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1 Executive Summary

Focus: The New York Public Service Commission’s plan to add 1 GW of ad-

ditional north-to-south transmission capacity into the downstate region by con-

structing new high voltage AC power lines roughly paralleling the Hudson River

throughout the Hudson Valley’s north–south extent.

Key Questions:

1. Given reasonably expected future peak downstate power loads, is there a need

for additional north-to-south transmission capacity?

2. If the answer is No, does it change to Yes in the case of retiring Indian Point?

Overall Approach:

The author—a geophysicist and applied mathematician by training, a Senior Sci-

entist at Northwest Research Associates, and a Bard College environmental physics
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research professor—has carried out this research on behalf of the Hudson Valley Smart

Energy Coalition on a pro bono basis. The author then employed a mathematical-

statistical approach characteristic of published geophysics and environmental physics

scientific publications, such as the author’s.

Main Findings: Consistent with the proposed project rationale, downstate

peak loads are expected to rise by about 10% of today’s peak loads through about

2035, and stabilize subsequently.

However, assuming no additional energy e�ciency inroads beyond the 0.9% per

year observed in recent years, the closure of the Indian Point nuclear power plant

by late 2015, and the completion of only half of the projects currently in the NYISO

“in queue” category, assets currently in place plus the gradually added half of the

in queue assets easily exceed expected future peak loads at any point in time from

now through 2040.

Further, assuming no e�ciency gains (i.e., holding steady at the 0.9% energy

e�ciency increases per year observed in recent years) is unrealistically pessimistic

relative to much faster gains expected by other northeastern states or recorded in

response to recent specific policy changes.

No discernible evidence thus exists that additional generation or transmission

capacity is needed in New York’s downstate region.

The Emergent Message: To the best of our knowledge, the analysis pre-

sented in the full report is the first to address quantitatively and rigorously the need

for the proposed project. Like all scientific analyses, especially those not yet pub-

lished in a reputed scientific journal, the presented analysis is neither definitive nor

final. Yet it represents a quantum leap in public discourse about the plan—whose

necessity has been merely assumed rather than demonstrated up until now—because

it is rigorously scientific, impartial, and entirely transparent. All data sets used, all

analytic methods, and all assumptions are unambiguously presented, and can thus

be readily challenged. Logically, a proposed plan—especially one with significant

societal costs—must follow, not precede, an existing, technically vetted and fully
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transparent scientific demonstration of need. If such an analysis has been carried

out by the PSC (The New York Public Service Commission), it has never surfaced

publicly. Absent such an analysis, the current plan fails to meet this criterion, and

is thus premature until made to meet basic due process.

2 Preface and Background

2.1 How to Read this Document

This document summarizes some elements of a fact based approach to the issue of proposed Hud-

son Valley power transmission upgrades (hereafter interchangeably “the problem” or “the plan”).

Saddled by no pre-conceived notions, this document is motivated by the desire to help New

York State become a national leader in 21st Century energy issues by promoting an innovative

approach to the analysis of energy assets and needs.

Because the problem is very complex (see below), and various aspects of it are active foci

of work by many able researchers from numerous disciplines, it will be preposterous to strive

for an exhaustive solution. Instead, this document only focuses on the issue of future need,

and demonstrates the enormity of the challenge and its sensitivity to various assumptions and

imperfectly known facts.

As a scientist, not an engineer, the approach I have taken, and thus the tenor of this doc-

ument, is scientific rather than engineering based. This is not a coincidence, stemming instead

from viewing the issue at hand not as an engineering problem. Clearly electrical engineering is

reasonably deferred to for solving specifically posed transmission problems. Yet while transmis-

sion issues figure in the problem of downstate power demand, the latter is far broader than the

former.
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Figure 1: A schematic representation of some of the key disciplines and schools of thought that are intimately

relevant to the Hudson Valley transmission problem.

2.2 The Complexity of the Multidisciplinary Problem

The downstate power delivery problem comprises a suite of mutually coupled problems falling

into the domains of several disciplines, as Fig. 1 schematically depicts. Even assuming com-

plete knowledge of the electricity market, to forecast downstate 2030 electricity needs, one must

accurately forecast the population size of the City and neighboring counties, as well as such

demographic attributes as median number of inhabitants per household or—because income has

been associated with per capita energy demands1—the characteristic income of a typical house-

hold. Yet to predict those, one must rely on economic forecasts, themselves notoriously imperfect,

to say nothing of assumptions about immigration, spreading rates of western family planning,

among many other sociological phenomena.

Psychology is also crucially and nonlinearly important. Technophobia2, the suspicion of new

technologies, often initially limits deployment of new alternative energy sources3. Yet this e↵ect

is clearly cost dependent, with explosive transition to renewable energy sources once their costs

become competitive and psychological barriers have run their course. For example, along with

solar energy installation costs dropping by roughly 50% over 2010–20134 and by 15% in 2013’s
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Q4 alone5, deployment rates have been rising steadily: installation rates increased by 41% from

2012 to 2013, and solar accounted for 29% of the total electricity generation capacity added in

the U.S in 20136.

Anthropogenic climate change adds an additional layer of complexity to all of the above

interactions. First, one must decide which global path of human action or inaction is likely to

be followed. In addition, the path taken and all of the above are mutually intertwined through a

complex web of feedbacks. For example, city economics and climate change are strongly coupled7,

and demographics are impacted by the climate refugee problem8, which is expected to involve

hundreds of millions if not billions9 in coming decades.

This rich web of interactions renders the downstate power supply problem seemingly in-

tractable. Indeed, comprehensively addressing the full problem will require decades of work by

many individuals from several disciplines. This report most certainly does not come close to

delivering this product. No party involved with this proposal—neither the current author, nor

the PSC, or FERC (Federal Energy Regulatory Commission), or the Governor’s o�ce—has the

intention or all the needed expertise to meet this challenge.

Instead, in this report I highlight quantitatively some key issues pertaining to predicting

future peak loads that likely exert a disproportionate control over the overall estimate of future

downstate power needs. I also emphasize uncertainty ranges, and explore in quantitative details

the variability in the overall estimate of future downstate power demand to which these ranges

give rise.

Finally, it is my hope that this report will form a basis for an open, rational debate over

desirable options and their combination likely to yield the optimal overall solution, the solution

that maximizes overall societal betterment under finite resources.

2.3 A Note on the Use of Mathematics

In writing this document, I deliberately decided to fully and entirely transparently describe the

analyses carried out and the results obtained. Because the machinery used is inherently algebraic,

the above goal has proven directly at odds with the desire to produce a widely readable docu-
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ment, a document accessible by all readers. I chose to sacrifice broad readability for technical

completeness and transparency because I believe the power of this document is in its thorough,

methodologically defensible treatment of the problem of estimating future downstate peak elec-

tricity loads. It is therefore my hope that in the future I will be able to synthesize the salient,

essential elements of the analysis and translate them into a broadly readable document. For

now, however, the technical details, the essence of the document, remain here and are derived in

details in the following sections.

3 An Outline of the Demand Estimate Logic

There are many independent, complementary approaches to estimating future power demands

of a given area. Most algebra based ones can be represented generically and symbolically as

e(t) = f [PT (t), A(t), C(t)] + g [f1(t), f2(t) · · · fI(t)] , (1)

where e(t) denotes downstate peak electricity demand in MW at time t.

While many choices of an addressed e are reasonable, here I define e as the combined peak

summer (and thus annual) demand in NYISO1 Zones2 G–K. In Section 5 I elaborate on and

unambiguously define the exact meaning of e(t), its derivation and temporal behavior. Eq. 1

splits e(t) into two parts. in the first right hand term, f is a function to be specified later of

downstate total population PT , some measure of the region’s mean a✏uence A, and of the region’s

characteristic climate C. While f is not explicitly time dependent, it implicitly is, through the

time dependence of all its three input arguments. In Eq. 1’s second term, g is a function of the

fraction of the total population PT accounted for by I population sub-groups (indexed by i),

chosen based on their distinct characteristic power demand patterns.

In the following sections, I choose explicit f and g, and systematically derive the right hand

side terms. In sections 4 and 5 I derive the population estimates PT and fi. In section 6 I then

identify a suitable I, and devise defensible estimates of A and C. Using those, in the latter parts

of section 6 I finally derive the full model for e(t), train it on past observations, and then use the

coe�cients thus derived to calculate future downstate electricity peak summer demand e(t) for

2015–2040 in five year intervals.
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4 Population Estimates

Fig. 2 shows expected population trends1 in the downstate area. The Fig. shows two distinct

regimes. The populations of Queens, the Bronx and Staten Island are expected to continue to

rise into the 2040s and beyond. In sharp contrast, the populations of all other addressed counties

are expected to either decline (western Long Island) or increase very slightly and insignificantly

until roughly 2025-2030, and slowly decline subsequently. These expected population trends

suggest that to fully address the challenge of meeting future downstate peak power demands,

two distinct approaches must be devised, with the above New York City outer boroughs requiring

one approach, and all other counties requiring a di↵erent one.

Because of continued population growth in Queens, the Bronx and Staten Isl., and because

population totals tend to lag behind transient demographic trends, the overall population of

the combined downstate area is expected to continue to rise (Fig. 2n), at a decreasing rate,

through 2025 or so, and stabilize thereafter at 12.8±0.1 million people. Importantly, the number

of downstate women of reproductive ages (Fig. 2m) is expected to drop markedly, leading to

decreasing net births.

While the above statements address medium range projections, recent near term trends and

their spatial structure (Fig. 3) are similarly revealing. They show the clear distinction between

dense urban counties, in which population is currently still modestly increasing, and exurban

and rural counties, whose populations are already declining.

Because electricity consumption is age dependent2, in addition to population size, the age

distribution within the population crucially impacts future electricity demands. Fig. 2 a↵ords a

preliminary insight into this, delivering a mixed message. While Fig. 2m shows that reproductive

age women population in the full downstate region has already declined, and is expected to

continue to decline at a rapid clip, Fig. 2f, h show that the corresponding female populations in

the Bronx and Staten Island are expected to continue to rise at least through 2040. Of particular

interest among those is the Bronx (Fig. 2f), which currently accounts for 11% of the downstate

combined population.

Fig. 4, presenting 2030 vs. 2010 population changes by age, a↵ords a closer look at the issue.
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Figure 2: Observed (earliest three data points, solid symbols) and projected populations through 2040 of eight

relevant downstate counties including New York’s five boroughs (panels a, e–h), both Long Island counties (panels

b, c), and Westchester (panel d). In each panel, both total population (blue squares; both genders, all age groups)

and women of child bearing age (red triangles) are shown. In panels a–h, the data are represented as percentages

of the respective 2010 values (so that stasis is represented by the solid horizontal black lines). The percentages

of combined 2010 downstate total population (inc. Rockland Ct., which is not individually shown) the shown

counties account for individually are given parenthetically in the panels’ top center near the county’s name. The

combined down state area time series, the sums of the time series of the shown eight counties plus Rockland Ct.,

are given in panels m, n, where observations are again distinguished from projections by solid symbols. Data

from the Cornell Program on Applied Demographics, http://pad.human.cornell.edu/index.cfm.
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Figure 3: County level observed population changes between Apr. 2010 and 2013, from the Cornell Program on

Applied Demographics.

In general and throughout the considered sub-regions, the changes are mostly roughly gender

symmetrical throughout most ages save the >70 group, in which female gains outpace males’

(in terms of absolute changes, Fig. 4h, i), increasing somewhat the female dominance of this age

group. The population changes are summarized in Fig. 4d–o for three key age groups (following

and modifying an earlier study3 examining models of electricity consumption as a function of

age and demographic parameters), delivering the following messages about expected downstate

population changes:

1. Most notably, the >70 age group is expected to rise significantly for both genders.

2. Younger adult populations are expected to rise modestly in some urban counties while

declining elsewhere, giving rise to slight female-dominated downstate declines (lowermost

bars in Fig. 4h-i, n-o).

3. The middle age group is expected to increase modestly (decline somewhat) in urban (ex-

urban) counties, yielding slight full downstate increases.
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Figure 4: Changes in age distribution of male and female populations in the Bronx (panel a), Long Island (Nassau

plus Su↵olk counties, panel b), and the full downstate region (the sum of all 9 counties; panel c). Observed 2010

census age distributions are given in red (blue) solid bars for males (females). The predicted 2030 distributions

are given by the overlaid blue (red) whiskers for males (females). Panels d–i present the changes in male (red)

and female (blue) populations within the indicated age groups between 2010 and 2030, in 104 people. Note that

while panels d–g share a horizontal range, the combined area panels (h, i) have a wider horizontal scale. The

values in panels d–i are shown again as percentages of the 2010 observed values in panels j–o. Data from the

Cornell Program on Applied Demographics.
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Figure 5: Recent monthly per capita New York State electricity use by sector. Panel a presents use by the

industrial (magenta), residential (red), and commercial sectors, and panel b shows the very modest use by

the budding electricity powered transportation sector. The combined all-sector statewide per capita electricity

consumption is shown in panel c. Panels e, d present the seasonal cycle of monthly mean electricity use, with

variability whiskers (showing the ± standard deviation range) calculated over the full annual cycles of all available

years. They demonstrate that while summer is reproducibly the load “bottleneck”, it is highly interannually

variable, and that winter mean use is not far behind, statistically speaking.
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5 Recent Trends in New York State Energy Use

As stated earlier, the key electricity use variable of interest is peak load (e); generation capacity

in New York State is on average no more than roughly 60% tapped. Yet by way of requisite

background, and because peak demand is not unrelated to overall load, mean (i.e., non-peak)

use is also important.

Recent trends in mean New York State electricity use are given in Fig. 5a–c for both total use

and use by key individual economic sectors. (Note that the information summarized in Fig. 5

is not ultimately used for e prediction, but rather is given as added background information.)

Because of the characteristic northeastern hot, humid summer climate, and because much heating

is oil based and air conditioning is ubiquitous in New York State, the State’s power demand peaks

are most often realized within the July–August time span, as hinted (but not explicitly shown)

by Fig. 5d–e (see Fig. caption).

Returning to the main focus of annual peak power load e necessitates two methodological

asides. First, the modeling and statistical work in the remainder of this report is based on

treating peak loads, and by extension their sums, as random variables. While this is meant in the

statistical sense, it is intuitive. Clearly a given Zone’s peak load depends on weather variability,

a quintessential random variable. But even for a given weather pattern, the actual power needs

depend on the collective behavior of the Zone’s residents, and thus on countless random choices.

Consequently, forecasting future downstate peak loads is an inherently statistical—rather than

deterministic—modeling problem.

The second issue is practical, having to do with unavailability of the ideal peak load data

needed for the statistical modeling problem at hand. Two data sets exist, and both are highly

pertinent, but neither is ideal. The first data set is from the NYISO1’s so-called Gold Books2,

comprising historical coincident and non-coincident peak loads for each individual load Zone

during 1995–2013, and (in, e.g., Tables I-4a, b on pp. 21–22 of the 2011 Gold Book). The

challenge with this source is that the reported peaks are not summable, as in general they are

realized at di↵erent times. What is needed instead is the actual maximum combined downstate

load. Understandably, such sums specifically for Zones G–K are not available in the Gold Books,

nor kept by NYISO3
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Figure 6: Recent summer (and thus annual) peak loads in the individual counties the downstate region comprises

(panels a–e) and the combined downstate region as a whole (panel f). In a–e, the Zones are indicated, the

individual Zone’s peak load 1995–2013 time series is shown in red, and r :=
q
(ê� e)T (ê� e) /N is the root

mean squared misfit about the shown linear trends (blue), where e and ê are the observed and trend-predicted

peak load 19-vectors, qT denotes the transpose of an arbitrary real vector q, and N = 19 is the number of annual

peak data points included in panels a–e. Data from NYISO’s 2014 Gold Book. In panel f, the above data are

blended to yield a range of estimates using the methodology introduced in the text, shown by open circles. These

are best thought of as imperfect estimates of the actual sought combined peak load in the addressed Zones. Also

in f, the modeled blended estimates are augmented with additional data (solid black curve) addressing the sum of

actual loads summed over Zones G–K during times of annual maximum statewide loads. Because the time of each

annual peak load in the latter data set is the time of maximum load in the State as a whole, it too is imperfectly

suited for the modeling task. This is further discussed in the text. The slope of the data shown in f (whose best

estimate is 3.1 GW per decade, as indicated near the bottom of f) is addressed further in panel g, which shows

the probability density function (or, more accurately, its finite approximation, the histogram) derived from 200

Monte Carlo realizations, in each of which the calculation is repeated anew with only 19 of the 21 available data

used. The message of panel g is that peak loads have been rising, significantly and unequivocally, since the early

’90s, justifying the concern that peak load shortfalls may soon follow.
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The second data source—also by NYISO but not a part of the traditional Gold Books—was

generously provided by NYISO upon personal request (Mr. Arthur Maniaci, by email commu-

nication over Aug. 15–21 2014). It comprises mutually additive Zone loads during times of

statewide annual peak loads, with dates of occurrence of the peaks. Here the challenge is that

while the area of interest here, downstate, is the largest power user in the state, it is still only

a subset of the state. The times of statewide and downstate peak loads therefore need not

temporally coincide.

To overcome the above data imperfections, I blend the two data sources and unify them

despite the disparate time extents, as the follows. The starting point is the observation (im-

plied by but not explicitly shown in Fig. 6) that the magnitudes of all Zones’ peaks in a given

summer are very similar across Zones if expressed as a fraction of the Zones’ long term mean

summer peaks. This is made all the clearer upon linear detrending (the removal the dominant

linear trend), which was done but not presented pictorially here for brevity. Put di↵erently,

the downstate region is internally rather coherent. While very important, this is not surprising

given the very modest spatial extent of the region—of order 102 km—relative to the spatial scale

that governs weather variability, the so-called synoptic scale which is characteristically of order

103 km. Because the extent of the downstate region is roughly a tenth of the synoptic scale,

when it is unusually hot and muggy in Brooklyn, say, it is highly improbable that Westchester

is enjoying a crisp, cool day. Consistently, when load peaks in one of the downstate Zones, while

other Zones’ loads need not also peak at the same time, they surely are well above average.

Exploiting the similarity of individual normalized peak load fluctuations, I devise three esti-

mates of combined downstate peak load in year i, ei, as
0

BB@

e

low
i

e

med.
i

e

high
i

1

CCA ⇡ ei,J +
X

j=G,H,I,K

ei,j

0

BB@

0.95

0.97

0.99

1

CCA (2)

where here e is discrete in time, hence the replacement of e(t) by ei, in which i = [1, 19] is the

year index. In Eq. 2, I take note of the fact the New York City, Zone J, is the largest downstate

power consumer. All three estimates thus assume peak load in New York City, rendering them

conservative upper bounds. In Eq. 2 I also assume—also conservatively—that at the time of

peak load in New York City, loads in the other four load Zones, are 95%, 97% or 99% of their
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own respective peak loads. These three estimates are shown as colored circles in Fig. 6f.

The three estimates based on blending individual Zone peak loads are then plotted in Fig. 6f

along with an additional independent estimate of downstate combined peak load. That latter

estimate (black solid curve closely tracking the circles in Fig. 6f) is based in simply summing the

five Zones’ observed loads during the time of statewide peak load.

As made clear by Fig. 6f, while based on distinct assumptions, and utilizing two distinct data

sets, during their 19 year overlap, the two estimates clearly mutually agree very closely. Either

one of them is thus a suitable choice of the peak load data to be modeled. In what follows

I use the following as the predictand time series e(t). For 1995–2013, I use the upper bound

downstate peak load estimate, the sum of the asynchronous Zone peaks. For 1993–94, I use only

the data obtained by the second of the above two methods. Because there appears no discernible

discontinuity between 1994 and 1995 (as Fig. 6f’s lower left corner makes clear), I simply suture

together those two estimates as the full 1993–2013 training e timeseries.

It will prove useful to express the series as the vector

e :=

0

BBBBB@

e1

e2

...

e21

1

CCCCCA
2 R21 (3)

in which the 1993–2013 temporal coverage accounts for the dimension.

6 A Simple Model of Peak Downstate Electricity Loads

As emphasized earlier, the problem addressed here—estimating a given area’s electricity demands—

can be handled many di↵erent ways. Ideally, all variables that have been historically cross-

validated and proven predictive should be employed together to obtain the best possible estimate.

A thorough implementation of this approach is very laborious and exceeds the scope of this—one

man, uncompensated—e↵ort. Instead, here I choose an approach that builds on earlier work on

electricity demand and on the already introduced Eq. 1.
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The recent work of Liddle1 has built on and expanded a body of literature in which electricity

demands on various spatial and temporal scales are modeled statistically. The methodologies

Liddle and his predecessors have favored amount to stochastic extension2 of the original IPAT3

approach to resource consumption.

Below, while conceptually following the above approaches, I di↵er from them in one important

way: While in the stochastic IPAT formalism explanatory variables (predictors) are multiplica-

tively related, thus giving rise to an overall log-linear optimization problem, here I favor the

additive, linear, approach, for two reasons.

First, it seems unlikely that all predictors are mutually multiplicatively linked. For example,

it is hard to see how a✏uence—a key element of the original IPAT formalism and its stochastic

extensions—and climate will be multiplicatively related for an application that strives to address

peak load rather than mean use. This is so because given how a↵ordable air conditioning has

become, it is hard to imagine households of even modest means not availing their denizens of the

heat respite a↵orded by air conditioning during an extreme heat wave. In sharp contrast, it is

rather intuitive that in the mean, averaging over many summer days far less extreme than the

singularly worst summer day shaping the current problem, increased a✏uence will indeed imply

more regular reliance on air conditioning.

The second reason I favor here the linear approach over the log-linear alternative is method-

ological robustness. Because the dynamic ranges of variability of both predictors and predictand

in the current problem are rather small, giving rise to an almost ill posed inversion, taking the

log only diminishes the range and further degrades the problem’s posedness.

For both of these reasons I favor the linear approach. Neither unique nor necessarily superior

to other methods, the linear representation yields an initial model for peak downstate electricity

load at time t of the general form

e(t) = x1 + x2PT (t) + x3A(t) + x4C(t) +
IX

i=1

(x4+ifi) + ⇠(t), (4)

to be further tested and perfected below. In Eq. 4, the 4+I xis are the sought fitting (regression)

coe�cients (of which x1, a fixed additive term, allows for e’s nonzero mean), and in keeping

with the original IPAT formalism and Eq. 1 above, Eq. 4’s PT (t), A(t) and C(t) denote time
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dependent downstate total population, mean a✏uence and climate.

As a clearly imperfect measure of a✏uence, I choose per capita GDP for the states of NY,

NJ, and CT, and that of York-Newark-Jersey City, NY-NJ-PA (Metropolitan Statistical Area,

FIPS 35620), all taken From the U.S. Dept. of Commerce, Bureau of Economic Analysis4 and

averaged. There may be better choices of a✏uence characterizing variables, but I was able to

find no su�ciently specific, spatiotemporally resolved such data sets. It is thus simply noted

that the choice of GDP may represent a weakness in the model that will require follow-up work

to overcome. While the data in each of the used sets are initially chained to di↵erent years’

Dollars, I correct all to 2009 Dollars using U.S. Dept. of Labor, Bureau of Labor Statistics

on-line inflation calculator5.

As a simple measure of climate, I use annual maximum of daily maximum temperature

Tmax. In the process of devising the model I also explored the humidity-mindful alternative of

cooling degree days. Perhaps because those data were available over a shorter time span, their

performance in the model was weaker than that of Tmax. While follow-up investigation may well

improve on the current Tmax choice, for the purpose of this analysis I represent climate variability

C as annual maximum Tmax, as stated above.

Also as in Eq. 1, fi is the fraction of the total downstate population PT for which age group

i accounts. Modifying Liddle’s choices, here I consider the I = 3 age groups (consistent with

Fig. 4) 20–45, 45–70, and >70 years old. Finally, allowing for misfit (in the regression sense),

⇠(t) denotes noise. Thus in Eq. 4 I replace Eq. 1’s f and g by their simplest, least conjectural

alternative, linear relations.

In deviation from Liddle’s original 2011 formulation, in Eq. 4 I disregard electricity’s share

of total domestic energy consumption, originally included in Liddle’s analysis as an explanatory

variable. The exclusion is based on the fact that while in Liddle’s original analysis this variable

was included as a proxy measure of access to electricity (which was necessary because of the

inclusion of some less developed OECD countries), in New York State such access is a non-issue.

Because the formulation is linear, the exclusion poses no methodological di�culties.

I employ two additional steps to cautiously and conservatively develop the final form of the

model from Eq. 4’s skeletal form. In the first, I test individually each candidate predictor before I
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Figure 7: Dependence of downstate 1993–2013 peak loads (vertical axes of panels a–f) on individual predictors

(indicated near each panel bottom). Predictor values (horizontal axes) are not addressed in their raw form.

Rather, I first detrend in time each predictor time series (with the added e↵ect of having zero mean), and then

divide each of the 21 values in the detrended time series by the mean of the raw (pre-detrending) predictor value

over the full period. Thus, e.g., a value along any of the horizontal axes of 0 means that the predictor value at

that time exactly coincided with the linear trend value. A value of 1 along any of the horizontal axes, likewise,

means that the deviation of the predictor value at that time from the linear time trend is exactly equal to the

predictor’s temporal long term mean. This, and the fact that all vertical axes span the same range, permits

direct comparison of any of panels a–f to any other. Also in panels a–f, while time is not explicitly shown as an

independent variable, its progression is shown by the dots’ colors, with dark blue (brownish red) indicating 1993

(2013), and the full range of colors/years shown to the right of panels c and f. Linear trends of e(t) = e[pi(t)] (in

which pi(t) is predictor i’s time series) are presented as solid black lines. Panel g tests the robustness of those

linear dependencies using a 200 member Monte Carlo boot strapping randomization, in each of which the trends

are recalculated using 90% of available data. Sorting the trends thus obtained, the estimated trends in positions

round(200⇥ 0.025) and round(200⇥ 0.975) (5 and 195) are the lower and upper bounds of the trend distribution,

respectively. A trend is said to be p < 0.05 significant if both of those are of one sign, so that their spread

excludes zero. Panel g thus shows that downstate peak electricity load is insignificantly related to a✏uence, but

significantly related individually to the other five tested predictors.
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retain in the final model. Then, I employ an R

2-based stepwise regression formalism to eliminate

redundant predictors and retain only ones that o↵er additional explanatory power beyond the

combined explanatory power of already retained predictors.

The first of these steps is addressed in Fig. 7. In Fig. 7, I test individually each of Eq. 4’s

six potential predictors. The tests are based on evaluating the presence or absence of linear

dependence of e on each of the tested predictor individually (panels a–f), and then (panel g)

Monte Carlo testing the significance of each of the trends. As Fig. 7g shows, downstate peak

electricity load is unrelated to a✏uence, but significantly related individually to the other five

tested predictors. The five predictors that prove significantly related to e, PT , C, and f1,2,3 are

still potential contenders for the final model, while A is no longer considered; Eq. 4 is reduced

to, at most,

e(t) = x1 + x2PT (t) + x3C(t) +
IX

i=1

(x3+ifi) + ⇠(t), (5)

or, in vector form,

e =
⇣

o PT C f1 f2 f3

⌘
x+ ~

⇠ ⌘ Ax+ ~

⇠. (6)

In Eq. 6, which implicitly defines A 2 R21⇥6, A’s six columns, and ~

⇠, are 21-vectors, o is a vector

of ones, x is the 6-vector of optimized coe�cients, and ~

⇠ is the misfit vector.

Two additional conservative exclusions take place following the stepwise formalism and the

algebraic analysis of A. As given in Eq. 6, A is e↵ectively if not formally rank deficient, with a

trailing singular value, while not identically zero, 5 orders of magnitude smaller than the leading.

This can be understood by reexamining simultaneously Fig. 7e,f. The panels clearly show nearly

identical time trends, with unstructured residuals about the respective trends. If both variables

are related primarily through the trend, and if the trends of both are essentially the same, the

two are mutually redundant, and one must be eliminated. The reverse is true for Fig. 7d,e,

whose trends are sign reversed but are otherwise similar, also with unstructured residuals about

the respective trends. In recognition of these two redundancies, and the fact that f3 accounts

for a small portion of the population (under 10% and 13% in 2013 and 2040), f3 is a natural

first candidate for elimination in order to render the final A’s singular spectrum less lopsided,

In addition, I handle the partial mutual redundancy of f1 and f2 by using their ratio as a single

predictor, ri := fi,1/fi,2 and r = ( r1 r2 · · · r21 )T 2 R21⇥1.
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The final model is thus

e =
⇣

o PT C r
⌘
x+ ~

⇠ ⌘ Ax+ ~

⇠. (7)

with A 2 R21⇥4 and x 2 R4⇥1. The singular spectrum of this final A satisfies �4 ⇡ 0.15�1 (where

�i is A’s ith singular value, with the spectrum arranged according to �i � �i+1). This final A

thus possesses a stable, adequate singular spectrum.

7 The Final Predictions and Their Testing

I next test again the predictors of the final model given in Eq. 7. The test again consists of 200

Monte Carlo experiments, in each of which I withhold two randomly chosen data points (roughly

10% of the available 21), and recalculate the linear trends. Sorting these 200 trends, and choosing

estimated trends in positions 200 ⇥ 0.025 = 5 and 200 ⇥ 0.975 = 195 as the lower and upper

bounds of the trend distribution, respectively. A trend is said to be p < 0.05 significant if both

of those are like-sign, so that their span excludes zero.

The results of these tests are summarized in Fig. 8a–d. All three predictors prove p < 0.05

significant (Fig. 8a), but the climate measure C is least significant (in repeated experiments, at

times 1 or 2 of the estimated climate trends are negative, whereas the other two predictors are

at least p < 0.005 significant as in those repeated experiments not a single one of the 200 MC

realization has ever fallen across the zero line from the bulk of the distribution).

The final prediction comprises two steps. In the first, x̂ is obtained by solving Eq. 7 with A

holding 1993–2013 observations. In the second step, which involves bootstrapping randomization,

I use this x̂, denoted x̂past, and an A (as defined in Eq. 7) holding future observations (2015–2040

in 5 year increments) to produce future e estimates,

êfuture = Ãfuturex̂past
. (8)

Here,

Ãfuture =
h
o Pfuture

T +N (0, s2PT
) Cfuture +N (0, s2C) rfuture +N (0, s2r)

i
(9)

is a perturbed version of the 2015–2040 A in which o is a vector of ones, as before, and the latter

three columns are PT , C and r predicted for 2015–2040 plus perturbations randomly drawn in
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Figure 8: Some attributes of the final model and future downstate peak load prediction. In panel a, I test again

the significance of the linear trends of e as a function of retained predictors, presenting the 95% spreads of 200

member Monte Carlo populations. As all ranges exclude zero, all are p < 0.05 significant. Panels b–d present e

vs. a retained predictor (in the original values and units shown by the horizontal axis labels, unlike in Fig. 7a–f).

As in Fig. 7a–f, time is implicitly shown by the colors; see scale there. Panel e presents the final prediction of

future downstate peak loads. The red curve shows the 1993–2013 time series of annual downstate peak loads.

The whiskers about the red curve show the cross validation skill obtained by training the model on 19 randomly

chosen data points and using the model thus trained to “forecast” peak loads of the withheld 2 years. The most

likely forecast of future downstate loads for 2015–2040 are shown in solid blue. The probability density function

of the peak load forecasts is shown in gray shadings, with lightest to darkest corresponding to percentiles 2–98,

5–95, 10–90, 20–80, and 40–60. Downstate assets (comprising generations withing the region plus transmission

capacity into it) are shown in solid black. The curve is based on (i) starting from the maximum peak load

negotiated successfully, that of 2011 (thin horizontal black); (ii) adding half of the assets already in the NYISO

“in-queue” designation and slated for completion in each year over 2015–2019; (iii) continuation of the recently

observed e�ciency gains of 0.9% yr�1 (several other states have attained 2 or even 3% per years savings in recent

years). Details of these calculations are given in the text; and (vi) random interannual variability of all predictors

according to their 1993–2013 observed variance.
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each Monte Carlo realization from normal distributions with zero mean and the variances of PT ,

Tmax, and fi/f2 obtained from the 1993–2013 observations. The addition of the random pertur-

bations, along with the assumption of roughly time invariant variances, allows for simulating a

range of future peak loads that reflects the full scope of possible future total population, climate,

and population age distribution.

The use of Eqs. 8 and 9 for predictions hinges of future predictor data, obtained as follows.

The two population related predictors PT and r = f1/f2 are still from the Cornell Program on

Applied Demographics1, available for 2015–2040 in 5 yr increments (six points). The climate

predictor C = Tmax is taken from future climate model predictions of annual maximum of Tmax,

daily maximum temperatures. The model outputs are taken from CMIP5 (the 5th Coupled

Model Intercomparison Project2), a climate research project under the auspices of World Climate

Research Programme in support of the quasi regular Assessment Reports (the most current of

which is the 5th3, compiled by the IPCC (Intergovernmental Panel of Climate Change4).

For the grid point containing New York City, the 17 available models predict a warming of

0.2–4.0 K by mid 21st century, with most falling in the 1.8–2.8 K range. I therefore assume here

a conservative 3 K warming by 2050. Future downstate peak power loads e are shown by the

blue curve in the right hand part of Fig. 8e.

Next, and crucially important, is testing the dependence of the future e predictions on the

specifics of the available past data. That is, examining the red curve in Fig. 8e, one immediately

recognizes that it comprises two parts. The first, the secular rise (“the trend”) is clearly robust,

as Fig. 6g has already established. Conversely, the up and down fluctuations about the trend of

Fig. 8e’s red curve are clearly random. Any robust estimate of future downstate e trajectory must

therefore depend strongly on the trend, but be largely independent of the vagaries of the specific

realization of past e trajectory that was actually observed. To ascertain that our e projections

meet this criterion, I again carry out 200 Monte Carlo experiments. In each MC realization,

I estimate x̂past using only randomly chosen 19 of Apast’s 21 rows, and then use this deficient

x̂past and a full, perturbed Ãfuture to solve Eq. 8 for one êfuture. Repeating this randomization

200 times, sorting the resultant predicted e trajectories, and retaining trajectories 4 and 196,

I obtain the 96% confidence interval on future e projections. This interval is spanned by the

full scope of gray shadings of Fig. 8e’s right. Subintervals within the full span are derived by
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straightforwardly extending the above limits to other percentiles of the distribution.

The estimates cluster together very well, indicating that the model is indeed robust with

respect to the random parts of Fig. 8e’s red left curve. To remove ambiguity, a bad model—one

that depends too strongly on the random, irreproducible parts of past observations (the red

curve)—will produce confidence intervals that fail two important criteria. First, they will not

coincide nicely with and bracket centrally the optimal prediction (the one based on using all 21

rows of Apast). Instead, the gray shadings in Fig. 8e achieve both for the central blue curve.

Second, a bad model’s confidence interval will diverge widely with time, yielding a gray shaded

region whose height increases wildly from left to right. Again, Fig. 8e shows quite the opposite

for our model, a tight and minutely increasing shaded region. Together, these tests give every

reason to interpret Fig. 8e as predicting a very gradual and slight increase in downstate future

peak loads, rising to, at most, 26 GW by 2040 from the recent values, 21-22 GW.

For comparison and as a yardstick to which the current results can be compared, Fig. 8e

presents existing downstate power assets and their expected growth in coming years. The esti-

mate of peak load relevant assets starts with the recent 2001 peak load, at 21.96 GW the highest

load ever recorded. From that point—which is our starting point because if such a load was

encountered and negotiated successfully, assets of at least this magnitude are clearly available

for the downstate region—forward, two types of added assets are considered. The first addresses

load reductions due to energy e�ciency gains, which I express as the equivalent addition of as-

sets. (Because the variable of interest is the assets minus consumption, consumption reduction

by added e�ciency is entirely equivalent to added assets, as discussed further below.)

The second addition of assets available to meet downstate peak loads involves energy e�ciency

gains. While New York State recent energy savings are modest relative to other states, they are

positive. In recognition of this, e.g., the NYISO Gold Book load forecasts take explicit note of

projected energy e�ciency savings attained through ratepayer-funded energy e�ciency programs

administered by NYSERDA, NYPA or LIPA. Additional savings are also expected as already

enacted more rigorous building codes and appliance standards take wider hold (as the existing

housing stock and currently used appliances are gradually replaced due to normal end-of-life by

new standard compliant assets, an e↵ect Aroonruengsawat et al.5 have estimated to fall in the

3–5% of total residential electricity use per year). The NYISO near future forecasted annual
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savings, e.g., amount to 1.1% of total state electricity sales. For reasons not explicitly stated

by NYISO, subsequent savings decline, amounting to roughly 0.7% (0.3%) of electricity sales in

2017 (2019-2021). A recent NYSERDA study6 employed a di↵erent methodology to estimate

achievable electricity savings potential of 18% by 2032, which amounts to an average savings

rate of 0.9% per year. Another estimate, that of Woolf et al.7 is 1.5% savings per year, which

those authors deemed “clearly feasible” for New York State in the decade following their 2011

publication.

With the above estimates in mind, the 0.9% per year energy savings rate estimate used in

Fig. 8e is suitably conservative. I represent this as an equivalent virtual added assets that would

have maintained the same vertical distance between demand and expected assets. This is shown

by the solid black curve in Fig. 8e’s upper right. Expected peak loads, even their upper bounds

(and even the not shown single highest realization of the 200 MC realizations), are well shy of

expected assets at any time through 2040 (the solid black curve).

8 Summary

Downstate peak loads are indeed expected to rise modestly (by about 10% of today’s peak loads)

through about 2035, and stabilize thereafter. This may explain the assertion that additional

transmission assets are necessary.

A closer examination of the facts, however, indicates that even assuming no further rise in the

recently observed energy savings rate of 0.9% per year, existing assets handily exceed expected

future peak loads with Indian Point closed.

At the same time, 0.9% electricity savings per year is probably a low estimate. This is so

both relative to actually realized recent saving in New York State, as well as relative to other

northeastern states. For example, Massachusetts and Vermont both plan—based on their recent

records—to exceed 2% savings per year1. It is also far smaller, by as much as a factor of 2,

than expected gains by measures already in place in the State (notably more stringent building

e�ciency code) whose e↵ect is known to lag behind their enactment.
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Thus I find no evidence that additional generation or transmission capacity is needed in New

York’s downstate region.
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