oneida out of their villages, although leaving the Mohawk largely untouched (Grumet, 1995).

The Mohawk always attempted to play the foreign powers to their own advantage. For instance, of the four Native American chiefs who traveled to England in 1710 to meet Queen Anne and request military aid against the French (known as the Four Indian Kings) three were Mohawk. However, the Mohawk nevertheless strove to maintain neutrality in the series of wars playing out in the North American theatre between the French and the British during the eighteenth century. It was also during this time that the earliest versions of contemporary municipal boundaries took form, with
Albany County being established by the British in 1691 and extending its boundaries the length of the entire colony of New York, including the traditional homeland of the Haudenosaunee (French, 1860; Richter, 2005).

The Mohawk Valley was considered the “Breadbasket of the Revolution” because of the grain and hay it produced during this period. Consequently, it was one of the most highly contested areas during the war. With the conflict raging throughout their homeland, the Haudenosaunee decided to extinguish the Council Fire kept by the Onondaga in 1777, effectively dissolving the Confederacy, and allowing each Nation to make its own way through the war (Richter, 2005; Yacobucci Farquhar, 2005). The Mohawk had officially allied themselves with the British during the French and Indian War of 1754-1763 and they did the same during the American Revolution, while many Tuscarora and Oneida, and a small number of Onondaga, sided with the American colonists. In 1779, the American colonists launched the Clinton-Sullivan Campaign to destroy crops and villages throughout Haudenosaunee territory in retaliation for raids against the Americans conducted by Haudenosaunee factions loyal to Great Britain, including the Mohawk. Consequently, driven from their homes by the Continental Army, the Mohawk were dispersed to Quebec and Niagara County (Darlington, 2005a; Fort Stanwix National Monument Staff, 2016a; Wright-Tekastiaks, 2005).

Inset 4. 1779 Sauthier Chorographical Map of The Province of New-York (left)
In the Colonial Era, the Facility Area was sparsely populated. The Villages of Fort Plain, Canajoharie, and Palatine Bridge were not yet established, and the hilly topography of the Facility Area is evident (Sauthier, 1779; collections of David Rumsey).

Inset 5. 1829 Burr Map of the County of Montgomery (right)
By 1829, the Villages of Fort Plain, Canajoharie, and Palatine Bridge had been established. The Facility Area had been extensively subdivided following the increase in water volume that resulted from the raising of the Mohawk River in 1821 (Burr, 1829; collections of David Rumsey).
Tryon County had been created from part of the original Albany county in 1772, and it was renamed Montgomery County after the Revolutionary War. The Town of Canajoharie was initially formed in 1788, with the Towns of Minden and Root splitting off in 1798 and 1823, respectively (Insets 4 and 5). With increasing populations of American farmers in Central and Western New York struggling to get their crops to market, it was during the late eighteenth century that the concept for a canal across New York State began to circulate, but did it not gain widespread support as a serious and achievable goal until the early nineteenth century. Digging for the canal commenced on July 4, 1817 in Rome, New York, approximately 50 miles west of the Facility Area. As the process of digging a canal was not common knowledge in the early nineteenth century, many local men involved in its construction received a primitive education in civil engineering on the job. The diggers were hired by farmers, merchants, and professionals who lived along the 363-mile route that was to connect Lake Erie to the Hudson River. The Mohawk River was improved and incorporated into the canal in 1821. To complete the work of this incorporation, the level of the Mohawk River was raised to that of the canal by a series of dams, which in turn raised the level and strength of adjoining tributaries within the Facility Area. This increase in water power gave rise to several mills on Canajoharie Creek and other local waterways (Beers, 1878; Finch, 1925; French, 1860).

The Facility Area experienced slow but steady growth throughout the nineteenth century. Not long after the Erie Canal was finished, railroad transportation was introduced and altered the built environment further. The Schenectady and Utica Railroad was opened in 1836 and was authorized to carry freight the following year. Transportation was slow and freight trains generally moved less than 10 mi. (16 km) per hour in the early years of the railroad, but this was nearly twice as fast as the speed of canal boats on the Erie Canal. In addition, the higher volume of freight carried by train made this mode of transport quite attractive. The introduction of the railroad brought more development to Montgomery County, although the line was situated on the north bank of the Mohawk River, across from Canajoharie. In 1853, the New York State Legislature consolidated the many railroads that traversed the state, including the Schenectady and Utica Railroad (French, 1860, Frothingham, 1892).

The Towns of Minden and Canajoharie grew quickly in the first decade following the completion of the Erie Canal and then slowed but growth remained steady. In 1837, the Canajoharie Radii, a newspaper targeted to the hearing and speech-impaired, started printing. The Village was severely damaged by fire three times during the nineteenth century in 1840, 1849, and 1877, resulting in a local ordinance against building with wood. Therefore, the majority of late nineteenth century buildings in the Village are made of stone. Also of note, beginning in 1846 American suffragette leader Susan B. Anthony was a faculty member at the Canajoharie Academy, leaving in 1849 to advocate women’s rights full-time. The former site of the Academy is now occupied by the National Register of Historic Places- (NRHP-) Listed West Hill School. (Greene, 1925; Sullivan, 1927).
Through the end of the nineteenth century, central Montgomery County experienced a moderate level of industrial growth and modernization. Dairy products were exported from the region in large quantities, and hops were produced until a blight and prohibition destroyed the crop’s viability in the early twentieth century. The West Shore Railroad merged with New York Central in 1886, and interurban street car lines emerged. The continuing success of this mode of transportation negatively affected canal toll revenues. In 1891, the Beech-Nut Packing Company was founded in Canajoharie and chiefly engaged in curing ham. In 1900 the invention of patented vacuum-sealed jars helped the firm eventually grew into one of the largest food producers in the world (Greene, 1925; Yacobucci Farquhar, 2005).

Like many upstate communities in the twentieth century, Montgomery County suffered from the loss of a portion of its economic base due to an increasingly globalized marketplace. Years of losses led to the abolition of tolls on the Erie Canal, culminating in the opening of the New York State Barge Canal in 1918. Two major local industries, furniture making in Fort Plain and paper bag production in Canajoharie, ended in 1923 and 1952, respectively. Bus lines drove the interurban rail lines out of business by 1938. In 1959, the opening of the St. Lawrence Seaway signaled the end of freight traffic in heavy commodities along the New York State Barge Canal. This also roughly coincided with completion of the New York State Thruway. Freight had begun to be transported via truck as early as the 1920s, but the opening of the Thruway made it much more economically efficient, further reducing the need for the New York State Barge Canal. Despite the massively reduced traffic on the Barge Canal, the newly opened Thruway ensured some level of motor traffic through the Towns of Canajoharie and Minden (Darlington, 2005; Yacobucci Farquhar, 2005).
Urban renewal programs of the 1960s and 1970s drastically altered the built environment across Montgomery County. A regional mall in Amsterdam was opened in 1977, which had a negative impact on the ability of local businesses to compete. Despite many years of decline, manufacturing was still a major employer at the beginning of the 21st century. In addition, some service sector jobs came to the area with the building of distribution centers for major retailers. In 2011, Beech Nut moved its operations from the historic building in Canajoharie to another facility within Montgomery County. The former site of the Arkell paper bag factory now houses an art collection of international significance, housing works by Winslow Homer, Georgia O’Keefe, and Gilbert Stuart (Darlington, 2005; Yacobucci Farquhar, 2005; Arkell Museum at Canajoharie, 2012).

Historical maps reflect the colonial-era settlements and subsequent expansion of the Towns of Canajoharie and Minden, and the relative lack of population growth throughout the twentieth century. The 1779 Sauthier *Chorographical Map of The Province of New-York* (Inset 4) depicts the limited development of the late Colonial Period in the Facility Area. Relatively few structures are located along the banks of the Mohawk river. The largest settlements nearby are Cherry Valley to the south, and Stone Arabia to the north. Canajoharie and Fort Plain have not yet been established. The 1829 *Burr Map of the County of Montgomery* (Inset 5), illustrates the growth of the Towns of Canajoharie and Minden during the Early National Period. The villages of Fort Plain, Roofsville (Canajoharie), and Palatine Bridge have been established along the Erie Canal, and the number of surface roads have increased with the subdivision of lots.

The 1853 Giel and Hunter *Map of Montgomery County, New York* (Figure 5) depicts the Utica and Schenectady Railroad running along the north bank of the Mohawk River. Fort Plain and Palatine Bridge have substantive village centers, and Canajoharie has grown the most since the 1829 map (Inset 5). Furthermore, the rural hamlets of Marshville and Freysbush have sprung up at the junctures between surface roads and tributary creeks of the Mohawk River. In the 1905 *New Century Atlas of Montgomery County* (Figure 6), the number of surface roads have slowly increased in the rural areas, and a number of agricultural concerns have been established. The 1944 USGS *Canajoharie, Fort Plain, Sharon Springs, and Sprout Brook, New York* topographic maps depict scattered residences along roads within the Facility Area, with small population centers at the Hamlets of Marshville and Freybus at the southeastern and northwestern edges of the Facility Area, respectively (Figure 7). Additionally, the USGS maps depict two schools and three cemeteries within the Facility Area (Figure 7).

2.5 Existing Conditions

The proposed Facility is located in a rural part of Montgomery County, south and west of the population center of Canajoharie and south of the corridor of development along the New York State Thruway and the Mohawk River. As previously noted, the Facility Area is situated on gently rolling topography. Currently, the Facility Area is located in
agricultural lands (approximately 90%) (Appendix A, Photographs 1-21), and undeveloped second-growth forest (approximately 10%) (Appendix A, Photographs 9, 10, 15, and 18 [note forest in background of these photographs]). Existing conditions within the Facility Area have been observed and evaluated during site visits and through an examination of aerial imagery and can be summarized as follows:

- Land use is typical for a rural area in Central New York and consists of hay, corn, and soy bean fields, as well as fallow fields and pastures (Appendix A, Photographs 1-21), scattered residential development along area roadways (Appendix A, Photographs 1-4), and moderately sized tracts of undeveloped second-growth forest intermixed with the fields (Appendix A, Photographs 9, 10, 15, and 18).
- Ponds and wetlands are relatively common throughout the Facility Area (Appendix A, Photo 7). There is a large, partially forested, wetland complex in the northeastern portion of the Facility Area (immediately north of the Hamlet of Marshville). However, the ponds and other wetlands scattered throughout the Facility Area are relatively small.
- No major streams or rivers are located within the Facility Area, but there are numerous unnamed tributaries of Otsego and Canajoharie Creeks. These drainages are typically lightly to moderately incised and often wooded.
- Roads within the Facility Area are paved and arranged in a rough grid and oriented on an approximately northwest/southeast access (Appendix A, Photos 1, 3, 5, 6). Clinton Road is the main road in the area and it trends northeast/southwest through the center of the Facility Area.
- Farm lanes, woods roads, and all-terrain vehicle trails are also common throughout the Facility Area (Appendix A, Photo 4).
- The Facility Area includes several overhead transmission lines ranging from small, single wooden pole supports to much larger double wooden poles and steel support structures (Appendix A, Photos 3 and 6).
3.0 ARCHAEOLOGICAL SENSITIVITY ASSESSMENT

In addition to conducting a literature review and background research for the proposed Facility Area and a 1 mi. (1.6 km) study radius, EDR assessed the probability of encountering archaeological resources utilizing information available on CRIS, the results of the literature review, background research, and historical map analysis. This assessment evaluates the relative potential for the presence of archaeological resources based on high, moderate, and low sensitivity or probability, as well as environmental factors and additional variables noted below.

3.1 Pre-Contact Native American Archaeological Sensitivity Assessment

Based on topography, setting, soil, and proximity to water sources, as well as the presence of previously recorded archaeological sites (as mapped on CRIS) within the Facility Area, portions of the proposed Facility Area are sensitive for Native American archaeological sites. For pre-contact Native American resources, the key assumption is that Native American populations located their settlements in areas that maximized their access to key subsistence resources (e.g., water, wild plant foods, and domesticated plants for Woodland period groups). As soil productivity and distance to water are identified as key variables, fewer sites are found farther away from water sources. The proposed Facility is located on rolling topography, in close proximity to wetlands and streams. Locations adjacent to perennial streams and wetlands are considered particularly sensitive for pre-contact archaeology. Additionally, the potential to encounter intact, buried deposits and archaeological sites is higher in areas that have historically seen little to no development or ground disturbing activities.

As previously noted in Section 2.3, six previously recorded pre-contact Native American archaeological sites and one late pre-contact/early historic-period site are located wholly or partially within the Facility Area (Table 2). The pre-contact Native American sites in the vicinity (i.e., those within 1 mi. [1.6 km] of the Facility Area) include several Native American village sites with human burials, campsites, lithic scatters, and isolated artifacts. Table 2 in Section 2.3 above summarizes the 40 archaeological sites and areas that are located within 1 mi. (1.6 km) of the Facility Area. Twenty-four of these sites date to the pre-contact period and six sites date to the late pre-contact/early historic-period and contain Native American components. It is worth noting that the pre-contact Native American sites in the vicinity of the Facility Area are located both adjacent to rivers, streams, and wetlands and on elevated hill and ridge tops at some distance from significant water features. This is a result of the intensive late pre-contact/early historic-period occupation of this area by the Mohawk Nation who often selected elevated locations for their village sites (e.g., Snow, 1995). The majority of major Native American sites cluster along the Mohawk River and bluffs overlooking the river to the north of the Facility Area; however, a small number of Native American villages are reported within or immediately adjacent to the Facility Area.
3.2 Historic Period Archaeological Sensitivity Assessment

Areas where there is a greater potential for encountering historic-period archaeological resources include those areas located proximate to water and navigable waterways, railways, roadways, as well as the former locations of structures depicted on historical maps and atlases within the Facility Area. As described in Section 2.5 and illustrated on historical maps (see Figures 5-7), the Facility Area has been occupied Europeans and Americans since the eighteenth century. The locations of former structures within and near the Facility Area are depicted on the 1853 Samuel Geils & B.J. Hunter Map of Montgomery County, New York (Figure 5), the 1905 Century Map Co. New Century Atlas of Montgomery County (Figure 6), and the 1944 USGS Canajoharie, Fort Plain, Sharon Springs, and Sprout Brook, New York topographic quadrangles (Figure 7).

Historically map-documented structure (MDS) locations within the Facility Area are generally located adjacent to existing roadways. In some instances, MDS represent existing buildings and/or farms. In other instances, they are abandoned structures that now may be represented only by archaeological remains. Potential archaeological resources associated with these MDS locations could include abandoned residential and/or farmstead sites, where the complete residential and/or agricultural complex consisting of foundations, structural remains, artifact scatters, and other features, would constitute an archaeological site. In other locations, more limited remains of these sites, perhaps represented by only a foundation or an artifact scatter, may be present.

Areas located in the immediate vicinity (within approximately 200 feet [61 meters]) of MDS locations are considered to have a high potential for the presence of historic-period archaeological resources. The remaining (non-MDS) portions of the Facility Area exhibit minimal (if any) likelihood for significant historic-period archaeological sites to be present. Based on this and the results of the background research and historical map analysis, the Facility Area is considered to have a moderate to high probability to contain historic-period archaeological resources.

3.3 Ground Slope and Disturbance

The NYAC Standards indicate that a Phase 1 archaeological survey is not necessary in inundated wetland (or standing water) areas, previously disturbed areas, and areas where slopes exceed 12-15% (NYAC, 1994). Slope is anticipated to be a relatively minor factor in the archaeological sensitivity of the APE for Direct Effects (once it is defined) because the Facility Area consists of gently rolling topography with few steep slopes (Appendix A, Photos 1-21). Additionally, Facility components will be preferentially sited on level to nearly level ground in order to minimize the grading required for Facility construction. As previously noted, several wetlands are scattered throughout the Facility Area, including a large wetland in the northeast portion of the Facility Area (see Figure 3). Wetland communities within the Facility Area are being investigated as part of the environmental review for the Facility. In general, Facility components have been and will be sited to minimize impacts to wetland communities.
Previous ground disturbance within the Facility Area is, for the most part, limited to previous or ongoing agricultural activities. Farming is not considered significant in terms of its potential to affect the integrity of archaeological resources (NYAC, 1994; NYSOPRHP, 2005). Additionally, some areas immediately adjacent to existing roads within the Facility Area include drainage ditches, culverts, buried utilities, and areas of cut and/or fill. With the exception of these areas, the Facility Area in general does not appear to have been subjected to significant previous ground disturbance.
4.0 PHASE 1 ARCHAEOLOGICAL SURVEY FIELDWORK

4.1 Phase 1 Archaeological Survey Methodology

The APE for Direct Effects for the Facility includes active agricultural lands (i.e., pastures, corn, and hay fields), open meadows, forested/shrubland areas, and steeply sloped areas (i.e., areas in excess of 12-15% slopes per the NYAC Standards [NYAC, 1994]). As described in Section 1.4 of this report, A Preliminary Facility Layout has been developed and Facility design and layout is currently ongoing. Subsequent Phase 1 archaeological survey will be based on the Facility layout.

The Phase 1B survey methodology discussed below was designed in accordance with the 2005 NYSOPRHP Phase 1 Report Standards and the 1994 NYAC Standards (NYAC, 1994; NYSOPRHP, 2005). However, the proposed methodology and scope also acknowledges that the construction of utility-scale solar facilities, such as the proposed Mohawk Solar Facility, require substantially less ground disturbance (see Section 1.4) than other types of energy and commercial development. As discussed in Section 1.4, the construction of the Facility will require relatively minimal ground disturbance and much of the construction/installation will be accomplished via the use of machines that are consistent in terms of size, weight, and tread with the agricultural machines currently used on these properties (e.g., pile-drivers, cable-ploughs, and cranes on either tires or tracks).

Therefore, based on the August 9, 2017 meeting between the Applicant, EDR, and NYSOPRHP (see Section 1.3), subsequent Phase 1B archaeological survey for the Facility Site will consist of the following:

- All areas where Facility-related impacts involving significant ground disturbance (i.e., trenching wider than 1 ft. (0.3 m), or any excavation, grading, or paving) will be subjected to Phase 1B archaeological survey in the form of either shovel testing or pedestrian surface survey (following the methods outlined below), depending on the ground surface visibility. Areas of significant ground disturbance are anticipated to include:
 - All proposed invertor pads;
 - All proposed access roads;
 - All impacts associated with the proposed substation;
 - Any buried collection lines installed in a trench greater than 1 ft. (0.3 m) wide;
 - Any construction staging areas that require grading, and/or paving; and,
 - Any other areas where Facility-related impacts include earth disturbance such as excavation, grading, or grubbing beyond the installation of small posts or I-beams or any excavation wider than a 1-ft. (0.3-m) trench.
• In areas suitable for pedestrian surface survey (i.e., with >70% ground surface visibility) where potentially significant ground disturbance (as defined above) are proposed, pedestrian survey will be conducted following the methods outlined below.

 o **Areas with greater than 70% ground surface visibility.** In existing corn fields and/or previously cultivated areas with greater than 70% ground-surface visibility (within areas of significant proposed ground disturbance, as described above), a pedestrian surface survey will be conducted to determine whether archaeological sites are present (in accordance with the NYAC Standards; NYAC, 1994). In these areas, archaeologists will traverse the APE for Direct Effects along transects spaced at 10- to 16-ft. (3- to 5-m) intervals while inspecting the ground surface for artifacts and/or archaeological features. The timing for this work is critical, as surface survey needs to be conducted after a field has been freshly plowed and disked, and preferably following a rain event. If any artifacts or other indications of an archaeological site are observed on the ground surface, the locations of all finds will be recorded using professional-grade Global Positioning System (GPS) equipment.

 o **Hay fields, forests, and shrubland.** In selected areas not suitable for pedestrian surface survey, shovel tests will be excavated to determine whether archaeological sites are present. Shovel tests will typically be excavated along transects or in grid patterns at 50-ft. (15-m) intervals within areas of significant proposed ground disturbance (as described above) or at 25-ft. (8-m) intervals in the vicinity of MDS locations. Shovel tests are typically 12 to 20 in. (30 to 50 cm) in diameter and excavated to sterile subsoil or the practical limits of hand excavation (in accordance with the NYAC Standards; NYAC, 1994). Field notes for each shovel test will be recorded on standardized forms that describe soil stratigraphy, record whether any artifacts were recovered, and note any other relevant observations. All soils excavated from shovel tests will be screened through 0.25-in. (0.64-cm) hardware cloth. If pre-contact Native American artifacts are recovered from an isolated shovel test, then up to eight additional shovel tests were excavated at 3-ft. (1-m) and 10-ft. (3-m) intervals around the original shovel test in order to determine whether the artifacts represent an isolated find or may indicate the presence of a more substantial archaeological site.

 o **Steeply sloped, wetland, and disturbed areas.** No systematic archaeological survey work is proposed in steeply sloped areas, delineated wetlands, or areas where visual inspection can confirm previous soil disturbance (per the NYAC Standards; NYAC, 1994).

4.2 **Phase 1B Archaeological Survey Reports and Delivery of Electronic Data**

Results of subsequent Phase 1B archaeological survey conducted for the Facility will be summarized in an illustrated report prepared in accordance with the New York State Historic Preservation Office (SHPO) Phase 1 Archaeological Report Format Requirements issued in April 2005 (NYSOPRHP, 2005). Descriptive information for any archaeological
sites identified during the Phase 1B surveys will be uploaded to NYSOPRHP’s online CRIS database at the same time as the survey report. EDR will also provide accurate location information for any additional sites identified during the Phase 1B surveys. EDR anticipates this data will be provided when uploading site descriptions into the CRIS database.

4.3 Results of Preliminary Phase 1 Archaeological Survey Fieldwork Conducted to Date
To further characterize the potential for archaeological resources to be located with the Facility Area, EDR conducted limited preliminary archaeological field survey in selected areas as part of this Phase 1A survey. This preliminary archaeological survey consisted of pedestrian surface survey in cultivated fields where the Applicant had permission of the landowner to conduct the survey. The results of the preliminary archaeological survey are described below.

EDR archaeological staff conducted pedestrian survey of selected areas within the Mohawk Solar Facility Area from November 15 to 18, 2016 and from May 12 to 15, 2017. In total, 133 ac. (54 ha.) were investigated through pedestrian survey. Where artifacts were observed, they were recorded, photographed, described, and measured, and then left in situ (i.e., not collected). Areas subjected to pedestrian survey are summarized in Table 4 and depicted in Figure 8.

Areas subjected to pedestrian surface survey were assigned alphanumeric designations such as A1, B2, C3, etc. If artifacts or archaeological resources were found within these testing areas, they were assigned a sequential number within the survey area. For example, if an artifact was found within survey area A1, it would be recorded as A1.01. The presence of localized scatters of archaeological finds located in close proximity (i.e., within an approximately 5-meter radius areas). Larger sites were named after a local landmark such as a nearby road (e.g., Nestle Lithic Scatter 1, named for Nestle Road).

In addition to the archaeological sites recorded during the preliminary archaeological survey, EDR archaeologists identified several low-density scatters of historical and modern debris within the agricultural fields surveyed (Appendix A, Photos 22-24). These scatters consisted of small numbers of highly fragmented historical and modern debris located in active agricultural fields not associated with MDS locations. Artifacts included small brick, redware drainage pipe, white earthenware, clear glass fragments, stoneware, and ferrous metal fragments, as well as glass insulators related to the electrical transmission lines that traverse some of the properties. These artifact scatters are primarily the result of low-intensity refuse disposal/manure seeding activity and are very common in rural areas of New York State. These locations were noted during the Phase 1 archaeological survey and a general count of artifacts was recorded, but they were not determined to be archaeological sites, and are therefore not discussed as archaeological sites in this report. Similar scatters will continue to be treated in this manner during future archaeological fieldwork for the Facility.
Table 4. Summary of Archaeological Survey Results by EDR Survey Areas

<table>
<thead>
<tr>
<th>EDR Survey Area</th>
<th>Pedestrian Survey (acres)</th>
<th>Archaeological Sites Identified</th>
<th>Comments</th>
<th>Photographs (Appendix A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>7</td>
<td>N/A</td>
<td>Vegetation consisted of cut corn stalks.</td>
<td>Photo 8</td>
</tr>
<tr>
<td>A2</td>
<td>11</td>
<td>N/A</td>
<td>Vegetation consisted of standing (dry) soy beans.</td>
<td>Photo 9</td>
</tr>
<tr>
<td>A3</td>
<td>5</td>
<td>N/A</td>
<td>Vegetation consisted of cut corn stalks.</td>
<td>Photo 10</td>
</tr>
<tr>
<td>A4</td>
<td>8</td>
<td>N/A</td>
<td>Vegetation consisted of cut corn stalks.</td>
<td>Photo 11</td>
</tr>
<tr>
<td>B1</td>
<td>10</td>
<td>N/A</td>
<td>Freshly plowed field</td>
<td>Photo 12</td>
</tr>
<tr>
<td>B2</td>
<td>11</td>
<td>B2.02 Pre-contact Isolate</td>
<td>Contained low density (non-site) 19th/20th century debris scatter. Vegetation consisted of cut corn stalks.</td>
<td>Photo 13</td>
</tr>
<tr>
<td>B3</td>
<td>6</td>
<td>N/A</td>
<td>Contained low density (non-site) 19th/20th century debris scatter. Recently plowed field.</td>
<td>Photo 14</td>
</tr>
<tr>
<td>B4</td>
<td>10</td>
<td>B4.03 Pre-contact Isolate</td>
<td>Contained low density (non-site) 19th/20th century debris scatter. Recently plowed field.</td>
<td>Photo 15</td>
</tr>
<tr>
<td>B5</td>
<td>5</td>
<td>N/A</td>
<td>Contained low density (non-site) 19th/20th century debris scatter. Vegetation consisted of cut corn stalks.</td>
<td>Photo 16</td>
</tr>
<tr>
<td>C1</td>
<td>4</td>
<td>N/A</td>
<td>Freshly plowed field, some low grass.</td>
<td>Photo 17</td>
</tr>
<tr>
<td>D1</td>
<td>15</td>
<td>N/A</td>
<td>Modern refuse associated with a recently demolished structure but no indication of a historical component (not an MDS location). Freshly plowed field, some low grass.</td>
<td>Photo 18</td>
</tr>
<tr>
<td>E1</td>
<td>11</td>
<td>Nestle Lithic Scatter 1</td>
<td>Vegetation consisted of cut corn stalks.</td>
<td>Photos 19 & 20</td>
</tr>
<tr>
<td>E2</td>
<td>4</td>
<td>N/A</td>
<td>Vegetation consisted of cut corn stalks.</td>
<td>Photo 20</td>
</tr>
<tr>
<td>E3</td>
<td>3</td>
<td>E3.01 Pre-contact Isolate</td>
<td>Vegetation consisted of cut corn stalks.</td>
<td>Photo 21</td>
</tr>
<tr>
<td>E4</td>
<td>4</td>
<td>N/A</td>
<td>Freshly disked earth</td>
<td>Photo 22</td>
</tr>
<tr>
<td>E5</td>
<td>7</td>
<td>N/A</td>
<td>Vegetation consisted of cut corn stalks.</td>
<td>Photo 23</td>
</tr>
<tr>
<td>E6</td>
<td>4</td>
<td>N/A</td>
<td>Freshly disked earth.</td>
<td>No photo available (but area is an adjacent strip to Survey Area E4 and contained identical ground surface conditions; see Photo 22)</td>
</tr>
<tr>
<td>E7</td>
<td>8</td>
<td>N/A</td>
<td>Vegetation consisted of cut corn stalks.</td>
<td>Photo 24</td>
</tr>
<tr>
<td>Total</td>
<td>133 acres</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDR identified four newly recorded archaeological sites during the pedestrian survey which are summarized in Table 4 and depicted in Figures 8 and 9. All of the newly recorded sites are pre-contact Native American. Of the newly identified sites, three consist of single isolated artifacts and one consists of a lithic scatter. As discussed above, artifacts were documented in the field but not collected and no shovel tests were excavated as part of the preliminary archaeological survey. These sites are described below.
4.3.1 B2.02 Pre-contact Isolate

Site Type: Isolated retouched chert pebble

Archaeology Survey Area: B2

Site Description: Site B2.02 Pre-contact Isolate is located on flat to gently northeast-sloping terrain, approximately 0.2 mi. (0.3 km) southeast of a low hilltop, and approximately 0.8 mile (1.3 km) south-southeast of the Hamlet of Freyburn in an active agricultural field (Figure 9; Appendix A, Photo 13). Soils within the site area are mapped as Ilion silt loam, 0-3% slopes (Esri and NRCS, 2017). Vegetation at the site consisted of approximately 4-in. (10-cm) high corn stalks, and ground surface visibility was approximately 90%. Previous impacts to the area include historic-period and modern plowing and disking.

Site B2.02 Pre-contact Isolate consists of a single angular pebble of opaque gray chert with three flake removals on one side (Appendix A, Photo 25). The pebble measures approximately 1.5 in. (4 cm) long, 1.3 in. (3.5 cm wide), and 0.4 in. (1 cm) thick. Approximately 80% of the surface is covered with secondary cortex. The only cortex-free areas are the three adjacent flake removals.

Recommendation: Site B2.02 Pre-contact Isolate consists of a potential isolated lithic artifact; however, the extent and nature of subsurface archaeological material at the site is currently unknown as the site was not shovel tested. Subsurface testing would be necessary to determine the full extent and nature of archaeological materials that may be present at the site. The Facility layout is being intentionally sited to avoid archaeological resources. However, if Facility components cannot be relocated to avoid impacts to this site, then additional archaeological site investigations (in consultation with NYSOPRHP) will be conducted.

4.3.2 B4.03 Pre-contact Isolate

Site Type: Isolated utilized chert shatter

Archaeology Survey Area: B4

Site Description: B4.03 Pre-contact Isolate is located on a flat saddle between two low hill tops (Figure 9). The site is approximately 0.6 mi. (1.0 km) southeast of the intersection between Cherry Valley Road (NYS Route 163) and Marsh Road, and approximately 230 ft. (70 m) northeast of Marsh Road. Soils within the site are mapped as Appleton silt loam, 3 to 8% slopes (Esri and NRCS, 2017). The site is located in a freshly plowed cornfield containing no vegetation, and surface visibility was 100% (Appendix A, Photo 15). Previous impacts to the area include historic-period and modern plowing and disking.
B4.03 Pre-contact Isolate consists of a single fragment of opaque brown chert shatter with approximately 20% secondary cortex present (Appendix A, Photos 26 and 27). The artifact is highly angular and it does not exhibit any distinct flake scars. One edge of the shatter exhibits macroscopic usewear. As previously noted, the artifact was described, measured, and photographed in the field but not collected and the site was not shovel tested.

Recommendation: B4.03 Pre-contact Isolate is an isolated lithic artifact; however, the extent and nature of subsurface archaeological material at the site is currently unknown because the site was not shovel tested. Subsurface testing would be necessary to determine the full extent and nature of archaeological materials at the site. The Facility layout is being intentionally sited to avoid archaeological resources. However, if Facility components cannot be relocated to avoid impacts to this site, then additional archaeological site investigations (in consultation with NYSOPRHP) will be conducted.

4.3.3 Nestle Lithic Scatter 1

Site Type: Pre-contact Native American lithic scatter
Archaeology Survey Area: Survey Area E1

Site Description: Nestle Lithic Scatter 1 consists of a diffuse, low density, pre-contact Native American lithic scatter located on gently southeast-sloping terrain overlooking the head of an unnamed, southeast trending drainage that feeds into a large wetland approximately 1 mi. (1.6 km) to the southeast (Figure 9). The site is located approximately 40 ft. (12 m) northwest of a small (possibly man-made) pond, approximately 0.4 mi. (0.7 km) northwest of the intersection of Nestle Road and Clinton Road, and approximately 325 ft. (99 m) southwest of Nestle Road. Soils within the site are mapped as Appleton silt loam, 3 to 8% slopes (Esri and NRCS, 2017). Vegetation consisted of harvested corn stalks (Appendix A, Photos 19 and 20). Ground surface visibility was approximately 75%. Previous impacts to the area include historic-period and modern plowing and disking and the possible excavation of the pond noted.

The Nestle Lithic Scatter 1 Site is diffuse, low density lithic scatter consisting of two utilized flakes, two hammerstones, and approximately 20 pieces of debitage (Appendix A, Photos 28-30). The two utilized flakes and all but one piece of the unmodified debitage are opaque medium-grained gray chert material. The single non-chert piece of debitage is a shatter fragment of white vein quartz material. The two utilized flakes are both large (approximately 1.4 in.[3.5 cm] long by 1 in. [2.5] cm wide), and both have a small amount of secondary weathered cortex (less than 10% of the dorsal surface on both artifacts). One flake exhibited significant macroscopic usewear along one lateral margin; the other contained less significant macroscopic usewear along both lateral margins. The utilized edges on both tools are consistent with use as cutting.
As previously noted, two hammerstones were also identified within the site. Both were rounded alluvial cobbles of an unknown metamorphic rock, and were approximately 5 cm in diameter. As typically indicative of use as a hammerstone, peck-marks and damage were visible on at least one end of each. One of the hammerstones also exhibited a flattened facet which may indicate additional utilization as an edge-abrader or other grinding activities. The debitage identified at the site consisted of approximately 90% flakes and approximately 10% shatter. Approximately 20% of the debitage had dorsal cortex, and pot-lidding was observed on the dorsal surface of one non-cortical piece. The debitage ranged in size from approximately 0.4 in. (1 cm) long to approximately 1.4 in. (3.5 cm) long. No diagnostic artifacts were observed or recovered within the site. As previously noted, the artifacts identified were described, measured, and photographed in the field but were not collected and the site was not shovel tested.

Recommendation: Nestle Lithic Scatter 1 consists of a spatially extensive but low density lithic scatter; however, the extent and nature of subsurface archaeological material at the site is currently unknown because the site was not shovel tested. Subsurface testing would be necessary to determine the full extent and nature of archaeological materials at the site. The Facility layout is being intentionally sited to avoid archaeological resources. However, if Facility components cannot be relocated to avoid impacts to this site, then additional archaeological site investigations (in consultation with NYSOPRHP) will be conducted.

4.3.4 E3.01 Pre-contact Isolate

Site Type: Pre-contact chert flake

Archaeology Survey Area: Survey Area E3

Site Description: E3.01 Pre-contact Isolate is located on flat to gently northeast-sloping terrain overlooking an unnamed southeast-trending drainage which flows into a large wetland approximately 1.1 mi. (1.8 km) to the southeast (Figure 9). The site is approximately 0.3 mi. (0.5 km) north-northwest of the intersection of Clinton Road and Marshville Road, and approximately 600 ft. (193 m) northeast of Marshville Road. Soils within the site are mapped as Darien silt loam, 3-8% slopes (Esri and NRCS, 2017). Vegetation consisted of cut corn stalks with patchy grasses and weeds, and ground surface visibility was approximately 80% (Appendix A, Photo 21). Previous impacts to the area include historic-period and modern plowing and disking.

E3.01 Pre-contact Isolate is a single, fine-grained semi-translucent brown chert flake (Appendix A, Photo 31). The flake is approximately 1.9 cm long, contains no cortex, and exhibited no visible usewear or modification. As previously noted, the artifact was described, measured, and photographed in the field but not collected and the site was not shovel tested.
Recommendation: E3.01 Pre-contact Isolate is currently recommended as unevaluated with regard to the S/NRHP. It consists of an isolated chert flake; however, the extent and nature of subsurface archaeological material at the site is currently unknown because the site was not shovel tested. Subsurface testing would be necessary to determine the full extent and nature of archaeological materials at the site. The Facility layout is being intentionally sited to avoid archaeological resources. However, if Facility components cannot be relocated to avoid impacts to this site, then additional archaeological site investigations (in consultation with NYSOPRHP) will be conducted.
5.0 SUMMARY AND CONCLUSIONS

5.1 Potential Effect on Archaeological Resources

Relative to the potential for archaeological sites to be located in the Facility site, the results of the Phase 1A archaeological resources survey for the proposed Mohawk Solar Facility can be summarized as follows:

- Six previously recorded pre-contact Native American archaeological sites and one late pre-contact/early historic-period site are located wholly or partially within the Facility Area. Furthermore, the area surrounding the Facility, specifically along the Mohawk River was heavily occupied by the Mohawk Nation during the late pre-contact and early historic periods.
- Therefore, the Facility Area is considered sensitive for pre-contact Native American archaeology.
- One previously recorded historic-period site occurs within the Facility Area and numerous historic-period farmsteads are depicted on historical maps of the area.
- Therefore, areas located in the immediate vicinity (within approximately 200 feet [61 meters]) of MDS locations are considered to have high potential for the presence of historic-period archaeological resources. The remaining (non-MDS) portions of the Facility site exhibit minimal (if any) likelihood for significant historic-period archaeological sites to be present.

Proposed construction of the Facility will include ground disturbing activities that have the potential to impact archaeological resources. The APE for Direct Effects includes all areas within the limits of disturbance for proposed construction activities; however, it should be noted that some of these activities do not involve a significant amount of earth disturbance and, therefore, do not have the potential to adversely impact archaeological resources. These include the installation of PV panel arrays, fencing, and any buried collection lines that are installed via cable-plough in a trench less than 1 foot (0.3 meters wide). The construction/installation of other Facility components, such as the substation, inverter pads, access roads, any buried collection line installed in a trench wider than 1 foot (0.3 meters), and construction staging areas that require any amount of grading or paving, will constitute significant earth disturbance and have the potential to adversely impact archaeological resources. Any archaeological sites located within the Facility Area that are not within the limits of disturbance for proposed Facility components will not be affected by the Facility.

5.2 Summary of Archaeology Survey Work Plan

On behalf of Mohawk Solar, LLC, EDR has prepared a Phase 1A Archaeological Resources Survey and Phase 1B Archaeological Survey Work Plan for the proposed Mohawk Solar Facility, located in the Towns of Canajoharie and Minden, Montgomery County, New York. A project’s APE for Direct Effects is defined as those areas where soil disturbance is proposed to occur during construction. The specific placement of Facility components (i.e., a project
layout) has not yet been finalized for the Mohawk Solar Facility at this time. The Facility APE and survey effort will be adjusted in accordance with the Facility layout as it is developed consistent with the assumptions and methodology for determining the APE as presented herein.

Based on the current Facility design, it is anticipated that the additional Phase 1B archaeological survey for the Facility will be conducted in the following areas:

- All areas where Facility-related impacts involving significant ground disturbance (i.e., trenching wider than 1 foot (0.3 meter), or any excavation, grading, and/or paving) will be subjected to Phase 1B archaeological survey in the form of either shovel testing or pedestrian surface survey (following the methods outlined above), depending on the ground surface visibility. Areas of significant ground disturbance are anticipated to include:
 - All proposed inverter pads;
 - All proposed access roads;
 - All impacts associated with the proposed substations;
 - Any buried collection lines installed in a trench greater than 1 foot (0.3 meter) wide;
 - Any construction staging areas that require grading, and/or paving; and,
 - Any other areas where Facility-related impacts include earth disturbance beyond the installation of small posts or I-beams or the excavation of a less than 1-foot (0.3-meter) wide trench.
- Preparation of a Phase 1B archaeological survey report, to be submitted to NYSOPRHP via the CRIS website. The report will be prepared in accordance with NYSOPRHP’s Phase 1 Archaeological Report Format Requirements (NYSOPRHP, 2005).
- Submission of site information for any identified archaeological sites via the CRIS website.

EDR has provided this work plan to NYSOPRHP in advance of conducting additional Phase 1B archaeological survey fieldwork to confirm the anticipated field methodology and to ensure that the proposed scope of the survey is consistent with NYSOPRHP’s expectations. Please provide a formal response indicating NYSOPRHP’s concurrence with and/or comments on the work plan described herein.

5.3 Summary of Preliminary Phase 1 Archaeological Survey Fieldwork Conducted to Date
EDR archaeological staff conducted pedestrian survey of selected areas within the Mohawk Solar Facility Area from November 15 to 18, 2016 and May 12 to 15, 2017, totaling 133 acres of pedestrian survey. EDR identified four newly recorded archaeological sites during the pedestrian survey which are summarized in Table 4 and depicted in Figures 8 and 9. All the newly recorded sites are pre-contact Native American and three of the sites consist of single isolated artifacts and one site is a lithic scatter. Artifacts were documented in the field but not collected and no shovel tests
were excavated during this preliminary portion of the Phase 1B archaeological survey. Summary descriptions of these sites are provided as follows:

- **B2.2 Pre-contact Isolate** consists of an isolated retouched chert cobble.
- **B4.03 Pre-contact Isolate** consists of an isolated fragment of utilized chert shatter.
- **Nestle Lithic Scatter 1** consists of a large, low density, pre-contact Native American lithic scatter.
- **E3.01 Pre-contact Isolate** consists of a single pre-contact chert flake.

5.4 Conclusions and Recommendations

The Facility layout is being intentionally sited to avoid archaeological resources. As discussed in initial consultation with NYSOPRHP on August 9, 2017 and described herein, development of the proposed Facility will include relatively minimal ground disturbance and presents relatively minimal risk to archaeological resources (relative to other types of energy development).

Prior to any Facility construction, additional Phase 1B archaeological survey fieldwork will be conducted, following the methods and scope outlined in this report. Following the conclusion of fieldwork, a Phase 1B archaeological survey report will be submitted to the NYSOPRHP via the CRIS system.

A Preliminary Facility Layout has been developed and Facility design and layout is currently ongoing. In the event that a potentially significant archaeological resource is located within the APE, and Facility components cannot be relocated to avoid impacts to the resource, then a Phase II archaeological site investigation (in consultation with NYSOPRHP) will be conducted. However, the Facility layout is being intentionally sited to avoid archaeological resources; therefore, no Phase II site investigations are anticipated to be necessary.
6.0 REFERENCES

New York State Canal Corporation, Albany, NY.

Figures
Mohawk Solar
Towns of Canajoharie and Minden, Montgomery County, New York

Figure 1: Regional Facility Location

Notes:
2. This map was generated in ArcMap on September 18, 2017.
3. This is a color graphic. Reproduction in grayscale may misrepresent the data.
Figure 2: Facility Area Topography

Notes:
1. Basemap: ESRI ArcGIS Online "USA TopoMaps" map service.
2. This map was generated in ArcMap on September 18, 2017.
3. This is a color graphic. Reproduction in grayscale may misrepresent the data.
Mohawk Solar
Towns of Canajoharie and Minden, Montgomery County, New York

Figure 3: Facility Area Soils

Facility Area Soils

- Angola channery silt loam, 3 to 8 percent slopes
- Angola silt loam, 3 to 8 percent slopes
- Appleton silt loam, 0 to 3 percent slopes
- Appleton silt loam, 3 to 8 percent slopes
- Arnot channery silt loam, 8 to 15 percent slopes, rocky
- Arnot-Rock outcrop association, very steep
- Brockport silt loam
- Burdett channery silt loam, 0 to 3 percent slopes
- Burdett channery silt loam, 3 to 8 percent slopes
- Burdett channery silt loam, 8 to 15 percent slopes
- Churchville silty clay loam, 0 to 3 percent slopes
- Churchville silty clay loam, 3 to 8 percent slopes
- Darien silt loam, 0 to 3 percent slopes
- Darien silt loam, 3 to 8 percent slopes
- Darien silt loam, 8 to 15 percent slopes
- Fluvaquents, loamy
- Fonda mucky silty clay loam
- Fonda silt loam
- Hornell silt loam, 3 to 8 percent slopes
- Howard gravelly silt loam, 15 to 25 percent slopes
- Ilion silt loam, 0 to 3 percent slopes
- Ilion silt loam, 3 to 8 percent slopes
- Ilion very stony silt loam, 0 to 8 percent slopes
- Lansing and Mohawk silt loams, very steep
- Lansing silt loam, 15 to 25 percent slopes
- Lansing silt loam, 3 to 8 percent slopes
- Lansing silt loam, 8 to 15 percent slopes
- Madalin silty clay loam
- Mainesville silt loam, 3 to 8 percent slopes
- Markus sandy silt loam, 15 to 25 percent slopes
- Markus sandy silt loam, 8 to 15 percent slopes
- Markus silt loam, 3 to 8 percent slopes
- Mohawk silt loam, 15 to 25 percent slopes
- Mohawk silt loam, 3 to 8 percent slopes
- Mohawk silt loam, 8 to 15 percent slopes
- Palantine silt loam, 15 to 25 percent slopes
- Palantine silt loam, 3 to 8 percent slopes
- Palantine silt loam, 8 to 15 percent slopes
- Phelps gravelly loam, 3 to 8 percent slopes
- Phelps gravelly loam, fan
- Rhinebeck silty clay loam, 0 to 3 percent slopes
- Rhinebeck silty clay loam, 3 to 8 percent slopes
- Unadilla silt loam, 15 to 25 percent slopes
- Wayland silt loam, 3 to 8 percent slopes
- Willetta silt loam, 3 to 8 percent slopes
- Wayland soils complex, 0 to 3 percent slopes, frequently flooded

Notes:
1. Basemap: ESRI ArcGIS Online
 "USA TopoMaps" map service.
2. This map was generated in ArcMap on September 13, 2017.
3. This is a color graphic. Reproduction in grayscale may misrepresented the data.
Mohawk Solar
Towns of Canajoharie and Minden, Montgomery County

Figure 4: Previously Conducted Archaeological Surveys

Notes:
2. This map was generated in ArcMap on September 18, 2017.
3. This is a color graphic. Reproduction in grayscale may misrepresent the data.
Notes:
2. This historic map has been geo-referenced with modern map features. Potential sources of error inherent in this process include cartographic inaccuracies, differences in scale, and changes in the modern landscape. The geo-referenced map therefore presents approximate locations of historic map-documented features, and is not intended to depict survey-accurate information.
3. This map was generated in ArcMap on September 18, 2017
4. This is a color graphic. Reproduction in grayscale may misrepresent the data.
Notes:

2. This historic map has been geo-referenced with modern map features. Potential sources of error inherent in this process include cartographic inaccuracies, differences in scale, and changes in the modern landscape. The geo-referenced map therefore presents approximate locations of historic map-documented features, and is not intended to depict survey-accurate information.
3. This map was generated in ArcMap on September 18, 2017
4. This is a color graphic. Reproduction in grayscale may misrepresent the data.
Figure 7: 1944 USGS Canajoharie, Fort Plain, Sharon Springs, and Sprout Brook, NY 1:31680 topographical quadrangles

Notes:
1. Basemap: 1944 USGS Canajoharie, Fort Plain, Sharon Springs, and Sprout Brook, NY 1:31680 topographical quadrangles
2. This map was generated in ArcMap on September 18, 2017.
3. This historic map has been geo-referenced with modern map features. Potential sources of error inherent in this process include cartographic inaccuracies, differences in scale, and changes in the modern landscape. The geo-referenced map therefore presents approximate locations of historic map-documented features, and is not intended to depict survey-accurate information.
4. This is a color graphic. Reproduction in grayscale may misrepresent the data.
Mohawk Solar
Towns of Canajoharie and Minden, Montgomery County, New York

Figure 8: Preliminary Archaeological Survey Areas

Notes:
2. This map was generated in ArcMap on September 18, 2017.
3. This is a color graphic. Reproduction in grayscale may misrepresent the data.
Figure 9: Preliminary Archaeological Survey Results

2. This map was generated in ArcMap on September 18, 2017.
3. This is a color graphic. Reproduction in grayscale may misrepresent the data.

Mohawk Solar
Towns of Canajoharie and Minden, Montgomery County, New York

Archeological Site
Pedestrian Survey Area
Facility Area
Town Boundary
Appendix A:
Photographs
Photo 1
Overview of the center of the Facility Area, looking northwest.

Photo 2
Overview of the center of the Facility Area, looking north.
Photo 3
Overview of the center of the Facility Area, looking northeast.

Photo 4
Overview of the north-central portion of the Facility Area, looking southwest.
Photo 5
Overview of the northern portion of the Facility Area, view to the northwest.

Photo 6
Example of large transmission lines within the Facility Area, view to the east.
Appendix A: Photographs

Photo 7
Example of an excavated drainage ditch and subsurface drainage tiling within the Facility Area, view to the north.

Photo 8
Survey conditions within Survey Area A1, view to the southeast
Photo 9
Survey conditions within Survey Area A2, view to the north.

Photo 10
Survey conditions within Survey Area A3, view to the southwest.
Photo 11
Survey conditions within Survey Area A4, view to the southwest.

Photo 12
Survey conditions within Survey Area B1, view to the southwest.
Photo 13
Survey conditions within Survey Area B2, view to the southeast.

Photo 14
Survey conditions within Survey Area B3, view to the southwest.
Photo 15
Survey conditions within Survey Area B4, view to the north-northeast.

Photo 16
Survey conditions within Survey Area B5, view to the north-northwest.
Photo 17
Survey conditions within Survey Area C1, view to the southwest.

Photo 18
Survey conditions within Survey Area D1, view to the southeast.
Appendix A: Photographs

Photo 19
Survey conditions within Survey Area E1, view to the east-northeast.

Photo 20
Survey conditions within Survey Area E1 (left) and Survey Area E2 (right), view to the northwest.
Photo 21
Survey conditions within Survey Area E3, view to the northwest.

Photo 22
Ground surface conditions within Survey Area E4 and an example of fragmented (non-site) historic debris.
Photo 23

Ground surface conditions within Survey Area E5 and an example of fragmented (non-site) historic debris, view to the north.

Photo 24

Ground surface conditions within Survey Area E7 and an example of fragmented (non-site) historic debris, view to the northwest.
Photo 25
Retouched chert pebble from B2.02 Pre-contact Isolate.

Photo 26
Utilized chert shatter from B4.03 Pre-contact Isolate.
Appendix A: Photographs

Photo 27
Utilized chert shatter from B4.03 Pre-contact Isolate, with utilized edge toward camera.

Photo 28
Representative artifacts from the Nestle Lithic Scatter Site including utilized flakes (upper left and second from upper right), hammerstone, and debitage.
Photo 29
Hammerstone and quartz shatter from the Nestle Lithic Scatter Site.

Photo 30
Additional representative debitage from the Nestle Lithic Scatter Site.
Photo 31

Isolated flake from E3.01 Pre-contact Isolate.