Hon. Jaclyn A. Brilling
Secretary
State of New York Public Service Commission
Three Empire State Plaza
Albany, New York 12223

Re: Case 04-M-0159 - Proceeding on Motion of the Commission to Examine the Safety of Electric Transmission and Distribution Systems

Dear Secretary Brilling:

Pursuant to the reporting requirements contained in Section 9 of Appendix A of the Commission’s Order on Petitions for Rehearing and Waiver, issued and effective on July 21, 2005 in the above-captioned proceeding, New York State Electric & Gas Corporation (“NYSEG”) and Rochester Gas and Electric Corporation (“RG&E” or collectively the “Companies”) herein submit their annual reports for year four of stray voltage testing and inspection results for the 12-month period ending on November 30, 2008. The stray voltage testing and inspection results for NYSEG and RG&E are contained in separate reports, utilizing the same format that was acceptable to Commission staff for the annual reports for the period ending November 30, 2005, November 30, 2006 and November 30, 2007.

NYSEG and RG&E are committed to the provision of safe and reliable electric service to our customers. The Companies have diligently performed the stray voltage testing and inspections as required by the aforementioned Order and view safety, of both the general public as well as our employees, to be a top priority.

Kindly acknowledge receipt of this filing by date stamping the enclosed duplicate copy of this letter and each report and returning it in the self-addressed envelope provided.

Questions related to this filing may be directed either to me on 585-724-8176 or to Mr. Kevin Sullivan on 585-724-8826.

Very truly yours,

Michael H. Conroy
Vice President, Operations
New York State Electric & Gas Corporation

Stray Voltage Test and Inspection

Report on the results of Stray Voltage Tests and Inspections for the 12-month period ending on November 30, 2008
Table of Contents

Table of Contents .. 2

Background .. 4

Overview ... 5

Company Profile .. 5

Program .. 6

- Stray Voltage Testing Program ... 6
- Categories or Facility Groups ... 6
 - Streetlights ... 6
 - Underground ... 7
 - Overhead Distribution ... 7
 - Transmission .. 7
- Testing Procedures .. 7
 - Facilities Requiring Stray Voltage Testing .. 7
 - Stray Voltage Test Procedure ... 7
 - Response Notification Procedures .. 7
- Training .. 7
- Equipment .. 8
 - Voltage Detection .. 8
 - Voltage Measurement .. 8
 - Shunt Resistor .. 8
 - Ground Rod .. 8
 - 40 Ft. Cable Reel .. 9
- Personnel .. 9
 - Program Development/Support Personnel .. 9
 - Testing Contractor Personnel .. 9
- Stray Voltage Level Classification ... 10
 - Level I Voltage ... 10
 - Level II Voltage ... 10
 - Level III Voltage .. 10
 - Not Detected .. 10
- Structures Inaccessible to the Public .. 11
 - Private Property .. 11
 - NYSEG Property ... 11
 - Buried / Paved Over ... 11
 - Inside Building .. 11
 - Limited Access Highways .. 11
- Stray Voltage Inspection Program .. 12
- Categories or Facility Groups ... 12
 - Streetlights ... 12
 - Underground .. 12
 - Overhead Distribution .. 12
Background

On January 5, 2005, in Case 04-M-0159, the New York State Public Service Commission ("Commission" or "PSC") adopted a set of statewide safety standards ("Electric Safety Standards") that apply to the electric utilities subject to the Commission's jurisdiction, Order Instituting Safety Standards, issued January 5, 2005 ("Safety Order"). Further, pursuant to the Commission's Order on Petitions for Rehearing and Waiver (the "Order") issued and effective on July 21, 2005 in Case 04-M-0159 – Proceeding on Motion of the Commission to Examine the Safety of Electric Transmission and Distribution Systems, the Commission modified the Electric Safety Standards and required each utility, including New York State Electric & Gas Corporation ("NYSEG" or the "Company") to file a comprehensive report by January 15 each year that:

- Details the results of stray voltage tests and inspection conducted by the utility over the 12-month period ending on November 30 of the prior calendar year
- Addresses the performance mechanism specified in Section 10 of the Electric Safety Standards adopted by the PSC in the Safety Order
- Contains the certifications described in Section 7 of the Electric Safety Standards adopted by the PSC in the Safety Order
- Discusses the analyses undertaken on the causes of stray voltage within the utility's electric system, the conclusions drawn, the preventive and remedial measures identified, and the utility's plans to implement those measures
- Includes all other information that is pertinent to the issues addressed by the Electric Safety Standards

On January 17, 2006, NYSEG submitted its first annual report to the PSC for a full inspection cycle, a full underground and streetlight test cycle and a portion of the overhead distribution test cycle.

On October 20, 2006, NYSEG, at the request of PSC Staff, submitted an interim report to PSC staff detailing the results of the first full cycle of testing, including the completed overhead distribution and transmission testing.

On January 15, 2007, NYSEG submitted its second annual report to the PSC for the second full inspection cycle, the second full underground and streetlight test cycle and the first full overhead distribution and transmission test cycle.

On January 15, 2008, NYSEG submitted its third annual report to the PSC for the third full inspection cycle, the third full underground and streetlight test cycle and the second full overhead distribution and transmission test cycle.
Overview

Company Profile
NYSEG is located in upstate New York and serves approximately 848,000 electric customers and about 250,000 gas customers. NYSEG covers an area of about 18,350 square miles or 40% of upstate New York, and serves a primarily rural area composed of 149 small cities and villages.

NYSEG's electric delivery infrastructure consists of 4,480 circuit miles of transmission lines, 27,800 circuit miles of primary distribution 430 substations, 35,693 underground facilities and 32,101 streetlight/traffic signal facilities. This system includes an estimated 812,833 distribution structures and 78,078 transmission structures. NYSEG serves an average of 46 customers per square mile.
Program
NYSEG, in April, 2005, developed and initiated a Testing Pilot Program ("Pilot"). The purpose of the Pilot was to evaluate programs and processes of a testing program, prior to starting a much larger statewide testing effort. The Pilot practices and procedures were evaluated and modifications and enhancements were made as necessary to ensure that stray voltage testing was consistent with the Electric Safety Standards and that the results were accurate.

The Company began stray voltage testing for the 2008 cycle year on a statewide basis in December, 2007 and successfully completed stray voltage testing on all of its publicly accessible streetlights and electric facilities served by underground systems, as required by the Order, in mid-November.

NYSEG's Stray Voltage Testing and Inspection Program is separated into four major categories or facility groups: streetlights, underground, overhead distribution and transmission. These groups are defined in more detail in the Stray Voltage Testing and Inspection Program sections.

The program developed by NYSEG also addressed daily stray voltage testing of all facilities and equipment accessed by work crews in the course of their regularly scheduled daily activities.

Stray Voltage Testing Program
The objective of the testing program is to identify and mitigate voltage conditions that should not ordinarily exist on an electric facility. NYSEG designed its stray voltage testing plan to fully meet the requirements set forth in the Electric Safety Standards.

Categories or Facility Groups
Streetlights
This group includes all metallic and concrete NYSEG owned streetlights and streetlight handhole covers along with municipal owned streetlights. Testing of streetlights was performed at night when the fixture was energized. Streetlights on wood poles are included in the overhead distribution category.

In addition to streetlights, this group also includes traffic signal facilities. Traffic signal facilities include the various traffic control structures seen primarily at intersections and crosswalks, such as poles used to hang traffic and pedestrian control lights, pushbuttons, control cabinets and traffic signal handhole covers.

Municipal and Company streetlight records are not maintained on company maps. The task of finding and ensuring that all streetlights were tested was accomplished through the joint efforts of Regional Streetlight Representatives within the Company and municipalities to determine ownership and locations of streetlights. NYSEG also used the Customer Information System (CIS) to help obtain location and counts of streetlight structures.

Streetlights that were not working at the time field testers approached them were identified in the stray voltage database as "Needs Repair." These streetlights may be NYSEG owned or municipally owned. NYSEG, through its Regional Streetlight Representatives, determined the owners. If the streetlight was owned by the Company, a trouble ticket was generated and the repair was made immediately. A subsequent stray voltage test occurred, and the results were
posted to the database record. If the streetlight was owned by a municipality, a notification in
the form of a letter or e-mail was sent with instructions regarding who to contact when the
repair was made. Once all necessary repairs were made, and NYSEG was notified by the
municipality, a tester conducted a stray voltage test and the database record for that
streetlight was updated with the results.

Underground
The underground category includes all facilities that are located either at grade level or below
grade. Included in the underground facilities are padmount switchgear cases, padmount
transformer cases, electric utility manhole covers, submersible transformer covers, electric
utility handhole covers, network vaults and grates.

Overhead Distribution
This group of facilities includes distribution poles that have ground wires, riser pipes, guy
wires/anchors, capacitor control boxes, recloser control boxes, regulator control boxes,
switch control boxes, overhead switch handles, streetlights and CATV control/amplifier
boxes.

Transmission
Transmission facilities consist of all overhead transmission towers, poles and structures with
operating voltages at or above 34.5kV.

Transmission poles as described above, with distribution underbuild, are included in this
transmission category. This is the first year these structures have been identified as
transmission; previously, they were categorized as distribution structures.

Testing Procedures
Stray voltage tests were performed by qualified test personnel on all electric utility facilities
capable of conducting electricity. Test personnel were issued the following documents:
Facilities Requiring Stray Voltage Testing, Stray Voltage Test Procedure and Response
Notification Procedure.

Facilities Requiring Stray Voltage Testing
NYSEG developed a list of facilities that require testing in compliance with the PSC's Order.
This document is included in Appendix 1.

Stray Voltage Test Procedure
NYSEG developed a Stray Voltage Test Procedure to govern the testing performed by all
NYSEG personnel and contractors. This procedure is included in Appendix 1.

Response Notification Procedures
NYSEG developed a Response Notification Procedure to govern the guarding and reporting
of all detected stray voltage. This procedure details the appropriate action for all response
levels: Critical, Immediate and No Response. The Response Notification Procedure is
included in Appendix 1.

Training
The Company provides annual training to supervisory, office support and field testing
personnel from the testing contractor. This training consisted of a detailed review of the Stray
Voltage Testing Procedure; operation of the HD voltage tester and Fluke Multimeter; how to
use the test equipment; how to respond to various levels of voltages found including guarding
of facilities; and how to read the various circuit and facility maps given to the testing contractor. This program included training on the positional (GPS) and data acquisition/logging equipment. The positional (GPS) and data acquisition/logging equipment was furnished by NYSEG for use by the testing contractors. GPS equipment is utilized to provide a mechanism for contractor quality control.

Equipment

Stray Voltage measurement equipment is calibrated annually by a certified test laboratory. The following equipment was utilized by NYSEG:

Voltage Detection

The HD Electric LV-S-5 hand held Low Voltage Detector was utilized for the detection of stray voltage in accordance with the manufacturer’s operating instruction manual to assure proper application. The LV-S-5 was designed to detect the presence of voltage exceeding 4.5 VAC. The presence of a voltage of 4.5 VAC or greater initiated a flashing red light in the tip of the detector. A PT-LV-5 Low Voltage Detector Tester was used to provide a field test of the LV-S-5 Detector to assure proper operation.

The LV-S-5 was used to individually test all conductive material or equipment accessible to the general public, on or encasing utility structures or equipment, for the presence of stray voltage.

Voltage Measurement

The Fluke Model 7-600 Multimeter was utilized to perform a contact test of the conductive material or equipment if the LV-S-5 detected a voltage. The Fluke 7-600 is a true RMS voltmeter with an input impedance of 2000 ohms (Ω).

The voltage measurement was made between the conductive material or equipment and a remote ground (see Ground Rod and 40 Ft. Cable Reel descriptions). If the measured voltage did not exceed 30 VAC, a shunt resistor (see Shunt Resistor description) was installed across the input terminals of the Fluke 7-600. The shunt resistor reduced the effective input impedance of the voltmeter to 5000 Ω. All voltages measured with the Fluke 7-600 were recorded, and appropriate response notifications issued based on the voltage measured.

Shunt Resistor

The shunt resistor was a 6800, 5 watt resistor installed in a plastic box with banana plugs for insertion into the input jacks of the Fluke 7-600. The equivalent impedance of the parallel impedance of the 2000Ω multimeter input and the 6800Ω shunt resistor was 5070Ω. If the voltage measured by the Fluke 7-600 without the resistor indicated a voltage level exceeding 30 VAC, the shunt resistor was not utilized to obtain a voltage measurement because such high voltage levels can damage the shunt resistor. It is assumed that any structure with a recorded voltage level exceeding 30 VAC without the resistor would have voltage above the critical level with the resistor, so all such cases were recorded and addressed as critical stray voltage issues.

Ground Rod

The ground rod is a 5/8 inch diameter, 18 inch long copper rod with one pointed end. The ground rod was generally installed into the earth within 3 feet of the material or equipment to be tested. If a suitable ground location could not be found within 3 feet of the material or
equipment, the cable reel was used for locating the ground rod beyond 3 feet from the material or structure.

40 Ft. Cable Reel
The cable reel is a 40 foot reel of #14 wire with an attached Mueller #49C alligator clip and banana plug. The cable reel was used when a suitable ground rod location could not be found within 3 feet of the material or equipment to be tested.

Personnel
NYSEG assigned a full time Project Manager to oversee the program. Other internal resources from Maps and Records, Maintenance Engineering and Field Operations were utilized as needed.

In addition, NYSEG contracted staff in two areas: Program Development/Support Personnel and Testing Contractor Personnel.

Program Development/Support Personnel
NYSEG employs an IT contractor to manage a data collection and reporting application for stray voltage testing and inspection data.

A full time contractor is employed by NYSEG to serve as the Stray Voltage Application Business Analyst and Data Coordinator between NYSEG staff and all contractors.

In order to support its overall Quality Assurance effort on data collected in the field, NYSEG employs five contractors for the duration of the project.

In addition, four Field Coordinators were contracted by NYSEG to serve as liaisons between NYSEG and contract field personnel in the thirteen NYSEG divisions.

Testing Contractor Personnel
This category includes a staff of over 50 field testers and vendor back office support personnel required for the Stray Voltage Testing Program.
Stray Voltage Level Classification
When NYSEG performed stray voltage testing on facilities, the voltages as detected by the HD Detector were categorized into three levels with appropriate response criteria, as shown in Table 1.

<table>
<thead>
<tr>
<th>Voltage Level</th>
<th>Voltage Range</th>
<th>Required Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>8.0 ≤ x</td>
<td>Critical</td>
</tr>
<tr>
<td>Level II</td>
<td>4.5 ≤ x < 8</td>
<td>Immediate</td>
</tr>
<tr>
<td>Level III</td>
<td>0.0 < x < 4.5</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 1 – Voltage Levels

Level I Voltage
Any measured voltage, as specified in the Stray Voltage Test Procedure, equal to or greater than 8 Volts Alternating Current (VAC) was deemed critical. If voltages at this level or higher detected in areas where the public can make contact with the facility, the facility was guarded. The area was made safe. Repairs were completed within 45 days.

Level II Voltage
Any measured voltage, as specified in the Stray Voltage Test Procedure, equal to or greater than 4.5 VAC and less than 8 VAC necessitated an immediate response. If voltages at this level were detected, the Project Foreman determined whether or not the facility required guarding and the immediacy of corrective action. The voltage was investigated to determine whether or not it ordinarily exists; if it does not, the voltage was investigated to determine if a source could be identified and if it could be corrected.

Level III Voltage
Any measured voltage, as specified in the Stray Voltage Test Procedure, greater than 0 VAC and less than 4.5 VAC was considered to be at a level that did not require immediate remedial action. This voltage poses no threat to public safety.

Not Detected
Any test on which the HD Detector fails to indicate the presence of voltage, as specified in the Stray Voltage Test Procedure, was categorized as Not Detected.
Structures Inaccessible to the Public
There are several types of Inaccessible structures as described below. If the contractor could not reach the structure to perform a test, it was identified as "Inaccessible" and all other pertinent data was collected in the field. Contractors made every attempt to locate and test all structures. There were a total of 1,429, or 0.15% of the total structures visited, in these categories.

Private Property
The structure was not tested if it was located on private property and was inaccessible due to walls, fences or barriers such as a locked gate, if excavation or bush/tree removal was required, or if there was unauthorized construction around the structure.

NYSEG Property
The structure was not tested if the structure was behind a company fence that limited access to the structure to authorized personnel only.

Buried/Paved Over
The structure was not tested if it had been covered over with dirt, pavement, or other foreign objects that would prohibit public access and prevent testing the structure. Contractors noted the structure ID on the issued maps and turned them in to Maintenance Engineering for verification with the Maps and Records Department. If Maps and Records confirmed that the structure does exist, company and contractor crews followed up and attempted to locate, uncover, and test the structure. If the structure could not be found, it was then considered removed from the field, and revisions to mapping were generated.

Inside Building
If a contractor identified a structure as being inside a building, NYSEG personnel verified that the structure was actually inside the building. If the NYSEG personnel verified that the structure was accessible to the public, a test was performed. Typically, customer owned equipment that is inside a building is in a locked equipment room that is accessible to authorized personnel only.

Limited Access Highways
The testing of structures located on limited access highways and interstates presents a safety risk to testing personnel, and those structures on limited access highways are typically not accessible to the public. The structure was not tested if NYSEG personnel verified that it was not accessible to the public and it was located on a major city, state, or national highway.
Stray Voltage Inspection Program
The objective of all inspections is to conduct a careful and critical examination of an electric facility by a qualified individual to determine the condition of the facility and the potential to cause or lead to safety hazards or adverse effects on reliability. NYSEG's inspection program was designed to visually inspect every facility at least once over a period of five years as required by the Order.

Inspections conducted during routine maintenance and other work not directly related to the inspection program count as an inspection visit, provided that the inspection is performed using the same safety and reliability criteria and to the same extent as would otherwise be required under the Electric Safety Standards.

Categories or Facility Groups

Streetlights
The streetlight inspection effort is a component of the scheduled re-lamping effort each NYSEG division undertakes on an annual basis. Crews replace lamps and photo-eyes, if necessary, on all visited streetlights and open the handhole and inspect the internal wiring. In conjunction with this maintenance program, the fixture is also inspected for various other conditions.

Underground
The underground inspection program provides a comprehensive inspection of NYSEG manholes, handholes, vaults, sub-holes, padmount transformers, padmount switchgear and all equipment, devices and cables present within these structures. This includes inspection of structural integrity, drainage electrical integrity of all equipment and cables (as permissible by visual inspection), mechanical integrity of all equipment and cables (as permissible by visual inspection), dangerous conditions and potential threats to electric system reliability.

Overhead Distribution
The overhead distribution inspection and maintenance program is a comprehensive program to identify and correct electric overhead distribution circuit deficiencies on all poles, equipment, and devices present on all distribution structures including guy wires/anchors, crossarms, switches, conductors and other accessory equipment.

Each division is required to visually inspect 20% of all distribution circuits annually within their respective division. Thermography inspections on main line electric circuits could be included in this program, but are not mandatory.

NYSEG also conducts annual inspections of all its substations. This effort is a comprehensive inspection of all equipment located within the facility by Division UC&M field personnel. Numerous inspections of substation equipment occur during the year as a result of ongoing maintenance work, but the annual inspection is a separate and independent activity.

Transmission
The objective of all transmission inspections is to identify and correct circuit deficiencies on all transmission circuits and structures.

Transmission inspections are accomplished through a comprehensive foot patrol, performed by an inspector competent in line inspection procedures. All inspection data will be entered
on a per structure basis and managed electronically via company issued handheld units. Inspections include a visual examination of all transmission towers, poles, guy wires, risers, overhead conductors, switches, and other aboveground equipment and facilities.

Inspection Procedure

The annual performance target for inspections includes all existing Maintenance Engineering and Operations inspection programs if the inspection and collected data satisfies the Electric Safety Standards.

The number of facilities to be inspected in each cyclic inspection program shall be determined by one of the following methods:

- If an estimated number of facilities is known, 20% of that estimated number shall be inspected annually.
- If only an estimated number of circuit miles is known, 20% of that estimated number of miles shall be inspected annually.

Electric facility inspections shall be performed by trained and qualified personnel.

Inspection personnel shall wear all appropriate Personal Protective Equipment (PPE) (e.g. vests, gloves, safety glasses, steel-toed boots, etc.) in accordance with OSHA and Company safety procedures and practices.

Inspection personnel shall comply with all appropriate safety procedures and practices specified by the Company (e.g. manhole entry, manhole rescue and work zone protection) when performing inspections.
Repair Prioritization

Inspection discrepancies have been classified into Level I, Level II and Level III conditions based on the severity of each discrepancy as it relates to public safety and electric system reliability. Level I discrepancies are the most critical, requiring immediate attention. Level II and Level III conditions, as determined by the inspector, are addressed as specified in the descriptions below.

Level I Condition
A Level I Condition is a condition of any electrical equipment, device or structure on an electric transmission or distribution system, overhead or underground, that poses a serious and immediate threat to either the safety of the general public or the reliability of the electric transmission or distribution system. Such conditions shall require an immediate response by the appropriate maintenance and repair personnel to correct the situation.

Level II Condition
A Level II Condition is a condition of any electrical equipment, device or structure that, if not addressed for an extended period of time (6 months or more), could develop into a Level I Condition. Such conditions require a response within a 60 day period based on the evaluation of the inspector.

Level III Condition
A Level III Condition is a condition of any electrical equipment, device or structure that has deficiencies, but those deficiencies do not pose any risk to public safety or the reliability of the electric transmission or distribution system. These conditions can be addressed through normal electric system maintenance practices within 12 - 24 months based on the evaluation of the inspector.
Daily Work Stray Voltage Testing

NYSEG instituted the stray voltage testing procedures, to be included in the routine responsibilities of all field personnel, effective June 20, 2005. The intent of the daily testing is to ensure that no stray voltage exists that could endanger the general public or company or contract personnel.

The stray voltage test shall be performed upon arrival at each job site and before departing the job site either at the end of the workday or upon completion of the job. Personnel shall perform a daily test, in accordance with the Stray Voltage Test Procedure, on all facilities and equipment to be worked on in their job site. Facilities that do not require personnel to touch them do not require implementation of the Stray Voltage Test Procedure.

Should a stray voltage situation be identified, the crew shall be responsible for correcting the stray voltage source. If the crew is unable to resolve the situation, they shall obtain the required technical support, personnel or equipment necessary to resolve the situation.
Testing and Inspection Results

Testing
In the course of the NYSEG Stray Voltage Testing Program, completed on November 30, 2008, contractors visited 958,705 structures and identified 48 facilities with a Level I Stray Voltage as described in the Stray Voltage Testing Procedure, resulting in a detection rate of 0.005%. For the reporting period, NYSEG conducted stray voltage testing on 100% of its entire system. In each of the Level I stray voltage cases, the contractor guarded the location until relieved by NYSEG personnel. NYSEG personnel made each location safe before leaving the location. All NYSEG Level I stray voltage cases were repaired within the 45-day requirement. Table 2 displays the 48 cases of Level I stray voltage in the overall Stray Voltage Program, including 3 transmission structures with induced voltage.

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Total Structures</th>
<th>Stray Voltages</th>
<th>Detection Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streetlight</td>
<td>32,101</td>
<td>33</td>
<td>0.103%</td>
</tr>
<tr>
<td>Underground</td>
<td>35,693</td>
<td>0</td>
<td>0.000%</td>
</tr>
<tr>
<td>Distribution</td>
<td>812,833</td>
<td>12</td>
<td>0.001%</td>
</tr>
<tr>
<td>Transmission</td>
<td>78,078</td>
<td>3</td>
<td>0.004%</td>
</tr>
<tr>
<td>Total</td>
<td>958,705</td>
<td>48</td>
<td>0.005%</td>
</tr>
</tbody>
</table>

Table 2 - Overall Stray Voltage

Streetlights
Streetlight facilities are defined in the Stray Voltage Program section and in accordance with the Safety Order.

NYSEG contractors visited 32,101 (100%) of its streetlight structures to perform a stray voltage test; all of these structures met stray voltage criteria for testing. Of the structures tested, only 33 were found with a Level I stray voltage, for a 0.10% detection rate. Table 3 displays a summary of all streetlight test results.

<table>
<thead>
<tr>
<th>Voltage Levels</th>
<th>Voltaaes Found</th>
<th>Percent of Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>33</td>
<td>0.10%</td>
</tr>
<tr>
<td>Level II</td>
<td>18</td>
<td>0.06%</td>
</tr>
<tr>
<td>Level III</td>
<td>40</td>
<td>0.12%</td>
</tr>
<tr>
<td>Not Detected</td>
<td>32,000</td>
<td>99.89%</td>
</tr>
<tr>
<td>Inaccessible</td>
<td>10</td>
<td>0.03%</td>
</tr>
<tr>
<td>Total</td>
<td>32,101</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Table 3 - Streetlight Stray Voltage
Underground
NYSEG contractors visited 35,693 of its underground structures to perform a stray voltage test; all of these structures had stray voltage criteria. Of the structures tested, 0 were found with a Level I stray voltage. Table 4 displays a summary of all underground test results.

<table>
<thead>
<tr>
<th>Voltage Levels</th>
<th>Voltagess Found</th>
<th>Percent of Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Level II</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Level III</td>
<td>2</td>
<td>0.01%</td>
</tr>
<tr>
<td>Not Detected</td>
<td>35,592</td>
<td>99.72%</td>
</tr>
<tr>
<td>Inaccessible</td>
<td>99</td>
<td>0.28%</td>
</tr>
</tbody>
</table>

Table 4 - Underground Stray Voltage

Overhead Distribution
NYSEG contractors visited 812,833 distribution structures to perform a stray voltage test; 245,643 of these structures did not have stray voltage criteria. Of the 567,190 structures with stray voltage criteria, 12 were found with a Level I stray voltage, for a detection rate of .002%. Table 5 displays a summary of all distribution test results.

<table>
<thead>
<tr>
<th>Voltage Levels</th>
<th>Voltagess Found</th>
<th>Percent of Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>12</td>
<td>0.002%</td>
</tr>
<tr>
<td>Level II</td>
<td>25</td>
<td>0.004%</td>
</tr>
<tr>
<td>Level III</td>
<td>644</td>
<td>0.114%</td>
</tr>
<tr>
<td>Not Detected</td>
<td>565,852</td>
<td>99.729%</td>
</tr>
<tr>
<td>Inaccessible</td>
<td>857</td>
<td>0.151%</td>
</tr>
</tbody>
</table>

Table 5 - Overhead Distribution Stray Voltage
Transmission
NYSEG contractors visited 78,078 transmission structures to perform a stray voltage test; 7,849 of these structures did not have stray voltage criteria. Of the structures tested, 3 were found with a Level I voltage. Upon investigation, the Company has found these are not shock voltages attributable to structure or equipment defects (see Transmission Level I Responses below). Table 6 displays a summary of all transmission test results.

<table>
<thead>
<tr>
<th>Voltage Levels</th>
<th>Voltages Found</th>
<th>Percent of Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>3</td>
<td>0.00%</td>
</tr>
<tr>
<td>Level II</td>
<td>17</td>
<td>0.02%</td>
</tr>
<tr>
<td>Level III</td>
<td>292</td>
<td>0.42%</td>
</tr>
<tr>
<td>Not Detected</td>
<td>69,594</td>
<td>99.10%</td>
</tr>
<tr>
<td>Inaccessible</td>
<td>323</td>
<td>0.46%</td>
</tr>
<tr>
<td>Total</td>
<td>70,229</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Table 6 – Transmission Stray Voltage

Transmission Level I Responses
Critical responses were initiated for the 3 wood transmission pole structures exhibiting 8 VAC or greater.

Based on a follow-up investigation, the stray voltages measured on the 3 transmission structures appear to be conditions inherent to the design and operation of the system. The voltage results from a difference in potential between the static wire and a remote ground. These are not shock voltages attributable to structure or equipment defects.

On December 18th, 2006, the Upstate New York Utilities, consisting of National Grid, Central Hudson Gas and Electric, Rochester Gas and Electric and New York State Electric and Gas submitted a Transmission Line Neutral to Earth Voltage Analysis to address voltages found on transmission systems.
Inspection

NYSEG conducts separate inspection programs for the equipment in each of the four categories or facility groups: underground, streetlights, overhead distribution and transmission. The Company has completed inspections on 2% of streetlight facilities, 13% of underground facilities, 20% of overhead distribution facilities and 7% of transmission facilities. This represents a total inspection, for this reporting period, of 19% of NYSEG’s total system, and 86% of the total system since the inception of the program.

Streetlights

As a result of the inspection program, 2% of streetlight facilities have been inspected. This inspection identified 2 structures with discrepancies, of the 98 structures inspected. Table 7 displays a summary of all streetlight inspection results.

<table>
<thead>
<tr>
<th>Streetlight Inspection Conditions</th>
<th>Discrepancies Found</th>
<th>Percent of Inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition I</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Condition II</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Condition III</td>
<td>2</td>
<td>2.04%</td>
</tr>
</tbody>
</table>

Table 7 - Streetlight Inspection

Table 7a shows a breakdown of completed repairs and scheduled responses resulting from the streetlight inspection program. All Condition I discrepancies were repaired immediately.

<table>
<thead>
<tr>
<th>Streetlight</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repaired</td>
<td>2</td>
</tr>
<tr>
<td>Scheduled</td>
<td>0</td>
</tr>
</tbody>
</table>

2

Table 7a - Streetlight Inspection

Underground

As a result of the inspection program, 13% of the underground system has been inspected. This inspection identified 487 structures with discrepancies, of the 4,052 inspected. Table 8 displays a summary of all underground inspection results.

Level II conditions for the underground inspection program tend to be structural in nature, and do not pose a risk to the safety or reliability of the system. All Level II conditions are noted and reviewed on the next inspection cycle.

<table>
<thead>
<tr>
<th>Underground Inspection Conditions</th>
<th>Discrepancies Found</th>
<th>Percent of Inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition I</td>
<td>42</td>
<td>1.04%</td>
</tr>
<tr>
<td>Condition II</td>
<td>89</td>
<td>2.20%</td>
</tr>
<tr>
<td>Condition III</td>
<td>356</td>
<td>8.79%</td>
</tr>
</tbody>
</table>

487

12.02%

Table 8 - Underground Inspection
Table 8a shows a breakdown of completed repairs and scheduled responses resulting from the underground inspection program. All Condition I discrepancies were repaired immediately.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repaired</td>
<td>101</td>
</tr>
<tr>
<td>Scheduled</td>
<td>386</td>
</tr>
</tbody>
</table>

Table 8a – Underground Discrepancies

Overhead Distribution
As a result of the inspection program, 20% of the overhead distribution system has been inspected. This inspection identified 923 structures with discrepancies, of the 167,373 inspected. Table 9 displays a summary of all distribution inspection results.

<table>
<thead>
<tr>
<th>Inspection Conditions</th>
<th>Discrepancies Found</th>
<th>Percent of Inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition I</td>
<td>173</td>
<td>0.10%</td>
</tr>
<tr>
<td>Condition II</td>
<td>338</td>
<td>0.20%</td>
</tr>
<tr>
<td>Condition III</td>
<td>412</td>
<td>0.25%</td>
</tr>
</tbody>
</table>

Table 9 – Streetlight Inspection

Table 9a shows a breakdown of completed repairs and scheduled responses resulting from the overhead distribution inspection program. All Condition I discrepancies were repaired immediately.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repaired</td>
<td>484</td>
</tr>
<tr>
<td>Scheduled</td>
<td>439</td>
</tr>
</tbody>
</table>

Table 9a – Overhead Distribution Discrepancies

Transmission
As a result of the inspection program, 7% of the transmission system has been inspected. This inspection identified 754 structures with discrepancies, of the 4,816 inspected. Table 10 displays a summary of all transmission inspection results.

<table>
<thead>
<tr>
<th>Inspection Conditions</th>
<th>Discrepancies Found</th>
<th>Percent of Inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition I</td>
<td>14</td>
<td>0.29%</td>
</tr>
<tr>
<td>Condition II</td>
<td>159</td>
<td>3.30%</td>
</tr>
<tr>
<td>Condition III</td>
<td>581</td>
<td>12.06%</td>
</tr>
</tbody>
</table>

Table 10 – Transmission Inspection
Table 10a shows a breakdown of completed repairs and scheduled responses resulting from the transmission inspection program. All Condition I discrepancies were repaired immediately.

<table>
<thead>
<tr>
<th>Transmission</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repaired</td>
<td>186</td>
</tr>
<tr>
<td>Scheduled</td>
<td>568</td>
</tr>
<tr>
<td></td>
<td>754</td>
</tr>
</tbody>
</table>

Table 10a – Transmission Discrepancies
Analysis of Results

Summary of Critical Responses

The NYSEG 2008 stray voltage testing identified 48 Level I facilities, including the 3 transmission structures explained in table six. The remaining 45 required safeguarding and repair, out of the 958,705 facilities visited, for a detection rate of .005%. All critical responses were made safe immediately. All repairs were completed within 45 days.

The itemized breakdown of causes is contained in Table 11.

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Cause of Stray Voltage</th>
<th>Stray Voltages Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streetlights</td>
<td>Customer Owned Equipment</td>
<td>14</td>
</tr>
<tr>
<td>Streetlights</td>
<td>Defective Neutral Connection – Handhole</td>
<td>6</td>
</tr>
<tr>
<td>Streetlights</td>
<td>Defective Neutral Connection – Light Pole</td>
<td>6</td>
</tr>
<tr>
<td>Streetlights</td>
<td>Defective Cable – Handhole</td>
<td>3</td>
</tr>
<tr>
<td>Streetlights</td>
<td>Defective Conducto Connection – Light Pole</td>
<td>2</td>
</tr>
<tr>
<td>Streetlights</td>
<td>Defective Neutral – Underground Cable</td>
<td>1</td>
</tr>
<tr>
<td>Streetlights</td>
<td>Defective Light Fixture</td>
<td>1</td>
</tr>
<tr>
<td>Distribution</td>
<td>Customer owned equipment</td>
<td>6</td>
</tr>
<tr>
<td>Distribution</td>
<td>Grounds and ground rods</td>
<td>3</td>
</tr>
<tr>
<td>Distribution</td>
<td>Transformers/ Capacitors</td>
<td>2</td>
</tr>
<tr>
<td>Distribution</td>
<td>Floating Primary</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 11 – NYSEG Itemized Causes of Critical Responses

Based on the causes of the critical responses, NYSEG inspectors will thoroughly inspect fixtures, neutral connections and the correct wiring of street light poles while performing structure inspections.
Other Pertinent Information

Quality Assurance Measures Instituted

Data Submission Quality Assurance
The Stray Voltage Database Administrator is charged with the responsibility of receiving, controlling, and maintaining all testing data associated with the stray voltage project. Throughout the testing effort, the testing contractor submits their testing data to NYSEG in the form of batch files.

Testing data batch files are submitted to the Stray Voltage Data Administrator for QA/QC reviews. The first review that takes place is for data accuracy. If approved, IT Data Managers load the file into the production database and forward a copy of the file to Global Positioning System (GPS) Data Manager, for the second review, to check the data for positional accuracy (See Stray Voltage GPS QA/QC Process). If the data is not acceptable, the Data Administrator notifies the contractor of such and the reasons for failure. The Testing Contractor remedies the problems and re-submits the failed file with corrections.

Following vendor batch file approval through the program administrator, the batch is loaded into NYSEG's data storage facility (SDE) in ArcMAP. ArcMAP is the GIS software tool that is used to check the vendor point data for quality assurance. Gross geographical errors can easily be located during the loading process. The batch is rejected if gross geographical errors are found.

Vendor data is first analyzed against Real-Time Kinematics (RTK) control data. These are random poles that were GPS located by NYSEG's field crew prior to vendor pole locating. Vendor points must fall within a seven foot radius of the control points. If points fall outside of this radius, they “fail” this QA/QC analysis.

Secondly, data is analyzed against New York State Orthophotography. Each batch of data is broken down by tester name. Based on the total number of points (by tester), a random sample set is analyzed. The sample set is based on military standard sampling procedures (MIL-STD-105E: Sampling Procedures and Tables for Inspection by Attributes). NYSEG uses General Inspection Level I, and a 4.0 Acceptable Quality Level Tables I and II-A. Again, vendor points must fall within a seven foot radius of the pole location on the photography. If the sample set does not achieve an acceptable level according to the table, the tester “fails” this QA/QC analysis. After all tester sample points are analyzed in a batch, they are totaled. If more than 5% of the sample points fail, the entire batch “fails” this QA/QC analysis.

And thirdly, data is checked for duplicates. An analysis is run to search for duplicate pole locations. Points with identical structure ID’s are flagged as duplicates.

Other tests are performed to check for attribute accuracy, such as the latitude and longitude coordinates, street names, dates and times, Positional Dilution of Precision (PDOP) values, and pole numbers.

In addition, other geographic checks are performed to find anomalies in the data, for example, large amounts of digitized points or irregularities in pole locations. The GPS time element is also analyzed for realistic data collection patterns. The result from this time element...
analysis sometimes calls into question whether a tester could feasibly be at the pole to perform the stray voltage test.

Results of the QA/QC GPS data review are recorded on the Stray Voltage Tracking Log located on the corporate server, Stray Voltage/Project Tracking directory. Reports of the QA/QC results are copied to the GPS_Reviews folder in the above directory. A status report is emailed to the Data Administrator, who then forwards the QA/QC Reports to the vendor. Any other findings or anomalies in the data are reported to the project managers.

Random Quality Assurance
On an ongoing basis, NYSEG is performing many quality assurance measures to ensure testing data accuracy. These include investigations into 1) inaccessible structures to determine nature of inaccessibility, 2) performance of individual testers, 3) miscellaneous anomalies found in testing data, 4) checking circuit maps to ensure all distribution poles have been visited. Data for individual testers can be reviewed to determine their accuracy and performance. Problem testers are identified to the testing contractor and, if need be, removed from the testing effort. Any discrepancies found as a result of random data sampling checks like wrong town or street name and incorrect spellings would be corrected.

In addition to these measures, Field Coordinators conducted random field visits to ascertain that field contractors were performing tests on all required structures. During these visits, the Field Coordinator answered questions about map reading, structure IDs and location of structures. In addition to field visits, the Field Coordinator also performed follow up on randomly chosen completed maps to check that all structures were tested and recorded properly.

NYSEG developed an Inspection QA/QC Program for the purpose of independently verifying the results of the inspection effort as reported by each division for the current inspection year. This program includes comparing the results of an independent inspection of a randomly selected sample set of inspections reported as completed by the divisions with the results reported by the division.

Research and Development
Shock Reports

2008 Reported Electric Shocks

This shock report, requested by PSC Staff, is for the period 1/1/08 - 12/31/08.

Shock Reports from the Public

<table>
<thead>
<tr>
<th>NEW YORK STATE ELECTRIC AND GAS</th>
<th>Annual Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Total shock calls received:</td>
<td></td>
</tr>
<tr>
<td>Voltage Found</td>
<td>2</td>
</tr>
<tr>
<td>Unsubstantiated</td>
<td>4</td>
</tr>
<tr>
<td>Employee Contact</td>
<td>1</td>
</tr>
<tr>
<td>Non-Employee Contact</td>
<td>19</td>
</tr>
</tbody>
</table>

II. Injuries sustained:	
Employee	1
Non-Employee	4
Domestic Animal	3

The following sections apply for the incidents listed as "Voltage Found" in Section I

III. Responsibility:	
Utility	2
Non-utility (ConEd only)	0
Customer	0

IV. Action to make safe:	
Permanent repair at time of discovery	2
Temp. repair at time of discovery	0
Cut and cap service line	0
Customer circuit breaker or fuse	0
Barriers	0
Other	0

V. Voltage Source:	
Streetlight service line	0
Streetlight base connection	0
Streetlight internal wiring or light fixture	0
Issue with primary, joint, or transformer	1
Defective service line	0
Abandoned service line	0
Customer wiring	0
Customer equipment	0
Other	1

VI. Voltage Range:	
1.0V to 4.4V	0
4.5V to 7.9V	0
8.0V to 24.9V	0
25.0V to 99.9V	2
100.0V or higher	0
Shunt Resistor
The following defines why shunt resistors are utilized in the measurement and identification of stray voltage versus induced voltage. Overhead power lines are not shielded conductors, and the electric fields surrounding them can induce voltages onto metallic objects within the fields. These fields are not indicative of a failed component of the electric system. Normally induced voltages are not harmful, and in most situations, humans cannot feel or detect these voltages. However, induced voltages can trigger the HD LV-S-5 stray voltage indicator and cause a high impedance digital voltmeter to falsely indicate a harmful stray voltage condition.

A very high input impedance digital voltmeter is designed not to draw a sufficient current capable of affecting the circuit being tested. However, a high input impedance voltmeter has the disadvantage of not being able to distinguish between a stray voltage capable of delivering a harmful electric shock and a harmless induced voltage incapable of generating sufficient current to cause an injury.

When using a high input impedance digital voltmeter to determine whether or not a voltage has the capacity to deliver sufficient current to cause injury, a shunt resistor is used to reduce the voltmeters input impedance. The voltage developed across the resultant voltmeter input impedance (the parallel combination of the shunt resistor and voltmeter input impedance) by the current flowing through it indicates the potential for the voltage to cause an injury.

Therefore, a shunt resistor is used in combination with the voltmeters when a potential stray voltage has been identified by the HD LV-S-5 detector. The size of the shunt resistor is determined by the input impedance of the digital voltmeters to comply with PSC recommendations.
Appendix 1 – Procedures

Facilities Requiring Stray Voltage Testing
The following facilities shall be tested for stray voltage as defined in the Stray Voltage Test Procedure. Each facility listed with the described attachment(s) is considered one test unit.

Streetlight Facilities
Utility / Municipal Streetlight Poles
- Metallic (light shall be activated)
- Concrete (light shall be activated)

Utility Street Light Handhole Covers (light shall be activated)

Traffic Signal Poles – Wood and Metallic (light shall be activated)
- Ground wires
- Riser pipes
- Guy wires/anchors
- Traffic signal handhole covers
- Traffic signal pedestals
- Traffic signal cabinets

Overhead Distribution Facilities
- Ground wires
- Riser pipes
- Guy wires/anchors
- Capacitor control boxes
- Recloser control boxes
- Regulator control boxes
- Switch control boxes
- Overhead switch handles
- CATV control/amplifier boxes
- Substation Fences – Utility and Customer Owned
- Electric Equipment Fences – Utility and Customer Owned

Underground Facilities
- Padmount switchgear cases
- Padmount transformer cases
- Electric utility manhole covers
- Submersible transformer covers
- Electric utility handhole covers
- Network vaults and grates

Transmission Facilities
- Ground wires
- Riser pipes
- Guy wires/anchors
- Switch control boxes
- Switch handles

1. Requirements

1.1. Stray Voltage Tests shall be performed by qualified test personnel on all above ground electric utility facilities that are capable of conducting electricity as specified in company Facilities Requiring Stray Voltage Testing.

1.2. Test personnel shall be issued the following documents: Facilities Requiring Stray Voltage Testing and Response Notification Procedure.

1.3. Test personnel shall wear all appropriate PPE (e.g. vests, gloves, safety glasses, steel-toed boots, etc.) in accordance with OSHA and all other respective utility safety procedures and practices.

1.4. The operation of all Voltage Detectors and Multimeters shall be verified daily. Verification shall be performed before beginning daily testing and upon completion of the daily tests.

1.5. Test equipment batteries shall be changed periodically to assure proper operation of the detectors and detector testers. The frequency should be based on operating experience.

1.6. If you don’t have the HD Electric LV-S-5 Direct Contact Voltage Detector, proceed to Step 3 – Voltage Measurement Procedure.

2. Voltage Detection Procedure

2.1. LV-S-5 Setup

2.1.1. The HD Electric PT-LV-S-5 Low Voltage Detector Tester shall be used in accordance with the Instruction Manual to verify proper operation.

2.1.2. The LV-S-5 detector is always on. It does not have an on/off switch. The LV-S-5 is activated by the presence of voltage exceeding 4.5 VAC.

2.1.3. The presence of a voltage is indicated by the flashing red light in the end of the detector.

2.2. LV-S-5 Operation

2.2.1. The LV-S-5 shall be held and used per Instruction Manual to assure proper application.

2.2.2. Holding the LV-S-5 as instructed, move the Voltage Detector towards the facility to be tested until contact is made.

2.2.3. Individually test all conductive devices on each structure.

2.2.4. If the detector light is activated on contact by any one (1) device on a structure, proceed to Voltage Measurement Procedure.

2.2.5. If the detector light is not activated on contact with any device on a structure, no voltage is present on the structure. Proceed to Data Entry Requirements.

3. Voltage Measurement Procedure

3.1. All voltage measurements shall be conducted between metallic surfaces that are clean and bare.

3.2. A reference ground shall be established for the test using the 18” copper rod provided or other suitable ground (e.g. portable ground, system neutral, grounded metallic case, etc.).

3.3. The voltage measurement shall be made between the structure facility on which the voltage was detected and the reference ground.
3.4. Multimeter (VOM) Setup Procedure
3.4.1. Plug test leads into Multimeter.
3.4.2. Turn VOM on.
3.4.3. Select auto range or the highest voltage range.

3.5. Multimeter Tests Without 500 Ohm Resistor Installed
3.5.1. Connect test leads; BLACK to reference ground, RED to structure or device. Note: If test leads are insufficient to span the distance between the reference ground and the structure or device to be tested, use the Cable Reel provided for added length.
3.5.2. Measure and record voltage.
3.5.3. If the measured voltage is less than 30 VAC, proceed to Step 3.6.
3.5.4. If the measured voltage exceeds 30 VAC do not proceed to Step 3.6. A measured voltage exceeding 30 VAC requires implementation of the Response Notification Procedure (Critical Response).
3.5.5. Remove test leads from VOM.

3.6. Multimeter Tests With 500 Ohm Resistor Installed
3.6.1. Insert resistor box into VOM.
3.6.2. Insert test leads into resistor box placed into the VOM.
3.6.3. Connect test leads; BLACK to reference ground, RED to structure or device. Note: If test leads are insufficient to span the distance between the reference ground and the structure or device to be tested, use the Cable Reel provided for added length.
3.6.4. Measure and record voltage.

3.7. Response To Measured Voltage With 500 Ohm Resistor Installed
3.7.2. 4.5 VAC ≤ Measured Voltage < 8 VAC - Initiate Response Notification Procedure (Immediate Response).
3.7.3. 0 ≤ Voltage Measured < 4.5 VAC - No Response Required.

Data Entry Requirements
Complete data fields as required on hand-held devices.
Response Notification Procedure (rev. April 5, 2006)

NOTE: If Response Notification Procedure is initiated by a Company Line Crew, proceed directly to Response Crew responsibilities.

1. **Critical Response Notification (CRN) - Level I Voltage** ($V_{\text{Resistor}} \geq 8 \text{ VAC}$) or Condition.

 1.1. **Tester responsibilities:**

 1.1.1. Immediately contact an Energy Control Center (ECC) System Operator and Contractor Coordinator to initiate the CRN.

 1.1.2. Guard the device until relieved by a guard, response crew, or other authorized personnel.

 1.1.3. Record the CRN and notification time into the stray voltage database.

 1.2. **Contractor Coordinator responsibilities:**

 1.2.1. Contact ECC and determine if a Guard is necessary to replace the tester.

 1.2.2. Verify the structure has been made safe.

 1.2.3. Issue a follow-up for the CRN in Work Management to the appropriate Scheduler.

 1.2.4. Verify thorough completion of the CRN within 45 days.

 1.2.5. Provide all necessary documentation to Stray Voltage Project Manager.

 1.3. **System Operator responsibilities:**

 1.3.1. Assign a response crew to the CRN.

 1.3.2. Determine the crew response time and contact the Contractor Coordinator for coordination of guard requirements.

 1.3.3. Obtain the required technical support, personnel or equipment necessary to provide resolution if the crew cannot make safe the Level I voltage or condition.

 1.4. **Response Crew responsibilities:**

 1.4.1. Respond to investigate the Level I voltage or condition.

 1.4.2. Investigate the structure to identify the source, implement corrective action, make it safe or de-energize the source.

 1.4.3. Perform a Stray Voltage Test before leaving work site.

2. **Immediate Response Notification (IRN) - Level II Voltage** ($4.5 \leq V_{\text{Resistor}} < 8 \text{ VAC}$) or Condition

 2.1. **Tester responsibilities:**

 2.1.1. Contact the Contractor Coordinator to determine if the structure requires guarding and initiate the IRN.

 2.1.2. Record the IRN and notification time into the stray voltage database.

 2.2. **Contractor Coordinator responsibilities:**

 2.2.1. Determine if a Guard is required and if so, coordinate the replacement of the tester.

 2.2.2. Initiate notification request to a System Operator for a Response Crew to identify the source, determine whether or not the voltage ordinarily exists and, if the source can be corrected, implement corrective action.

 2.2.3. Verify thorough completion of the IRN.

 2.3. **Response Crew responsibilities:**
2.3.1. Respond to the Level II voltage or condition.
2.3.2. Investigate the IRN to identify the source, determine whether or not the voltage ordinarily exists, and, if the source can be corrected, implement corrective action.
2.3.3. Perform a Stray Voltage Test before leaving work site.

3. **No Response - Level III Voltage (0 VAC ≤ V_{Resistor} < 4.5 VAC) or Condition**

3.1. **Tester responsibilities:**
 3.1.1. Enter the measurement or condition in the stray voltage database.

3.2. **Contractor Coordinator responsibilities:**
 3.2.1. None.

3.3. **System Operator responsibilities:**
 3.3.1. None.

3.4. **Response Crew responsibilities:**
 3.4.1. None.
Performance Mechanism

Public Service Commission Performance Mechanism

In the Safety Order, as modified by the Order, the Commission adopted a performance mechanism that establishes acceptable parameters for the testing and inspection programs mandated by the Safety Order, and may be used to reduce a utilities authorized rate of return for failure to meet the parameters.

Utility's Annual Performance Targets

a) The annual performance target for stray voltage testing shall be 100% of all electric facilities and streetlights that must be tested. Facilities that are inaccessible and which pose no risk to public health and safety will not be considered in the determination of whether the target has been achieved.

b) Failure to achieve the annual performance target for stray voltage testing shall result in a rate adjustment of 75 basis points.

c) For the first year of stray voltage testing, the performance target shall be 100% of all streetlights and electric facilities served by underground utility systems. Failure to achieve this performance target shall result in a rate adjustment of 37.5 basis points.

d) The annual performance target for inspections shall be based on the percentage of the average number of electric facilities that must be inspected each year in order to comply with the five-year inspection cycle. That is, the target based on the one-fifth of the total number of the utility's electric facilities. The specific targets will be as follows:

 a. First year inspection goal 85% of annual target
 b. Second year inspection goal 90% of annual target
 c. Annual inspection goal thereafter 95% of annual target
 d. Fifth year inspection goal 100% of facilities to be inspected

e) Failure to achieve the annual performance target for inspections shall result in a rate adjustment of 75 basis points.
Certifications

In accordance with Section 7 of the Electric Safety Standards, the President or officer of each Utility with direct responsibility for overseeing stray voltage testing and inspections shall provide annual certification to the Commission that the utility has, to the best of their knowledge, exercised due diligence in carrying out a plan, including quality assurance, that is designed to meet the stray voltage testing and inspection requirements and that the utility has:

- Tested all of its publicly accessible electric facilities and streetlights, except those identified in this January 15, 2009, Report
- Inspected the requisite number of electric facilities

Following are the Stray Voltage Testing and Inspection Certifications for New York State Electric & Gas Corporation.
CERTIFICATION
[STRAY VOLTAGE TESTING]

STATE OF NEW YORK)
COUNTY OF MONROE)

Michael H. Conroy, on this 15th day of January, 2009, certifies as follows:

1. I am the Vice President, Operations of New York State Electric &
 Gas Corporation (the “Company”), and in that capacity I make this
 Certification for the annual period ending November 30, 2008 based
 on my knowledge of the testing program adopted by the Company in
 accordance the Public Service Commission’s Order Instituting Safety
 Standards, issued and effective January 5, 2005 in Case 04-M-0159
 (the “Order”), including the Quality Assurance Program filed by the
 Company with the Commission.

2. In accordance with the requirements of the Order, the Company
 developed a program designed to test (i) all of the publicly
 accessible Electric Facilities owned by the Company (“Facilities”)
 and (ii) all Streetlights located in public thoroughfares in the
 Company’s service territory (“Streetlights”), as identified through a
 good faith effort by the Company, for stray voltage (the “Stray
 Voltage Testing Program”).

3. I am responsible for overseeing the Company’s Stray Voltage
 Testing Program and in that capacity I have monitored the
Company’s Stray Voltage Testing Program during the twelve months ended November 30, 2008 (the “Twelve-Month Period”).

4. I hereby certify that, to the best of my knowledge, information and belief, the Company has implemented and completed its Stray Voltage Testing program for the Twelve Month Period. Except for untested structures that are identified as not required or inaccessible in the Company’s Annual Report, submitted herewith, the Company is unaware of any Facilities or Streetlights that were not tested during the Twelve-Month Period.

5. I make this certification subject to the condition and acknowledgment that it is reasonably possible that, notwithstanding the Company’s good faith implementation and completion of the Stray Voltage Testing Program, there may be Facilities and Streetlights that, inadvertently, may not have been tested or were not discovered or known after reasonable review of Company records and reasonable visual inspection of the areas of the service territory where Facilities and Streetlights were known to exist or reasonably expected to be found.

Michael H. Conroy
Vice President, Operations
CERTIFICATION
[INSPECTIONS]

STATE OF NEW YORK)
COUNTY OF MONROE) ss.

Michael H. Conroy, on this 15th day of January, 2009, certifies as follows:

1. I am the Vice President, Operations of New York State Electric &
 Gas Corporation (the “Company”), and in that capacity I make this
 Certification for the annual period ending December 31, 2008
 based on my knowledge of the inspection program adopted by the
 Company in accordance the Public Service Commission’s Order
 Instituting Safety Standards, issued and effective January 5, 2005
 in Case 04-M-0159 (the “Order”), including the Quality Assurance
 Program filed by the Company with the Commission.

2. The Company has an inspection program that is designed to inspect
 all of its electric facilities on a five-year inspection cycle, as
 identified through a good faith effort by the Company
 (“Facilities”), in accordance with the requirements of the Order
 (the “Facility Inspection Program”).

3. I am responsible for overseeing the Company’s Facility Inspection
 Program and in that capacity I have monitored the program during
 the twelve months ended December 31, 2008 (the “Twelve-Month
 Period”).
4. I hereby certify that, to the best of my knowledge, information and belief, the Company has completed its Facility Inspection Program to inspect the requisite number of its Facilities during the year 2008, in order to comply with the five-year inspection cycle required under the Order.

Michael H. Conroy
Vice President, Operations
Rochester Gas and Electric Corporation

Stray Voltage Test and Inspection

Report on the results of Stray Voltage Tests and Inspections for the 12-month period ending on November 30, 2008
Table of Contents

Table of Contents ... 2
Background ... 4
Overview ... 5
Company Profile .. 5
Program .. 6
 Stray Voltage Testing Program .. 6
 Categories or Facility Groups ... 6
 Streetlights .. 6
 Underground ... 7
 Overhead Distribution ... 7
 Transmission .. 7
 Testing Procedures ... 7
 Facilities Requiring Stray Voltage Testing 7
 Stray Voltage Test Procedure ... 7
 Response Notification Procedures ... 7
 Training .. 8
 Equipment .. 8
 Voltage Detection ... 8
 Voltage Measurement .. 8
 Shunt Resistor .. 8
 Ground Rod .. 9
 40 Ft. Cable Reel .. 9
 Personnel .. 9
 Program Development/Support Personnel 9
 Testing Contractor Personnel ... 9
 Stray Voltage Level Classification .. 10
 Level I Voltage ... 10
 Level II Voltage .. 10
 Level III Voltage ... 10
 Not Detected .. 10
 Structures Inaccessible to the Public .. 11
 Private Property .. 11
 RG&E Property ... 11
 Buried / Paved Over .. 11
 Inside Building ... 11
 Limited Access Highways .. 11
 Stray Voltage Inspection Program .. 12
 Categories or Facility Groups ... 12
 Streetlights .. 12
 Underground ... 12
 Overhead Distribution ... 12
Background

On January 5, 2005, in Case 04-M-0159, the New York State Public Service Commission ("Commission" or "PSC") adopted a set of statewide safety standards ("Electric Safety Standards") that apply to the electric utilities subject to the Commission's jurisdiction, Order Instituting Safety Standards, issued January 5, 2005 ("Safety Order"). Further, pursuant to the Commission's Order on Petitions for Rehearing and Waiver (the "Order") issued and effective on July 21, 2005 in Case 04-M-0159 - Proceeding on Motion of the Commission to Examine the Safety of Electric Transmission and Distribution Systems, the Commission modified the Electric Safety Standards and required each utility, including Rochester Gas and Electric Corporation ("RG&E" or the "Company") to file a comprehensive report by January 15 each year that:

- Details the results of stray voltage tests and inspection conducted by the utility over the 12-month period ending on November 30 of the prior calendar year
- Addresses the performance mechanism specified in Section 10 of the Electric Safety Standards adopted by the PSC in the Safety Order
- Contains the certifications described in Section 7 of the Electric Safety Standards adopted by the PSC in the Safety Order
- Discusses the analyses undertaken on the causes of stray voltage within the utility's electric system, the conclusions drawn, the preventive and remedial measures identified, and the utility's plans to implement those measures
- Includes all other information that is pertinent to the issues addressed by the Electric Safety Standards

On January 17, 2006, RG&E submitted its first annual report to the PSC for a full inspection cycle, a full underground and streetlight test cycle and a portion of the overhead distribution and transmission test cycle.

On October 20, 2006, RG&E, at the request of PSC staff, submitted an interim report to PSC staff detailing the results of the first full cycle of testing, including the completed overhead distribution and transmission testing.

On January 15, 2007, RG&E submitted its second annual report to the PSC for the second full inspection cycle, the second full underground and streetlight test cycle and the first full overhead distribution and transmission test cycle.

On January 15, 2008, RG&E submitted its third annual report to the PSC for the third full inspection cycle, the third full underground and streetlight test cycle and the second full overhead distribution and transmission test cycle.
Overview

Company Profile
RG&E is located in upstate New York and serves approximately 356,000 electric customers and about 291,000 gas customers. RG&E covers an area of about 2,700 square miles or 6% of upstate New York, and serves a primarily urban area composed of 1 large city and 80 towns and villages.

RG&E's electric delivery infrastructure consists of 950 circuit miles of transmission lines, 5,100 circuit miles of primary distribution, 193 electric substations, 44,470 underground facilities and 23,600 streetlight/traffic signal facilities. This system includes an estimated 211,810 distribution structures and 18,800 transmission structures. RG&E serves an average of 132 customers per square mile.
Program
RG&E, in April, 2005, developed and initiated a Testing Pilot Program (“Pilot”). The purpose of the Pilot was to evaluate programs and processes of a testing program, prior to starting a much larger statewide testing effort. The Pilot practices and procedures were evaluated and modifications and enhancements were made as necessary to ensure that stray voltage testing was consistent with the Electric Safety Standards and that the results were accurate.

The Company began stray voltage testing for the 2007 cycle year on a statewide basis in December, 2006 and successfully completed stray voltage testing on all of its publicly accessible streetlights and electric facilities served by underground systems, as required by the Order, in mid-November.

RG&E's Stray Voltage Testing and Inspection Program is separated into four major categories or facility groups: streetlights, underground, overhead distribution and transmission. These groups are defined in more detail in the Stray Voltage Testing and Inspection Program sections.

The program developed by RG&E also addressed daily stray voltage testing of all facilities and equipment accessed by work crews in the course of their regularly scheduled daily activities.

Stray Voltage Testing Program
The objective of the testing program is to identify and mitigate voltage conditions that should not ordinarily exist on an electric facility. RG&E designed its stray voltage testing plan to fully meet the requirements set forth in the Electric Safety Standards.

Categories of Facility Groups

Streetlights
This group includes all metallic and concrete RG&E owned streetlights and streetlight handhole covers along with municipal owned streetlights. Testing of streetlights was performed at night when the fixture was energized. Streetlights on wood poles are included in the overhead distribution category.

In addition to streetlights, this group also includes traffic signal facilities. Traffic signal facilities include the various traffic control structures seen primarily at intersections and crosswalks, such as poles used to hang traffic and pedestrian control lights, pushbuttons, control cabinets and traffic signal handhole covers.

Using information gathered by RG&E and City of Rochester Streetlighting personnel, RG&E contractors tested all streetlights, including those owned by the City of Rochester. If a Level I stray voltage was found on a structure owned by the Company or a municipality other than the City of Rochester, a job notification was generated and the repair was made immediately. If a Level I stray voltage was found on a City of Rochester structure, the City of Rochester was notified and they made appropriate repairs. RG&E was notified when the structure was repaired and retested to ensure there was no voltage present.
Underground
The underground category includes all facilities that are located either at grade level or below grade. Included in the underground facilities are padmount switchgear cases, padmount transformer cases, electric utility manhole covers, submersible transformer covers, electric utility handhole covers, network vaults and grates.

Overhead Distribution
This group of facilities includes distribution poles that have ground wires, riser pipes, guy wires/anchors, capacitor control boxes, recloser control boxes, regulator control boxes, switch control boxes, overhead switch handles, streetlights and CATV control/amplifier boxes.

Transmission
Transmission facilities consist of all overhead transmission towers, poles and structures with operating voltages at or above 34.5kV.

Transmission poles as described above, with distribution underbuild, are included in this transmission category. This is the first year these structures have been identified as transmission; previously, they were categorized as distribution structures.

Testing Procedures
Stray voltage tests were performed by qualified test personnel on all electric utility facilities capable of conducting electricity. Test personnel were issued the following documents: Facilities Requiring Stray Voltage Testing, Stray Voltage Test Procedure and Response Notification Procedure.

Facilities Requiring Stray Voltage Testing
RG&E developed a list of facilities that require testing in compliance with the PSC's Order. This document is included in Appendix 1.

Stray Voltage Test Procedure
RG&E developed a Stray Voltage Test Procedure to govern the testing performed by all RG&E personnel and contractors. This procedure is included in Appendix 1.

Response Notification Procedures
RG&E developed a Response Notification Procedure to govern the guarding and reporting of all detected stray voltage. This procedure details the appropriate action for all response levels: Critical, Immediate and No Response. The Response Notification Procedure is included in Appendix 1.
Training
The Company provides annual training to supervisory, office support and field testing personnel from the testing contractor. This training consisted of a detailed review of the Stray Voltage Testing Procedure; operation of the HD voltage tester and Fluke Multimeter; how to use the test equipment; how to respond to various levels of voltages found including guarding of facilities; and how to read the various circuit and facility maps given to the testing contractor. This program included training on the positional (GPS) and data acquisition/logging equipment. The positional (GPS) and data acquisition/logging equipment was furnished by RG&E for use by the testing contractors. GPS equipment is utilized to provide a mechanism for contractor quality control.

Equipment
Stray Voltage measurement equipment is calibrated annually by a certified test laboratory. The following equipment was utilized by RG&E:

Voltage Detection
The HD Electric LV-S-5 hand held Low Voltage Detector was utilized for the detection of stray voltage in accordance with the manufacturer's operating instruction manual to assure proper application. The LV-S-5 was designed to detect the presence of voltage exceeding 4.5 VAC. The presence of a voltage of 4.5 VAC or greater initiated a flashing red light in the tip of the detector. A PT-LV-5 Low Voltage Detector Tester was used to provide a field test of the LV-S-5 Detector to assure proper operation.

The LV-S-5 was used to individually test all conductive material or equipment accessible to the general public, on or encasing utility structures or equipment, for the presence of stray voltage.

Voltage Measurement
The Fluke Model 7-600 Multimeter was utilized to perform a contact test of the conductive material or equipment if the LV-S-5 detected a voltage. The Fluke 7-600 is a true RMS voltmeter with an input impedance of 2000 ohms (Ω).

The voltage measurement was made between the conductive material or equipment and a remote ground (see Ground Rod and 40 Ft. Cable Reel descriptions). If the measured voltage did not exceed 30 VAC, a shunt resistor (see Shunt Resistor description) was installed across the input terminals of the Fluke 7-600. The shunt resistor reduced the effective input impedance of the voltmeter to 500Ω. All voltages measured with the Fluke 7-600 were recorded, and appropriate response notifications issued based on the voltage measured.

Shunt Resistor
The shunt resistor was a 680Ω, 5 watt resistor installed in a plastic box with banana plugs for insertion into the input jacks of the Fluke 7-600. The equivalent impedance of the parallel impedance of the 2000Ω multimeter input and the 680Ω shunt resistor was 507Ω. If the voltage measured by the Fluke 7-600 without the resistor indicated a voltage level exceeding 30 VAC, the shunt resistor was not utilized to obtain a voltage measurement because such high voltage levels can damage the shunt resistor. It is assumed that any structure with a recorded voltage level exceeding 30 VAC without the resistor would have voltage above the critical level with the resistor, so all such cases were recorded and addressed as critical stray voltage issues.
Ground Rod
The ground rod is a 5/8 inch diameter, 18 inch long copper rod with one pointed end. The ground rod was generally installed into the earth within 3 feet of the material or equipment to be tested. If a suitable ground location could not be found within 3 feet of the material or equipment, the cable reel was used for locating the ground rod beyond 3 feet from the material or structure.

40 Ft. Cable Reel
The cable reel is a 40 foot reel of #14 wire with an attached Mueller #49C alligator clip and banana plug. The cable reel was used when a suitable ground rod location could not be found within 3 feet of the material or equipment to be tested.

Personnel
RG&E assigned a full time Project Manager to oversee the program. Other internal resources from Maps and Records, Maintenance Engineering and Field Operations were utilized as needed.

In addition, RG&E contracted staff in two areas: Program Development/Support Personnel and Testing Contractor Personnel.

Program Development/Support Personnel
RG&E employs an IT contractor to manage a data collection and reporting application for stray voltage testing and inspection data.

A full time contractor is employed by RG&E to serve as the Stray Voltage Application Business Analyst and Data Coordinator between RG&E staff and all contractors.

In order to support its overall Quality Assurance effort on data collected in the field, RG&E employs five contractors for the duration of the project.

In addition, a Field Coordinator was contracted by RG&E to serve as a liaison between RG&E and contract field personnel in the RG&E service area.

Testing Contractor Personnel
This category includes a staff of over 50 field testers and back office support personnel required for the timely completion of the Stray Voltage Testing Program.
Stray Voltage Level Classification
When RG&E performed stray voltage testing on facilities, the voltages as detected by the HD Detector were categorized into three levels with appropriate response criteria, as shown in Table 1.

<table>
<thead>
<tr>
<th>Voltage Level</th>
<th>Voltage Range</th>
<th>Required Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>8.0 ≤ x < 4.5</td>
<td>Critical</td>
</tr>
<tr>
<td>Level II</td>
<td>4.5 ≤ x < 8</td>
<td>Immediate</td>
</tr>
<tr>
<td>Level III</td>
<td>0.0 < x ≤ 4.5</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 1 – Voltage Levels

Level I Voltage
Any measured voltage, as specified in the Stray Voltage Test Procedure, equal to or greater than 8 Volts Alternating Current (VAC) was deemed critical. If voltages at this level or higher were detected in areas where the public can make contact with the facility, the facility was guarded. The area was made safe. Repairs were completed within 45 days.

Level II Voltage
Any measured voltage, as specified in the Stray Voltage Test Procedure, equal to or greater than 4.5 VAC and less than 8 VAC necessitated an immediate response. If voltages at this level were detected, the Project Foreman determined whether or not the facility required guarding and the immediacy of corrective action. The voltage was investigated to determine whether or not it ordinarily exists; if it does not, the voltage was investigated to determine if a source could be identified and if it could be corrected.

Level III Voltage
Any measured voltage, as specified in the Stray Voltage Test Procedure, greater than 0 VAC and less than 4.5 VAC was considered to be at a level that did not require immediate remedial action. This voltage poses no threat to public safety.

Not Detected
Any test on which the HD Detector fails to indicate the presence of voltage, as specified in the Stray Voltage Test Procedure, was categorized as Not Detected.
Structures Inaccessible to the Public
There are several types of Inaccessible structures as described below. If the contractor could not reach the structure to perform a test, it was identified as "Inaccessible" and all other pertinent data was collected in the field. Contractors made every attempt to locate and test all structures. There were a total of 491, or 0.16% of the total structures visited, in these categories.

Private Property
The structure was not tested if it was located on private property and was inaccessible due to walls, fences or barriers such as a locked gate, if excavation or bush/tree removal was required, or if there was unauthorized construction around the structure.

RG&E Property
The structure was not tested if the structure was behind a company fence that limited access to the structure to authorized personnel only.

Buried / Paved Over
The structure was not tested if it had been covered over with dirt, pavement, or other foreign objects that would prohibit public access and prevent testing the structure. Contractors noted the structure ID on the issued maps and turned them in to Maintenance Engineering for verification with the Maps and Records Department. If Maps and Records confirmed that the structure does exist, company and contractor crews followed up and attempted to locate, uncover, and test the structure. If the structure could not be found, it was then considered removed from the field, and revisions to mapping were generated.

Inside Building
If a contractor identified a structure as being inside a building, RG&E personnel verified that the structure was actually inside the building. If the RG&E personnel verified that the structure was accessible to the public, a test was performed. Typically, customer owned equipment that is inside a building is in a locked equipment room that is accessible to authorized personnel only.

Limited Access Highways
The testing of structures located on limited access highways and interstates presents a safety risk to testing personnel, and those structures on limited access highways are typically not accessible to the public. The structure was not tested if RG&E personnel verified that it was not accessible to the public and it was located on a major city, state, or national highway.
Stray Voltage Inspection Program
The objective of all inspections is to conduct a careful and critical examination of an electric facility by a qualified individual to determine the condition of the facility and the potential to cause or lead to safety hazards or adverse effects on reliability. RG&E's inspection program was designed to visually inspect every facility at least once over a period of five years as required by the Order.

Inspections conducted during routine maintenance and other work not directly related to the inspection program count as an inspection visit, provided that the inspection is performed using the same safety and reliability criteria and to the same extent as would otherwise be required under the Electric Safety Standards.

Categories or Facility Groups

Streetlights
This program provides a comprehensive inspection of RG&E metal streetlight poles, which identifies and corrects electric deficiencies on metal streetlight poles and equipment. This inspection includes but is not limited to the following items: pole handhole, cable integrity, all connections, pole bases, and fixtures.

Underground
The underground inspection program provides a comprehensive inspection of RG&E manholes, handholes, vaults, sub-holes, padmount transformers, padmount switchgear and all equipment, devices and cables present within these structures. This includes inspection of structural integrity, drainage electrical integrity of all equipment and cables (as permissible by visual inspection), mechanical integrity of all equipment and cables (as permissible by visual inspection), dangerous conditions and potential threats to electric system reliability.

Overhead Distribution
The overhead distribution inspection and maintenance program is a comprehensive program to identify and correct electric overhead distribution circuit deficiencies on all poles, equipment, and devices present on all distribution structures including guy wires/anchors, crossarms, switches, conductors and other accessory equipment.

Thermography inspections on main line electric circuits could be included in this program, but are not mandatory.

RG&E also conducts annual inspections of all its substations. This effort is a comprehensive inspection of all equipment located within the facility by field personnel. Numerous inspections of substation equipment occur during the year as a result of ongoing maintenance work, but the annual inspection is a separate and independent activity.
Transmission
The objective of all transmission inspections is to identify and correct circuit deficiencies on all transmission circuits and structures.

The transmission inspection program is divided into two categories based on voltage class:

- 115KV – Comprehensive Helicopter Inspection or Foot Patrol
- Below 115KV – Comprehensive Foot Patrol

The comprehensive helicopter inspection involves performing low level (pole top), slow speed (stop & hover), comprehensive inspection of transmission circuits to identify structure, conductor and equipment damage, defects and deficiencies. Helicopter maintenance capabilities are used where appropriate to perform maintenance functions.

Transmission inspections are accomplished through a comprehensive foot patrol, performed by an inspector competent in line inspection procedures. All inspection data will be entered on a per structure basis and managed electronically via company issued handheld units. Inspections include a visual examination of all transmission towers, poles, guy wires, risers, overhead conductors, switches, and other aboveground equipment and facilities.

Inspection Procedure
The annual performance target for inspections includes all existing Maintenance Engineering and Operations inspection programs if the inspection and collected data satisfies the Electric Safety Standards.

The number of facilities to be inspected in each cyclic inspection program shall be determined by one of the following methods:

- If an estimated number of facilities is known, 20% of that estimated number shall be inspected annually.
- If only an estimated number of circuit miles is known, 20% of that estimated number of miles shall be inspected annually.

Electric facility inspections shall be performed by trained and qualified personnel.

Inspection personnel shall wear all appropriate Personal Protective Equipment (PPE) (e.g. vests, gloves, safety glasses, steel-toed boots, etc.) in accordance with OSHA and Company safety procedures and practices.

Inspection personnel shall comply with all appropriate safety procedures and practices specified by the Company (e.g. manhole entry, manhole rescue and work zone protection) when performing inspections.
Repair Prioritization

Inspection discrepancies have been classified into Level I, Level II and Level III conditions based on the severity of each discrepancy as it relates to public safety and electric system reliability. Level I discrepancies are the most critical, requiring immediate attention. Level II and Level III conditions, as determined by the inspector, are addressed as specified in the descriptions below.

Level I Condition

A Level I Condition is a condition of any electrical equipment, device or structure on an electric transmission or distribution system, overhead or underground, that poses a serious and immediate threat to either the safety of the general public or the reliability of the electric transmission or distribution system. Such conditions shall require an immediate response by the appropriate maintenance and repair personnel to correct the situation.

Level II Condition

A Level II Condition is a condition of any electrical equipment, device or structure that, if not addressed for an extended period of time (6 months or more), could develop into a Level I Condition. Such conditions require a response within a 60 day period based on the evaluation of the inspector.

Level III Condition

A Level III Condition is a condition of any electrical equipment, device or structure that has deficiencies, but those deficiencies do not pose any risk to public safety or the reliability of the electric transmission or distribution system. These conditions can be addressed through normal electric system maintenance practices within 12 - 24 months based on the evaluation of the inspector.
Daily Work Stray Voltage Testing

RG&E instituted the stray voltage testing procedures, to be included in the routine responsibilities of all field personnel, effective June 20, 2005. The intent of the daily testing is to ensure that no stray voltage exists that could endanger the general public or company or contract personnel.

The stray voltage test shall be performed upon arrival at each job site and before departing the job site either at the end of the workday or upon completion of the job. Personnel shall perform a daily test, in accordance with the Stray Voltage Test Procedure, on all facilities and equipment to be worked on in their job site. Facilities that do not require personnel to touch them do not require implementation of the Stray Voltage Test Procedure.

Should a stray voltage situation be identified, the crew shall be responsible for correcting the stray voltage source. If the crew is unable to resolve the situation, they shall obtain the required technical support, personnel or equipment necessary to resolve the situation.
Testing and Inspection Results

Testing
In the course of the RG&E Stray Voltage Testing Program, completed on November 30, 2008, contractors visited 300,661 structures and identified 43 facilities with a Level I Stray Voltage as described in the Stray Voltage Testing Procedure, resulting in a detection rate of .014%. For the reporting period, RG&E conducted stray voltage testing on 100% of its entire system. In each of the Level I stray voltage cases, the contractor guarded the location until relieved by RG&E personnel. RG&E personnel made each location safe before leaving the location. All RG&E Level I stray voltage cases were repaired within the 45-day requirement. Table 2 displays the 43 cases of Level I stray voltage in the overall Stray Voltage Program, including 20 transmission structures with induced voltage.

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Total Structures</th>
<th>Stray Voltages</th>
<th>Detection Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streetlight</td>
<td>24,645</td>
<td>21</td>
<td>0.085%</td>
</tr>
<tr>
<td>Underground</td>
<td>44,816</td>
<td>0</td>
<td>0.000%</td>
</tr>
<tr>
<td>Distribution</td>
<td>211,913</td>
<td>2</td>
<td>0.001%</td>
</tr>
<tr>
<td>Transmission</td>
<td>19,287</td>
<td>20</td>
<td>0.104%</td>
</tr>
<tr>
<td>Total</td>
<td>300,661</td>
<td>43</td>
<td>0.014%</td>
</tr>
</tbody>
</table>

Table 2 - Overall Stray Voltage

Streetlights
Streetlight facilities are defined in the Stray Voltage Program section and in accordance with the Safety Order.

RG&E contractors visited 24,645 (100%) of its streetlight structures to perform a stray voltage test; all of these structures met stray voltage criteria for testing. Of the structures tested, 21 were found with a Level I stray voltage, for a .09% detection rate. Table 3 displays a summary of all streetlight test results.

<table>
<thead>
<tr>
<th>Voltage Levels</th>
<th>Voltages Found</th>
<th>Percent of Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>21</td>
<td>0.09%</td>
</tr>
<tr>
<td>Level II</td>
<td>18</td>
<td>0.07%</td>
</tr>
<tr>
<td>Level III</td>
<td>36</td>
<td>0.15%</td>
</tr>
<tr>
<td>Not Detected</td>
<td>24,547</td>
<td>99.80%</td>
</tr>
<tr>
<td>Inaccessible</td>
<td>23</td>
<td>0.09%</td>
</tr>
<tr>
<td>Total</td>
<td>24,645</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Table 3 - Streetlight Stray Voltage
Underground
RG&E contractors visited 44,816 (100%) of its underground structures to perform a stray voltage test; all of these structures met stray voltage criteria for testing. Of the structures tested, 0 were found with a Level I stray voltage. Table 4 displays a summary of all underground test results.

<table>
<thead>
<tr>
<th>Voltage Levels</th>
<th>Voltages Found</th>
<th>Percent of Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Level II</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Level III</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Not Detected</td>
<td>44,585</td>
<td>99.48%</td>
</tr>
<tr>
<td>Inaccessible</td>
<td>231</td>
<td>0.52%</td>
</tr>
<tr>
<td></td>
<td>44,816</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Table 4 – Underground Stray Voltage

Overhead Distribution
RG&E contractors visited 211,913 distribution structures to perform a stray voltage test; 98,416 of these structures did not have stray voltage criteria. Of the 113,497 structures with stray voltage criteria, 2 were found with a Level I stray voltage, for a detection rate of less than .002%. Table 5 displays a summary of all distribution test results.

<table>
<thead>
<tr>
<th>Voltage Levels</th>
<th>Voltages Found</th>
<th>Percent of Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>2</td>
<td>0.002%</td>
</tr>
<tr>
<td>Level II</td>
<td>2</td>
<td>0.002%</td>
</tr>
<tr>
<td>Level III</td>
<td>66</td>
<td>0.058%</td>
</tr>
<tr>
<td>Not Detected</td>
<td>113,252</td>
<td>99.784%</td>
</tr>
<tr>
<td>Inaccessible</td>
<td>175</td>
<td>0.154%</td>
</tr>
<tr>
<td></td>
<td>113,497</td>
<td>100.000%</td>
</tr>
</tbody>
</table>

Table 5 – Overhead Distribution Stray Voltage
Transmission
RG&E contractors visited 19,287 transmission structures to perform a stray voltage test; 2,435 of these structures did not have stray voltage criteria. Of the structures tested, 20 were found with a Level I voltage. Upon investigation, the Company has found these are not shock voltages attributable to structure or equipment defects (see Transmission Level I Responses below). Table 6 displays a summary of all transmission test results.

| Transmission (of 19,287 total visited there were 2,435 not required) |
|-----------------------|------------------|------------------|
| Voltage Levels | Voltages Found | Percent of Tested |
| Level I | 20 | 0.12% |
| Level II | 17 | 0.10% |
| Level III | 98 | 0.58% |
| Not Detected | 16,590 | 98.45% |
| Inaccessible | 127 | 0.75% |
| Total | 16,852 | 100.00% |

Table 6 - Transmission Stray Voltage

Transmission Level I Responses
Critical responses were initiated for the 20 wood transmission pole structures exhibiting 8 VAC or greater.

Based on a follow-up investigation, the stray voltages measured on the 20 transmission structures appear to be conditions inherent to the design and operation of the system. The voltage results from a difference in potential between the static wire and a remote ground. These are not shock voltages attributable to structure or equipment defects.

On December 18th, 2006, the Upstate New York Utilities, consisting of National Grid, Central Hudson Gas and Electric, Rochester Gas and Electric and New York State Electric and Gas submitted a Transmission Line Neutral to Earth Voltage Analysis to address voltages found on transmission systems.
Inspection
RG&E conducts separate inspection programs for the equipment in each of the four
categories or facility groups: underground, streetlights, overhead distribution and
transmission. In the 2008 cycle year, the Company completed inspections on 0% of its
streetlight facilities, 16% of underground facilities, 29% of overhead distribution facilities and
15% of transmission facilities. This represents a total inspection, for this reporting period, of
25% of RGE’s total system, and 92% of the total system since the inception of the program.

Streetlights
The PSC requested that the Company increase the streetlight inspection goal to 30% of the
streetlighting system due to a high percentage of critical voltages found on streetlight
structures in 2006. Because 98% of stray voltages identified in the 2006 testing year were
caused by streetlights, RG&E made the decision to inspect the remainder of all RG&E-owned
metal streetlights in the system.

During the years 2006 and 2007, 100% of RG&E-owned streetlight facilities were inspected.
As a result, no streetlight facilities were inspected in the 2008 cycle.

Underground
As a result of the inspection program, 16% of the underground system has been inspected.
This inspection identified 369 structures with discrepancies, of the 7,388 structures inspected.
Table 7 displays a summary of all underground inspection results.

Level II conditions for the underground inspection program tend to be structural in nature, and
do not pose a risk to the safety or reliability of the system. All Level II conditions are noted
and reviewed on the next inspection cycle.

<table>
<thead>
<tr>
<th>Inspection Conditions</th>
<th>Discrepancies Found</th>
<th>Percent of Inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition I</td>
<td>20</td>
<td>0.27%</td>
</tr>
<tr>
<td>Condition II</td>
<td>112</td>
<td>1.52%</td>
</tr>
<tr>
<td>Condition III</td>
<td>237</td>
<td>3.21%</td>
</tr>
<tr>
<td>369</td>
<td>4.99%</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 – Underground Inspection

Table 7a shows a breakdown of completed repairs and scheduled responses resulting from
the underground inspection program.

<table>
<thead>
<tr>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repaired</td>
</tr>
<tr>
<td>Scheduled</td>
</tr>
<tr>
<td>369</td>
</tr>
</tbody>
</table>

Table 7a – Underground Discrepancies
Overhead Distribution
As a result of the inspection program, 29% of the overhead distribution system has been inspected. This inspection identified 1,012 structures with discrepancies, of the 61,899 structures inspected. Table 8 displays a summary of all distribution inspection results.

<table>
<thead>
<tr>
<th>Inspection Conditions</th>
<th>Discrepancies Found</th>
<th>Percent of Inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition I</td>
<td>57</td>
<td>0.09%</td>
</tr>
<tr>
<td>Condition II</td>
<td>652</td>
<td>1.05%</td>
</tr>
<tr>
<td>Condition III</td>
<td>303</td>
<td>0.49%</td>
</tr>
<tr>
<td></td>
<td>1,012</td>
<td>1.63%</td>
</tr>
</tbody>
</table>

Table 8 - Overhead Distribution Inspection

Table 8a shows a breakdown of completed repairs and scheduled responses resulting from the overhead distribution inspection program.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repaired</td>
<td>532</td>
</tr>
<tr>
<td>Scheduled</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>1,012</td>
</tr>
</tbody>
</table>

Table 8a - Overhead Distribution Discrepancies

Transmission
As a result of the inspection program, 15% of the transmission system has been inspected. This inspection identified 80 structures with discrepancies, of the 2,765 structures inspected. Table 9 displays a summary of all transmission inspection results.

<table>
<thead>
<tr>
<th>Inspection Conditions</th>
<th>Discrepancies Found</th>
<th>Percent of Inspected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition I</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Condition II</td>
<td>5</td>
<td>0.18%</td>
</tr>
<tr>
<td>Condition III</td>
<td>75</td>
<td>2.71%</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>2.89%</td>
</tr>
</tbody>
</table>

Table 9 - Transmission Inspection

Table 9a shows a breakdown of completed repairs and scheduled responses resulting from the transmission inspection program.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repaired</td>
<td>5</td>
</tr>
<tr>
<td>Scheduled</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Table 9a - Transmission Discrepancies
Analysis of Testing Results

Summary of Critical Responses

The RG&E 2008 stray voltage testing identified 43 Level I facilities including the 20 transmission structures explained in table six. The remaining 23 required safeguarding and repair, out of 300,661 facilities visited, for a detection rate of .008%. All critical responses were made safe immediately and repaired within 45 days.

The itemized breakdown of causes is contained in Table 10.

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Cause of Stray Voltage</th>
<th>Stray Voltages Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streetlights</td>
<td>Defective Neutral – Underground Cable</td>
<td>10</td>
</tr>
<tr>
<td>Streetlights</td>
<td>Defective Neutral Connection – Handhole</td>
<td>7</td>
</tr>
<tr>
<td>Streetlights</td>
<td>Customer Owned Equipment</td>
<td>2</td>
</tr>
<tr>
<td>Streetlights</td>
<td>Defective Neutral Connection – Light Pole</td>
<td>1</td>
</tr>
<tr>
<td>Streetlights</td>
<td>Defective Conductor Connection – Light Pole</td>
<td>1</td>
</tr>
<tr>
<td>Distribution</td>
<td>Open Secondary Neutral</td>
<td>1</td>
</tr>
<tr>
<td>Distribution</td>
<td>Defective company equipment</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 10 – RG&E Itemized Causes of Critical Responses
Other Pertinent Information

Quality Assurance Measures Instituted

Data Submission Quality Assurance

The Stray Voltage Database Administrator is charged with the responsibility of receiving, controlling, and maintaining all testing data associated with the stray voltage project. Throughout the testing effort, the testing contractor submits their testing data to RG&E in the form of batch files.

Testing data batch files are submitted to the Stray Voltage Data Administrator for QA/QC reviews. The first review that takes place is for data accuracy. If approved, IT Data Managers load the file into the production database and forward a copy of the file to Global Positioning System (GPS) Data Manager, for the second review, to check the data for positional accuracy (See Stray Voltage GPS QA/QC Process). If the data is not acceptable, the Data Administrator notifies the contractor of such and the reasons for failure. The Testing Contractor remedies the problems and re-submits the failed file with corrections.

Following vendor batch file approval through the program administrator, the batch is loaded into RG&E’s data storage facility (SDE) in ArcMAP. ArcMAP is the GIS software tool that is used to check the vendor point data for quality assurance. Gross geographical errors can easily be located during the loading process. The batch is rejected if gross geographical errors are found.

Vendor data is first analyzed against Real-Time Kinematics (RTK) control data. These are random poles that were GPS located by RG&E’s field crew prior to vendor pole locating. Vendor points must fall within a seven foot radius of the control points. If points fall outside of this radius, they “fail” this QA/QC analysis.

Secondly, data is analyzed against New York State Orthophotography. Each batch of data is broken down by tester name. Based on the total number of points (by tester), a random sample set is analyzed. The sample set is based on military standard sampling procedures (MIL-STD-105E: Sampling Procedures and Tables for Inspection by Attributes). RG&E uses General Inspection Level I, and a 4.0 Acceptable Quality Level Tables I and II-A. Again, vendor points must fall within a seven foot radius of the pole location on the photography. If the sample set does not achieve an acceptable level according to the table, the tester “fails” this QA/QC analysis. After all tester sample points are analyzed in a batch, they are totaled. If more than 5% of the sample points fail, the entire batch “fails” this QA/QC analysis.

And thirdly, data is checked for duplicates. An analysis is run to search for duplicate pole locations. Points with identical structure ID’s are flagged as duplicates.

Other tests are performed to check for attribute accuracy, such as the latitude and longitude coordinates, street names, dates and times, Positional Dilution of Precision (PDOP) values, and pole numbers.

In addition, other geographic checks are performed to find anomalies in the data, for example, large amounts of digitized points or irregularities in pole locations. The GPS time element is also analyzed for realistic data collection patterns. The result from this time
analysis sometimes calls into question whether a tester could feasibly be at the pole to perform the stray voltage test.

Results of the QA/QC GPS data review are recorded on the Stray Voltage Tracking Log located on the corporate server, Stray Voltage/Project Tracking directory. Reports of the QA/QC results are copied to the GPS_Reviews folder in the above directory. A status report is emailed to the Data Administrator, who then forwards the QA/QC Reports to the vendor. Any other findings or anomalies in the data are reported to the project managers.

Random Quality Assurance
On an ongoing basis, RG&E is performing many quality assurance measures to ensure testing data accuracy. These include investigations into 1) inaccessible structures to determine nature of inaccessibility, 2) performance of individual testers, 3) miscellaneous anomalies found in testing data, 4) checking circuit maps to ensure all distribution poles have been visited. Data for individual testers can be reviewed to determine their accuracy and performance. Problem testers are identified to the testing contractor and, if need be, removed from the testing effort. Any discrepancies found as a result of random data sampling checks like wrong town or street name and incorrect spellings would be corrected.

In addition to these measures, the Field Coordinator conducted random field visits to ascertain that field contractors were performing tests on all required structures. During these visits, the Field Coordinator answered questions about map reading, structure IDs and location of structures. In addition to field visits, the Field Coordinator also performed follow up on randomly chosen completed maps to check that all structures were tested and recorded properly.

RG&E developed an Inspection QA/QC Program for the purpose of independently verifying the results of the inspection effort as reported by each division for the current inspection year. This program includes comparing the results of an independent inspection of a randomly selected sample set of inspections reported as completed by the divisions with the results reported by the division.

Research and Development

Shock Reports

2008 Reported Electric Shocks
This shock report, requested by PSC Staff, is for the period 1/1/08 – 12/31/08.

Shock Reports from the Public

<table>
<thead>
<tr>
<th></th>
<th>Rochester Gas & Electric Data as of 12/31/2008</th>
<th>Annual Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Total shock calls received:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Found</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unsubstantiated</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Employee Contact</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Non-Employee Contact</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>II. Injuries sustained:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employee</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Non-Employee</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Domestic Animal</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>The following sections apply for the incidents listed as "Voltage Found" in Section I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Responsibility:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Non-utility (ConEd only)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Customer</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IV. Action to make safe:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent repair at time of discovery</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Temp. repair at time of discovery</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cut and cap service line</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Customer circuit breaker or fuse</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Barriers</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>V. Voltage Source:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streetlight service line</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Streetlight base connection</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Streetlight internal wiring or light fixture</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Issue with primary, joint, or transformer</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Defective service line</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Abandoned service line</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Customer wiring</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Customer equipment</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VI. Voltage Range:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0V to 4.4V</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4.5V to 7.9V</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8.0V to 24.9V</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25.0V to 99.9V</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100.0V or higher</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Shunt Resistor

The following defines why shunt resistors are utilized in the measurement and identification of stray voltage versus induced voltage. Overhead power lines are not shielded conductors, and the electric fields surrounding them can induce voltages onto metallic objects within the fields. These fields are not indicative of a failed component of the electric system. Normally induced voltages are not harmful, and in most situations, humans cannot feel or detect these voltages. However, induced voltages can trigger the HD LV-S-5 stray voltage indicator and cause a high impedance digital voltmeter to falsely indicate a harmful stray voltage condition.

A very high input impedance digital voltmeter is designed not to draw a sufficient current capable of affecting the circuit being tested. However, a high input impedance voltmeter has the disadvantage of not being able to distinguish between a stray voltage capable of delivering a harmful electric shock and a harmless induced voltage incapable of generating sufficient current to cause an injury.

When using a high input impedance digital voltmeter to determine whether or not a voltage has the capacity to deliver sufficient current to cause injury, a shunt resistor is used to reduce the voltmeter input impedance. The voltage developed across the resultant voltmeter input impedance (the parallel combination of the shunt resistor and voltmeter input impedance) by the current flowing through it indicates the potential for the voltage to cause injury.

Therefore, a shunt resistor is used in combination with the voltmeters when a potential stray voltage has been identified by the HD LV-S-5 detector. The size of the shunt resistor is determined by the input impedance of the digital voltmeters to comply with PSC recommendations.
Appendix 1 – Procedures

Facilities Requiring Stray Voltage Testing
The following facilities shall be tested for stray voltage as defined in the Stray Voltage Test Procedure. Each facility listed with the described attachment(s) is considered one test unit.

Streetlight Facilities
Utility / Municipal Streetlight Poles
- Metallic (light shall be activated)
- Concrete (light shall be activated)

Utility Street Light Handhole Covers (light shall be activated)

Traffic Signal Poles – Wood and Metallic (light shall be activated)
- Ground wires
- Riser pipes
- Guy wires/anchors
- Traffic signal handhole covers
- Traffic signal pedestals
- Traffic signal cabinets

Overhead Distribution Facilities
- Ground wires
- Riser pipes
- Guy wires/anchors
- Capacitor control boxes
- Recloser control boxes
- Regulator control boxes
- Switch control boxes
- Overhead switch handles
- CATV control/amplifier boxes
- Substation Fences – Utility and Customer Owned
- Electric Equipment Fences – Utility and Customer Owned

Underground Facilities
- Padmount switchgear cases
- Padmount transformer cases
- Electric utility manhole covers
- Submersible transformer covers
- Electric utility handhole covers
- Network vaults and grates

Transmission Facilities
- Ground wires
- Riser pipes
- Guy wires/anchors
- Switch control boxes
- Switch handles

1. Requirements

1.1. Stray Voltage Tests shall be performed by qualified test personnel on all above ground electric utility facilities that are capable of conducting electricity as specified in company Facilities Requiring Stray Voltage Testing.

1.2. Test personnel shall be issued the following documents: Facilities Requiring Stray Voltage Testing and Response Notification Procedure.

1.3. Test personnel shall wear all appropriate PPE (e.g. vests, gloves, safety glasses, steel-toed boots, etc.) in accordance with OSHA and all other respective utility safety procedures and practices.

1.4. The operation of all Voltage Detectors and Multimeters shall be verified daily. Verification shall be performed before beginning daily testing and upon completion of the daily tests.

1.5. Test equipment batteries shall be changed periodically to assure proper operation of the detectors and detector testers. The frequency should be based on operating experience.

1.6. If you don't have the HD Electric LV-S-5 Direct Contact Voltage Detector, proceed to Step 3 – Voltage Measurement Procedure.

2. Voltage Detection Procedure

2.1. LV-S-5 Setup

2.1.1. The HD Electric PT-LV-S-5 Low Voltage Detector Tester shall be used in accordance with the Instruction Manual to verify proper operation.

2.1.2. The LV-S-5 detector is always on. It does not have an on/off switch. The LV-S-5 is activated by the presence of voltage exceeding 4.5 VAC.

2.1.3. The presence of a voltage is indicated by the flashing red light in the end of the detector.

2.2. LV-S-5 Operation

2.2.1. The LV-S-5 shall be held and used per Instruction Manual to assure proper application.

2.2.2. Holding the LV-S-5 as instructed, move the Voltage Detector towards the facility to be tested until contact is made.

2.2.3. Individually test all conductive devices on each structure.

2.2.4. If the detector light is activated on contact by any one (1) device on a structure, proceed to Voltage Measurement Procedure.

2.2.5. If the detector light is not activated on contact with any device on a structure, no voltage is present on the structure. Proceed to Data Entry Requirements.

3. Voltage Measurement Procedure

3.1. All voltage measurements shall be conducted between metallic surfaces that are clean and bare.

3.2. A reference ground shall be established for the test using the 18” copper rod provided or other suitable ground (e.g. portable ground, system neutral, grounded metallic case, etc.).

3.3. The voltage measurement shall be made between the structure facility on which the voltage was detected and the reference ground.
3.4. Multimeter (VOM) Setup Procedure
 3.4.1. Plug test leads into Multimeter.
 3.4.2. Turn VOM on.
 3.4.3. Select auto range or the highest voltage range.

3.5. Multimeter Tests Without 500 Ohm Resistor Installed
 3.5.1. Connect test leads; BLACK to reference ground, RED to structure or device. Note: If test leads are insufficient to span the distance between the reference ground and the structure or device to be tested, use the Cable Reel provided for added length.
 3.5.2. Measure and record voltage.
 3.5.3. If the measured voltage is less than 30 VAC, proceed to Step 3.6.
 3.5.4. If the measured voltage exceeds 30 VAC do not proceed to Step 3.6. A measured voltage exceeding 30 VAC requires implementation of the Response Notification Procedure (Critical Response).
 3.5.5. Remove test leads from VOM.

3.6. Multimeter Tests With 500 Ohm Resistor Installed
 3.6.1. Insert resistor box into VOM.
 3.6.2. Insert test leads into resistor box placed into the VOM.
 3.6.3. Connect test leads; BLACK to reference ground, RED to structure or device. Note: If test leads are insufficient to span the distance between the reference ground and the structure or device to be tested, use the Cable Reel provided for added length.
 3.6.4. Measure and record voltage.

3.7. Response To Measured Voltage With 500 Ohm Resistor Installed
 3.7.2. 4.5 VAC \leq Measured Voltage < 8 VAC – Initiate Response Notification Procedure (Immediate Response).
 3.7.3. 0 VAC \leq Voltage Measured < 4.5 VAC – No Response Required.

Data Entry Requirements
Complete data fields as required on hand-held devices.
Response Notification Procedure (rev. April 5, 2006)

NOTE: If Response Notification Procedure is initiated by a Company Line Crew, proceed directly to Response Crew responsibilities.

1. Critical Response Notification (CRN) - Level I Voltage ($V_{\text{Resistor}} \geq 8 \text{ VAC}$) or Condition.

 1.1. Tester responsibilities:

 1.1.1. Immediately contact an Energy Control Center (ECC) System Operator and Contractor Coordinator to initiate the CRN.
 1.1.2. Guard the device until relieved by a guard, response crew, or other authorized personnel.
 1.1.3. Record the CRN and notification time into the stray voltage database.

 1.2. Contractor Coordinator responsibilities:

 1.2.1. Contact ECC and determine if a Guard is necessary to replace the tester.
 1.2.2. Verify the structure has been made safe.
 1.2.3. Issue a follow-up for the CRN in Work Management to the appropriate Scheduler.
 1.2.4. Verify thorough completion of the CRN within 45 days.
 1.2.5. Provide all necessary documentation to Stray Voltage Project Manager.

 1.3. System Operator responsibilities:

 1.3.1. Assign a response crew to the CRN.
 1.3.2. Determine the crew response time and contact the Contractor Coordinator for coordination of guard requirements.
 1.3.3. Obtain the required technical support, personnel or equipment necessary to provide resolution if the crew cannot make safe the Level I voltage or condition.

 1.4. Response Crew responsibilities:

 1.4.1. Respond to investigate the Level I voltage or condition.
 1.4.2. Investigate the structure to identify the source, implement corrective action, make it safe or de-energize the source.
 1.4.3. Perform a Stray Voltage Test before leaving work site.

2. Immediate Response Notification (IRN) - Level II Voltage ($4.5 \leq V_{\text{Resistor}} < 8 \text{ VAC}$) or Condition

 2.1. Tester responsibilities:

 2.1.1. Contact the Contractor Coordinator to determine if the structure requires guarding and initiate the IRN.
 2.1.2. Record the IRN and notification time into the stray voltage database.

 2.2. Contractor Coordinator responsibilities:

 2.2.1. Determine if a Guard is required and if so, coordinate the replacement of the tester.
 2.2.2. Initiate notification request to a System Operator for a Response Crew to identify the source, determine whether or not the voltage ordinarily exists and, if the source can be corrected, implement corrective action.
 2.2.3. Verify thorough completion of the IRN.

 2.3. Response Crew responsibilities:
2.3.1. Respond to the Level II voltage or condition.
2.3.2. Investigate the IRN to identify the source, determine whether or not the voltage ordinarily exists, and, if the source can be corrected, implement corrective action.
2.3.3. Perform a Stray Voltage Test before leaving work site.

3. **No Response - Level III Voltage (0 VAC ≤ V_{Resistor} < 4.5 VAC) or Condition**

 3.1. **Tester responsibilities:**
 3.1.1. Enter the measurement or condition in the stray voltage database.

 3.2. **Contractor Coordinator responsibilities:**
 3.2.1. None.

 3.3. **System Operator responsibilities:**
 3.3.1. None.

 3.4. **Response Crew responsibilities:**
 3.4.1. None.
Performance Mechanism

Public Service Commission Performance Mechanism

In the Safety Order, as modified by the Order, the Commission adopted a performance mechanism that establishes acceptable parameters for the testing and inspection programs mandated by the Safety Order, and may be used to reduce a utilities authorized rate of return for failure to meet the parameters.

Utility’s Annual Performance Targets

a) The annual performance target for stray voltage testing shall be 100% of all electric facilities and streetlights that must be tested. Facilities that are inaccessible and which pose no risk to public health and safety will not be considered in the determination of whether the target has been achieved.

b) Failure to achieve the annual performance target for stray voltage testing shall result in a rate adjustment of 75 basis points.

c) For the first year of stray voltage testing, the performance target shall be 100% of all streetlights and electric facilities served by underground utility systems. Failure to achieve this performance target shall result in a rate adjustment of 37.5 basis points.

d) The annual performance target for inspections shall be based on the percentage of the average number of electric facilities that must be inspected each year in order to comply with the five-year inspection cycle. That is, the target based on the one-fifth of the total number of the utility’s electric facilities. The specific targets will be as follows:

 a. First year inspection goal 85% of annual target
 b. Second year inspection goal 90% of annual target
 c. Annual inspection goal thereafter 95% of annual target
 d. Fifth year inspection goal 100% of facilities to be inspected

e) Failure to achieve the annual performance target for inspections shall result in a rate adjustment of 75 basis points.
Certifications

In accordance with Section 7 of the Electric Safety Standards, the President or officer of each Utility with direct responsibility for overseeing stray voltage testing and inspections shall provide annual certification to the Commission that the utility has, to the best of their knowledge, exercised due diligence in carrying out a plan, including quality assurance, that is designed to meet the stray voltage testing and inspection requirements and that the utility has:

- Tested all of its publicly accessible electric facilities and streetlights, except those identified in this January 15, 2009, Report
- Inspected the requisite number of electric facilities

Following are the Stray Voltage Testing and Inspection Certifications for Rochester Gas and Electric Corporation.
Michael H. Comroy, on this 15th day of January, 2009, certifies as follows:

1. I am the Vice President, Operations of Rochester Gas and Electric Corporation (the “Company”), and in that capacity I make this Certification for the annual period ending November 30, 2008 based on my knowledge of the testing program adopted by the Company in accordance the Public Service Commission’s Order Instituting Safety Standards, issued and effective January 5, 2005 in Case 04-M-0159 (the “Order”), including the Quality Assurance Program filed by the Company with the Commission.

2. In accordance with the requirements of the Order, the Company developed a program designed to test (i) all of the publicly accessible Electric Facilities owned by the Company (“Facilities”) and (ii) all Streetlights located in public thoroughfares in the Company’s service territory (“Streetlights”), as identified through a good faith effort by the Company, for stray voltage (the “Stray Voltage Testing Program”).

3. I am responsible for overseeing the Company’s Stray Voltage Testing Program and in that capacity I have monitored the
Company’s Stray Voltage Testing Program during the twelve months ended November 30, 2008 (the “Twelve-Month Period”).

4. I hereby certify that, to the best of my knowledge, information and belief, the Company has implemented and completed its Stray Voltage Testing program for the Twelve Month Period. Except for untested structures that are identified as not required or inaccessible in the Company’s Annual Report, submitted herewith, the Company is unaware of any Facilities or Streetlights that were not tested during the Twelve-Month Period.

5. I make this certification subject to the condition and acknowledgment that it is reasonably possible that, notwithstanding the Company’s good faith implementation and completion of the Stray Voltage Testing Program, there may be Facilities and Streetlights that, inadvertently, may not have been tested or were not discovered or known after reasonable review of Company records and reasonable visual inspection of the areas of the service territory where Facilities and Streetlights were known to exist or reasonably expected to be found.

Michael H. Conroy
Vice President, Operations
CERTIFICATION

STATE OF NEW YORK)
COUNTY OF MONROE) ss.

Michael H. Conroy, on this 15th day of January, 2009, certifies as follows:

1. I am the Vice President, Operations of Rochester Gas and Electric Corporation (the "Company"), and in that capacity I make this Certification for the annual period ending December 31, 2008 based on my knowledge of the inspection program adopted by the Company in accordance the Public Service Commission's Order Instituting Safety Standards, issued and effective January 5, 2005 in Case 04-M-0159 (the "Order"), including the Quality Assurance Program filed by the Company with the Commission.

2. The Company has an inspection program that is designed to inspect all of its electric facilities on a five-year inspection cycle, as identified through a good faith effort by the Company ("Facilities"), in accordance with the requirements of the Order (the "Facility Inspection Program").

3. I am responsible for overseeing the Company's Facility Inspection Program and in that capacity I have monitored the program during the twelve months ended December 31, 2008 (the "Twelve-Month Period").
4. I hereby certify that, to the best of my knowledge, information and belief, the Company has implemented and completed its Facility Inspection Program to inspect the requisite number of its Facilities during the year 2008, in order to comply with the five-year inspection cycle required under the Order.

Michael H. Conroy
Vice President, Operations