New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs –

Residential, Multi-Family, and Commercial/Industrial Measures

Version 6

Issue Date – April 16, 2018 Effective Date – January 1, 2019

New York State Joint Utilities

Version	Title	Issued
n/a	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Selected Residential and Small Commercial Measures (Electric)	12/28/2008
n/a	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs (Gas) – Selected Residential and Small Commercial Gas Measures	3/25/2009
n/a	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Measures in Multi-family Programs	7/9/2009
n/a	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Measures in Commercial Industrial Programs	9/1/2009
n/a	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Single Family Residential Measures	12/16/2009
1	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Residential, Multi-family, and Commercial/Industrial Measures	10/15/2010
2	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Residential, Multi-family, and Commercial/Industrial Measures	12/10/2014
3	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Residential, Multi-family, and Commercial/Industrial Measures	6/1/2015
4	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Residential, Multi-family, and Commercial/Industrial Measures	4/29/2016
5	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Residential, Multi-family, and Commercial/Industrial Measures	7/17/2017
5.1	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Residential, Multi-family, and Commercial/Industrial Measures	3/15/2018

Version History of the New York State Technical Resource Manual:

5.2	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Residential, Multi-family, and Commercial/Industrial Measures	4/10/2018
6	New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Residential, Multi-family, and Commercial/Industrial Measures	4/16/2018

Acknowledgements The New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs – Residential, Multi-family, and Commercial/Industrial Measures, Version 6, dated April 16, 2018, was updated by the Technical Resource Manual Management Committee lead by the Joint Utilities¹ in consultation with New York State Department of Public Service. In accordance with the Commission's February 26, 2015 Order in Case 14-M-0101 – Proceeding on the Motion of the Commission in Regard to Reforming the Energy Vision, Staff has transferred this document to the Joint Utilities as of June 1, 2015 to support the Joint Utilities in assuming responsibility for the ongoing maintenance of the Technical Resource Manual.

¹ Central Hudson Gas and Electric Corporation ("Central Hudson"), Consolidated Edison Company of New York, Inc. ("Con Edison"), National Fuel Gas Distribution Corporation ("National Fuel"), New York State Electric & Gas Corporation ("NYSEG"), Niagara Mohawk Power Corporation d/b/a National Grid, The Brooklyn Union Gas Company d/b/a National Grid NY and KeySpan Gas East Corporation d/b/a National Grid (collectively "National Grid"), Orange and Rockland Utilities, Inc. ("O&R"), and Rochester Gas and Electric Corporation ("RG&E")

Revision Number	Addition/ Revision	Issue Date	Effective Date	Measure	Description of Change	Location/Page in TRM
12-17-1	R	12/31/2017	1/1/2019	R/MF - Clothes Dryer	Updated measure description and key variable values to align with current ENERGY STAR requirements and federal standards. Revised formulas. Updated footnotes and references. Added description of ancillary HVAC impacts. Moved EUL information to Appendix P.	Pg. 13
12-17-2	R	12/31/2017	1/1/2019	R/MF - Refrigerator and Freezer Recycling	Updated measure description. Revised formulas. Revised deemed savings to align with conducted NY evaluations. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 38
12-17-3	R	12/31/2017	1/1/2019	R/MF - Heat Pump Water Heater (HPWH) -Air Source	Updated measure description and key variable values to align with federal standards and other relevant resources. Significantly revised methodology. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 59
12-17-4	R	12/31/2017	1/1/2019	R/MF - Indirect Water Heater	Updated measure description and key variable values to align with federal standards and other relevant resources. Revised heat loss coefficient derivation methodology. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 67

Table of Revisions/Changes

Revision Number	Addition/ Revision	Issue Date	Effective Date	Measure	Description of Change	Location/Page in TRM
12-17-5	R	12/31/2017	1/1/2019	R/MF - Storage Tank and Instantaneous Domestic Water Heater	Updated measure description and key variable values to align with federal standards and other relevant resources. Revised heat loss coefficient derivation methodology. Reflected shift from EF to UEF. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 72
12-17-6	R	12/31/2017	1/1/2019	R/MF - Air Conditioner - Central (CAC)	Updated measure description and key variable values to align with federal standards and other relevant resources. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 96
12-17-7	R	12/31/2017	1/1/2019	R/MF - Blower Fan – with Electronically Commutated (EC) Motor for Furnace Distribution	Updated measure description. Added peak demand savings methodology. Revised deemed savings values to align with referenced study. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 110
12-17-8	R	12/31/2017	1/1/2019	R/MF - Heat Pump - Air Source (ASHP)	Updated measure description and key variable values to align with federal standards and other relevant resources. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 126
12-17-9	R	12/31/2017	1/1/2019	C/I - Air Compressor	Updated measure description. Removed Load/Unload option from eligible control types. Moved EUL information to Appendix P.	Pg. 219

Revision Number	Addition/ Revision	Issue Date	Effective Date	Measure	Description of Change	Location/Page in TRM
12-17-10	R	12/31/2017	1/1/2019	C/I - Storage Tank Water Heater	Updated measure description and key variable values to align with federal standards and other relevant resources. Revised heat loss coefficient derivation methodology. Updated assumed GPD table. Revised Ancillary HVAC Impacts sections. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 236
12-17-11	R	12/31/2017	1/1/2019	C/I - Unitary Air Conditioner and Unitary & Applied Heat Pump	Updated measure description and key variable values to align with federal standards, NYS/NYC Code and other relevant resources. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 258
12-17-12	R	12/31/2017	1/1/2019	C/I - Chiller – Cooling Tower	Updated measure description. Moved EUL information to Appendix P.	Pg. 272
12-17-13	R	12/31/2017	1/1/2019	C/I - Furnace and Boiler	Updated measure description and key variable values to align with NYS/NYC Code and other relevant resources. Removed Compliance Efficiency table. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 284
12-17-14	R	12/31/2017	1/1/2019	C/I - Air Conditioner and Heat Pump – Packaged Terminal	Updated measure description and key variable values to align with federal standards, NYS/NYC Code and other relevant resources. Updated footnotes and references. Moved EUL information to Appendix P.	Pg. 294

Revision Number	Addition/ Revision	Issue Date	Effective Date	Measure	Description of Change	Location/Page in TRM
3-18-1	R	3/29/2018	1/1/2019	R/MF Advanced Power Strip	Updated source and values of Tier 2 deemed savings; Updated Measure Description and Operating Hours section to delineate Tier 1 and Tier 2 equipment.	Pg. 30
3-18-2	R	3/29/2018	1/1/2019	R/MF Room Air Conditioner	Revised to reflect CEER rating standard; Updated Baseline Efficiencies section to current code; Revised EUL source/value; Modified Operating Hours.	Pg. 100
3-18-3	R	3/29/2018	1/1/2019	C/I Economizer – Air Side with Dual Enthalpy Control	Revised Measure Description; Clarified ambiguity regarding applicable appendix table; Revised EUL source/value.	Pg. 282
3-18-4	R	3/29/2018	1/1/2019	C/I Refrigerated Case Night Cover	Modified savings estimation approach to account for previous and current code required energy consumption; Updated Measure Description, Baseline and Compliance Efficiency sections; Revised Operating Hours.	Pg. 339
3-18-5	R	3/29/2018	1/1/2019	C/I Evaporator Fan Control	Updated Measure Description, Baseline and Compliance Efficiency and Operating Hours sections; Simplified estimation approach using deemed savings values.	Pg. 352
3-18-6	R	3/29/2018	1/1/2019	R/MF Clothes Washer	Updated to reflect new ENERGY STAR [®] standard; Updated findings from RECS data; Updated EUL source and value.	Pg. 6

Revision Number	Addition/ Revision	Issue Date	Effective Date	Measure	Description of Change	Location/Page in TRM
3-18-7	R	3/29/2018	1/1/2019	R/MF Refrigerator and Freezer Replacement	Revised Measure Description and eligibility criteria; Removed F _{market} adjustment; Removed Early Replacement language and provisions; Expanded gas impact equation to ignore interactive cooling effects; Updated Baseline and Compliance Efficiency sections to align with new criteria; Updated EUL source and value.	Pg. 26
3-18-8	R	3/29/2018	1/1/2019	R/MF Room Air Conditioner - Recycling	Substantially revised overall approach to align with intent of quantified impacts; Revised to reflect CEER rating standard; Added default capacity values; Updated default efficiency values to current code; Revised Operating Hours, CF and EUL value/source. Included EER/CEER conversion.	Pg. 34
3-18-9	R	3/29/2018	3/30/2018	R/MF Domestic Hot Water Tank Blanket	No revisions applied – Measure marked for removal from TRM.	N/A
3-18-10	R	3/29/2018	1/1/2019	C/I Low-Flow Pre Rinse Spray Valve	Revised algorithms for consistency with other measures; Updated baseline GPM to align with code effective in 2019; Updated Operating Hours section; Revised temperature and efficiency default variable values.	Pg. 251

Revision Number	Addition/ Revision	Issue Date	Effective Date	Measure	Description of Change	Location/Page in TRM
3-18-11	R	3/29/2018	1/1/2019	R/MF Heat Pump – Ground Source	Added sizing restriction to <65,000 MBh; Simplified algorithms with use of cooling and heating system binary factors; Removed EFLH adjustment factor from peak demand savings formula; Added clarifications, SEER to EER conversion and HSPF to COP conversion to Baseline Efficiencies section; Corrected Fcooling/Fheating table of values.	Pg. 130
3-18-12	R	3/29/2018	1/1/2019	R/MF Dehumidifier	Revised Measure Description; Updated estimation approach to calculation rather than deemed values; Updated to reflect new ENERGY STAR [®] standard and code requirements; Added Operating Hours; Updated CF and EUL value/source.	Pg. 17
3-18-13	R	3/29/2018	1/1/2019	R/MF Furnace Tune Up	Added provisions for blower fan savings; Revised write-up for consistency with other measures.	Pg. 124
3-18-14	R	3/29/2018	1/1/2019	C/I Indirect Water Heater	Revised Measure Description including restriction to small commercial systems with zone priority control; Updated temperature and efficiency default variable values; Revised GPD assumptions; Updated heat loss coefficient sections; Updated Baseline and Compliance Efficiency sections; Added ancillary electric impacts language.	Pg. 228
3-18-15	R	3/29/2018	1/1/2019	C/I Air Cooled Refrigeration Condenser	Updated Measure Description; Corrected issue regarding approach temperature eligibility requirements.	Pg. 332

Revision Number	Addition/ Revision	Issue Date	Effective Date	Measure	Description of Change	Location/Page in TRM
3-18-16	R	3/29/2018	1/1/2019	C/I Freezer and Cooler Door Strip	Clarified Measure Description; Simplified savings estimation approach; Updated CF; Added Operating Hours; Added Ancillary Impacts language.	Pg. 343
3-18-17	А	3/29/2018	3/29/2018	R/MF Learning Thermostat	New Measure Added	Pg. 143
3-18-18	А	3/29/2018	3/29/2018	C/I Ovens, Steamers, Fryers and Griddles	New Measure Added	Pg. 187
3-18-19	А	3/29/2018	3/29/2018	C/I Combination Ovens	New Measure Added	Pg. 175
3-18-20	А	3/29/2018	3/29/2018	C/I Insulated Holding Cabinets	New Measure Added	Pg. 183
3-18-21	R	3/29/2018	1/1/2019	Appendix P	Updated EUL entries for all measures contained in this Record of Revision.	Pg. 626
3-18-22	R	3/29/2018	1/1/2019	Glossary	Added entries to align with all measures contained in this Record of Revision.	Pg. 639

Note: Revisions and additions to the measures listed above were undertaken by the Joint Utilities Technical Resource Manual (TRM) Management Committee between July 1, 2017 – March 29, 2018.

TABLE OF CONTENTS

INTRODUCTION	1
History	1
System Peak Demand Definition	3
Natural Gas Peak Savings Definition	
Coincidence Factor.	
Ancillary Non-Gas Fossil Fuel Impacts	
Annual/Life-cycle Savings	
Net to Gross Adjustments	4
Equivalent Full Load Hours (EFLH), for Heating or Cooling	5
SINGLE AND MULTI-FAMILY RESIDENTIAL MEASURES	6
Appliance	6
Clothes Washer	6
Clothes Dryer	
Dehumidifier	
Air Purifier (Cleaner)	21
Dishwasher	
Refrigerator and Freezer Replacement	
APPLIANCE – CONTROL	30
Advanced Power Strip	
APPLIANCE RECYCLING	
Air Conditioner – Room (RAC) Recycling	34
Refrigerator and Freezer Recycling	
BUILDING SHELL	42
Air Leakage Sealing	42
Hot Water Pine Insulation	
Ongque Shell Insulation	50
Window and Through-the-Wall Air Conditioner Cover and Gap Sealer	53
Window Replacement	
DOMESTIC HOT WATER	59
Heat Pump Water Heater (HPWH) - Air Source	50
Indirect Water Heater	
Storage Tank and Instantaneous Domestic Water Heater	72
DOMESTIC HOT WATER CONTROL	80
DOMESTIC HOT WATER - CONTROL	
Faucei – Low-Flow Aerator	
Showerhead – Low Flow	
HEATING, VENTILATION AND AIR CONDITIONING (HVAC)	
Air Conditioner - Central (CAC)	
Air Conditioner - Room (RAC)	
Air Conditioner and Heat Pump - Refrigerant Charge Correction	
Air Conditioner and Heat Pump - Right-Sizing	
Blower Fan – with Electronically Commutated (EC) Motor for Furnace Distribution	
Circulator Pump – with Electronically Commutated (EC) Motor, for Hydronic Distribution	113
Duct Sealing and Insulation	
Furnace and Boiler	119
Furnace Tune-Up	
Heat Pump - Air Source (ASHP)	
Heat Pump – Ground Source (GSHP)	

HEATING, VENTILATION AND AIR CONDITIONING (HVAC) – CONTROL	
Outdoor Reset Control for Hydronic Boiler	
Sub-Metering	
Learning Thermostat	
Thermostat – Programmable Setback	
Thermostat – Wi-Fi (COMMUNICATING)	
Thermostatic Radiator Valve – One Pipe Steam Radiator	
Energy Management System (EMS)	
LIGHTING	
Light Emitting Diode (LED), Compact Fluorescent Lamp (CFL) and Other Lighting	
LIGHTING - CONTROL	
MOTORS AND DRIVES	
COMMERCIAL AND INDUSTRIAL MEASURES	168
Agricultural Equipment	
AGRICULTURAL EOUIPMENT – CONTROL	
Engine Block Heater Timer	
Appi lance	171
Clothes Dryer	
Combination Ovens	175
Insulated Holding Cabinets	
Ovens, Steamers, Frvers and Griddles.	
Refrigerator Replacement	
APPLIANCE – CONTROL	
Tier 1 Advanced Power Strip	
Vending Machine and Novelty Cooler Time Clock	
APPLIANCE RECYCLING	
Air Conditioner – Room (Window)	
BUILDING SHELL	211
Cool Roof	
Window – Film	
Window – Glazing	
COMPRESSED AIR	
Air Compressor	
Air Dryer - Refrigerated	
Engineered Air Nozzle	
No Air Loss Water Drain	
DOMESTIC HOT WATER	
Indirect Water Heater	
Storage Tank Water Heater	
DOMESTIC HOT WATER (DHW) – CONTROL	
Faucet – Low Flow Aerator	
Showerhead – Low Flow	
Low-Flow Pre-Rinse Spray Valve	
HEATING, VENTILATION AND AIR CONDITIONING (HVAC)	
Air Conditioner and Heat Pump - Refrigerant Charge Correction	
Unitary Air Conditioner and Unitary & Applied Heat Pump	
Chiller – Air and Water Cooled	
Chiller - Cooling Tower	
Chiller System Tune-Ups	
Duct - Sealing and Insulation	
Economizer – Air Side, with Dual Enthalpy Control	
Furnace and Boiler	

Boiler Tune-Up	
Steam Trap Repair or Replacement – Low Pressure Space Heating	291
Air Conditioner and Heat Pump – Packaged Terminal	
HEATING, VENTILATION AND AIR CONDITIONING (HVAC) – CONTROL	
Thermostat - Programmable Setback (Non-Communicating)	
Inermostat – wi-Fi (Communicating) Demand Control Ventilation (DCV)	
LIGHTING	307
Interior and Exterior Lamps and Fixtures	
Refrigerated Case LED	
LIGHTING – CONTROL	
Interior Lighting Control	
Bi-Level Lighting	
MOTORS AND DRIVES	
Motor Replacement	323
Variable Frequency Drive – Fan and Pump	
Electronically Controlled Brushless Permanent Magnet (BPM) Motors for HVAC Circulation (Bl	ower) Fan
KEFRIGERATION	
Fan Motor – with Electronically Commutated (EC) Motor for Refrigerated Case or Walk-In Coo	ler 335
Refrigerated Case Night Cover	
Freezer and Cooler Door Strip	
Freezer and Cooler Door Gaskets	346
Refrigeration - Control	
Anti-Condensation Heater Control	349
Evaporator Fan Control	
CUSTOM MEASURES	355
Definitions	
EEPS/SBC CUSTOM MEASURES	
Category 1 – Unique Measures/Projects	
Category 2 – Measures Including Prescriptive Measures Not in the Tech Manual	357
Category 3 – Measures in Tech Manual but Used in a Different Application/Environment	357
Category 4 – Whole-Building Analysis	
APPENDIX A	362
BUILDING TYPES	
PROTOTYPICAL BUILDING DESCRIPTIONS	
Residential Building Prototypes	
Single-family Residential Prototype	
Multi-family Low-Rise	
Multi-family High-Rise	
APPENDIA B	393
HVAC WEIGHTING FACTORS	395
Single-family Residential Building Calculations	
Multi-family Residential Building Calculations	
Commercial Builaing Calculations	
APPENDIX C	398

Standard Fixture Watts	
Compact Fluorescent Fixtures	
EXIT Sign Fixtures	403
Linear Fluorescent Fixtures	
Circline Fluorescent Fixtures	
U-Tube Fluorescent Fixtures	
Standard Incandescent Fixtures	
Halogen Incandescent Fixtures	
QL Induction Fixtures	
High Pressure Sodium Fixtures	
Metal Halide Fixtures	
Mercury Vapor Fixtures	438
APPENDIX D	439
HVAC INTERACTIVE EFFECTS MULTIPLIERS	439
Single-family Residential	
Multi-family Low-rise	
Multi-family High-rise	439
Small Commercial Buildings	
Large Commercial Buildings	
College Dormitory	444
Refrigerated Warehouse	
APPENDIX E	446
OPAQUE SHELL MEASURE SAVINGS	446
Sinole-family Residential Insulation Unorades	446
Multi-Family Low-rise Insulation Upgrades	467
Multi-Family High-rise Insulation Upgrades	
APPENDIX F	520
WINDOW AND HIGH DEDEODY (ANGE CLAZING	520
WINDOW AND HIGH PERFORMANCE GLAZING	
Single-Jamily Residential Energy Star Windows	
Mulli-Jamily Low-rise Energy Star Windows	
Window Film	
APPENDIX G	535
EOUIVALENT FULL-LOAD HOURS (EFLH). FOR HEATING AND COOLING	535
Single-family Detached Cooling EFLH by Vintage and City	535
Multi-family Low-Rise Cooling EFLH by Vintage and City	535
Multi-family High-Rise Cooling EFLH by Vintage and City	536
Single-family Detached Heating EFLH by Vintage and City	536
Multi-family Low-Rise Heating EFLH by Vintage and City	537
Multi-family High-Rise Heating EFLH by Vintage and City	537
Small Commercial Cooling EFLH	538
Large Commercial Cooling EFLH	538
Small Commercial Heating EFLH	539
Large Commercial Heating EFLH	539
APPENDIX H	541
HVAC DISTRIBUTION EFFICIENCIES	541

COOL ROOF	
APPENDIX J	
COMMERCIAL HVAC UNIT SAVINGS Air Side Economizer Close Approach Cooling Towers Economizer	
APPENDIX K	557
VARIABLE FREQUENCY DRIVES	
APPENDIX L	560
MINIMUM MOTOR EFFICIENCY – EISA STANDARD	
APPENDIX M	
GUIDELINES FOR EARLY REPLACEMENT CONDITION	
APPENDIX N	612
SPECIAL CIRCUMSTANCE	
APPENDIX O	
COMMERCIAL AND INDUSTRIAL LIGHTING POLICY Introduction The Overall Principles Discussion by Type of Equipment Replaced Eligibility for Rebates Costs to be Modeled	622 622 623 623 623 624 624 624
APPENDIX P	626
EFFECTIVE USEFUL LIFE (EUL) Single and Multi-family Residential Measures Commercial and Industrial Measures	
FORMS	637
TYPICAL MEASURE HEADINGS	
GLOSSARY	639
Abbreviations, Acronyms, and Equation Variables Equation Conversion Factors	

INTRODUCTION

The Commission is committed to using the best possible information in the estimation of savings from measures installed through ratepayer funded energy efficiency programs. Information contained within this manual supersedes information contained in earlier versions and is effective as of the date specified.

HISTORY

In a series of Commission orders related to approving the portfolio of programs associated with the Energy Efficiency Portfolio Standard (EEPS), the Commission approved technical manuals designed to provide a standardized, fair, and transparent approach for measuring program energy savings. The five technical manuals approved between December 2008 and December 2009 covered a variety of measures applicable to the single-family, multi-family, and commercial/industrial sectors. They were consolidated into one manual entitled, *New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs-Residential, Multi-family, and Commercial/Industrial Measures* ("the Consolidated Technical Resource Manual") dated October 15, 2010² with an effective date of January 1, 2011.

On December, 10, 2014, the Department of Public Service Staff (Staff), released the *New York Standard Approach for Estimating Energy Savings from Energy Efficiency Program – Single and Multi-Family Residential, and Commercial/Industrial Measures, Version 2* (Version 2) incorporating all revisions between October 15, 2011 and September 30, 2014, with an effective date of December 10, 2014.

The release of the *New York Standard Approach for Estimating Energy Savings from Energy Efficiency Program – Single and Multi-Family Residential, and Commercial/Industrial Measures, Version 3* (Version 3) incorporated all revisions between December 10, 2014 and June 1, 2015, with an effective date of January 1, 2016.

The release of the *New York Standard Approach for Estimating Energy Savings from Energy Efficiency Program – Single and Multi-Family Residential, and Commercial/Industrial Measures, Version 4* (Version 4) incorporated all revisions between December 10, 2014 and June 1, 2015, with an effective date of January 1, 2017.

The release of the *New York Standard Approach for Estimating Energy Savings from Energy Efficiency Program – Single and Multi-Family Residential, and Commercial/Industrial Measures, Version 5* (Version 5) incorporates all revisions between April 29, 2016 and June 30, 2017, with an effective date of January 1, 2018.

The release of the *New York Standard Approach for Estimating Energy Savings from Energy Efficiency Program – Single and Multi-Family Residential, and Commercial/Industrial Measures, Version 5.1* (Version 5.1) incorporated all revisions between July 1, 2017 and December 31, 2017

² For purposes of tracking Technical Resource Manual updates, the October 15, 2010 Consolidated Technical Resource Manual will also be referred to as Version 1, with the protocol of all subsequent Consolidated Updates being released with sequential Version numbers.

with an effective date of January 1, 2018. Version 5.1 was filed for administrative purposes so that information effective January 1, 2018 is published in one location.

The release of the *New York Standard Approach for Estimating Energy Savings from Energy Efficiency Program – Single and Multi-Family Residential, and Commercial/Industrial Measures, Version 5.2* (Version 5.2) incorporated all revisions between July 1, 2017 and December 31, 2017 with an effective date of January 1, 2018. Version 5.2 was filed for administrative purposes so that information effective January 1, 2018 was published in one location. Version 5.2 includes omissions found in the compiling of Q3-2017 Records-of Revision into Version 5.1.

This current release of the *New York Standard Approach for Estimating Energy Savings from Energy Efficiency Program – Single and Multi-Family Residential, and Commercial/Industrial Measures, Version 6* (Version 6) incorporates all revisions between July 1, 2017 and March 29, 2018, with an effective date of January 1, 2019, new measures between December 31, 2017 and March 29, 2018 with an effective date of March 29, 2018 as well as the removal of one measure effective March 30, 2018.

For a reference of historical changes to measures presented in the Technical Resource Manual (TRM), each measure chapter includes a section titled "Record of Revision." If the measure was not revised between its original publication (in 2008-2009) and its publication in the Consolidated Technical Resource Manual, the Revision Number is 0. If the measure was added/revised between its original publication (in 2008-2009) and its publication in the Consolidated Technical Manual, the Revision Number will correspond to the number of changes/additions of that measure (ex. 1 or 2). Since the publication of the Consolidated Technical Resource Manual, dated October 15, 2010, Staff has worked with the E² Working Group³ and its Technical Resource Manual/Measure Classification Lists Subcommittee to review and approve proposed revisions utilizing the process established by Commission Order⁴. These revisions have been documented through the issuance of Record of Revisions and the Revision Number will correspond to the Revision Number assigned on its date of issue. These Revision Numbers identifies the month and year of the Record of Revision in which the measure appeared and includes an index number, which indicates the order in which that measure appeared in the identified Record of Revision (e.g. Revision Number "1-17-5" refers to the fifth measure appearing in the Record of Revision published in January 2017). Revisions made subsequent to the release of Version 6 have been compiled for ease of reference in the "Table of Revisions/Changes" located just before the Table of Contents in this manual. These revisions are issued concurrent with Version 6.

³ The E² Working Group was formed on February 28, 2014 per the December 26, 2013 Commission Order in Case 07-M-0548 which directed the merger of the functions of the former Implementation Advisory Group (IAG) and the Evaluation Advisory Group (EAG) and directed Staff to work with NYSERDA and the utilities to form an E² Working Group.

⁴ Case 07-M-0548, <u>Order Approving Modifications to the Energy Efficiency Portfolio Standard (EEPS) Program to</u> <u>Streamline and Increase Flexibility in Administration</u> (issued June 20, 2011).

SYSTEM PEAK DEMAND DEFINITION

System peak demand typically refers to the highest amount of electricity being consumed at any one point in time across the entire system network. In most cases, the system network referred to is the New York Control Area, managed by the New York Independent System Operator. It is the maximum level of hourly demand during a specific period. The peak periods most commonly identified are annual and seasonal (summer and winter). ⁵ Peak coincident demand is the demand of a measure that occurs at the same time as the system peak.

The Tech Manual equations are developed to estimate peak electricity savings (kW) along with electricity consumption and gas consumption savings. The definition of the peak demand period for conducting engineering simulations and estimating coincidence factors are as follows:

Electricity

According to the NYISO, system peaks generally occur during the hour ending at 5 pm on the hottest non-holiday weekday. The peak day can occur in June, July, or August, depending on the weather. Program Administrators (PAs) should calculate coincident peak demand savings based on the hottest summer non-holiday weekday during the hour ending at 5pm.

Building energy simulation programs or other calculation techniques using the Typical Meteorological Year version 3 (TMY3) data from the National Renewable Energy Laboratory (NREL) shall use the calendar year definition and day of the year as shown below:

City	Date	Temperature	Calendar Year
Albany	July 21	96	1995
Buffalo	July 21	89	1995
Massena	August 15	94	1997
NYC (LGA)	July 13	98	1990
Syracuse	July 4	97	2003
Binghamton	August 14	93	1998
Poughkeepsie	June 10	92	2005

Note: For peak demand simulations, the calendar year is defined so that the days above fall on a non-holiday Friday. For Syracuse, this requires redefining the July 4th holiday.

Building energy simulation programs or other calculation techniques using different weather data sets shall choose a coincident peak demand hour consistent with the NY ISO definition above.

Natural Gas

The peak gas definition is based on the program-induced change in the average daily gas flow in which the distribution system, on average, reaches its pumping/consumption capacity such that as the temperature falls lower (or the heating degree days go higher) gas consumption does not increase. Setting the peak gas definition for this condition means that the gas peak is calculated to

⁵ Glossary of Terms, Version 2.1, Northeast Energy Efficiency Partnerships, A project of the Regional Evaluation, Measurement and Verification Forum, Prepared by Paul Horowitz PAH Associates, p.25.

reflect the decreased cubic feet of natural gas expected to not flow through the distribution system during the 24-hour period as a result of the impacts of the gas energy efficiency program.

NATURAL GAS PEAK SAVINGS DEFINITION

<u>Up State</u>: The number of therms saved during a day, a 24 hour period starting at 10:00AM, in which the average temperature is minus nine $-9^{\circ}F(-22.8 \text{ }^{\circ}C)$.

Down State: The number of therms saved during a day, a 24 hour period starting at 10:00AM, in which the average temperature is zero^oF (-17.8^oC).

COINCIDENCE FACTOR

For purposes used in this manual, the Coincidence Factor (CF) is expressed as a ratio with the numerator being the simultaneous demand of a similar group of electrical appliances (measures) within a specified period, to the sum of their individual maximum demands within the same period.

ANCILLARY NON-GAS FOSSIL FUEL IMPACTS

The measures in this Manual that provide non-gas fuel interactions shall use the therm impact equations, with the following conversion factors:

Fuel	Heating value	Conversion Factor
Propane	71,000 Btu/gal	1.41 gal per therm
#2 Fuel Oil	115,000 Btu/gal	0.87 gal per therm
#6 Fuel Oil	124,000 Btu/gal	0.81 gal per therm

ANNUAL/LIFE-CYCLE SAVINGS

The energy savings methodologies presented in this Manual are designed to provide first year annual gross energy savings. Life cycle energy savings are calculated by multiplying first year gross energy savings by the EUL.

NET TO GROSS ADJUSTMENTS

The savings approaches presented in this Manual provide gross energy saving estimates and specify the approaches for obtaining those estimates. The New York Department of Public Service policy specifies that savings projections used for predicting energy savings will be net savings. To arrive at net savings the gross estimates presented in this Manual must be adjusted to account for free riders and spillover.

Free rider adjustments erode the gross savings estimate by subtracting out the savings that would have occurred without the program's incentive or influence. Spillover adjustments increase savings by counting the additional savings that occur as a result of two possible conditions. First, participants can replicate that same action (participant spillover) outside of the program participation process, providing additional savings. Second, the program can influence the way non-participants make energy saving decisions that result in additional savings not associated with a specific participation event. Together, the subtraction of savings for free riders, plus the addition of savings for spillover tend to offset each other to a significant degree. As a result, for the

purposes of estimating program impacts, the savings estimates presented in this Manual, or the savings produced using the calculation approaches described in this Manual, must be multiplied by 0.90 to arrive at an estimated net energy savings for each measure.

As program evaluations are completed, this factor will be adjusted up or down as appropriate by program, for each measure included in this Manual. Over time, the adjustment factor will evolve to be more accurate and will be focused on specific types of programs and delivery approaches. To continue to standardize the net impact estimation approach at this time, a net to gross conversion factor of 0.90 will continue to be applied to the gross saving estimates.

EQUIVALENT FULL LOAD HOURS (EFLH), FOR HEATING OR COOLING

The equivalent hours that a measure would need to operate at its peak capacity in order to consume its estimated annual kWh consumption (annual kWh/connected kW).⁶ The ratio of the annual building energy (cooling or heating) consumed to the peak energy required is used to calculate EFLH. The listing of heating and cooling Equivalent Full Load Hours for seven cities in New York State can be found in <u>Appendix G</u>. Accordingly, the ratio for EFLH cooling is shown below:

 $EFLH_{cooling} = \left(\frac{Annual \ kWh_{cooling}}{kW_{peak, \ cooling}}\right)$

Return to Table of Contents

⁶ Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2013-2015 Program Years – Plan Version, October 2012

SINGLE AND MULTI-FAMILY RESIDENTIAL MEASURES

APPLIANCE

CLOTHES WASHER

Measure Description

This measure covers residential grade clothes washers meeting the criteria established under the ENERGY STAR[®] Program, Version 8.0, effective February 5, 2018, installed in residential settings.⁷ ENERGY STAR[®] clothes washers have a higher Integrated Modified Energy Factor (IMEF) and a lower Integrated Water Factor (IWF), saving energy and water with greater tub capacities and sophisticated wash and rinse systems. Rather than filling the tub with water, efficient wash cycles are achieved by spinning or flipping clothes through a stream of water. Efficient rinse cycles are achieved through high-pressure spraying instead of soaking clothes. Reduced dryer load represents additional energy savings associated with the thorough removal of water from the clothes in the washer. Clothes washers originally qualified for the ENERGY STAR[®] label in 1997. Clothes washers that have earned this label use approximately 25% less energy and 45% less water than comparable non-qualified models.⁸

This measure addresses installation of top and front-loading residential clothes washers with capacities greater than 1.6 ft^3 and less than 8.0 ft^3 . This measure applies to residential equipment installed in single-family homes or in multifamily buildings within the residential unit; it is not intended for use with washers in multifamily common areas.

The algorithms, inputs, and savings presented below assume a normal replacement scenario.

Method for Calculating Annual Energy and Peak Coincident Demand Savings⁹

Annual Electric Energy Savings

$$\Delta kWh = units \times \left[\Delta kWh_{washer} + (\Delta kWh_{wh} \times ElecSF_{wh}) + (\Delta kWh_{dryer} \times ElecSF_{dryer}) \right]$$

Peak Coincident Demand Savings

$$\Delta kW = \frac{\Delta kWh}{hrs} \times CF$$

Annual Gas Energy Savings

 $\Delta therms = units \times \left[(\Delta therm_{wh} \times GasSF_{wh}) + (\Delta therm_{dryer} \times GasSF_{dryer}) \right]$

⁷ ENERGY STAR[®] Program Requirements Product Specification for Clothes Washers, Eligibility Criteria Version 8.0, February 2018

⁸ Efficiency of ENERGY STAR[®] products: <u>https://www.energystar.gov/products/appliances/clothes_washers</u>

⁹ Savings calculator for ENERGY STAR[®] Qualified Appliances (accessed 2/8/2018)

where:	
ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
ΔkWh_{washer}	= Annual clothes washer electric energy savings
ΔkWh_{wh}	= Annual electric water heating energy savings
ΔkWh_{dryer}	= Annual electric dryer energy savings
ElecSF _{wh}	= Electric Savings Factor for water heaters
ElecSF _{dryer}	= Electric Savings Factor for dryers
∆therm _{wh}	= Annual gas water heating energy savings
Δ therm _{dryer}	= Annual gas dryer energy savings
GasSF _{wh}	= Gas Savings Factor for water heaters
GasSF _{dryer}	= Gas Savings Factor for dryers
hrs	= Annual run hours of clothes washer
CF	= Coincidence Factor

Summary of Variables and Data Sources

Variable	Value	Notes
∆kWh _{washer}		Lookup from Per Unit Savings table below, based
ΔkWh_{wh}		on product class.
ΔkWh_{dryer}		Lookup from Per Unit Savings table below, based on product class.
ElecSF _{wh}	Electric WH: 100% Gas WH: 0% Unknown: 34%	Based on EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States. ¹⁰
ElecSF _{dryer}	Electric Dryer: 100% Gas Dryer: 0% Unknown: 67%	Based on EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States. ¹¹
$\Delta therms_{wh}$		Lookup from Per Unit Savings table below, based on product class.
∆therms _{dryer}		Lookup from Per Unit Savings table below, based on product class.

 ¹⁰ EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States, Table HC1.7 ("Unknown" calculated as the number of homes with electric water heating divided by the total number of homes with electric or gas water heating)
 ¹¹ EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States, Table HC3.7 ("Unknown"

¹¹ EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States, Table HC3.7 ("Unknown" calculated as the number of homes with electric dryers divided by the total number of homes with electric or gas dryers)

Variable	Value	Notes
GasSF _{wh}	Electric WH: 0% Gas WH: 100% Unknown: 66%	Based on EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States. ¹²
GasSF _{dryer}	Electric Dryer: 0% Gas Dryer: 100% Unknown: 33%	Based on EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States. ¹³
hrs	295	
CF	0.029	

Integrated Modified Energy Factor, IMEF¹⁴ (ft³/kWh/cycle), is the energy performance metric for ENERGY STAR[®] certified residential clothes washers as of March 7, 2015.

IMEF is a measure of energy efficiency that considers the energy used by the washer during the cycle and while on standby, the energy used to heat the water, and the energy used to run the dryer. IMEF is the quotient of the cubic foot (or liter) capacity of the clothes container divided by the sum of the machine electrical energy consumption, the hot water energy consumption, the energy required for removal of the remaining moisture in the wash load, and the combined low-power mode energy consumption. A higher IMEF value reflects a more efficient clothes washer.¹⁵

Integrated Water Factor, IWF¹⁶ is the water performance metric for residential clothes washers that allows the comparison of clothes washer water consumption independent of clothes washer capacity. Manufacturers must submit their water consumption factors with their ENERGY STAR® certified residential clothes washers. IWF is the quotient of the total weighted per-cycle water consumption for all wash cycles in gallons divided by the cubic foot (or liter) capacity of the clothes washer. A lower value reflects a more efficient clothes washer¹⁷.

Product Class	Clothes Washer (∆kWh _{washer})	Elec. DHW (∆kWh _{wh})	Gas DHW (∆therm _{wh})	Elec. Dryer (\(\Delta kWh_dryer\)	Gas Dryer (∆therm _{dryer})
ENERGY STAR Front Load Washer $\leq 2.5 \text{ ft}^3$	4	15	0.7	19	0.7
ENERGY STAR Front Load Washer > 2.5 ft^3	6	35	1.6	169	6.5
ENERGY STAR Top Load Washer $\leq 2.5 \text{ ft}^3$	4	17	0.8	75	2.9

Per Unit Savings^{18,19,20,21}

¹² EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States, Table HC1.7 ("Unknown" calculated as the number of homes with gas water heating divided by the total number of homes with electric or gas water heating)

¹³ EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States, Table HC3.7 ("Unknown" calculated as the number of homes with gas dryers divided by the total number of homes with electric or gas dryers) ¹⁴ 10 CFR 430 Subpart B, Appendix J2

¹⁵ ENERGY STAR[®] Program Requirements Product Specification for Clothes Washers, Eligibility Criteria Version 8.0 February 2018

¹⁶ 10 CFR 430 Subpart B, Appendix J2

¹⁷ ENERGY STAR[®] Program Requirements Product Specification for Clothes Washers, Eligibility Criteria Version 8.0, February 2018

¹⁸ Savings Calculator for ENERGY STAR[®] Qualified Appliances (accessed 2/8/2017)

 ¹⁹ ENERGY STAR[®] Clothes Washers Key Product Criteria
 ²⁰ ENERGY STAR[®] Most Efficient 2018, Recognition Criteria Clothes Washers

²¹ CEE Super Efficient Home Appliances Initiative, Residential Clothes Washer Specifications

Product Class	Clothes Washer (∆kWh _{washer})	Elec. DHW (∆kWh _{wh})	Gas DHW (∆therm _{wh})	Elec. Dryer (\(\Delta kWh_{dryer}\))	Gas Dryer (∆therm _{dryer})
ENERGY STAR Top Load Washer > 2.5 ft ³	12	46	2.1	144	5.5
ENERGY STAR Most Efficient Front Load Washer ≤ 2.5 ft ³	6	22	1.0	28	1.1
ENERGY STAR Most Efficient Front Load Washer $> 2.5 \text{ ft}^3$	10	39	1.8	188	7.2
ENERGY STAR Most Efficient Top Load Washer $\leq 2.5 \text{ ft}^3$	5	20	0.9	88	3.4
ENERGY STAR Most Efficient Top Load Washer $> 2.5 \text{ ft}^3$	22	90	4.1	279	10.7
CEE Tier 1 Front Load Washer ≤ 2.5 ft ³	4	15	0.7	19	0.7
CEE Tier 1 Front Load Washer > 2.5 ft ³	9	35	1.6	169	6.5
CEE Tier 1 Top Load Washer $\leq 2.5 \text{ ft}^3$	4	17	0.8	75	2.9
CEE Tier 1 Top Load Washer > 2.5 ft ³	21	84	3.8	260	9.9
CEE Tier 2 Front Load Washer ≤ 2.5 ft ³	6	22	1.0	28	1.1
CEE Tier 2 Front Load Washer > 2.5 ft^3	10	39	1.8	188	7.2
CEE Tier 2 Top Load Washer $\leq 2.5 \text{ ft}^3$	5	20	0.9	88	3.4
CEE Tier 2 Top Load Washer > 2.5 ft^3	20	80	3.6	248	9.5
CEE Advanced Tier Front Load Washer > 2.5 ft ³	11	43	2.0	206	7.9
CEE Advanced Tier Top Load Washer > 2.5 ft ³	21	85	3.9	264	10.1

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.029.²²

Baseline Efficiencies from which Savings are Calculated

Clothes washers manufactured and distributed in commerce, as defined by 42 U.S.C. 6291(16), after January 1, 2018, must meet the energy conservation standards shown in the table below, as specified in the Code of Federal Regulations.²³

Product Class	IMEF	IWF
Top-loading, Compact ($< 1.6 \text{ ft}^3$)	≥1.15	≤ 12.0
Top-loading, Standard ($\geq 1.6 \text{ ft}^3$)	≥1.57	≤ 6.5
Front-loading, Compact (< 1.6 ft ³)	≥1.13	≤ 8.3
Front-loading, Standard ($\geq 1.6 \text{ ft}^3$)	≥ 1.84	≤4.7

Compliance Efficiency from which Incentives are Calculated

For ENERGY STAR[®] qualified eligibility, clothes washers must be front or top-loading with capacities greater than 1.6 ft³ and less than 8.0 ft³ and not designated as Combination All-In One Washer-Dryers or Residential Clothes Washers with Heating Drying Functionality.²⁴ Additional qualifying product criteria are provided in the table below in order to capture anticipated savings associated with higher efficiency models. The highest efficiency "Product Class" that the

²² Based on metered data from Navigant Consulting, "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (6/1/2012 - 5/31/2013) Appliance Rebate Program." March 2014, page 36. This report is not publicly available, but is referenced by the Mid-Atlantic Technical Reference Manual, Version 7.0, May 2017. ²³ 10 CFR 430.32(g)(4)

²⁴ ENERGY STAR[®] Program Requirements Product Specification for Clothes Washers

qualifying unit is eligible for should be used to establish savings from the Per Unit Savings table above.

ENERGY STAR^{® 25} and Consortium for Energy Efficiency (CEE)²⁶ Product Criteria Levels are shown in the table below:

Product Class	IMEF	IWF
ENERGY STAR Clothes Washer $\leq 2.5 \text{ ft}^3$	≥ 2.07	≤ 4.2
ENERGY STAR Front Load Washer > 2.5 ft^3	≥ 2.76	≤ 3.2
ENERGY STAR Top Load Washer > 2.5 ft ³	≥ 2.06	≤ 4.3
ENERGY STAR Most Efficient Washer $\leq 2.5 \text{ ft}^3$	\geq 2.20	\leq 3.7
ENERGY STAR Most Efficient Washer > 2.5 ft^3	≥ 2.92	≤ 3.2
CEE Tier 1 Clothes Washer $\leq 2.5 \text{ ft}^3$	≥ 2.07	≤ 4.2
CEE Tier 1 Clothes Washer > 2.5 ft^3	≥ 2.76	≤ 3.2
CEE Tier 2 Clothes Washer $\leq 2.5 \text{ ft}^3$	≥ 2.20	\leq 3.7
CEE Tier 2 Clothes Washer > 2.5 ft^3	≥ 2.92	≤ 3.2
CEE Advanced Tier Clothes Washer > 2.5 ft^3	≥ 3.10	≤ 3.0

Operating Hours

An average of 295 annual one-hour active wash cycles is assumed in order to estimate conventional and qualifying unit consumption and demand savings.²⁷

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

High efficiency clothes washers more effectively remove moisture from clothing during spin cycles. This reduces the amount of time necessary for drying cycles and leads to energy savings. Clothes dryer energy savings are considered in overall energy savings calculations above.

Ancillary Electric Savings Impacts

High efficiency clothes washers more effectively remove moisture from clothing during spin cycles. This reduces the amount of time necessary for drying cycles and leads to energy savings. Clothes dryer energy savings are considered in overall energy savings calculations above.

References

 ENERGY STAR[®] Program Requirements Product Specification for Clothes Washers, Eligibility Criteria Version 8.0, February 2018 Available from: <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Final%20Version</u> %208.0%20Clothes%20Washer%20Partner%20Commitments%20and%20Eligibility%2

²⁵ ENERGY STAR[®] Most Efficient 2018, Recognition Criteria Clothes Washers

²⁶ CEE Super Efficient Home Appliances Initiative, Residential Clothes Washer Specifications

²⁷ 10 CFR 430 Subpart B, Appendix J2

0Criteria.pdf

- ENERGY STAR[®] Certified Products, Appliances, Clothes Washers Available from: <u>https://www.energystar.gov/products/appliances/clothes_washers/</u>
- Savings calculator for ENERGY STAR[®] Qualified Appliances Available from: https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx
- 4. EIA Residential Energy Consumption Survey (RECS) 2015 Survey Data for Middle Atlantic States. Available from:

https://www.eia.gov/consumption/residential/data/2015/hc/php/hc1.7.php

- 5. 10 CFR 430 Subpart B, Appendix J2 Uniform Test Method for Measuring the Energy Consumption of Automatic and Semi-automatic Clothes Washers Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=6dc64a198ad50a16b0ff6af63189872b&mc=true&n=pt10.3</u> .430&r=PART&ty=HTML#ap10.3.430_127.j2
- ENERGY STAR[®] Clothes Washers Key Product Criteria Available from: https://www.energystar.gov/products/appliances/clothes_washers/key_product_criteria/
- ENERGY STAR[®] Most Efficient 2018, Recognition Criteria Clothes Washers Available from: <u>https://www.energystar.gov/ia/partners/downloads/most_efficient/2018/Clothes%20Wash</u> <u>ers%20ENERGY%20STAR%20Most%20Efficient%202018%20Final%20Criteria.pdf?9</u> 183-14f6
- 8. CEE Super Efficient Home Appliances Initiative, Residential Clothes Washer Specifications Available from:

https://library.cee1.org/system/files/library/13445/CEE_ResidentialClothesWasherSpecification_05Feb2018.pdf

 Navigant Consulting, EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (6/1/2012 – 5/31/2013) Appliance Rebate Program, March 2014 via Mid-Atlantic Technical Reference Manual Version 7.0, May 2017 Available from:

http://neep.org/sites/default/files/resources/Mid_Atlantic_TRM_V7_FINAL.pdf

10. 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn=</u> <u>div8</u>

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
1-17-1	12/31/2016
3-18-6	3/29/2018

Return to Table of Contents

CLOTHES DRYER

Measure Description

This measure covers residential grade clothes dryers meeting the criteria established under the ENERGY STAR[®] Program, Version 1.1, effective May 5, 2017 installed in residential settings.²⁸ ENERGY STAR[®] clothes dryers have a higher combined energy factor (CEF), and save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions, improving air circulation, and improved efficiency of motors. Reduced dryer runtime is achieved through automatic termination of the dryer cycles based on temperature and moisture sensors. Clothes dryers originally qualified for the ENERGY STAR[®] label in May 2014. Clothes dryers that have earned this label are approximately 20% more efficient than non-qualified models.²⁹

This measure applies to clothes dryers installed in single family homes and in-unit multifamily equipment. For residential grade clothes dryers installed in multifamily common areas, the Commercial and Industrial Clothes Dryer measure prescribed in the NY TRM shall be used.

The algorithms, inputs, and savings presented below assume a normal replacement scenario.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times Cycles_{annual} \times Load \times \left[\frac{F_{elec,baseline}}{CEF_{baseline}} - \frac{F_{elec,ee}}{CEF_{ee}}\right]$$

Peak Coincident Demand Savings

$$\Delta kW = \frac{\Delta kWh}{hrs} \times CF$$

Annual Gas Energy Savings

$$\Delta therms = units \times Cycles_{annual} \times Load \times \left[\frac{F_{gas,baseline}}{CEF_{baseline}} - \frac{\times F_{gas,ee}}{CEF_{ee}}\right] \times \frac{3,412}{100,000}$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
Cyclesannual	= Number of dryer cycles per year
Load	= Average total weight (lbs) of clothes per drying cycle

²⁸ ENERGY STAR[®] Program Requirements Product Specification for Clothes Dryers, Eligibility Criteria Version 1.1, May 2017

²⁹ Efficiency of ENERGY STAR[®] products: <u>https://www.energystar.gov/products/appliances/clothes_dryers</u>

baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
Felec	= Percentage of energy consumed that is derived from electricity
F _{gas}	= Percentage of energy consumed that is derived from gas
CEF	= Combined energy factor (lb/kWh)
hrs	= Annual run hours of clothes dryer
CF	= Coincidence Factor
3,412	= Conversion factor, one kWh equals 3,412 BTU
100,000	= Conversion factor (BTU/therm), one therm equals 100,000 BTU

Summary of Variables and Data Sources

Variable	Value	Notes
Cyclesannual		Lookup based on proposed dryer type in table below. ³⁰
Load		Lookup based on proposed dryer type in table below. ³¹
Felec, baseline		Lookup based on proposed dryer type in table below. ³²
F _{elec,ee}		Lookup based on proposed dryer type in table below. ³³
Fgas, baseline		Lookup based on proposed dryer type in table below. ³⁴
F _{gas,ee}		Lookup based on proposed dryer type in table below. ³⁵
CEF _{baseline}		Lookup based on proposed dryer type in table below. ³⁶
CEF _{ee}		Lookup based on proposed dryer type in table below. ³⁷
hrs		Lookup based on proposed dryer type in table below. ³⁸
CF	0.042	

Key Variables Lookup Table

	Dryer Type				
Variable	Vented Gas Dryer	Ventless or Vented Electric, Standard ≥ 4.4 ft^3	Ventless or Vented Electric, Compact (120V) < 4.4 ft ³	Vented Electric, Compact (240V) < 4.4 ft ³	Ventless Electric, Compact (240V) < 4.4 ft ³
Cycles _{annual}	283	283	283	283	283
Load	8.45	8.45	3.00	3.00	3.00
Felec, baseline	0.05	1.00	1.00	1.00	1.00
F _{elec,ee}	0.05	1.00	1.00	1.00	1.00
Fgas, baseline	0.95	0.00	0.00	0.00	0.00

³⁰ Savings calculator for ENERGY STAR[®] Qualified Appliances (accessed 10/18/2017)

³¹ Ibid.

³² ENERGY STAR[®] Program Requirements Product Specification for Clothes Dryers, Eligibility Criteria Version 1.1, May 2017

³⁷ ENERGY STAR[®] Program Requirements Product Specification for Clothes Dryers, Eligibility Criteria Version 1.1, May 2017

³⁸ Savings calculator for ENERGY STAR[®] Qualified Appliances (accessed 10/18/2017)

³³ Ibid.

³⁴ Ibid.

³⁵ Ibid.

³⁶ 10 CFR 430.32 (h)(3)

	Dryer Type				
	Vonted	Ventless or	Ventless or	Vontad Flactric	Ventless
Variable	Cas	Vented Electric,	Vented Electric,	Compact	Electric,
	Dryar	<i>Standard</i> \geq 4.4	Compact (120V)	$(240V) < 4.4 \text{ ft}^3$	Compact
	Dryer	ft^3	$< 4.4 ft^3$	(240V) < 4.4 Jl	$(240V) < 4.4ft^3$
F _{gas,ee}	0.95	0.00	0.00	0.00	0.00
CEF _{baseline}	3.30	3.73	3.61	3.27	2.55
CEFee	3.48	3.93	3.80	3.45	2.68
Hrs	290	290	290	290	290

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.042.³⁹

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a standard efficiency, residential grade clothes dryer with operating specifications as defined in the Key Variables Lookup Table above.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a residential grade clothes dryer appearing on the ENERGY STAR[®] qualified products list.

Operating Hours

Operating hours for residential clothes dryers are provided in the Key Variables Lookup Table above.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

A clothes dryer releases heat to the surrounding environment. Conventional vented dryers also vent air outside the building. The associated HVAC impact of dryers depends upon a number of variables including climate and placement of a dryer (i.e., in a conditioned or unconditioned space). It is an area of ongoing research.⁴⁰ These impacts are excluded from the methodology prescribed herein until they can be quantified and substantiated through independent research.

Ancillary Electric Savings Impacts

See Ancillary Fossil Fuel Savings Impacts section above.

³⁹ Based on Central Maine Power Company "Residential End-Use Metering Project", 1988. Using 8,760 data for electric clothes dryers, calculating the CF according to the PJM peak definition. This study is not publicly available, but is referenced by the Pennsylvania Technical Reference Manual, State of Pennsylvania, 2016.

http://www.puc.state.pa.us/filing_resources/issues_laws_regulations/act_129_information/technical_reference_man_ual.aspx

⁴⁰ ENERGY STAR[®] Market & Industry Scoping Report: Residential Clothes Dryers, November 2011

References

- ENERGY STAR[®] Program Requirements Product Specification for Clothes Dryers, Eligibility Criteria Version 1.1, May 2017 Available from: <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Final%20Version%201.1%20Clothes%20Dryers%20Specification%20-%20Program%20Commitment%20Criteria%20and%20Eligibility%20Criteria.pdf
 Savings calculator for ENERGY STAR[®] Qualified Appliances
 </u>
- Savings calculator for ENERGY STAR[®] Qualified Appliances Available from: <u>https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx</u>
- 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>
- Pennsylvania Technical Reference Manual, State of Pennsylvania, 2016. Available from: <u>http://www.puc.state.pa.us/filing_resources/issues_laws_regulations/act_129_information</u>/technical_reference_manual.aspx

Record of Revision

Record of Revision Number	Issue Date
6-16-1	6/30/2016
12-17-1	12/31/2017

Return to Table of Contents

DEHUMIDIFIER

Measure Description

This measure covers the installation of residential stand-alone or whole-house dehumidifiers meeting the minimum qualifying efficiency standards established under the ENERGY STAR[®] Program, Version 4.0, effective October 25, 2016.⁴¹ With a higher Energy Factor than comparable non-qualified models, ENERGY STAR[®] dehumidifiers have more efficient refrigeration coils, compressors, and fans that use less energy to remove moisture in residential buildings. Dehumidifiers originally qualified for the ENERGY STAR[®] label in January 2001. Dehumidifiers that have earned this label are approximately 15% more efficient than non-qualified models. This measure is restricted to dehumidifiers with a product moisture removal capacity of less than or equal to 185 pints/day.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times \frac{pints/day \times 0.473 \times hrs}{24} \times \left(\frac{1}{EF_{baseline}} - \frac{1}{EF_{ee}}\right)$$

Peak Coincident Demand Savings

$$\Delta kW = \frac{\Delta kWh}{hrs} \times CF$$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
pints/day	= Product capacity to remove moisture (pints/day)
hrs	= Annual run hours of dehumidifier
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
EF	= Energy Factor (prior to June 13, 2019) or Integrated Energy Factor (on or after
	June 13, 2019)
CF	= Coincidence factor
0.473	= Conversion factor (liters/pint)
24	= Hours in one day

⁴¹ ENERGY STAR[®] Program Requirements Product Specification for Dehumidifiers, Eligibility Criteria Version 4.0, February 2016

Variable	Value	Notes
pints/day		From application.
EFbaseline		Look up based on type and product capacity (pints/day) or case volume from Baseline Efficiencies section below. Note that the same rating metric (Energy Factor or Integrated Energy Factor) must be used for the baseline and energy efficient case to estimate savings.
EFee		From application, or look up based on product capacity (pints/day) in Compliance Efficiency section below. Note that the same rating metric (Energy Factor or Integrated Energy Factor) must be used for the baseline and energy efficient case to estimate savings.
hrs	1,632	Assumes 68 days of 24-hour operation. ⁴²
CF	0.56	

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.56.43

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a stand-alone or whole-house dehumidifier meeting the minimum effective federal standard for performance. Dehumidifiers manufactured and distributed in commerce on or after October 1, 2012 and before June 13, 2019 must meet the energy conservation standards shown in the table below, rated in Energy Factor, as specified in the Code of Federal Regulations.⁴⁴

Product Capacity (pints/day)	Energy Factor (liters/kWh)
≤ 35	1.35
$> 35 \text{ to} \le 45$	1.50
> 45 to \le 54	1.60
$> 54 \text{ to} \le 75$	1.70
$> 75 \text{ to} \le 185$	2.50

Dehumidifiers manufactured and distributed in commerce on or after June 13, 2019 must meet the energy conservation standards shown in the tables below, rated in Integrated Energy Factor as specified in the Code of Federal Regulations.⁴⁵

⁴² Savings Calculator for ENERGY STAR[®] Qualified Appliances (accessed 1/18/2018)

⁴³ A. Mendyk & D. Cautley, Dehumidifier Metering Study, Home Energy, January 2011: Summer duty cycle used as a proxy for CF.

⁴⁴ 10 CFR 430.32(v)(1)

⁴⁵ 10 CFR 430.32(v)(2)

Stand-Alone Dehumidifiers			
Product Capacity Integrated Energy Factor			
(pints/day)	(liters/kWh)		
≤ 25	1.30		
> 25 to ≤ 50	1.60		
> 50	2.80		

Whole-House Dehumidifiers			
Product Case Volume (ft ³)	Integrated Energy Factor (liters/kWh)		
≤ 8.0	1.77		
> 8.0	2.41		

Compliance Efficiency from which Incentives are Calculated

The compliance condition is an ENERGY STAR[®] qualified stand-alone or whole-house dehumidifier. Prior to June 13, 2019, the compliance equipment's Energy Factor shall be taken from the application. If the equipment Energy Factor is unknown, ENERGY STAR[®] minimum qualifying specifications, as shown in the table below, may be used.⁴⁶

Product Capacity (pints/day)	Energy Factor (liters/kWh)
< 75	2.00
\geq 75 to \leq 185	2.80

On or after June 13, 2019, the compliance equipment's Integrated Energy Factor, which must exceed the performance metric of the baseline equipment, shall be taken from the application. To date, ENERGY STAR[®] qualifying criteria rated in Integrated Energy Factor have not been published. Until an updated ENERGY STAR[®] specification for dehumidifiers takes effect, the compliance condition Integrated Energy Factor must be taken from the application. Default values from future ENERGY STAR[®] qualifying product criteria may be used once effective. Until this measure can be updated to reflect these new standards, visit <u>www.energystar.gov/</u> to check for updated eligibility specifications.

Operating Hours

The dehumidifier is assumed to be operating 1,632 hours per year based on 68 days of 24 hour operation.⁴⁷

Effective Useful Life (EUL)

See <u>Appendix P</u>.

⁴⁶ ENERGY STAR[®] Program Requirements Product Specification for Dehumidifiers, Eligibility Criteria Version 4.0, February 2016

⁴⁷ Savings Calculator for ENERGY STAR[®] Qualified Appliances (accessed 1/18/2018)

Ancillary Fossil Fuel Savings Impacts

Reduction in energy usage will have a negligible impact on space heating. Consideration of these effects is not included in this methodology.

Ancillary Electric Savings Impacts

Reduction in energy usage will have a negligible impact on space heating. Consideration of these effects is not included in this methodology.

References

- ENERGY STAR[®] Program Requirements Product Specification for Dehumidifiers, Eligibility Criteria Version 4.0, February 2016. Available from: <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR_Dehumidifiers_V4%200_Specification_Final_1.pdf</u>
- 2. A. Mendyk & D. Cautley, Dehumidifier Metering Study, Home Energy, January 5, 2011 Available from: <u>http://homeenergy.org/public/index.php/show/article/id/777/viewFull/</u>
- 3. Savings Calculator for ENERGY STAR[®] Qualified Appliances Available from: <u>https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx</u>
- 4. 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
11-13-1	11/26/2013
3-18-12	3/29/2018

Return to Table of Contents

AIR PURIFIER (CLEANER)

Measure Description

Room air purifiers - sometimes referred to as "room air cleaners" - are portable, electric appliances that remove fine particles, such as dust and pollen, from indoor air.⁴⁸ This measure applies to air purifiers (cleaners) meeting the minimum qualifying efficiency standards established under the ENERGY STAR[®] Program.⁴⁹

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times (kWh_{baseline} - kWh_{ee})$$
$$kWh_{ee} = (8,760 - Hours) \times \frac{standby_{ee}}{1,000} + Hours \times \frac{CADR}{Eff_{ee}}/_{1,000}$$

$$kWh_{baseline} = (8,760 - Hours) \times \frac{standby_{baseline}}{1,000} + Hours \times \frac{CADR}{Eff_{baseline}} / 1,000$$

Peak Coincident Demand Savings

$$\Delta kW = units \times \left(\frac{\Delta kWh}{Hours}\right) \times CF$$

Annual Gas Energy Savings

 $\Delta Therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆Therms	= Annual gas energy savings
units	= Number of measures installed
ee	= Energy efficient condition or measure, per ENERGY STAR [®] eligibility criteria
baseline	= Baseline condition or measure
CF	= Coincidence factor
8,760	= Hours per year
standby	= Standby Power (Watts)
CADR	= Clean Air Delivery Rate (CADR), a measure of the amount of contaminant-free
	air delivered by the qualified air purifier (cubic feet per minute) ²

⁴⁸ ENERGY STAR[®] Air Purifiers (Cleaners):

https://www.energystar.gov/products/appliances/air_purifiers_cleaners/

⁴⁹ ENERGY STAR[®] Product Specification for Room Air Cleaners, Eligibility Criteria, V1.2, July 2011
Eff = Efficiency (dust CADR/Watt); the ENERGY STAR[®] specification for room air purifiers measures energy efficiency by using a Clean Air Delivery Rate-to-Watt ratio.⁵⁰

Hours	= Operating hours per year
1,000	= Conversion from W to kW

Variable	Value	Notes
CADR		Based on ENERGY STAR [®] manufacture rating
Eff _{estar}		Based on ENERGY STAR [®] manufacture rating
		(CADR/Watt)
Eff _{baseline}	1.0	CADR/Watt
standby _{estar}		Based on ENERGY STAR [®] manufacture rating
		(Watts)
standby _{baseline}	1.0	Watts
Hours	5,840	Based on ENERGY STAR [®] Calculator default assumptions ⁵¹
CF	0.67	Assumes equal likelihood of usage at any time of day
		(16/24 hours)

Summary of Variables & Data Sources

Ratings are based on ENERGY STAR[®] Eligibility Criteria and the Savings Calculator for ENERGY STAR[®] Qualified Appliances.⁴

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.67.

Baseline Efficiencies from which Savings are Calculated

The baseline equipment is assumed to have an *Eff* of 1.0 CADR/Watt and a *standby* power of 1.0 Watts (from the ENERGY STAR[®] calculator default assumptions).

Compliance Efficiency from which Incentives are Calculated

Compliance requires a minimum *Eff* of 2.0 CADR/Watt and maximum *standby* power of 2.0 Watts per the ENERGY STAR[®] Product Specification for Room Air Cleaners. Additionally, qualified equipment must produce a minimum 50 CADR for dust, measured according to guidance provided in the latest ANSI/AHAM AC-1. Qualifying models that perform secondary consumer functions (e.g. clock, remote control) must meet the standby power requirement.³

Operating Hours

The energy savings calculations use 16 hours of operation per day, 365 days a year, totaling 5,840 hours/year, per the Savings Calculator for ENERGY STAR[®] Qualified Appliances.

⁵⁰ ENERGY STAR[®] Product Specification for Room Air Cleaners, Eligibility Criteria, V1.2, July 2011

⁵¹ ENERGY STAR[®] Savings Calculator for ENERGY STAR[®] Qualified Appliances (last updated October 1, 2016) <u>https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx</u>

Effective Useful Life (EUL)

Years: 9 years Source: Savings Calculator for ENERGY STAR[®] Qualified Appliances

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- ENERGY STAR[®] Air Purifiers (Cleaners) Available from: <u>https://www.energystar.gov/products/appliances/air_purifiers_cleaners/key_product_crite_ria</u>
- ENERGY STAR[®] Product Specification for Room Air Cleaners, Eligibility Criteria, V1.2, July 2011 Available from: https://www.energystar.gov/ia/partners/prod_development/revisions/downloads/room_air

https://www.energystar.gov/ia/partners/prod_development/revisions/downloads/room_air cleaners/Room_Air_Cleaners_Final_V1.2_Specification.pdf?a643-499a

 Purchase energy-saving products, Savings Calculator for ENERGY STAR[®] Qualified Appliances (last updated October 2016) Available from: <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy/purchase-energy-saving-products</u>

Record of Revision

Record of Revision Number	Issue Date
6-17-11	6/30/2017

DISHWASHER

Measure Description

Residential dishwashers meeting the minimum qualifying efficiency standards established under the Energy Star Program. The dishwashers are assumed to be located within a residential unit and not in a commercial dishwasher foodservice application.

Method for Calculating Annual Energy and Peak Coincident Demand Savings *Annual Electric Energy Savings*

0, 0

 $\Delta kWh = units \times (Deemed Annual Electric Energy Savings)$

Peak Coincident Demand Savings

 $\Delta kW = units \times (Deemed Peak Coincident Demand Savings) \times CF$

Annual Gas Energy Savings

 Δ therms = N/A

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
CF	= Coincidence factor

Summary of Variables and Data Sources

Variable	Value	Notes
kWh _{wh} gas	77 kWh	Deemed Annual Electric Energy Savings for
		gas water heater
kWh _{wh electric}	137 kWh	Deemed Annual Electric Energy Savings for
		electric water heater
kW _{dw}	0.0225 kW	Deemed Peak Coincident Demand Savings

Coincidence Factor (CF)

The recommended value for the coincidence factor is 1.0

Baseline Efficiencies from which Savings are Calculated

Compliance Efficiency from which Incentives are Calculated

Operating Hours

Effective Useful Life (EUL)

Years: 11 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1. Unit savings taken from the Energy Star website, www.energystar.gov/index.cfm?c=dishwash.pr_crit_dishwashers

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

REFRIGERATOR AND FREEZER REPLACEMENT

Measure Description

This measure covers the replacement of inefficient residential grade refrigerators and freezers with ENERGY STAR[®] compliant equipment. Residential refrigerators and freezers include electric refrigerators, electric refrigerator-freezers, and freezers, having a source of refrigeration requiring single phase, alternating current electric energy input only. Known collectively as "refrigeration products," these appliances chill and preserve food and beverages, provide ice and chilled water, and freeze food.

This measure does not apply to refrigerators and refrigerator-freezers with a total refrigerated volume exceeding 39 cubic feet or freezers with a total refrigerated volume exceeding 30 cubic feet.⁵²

Savings are calculated between the energy consumption of the baseline unit and that of the more efficient replacement meeting ENERGY STAR[®] minimum performance specification of at least 10% lower energy consumption than that mandated by federal standards.⁵³

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times (kWh_{baseline} - kWh_{ee}) \times (1 + HVAC_c) \times F_{occ}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times \left[\frac{kWh_{baseline} - kWh_{ee}}{8,760}\right] \times (1 + HVAC_d) \times CF$$

Annual Gas Energy Savings

$$\Delta therm = units \times (kWh_{baseline} - kWh_{ee}) \times HVAC_g \times F_{occ}$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therm	= Annual gas energy savings
units	= Number of measures installed under the program
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
kWh	= Annual electric energy consumption
HVAC _c	= HVAC interaction factor for annual electric energy consumption
HVAC _d	= HVAC interaction factor at utility summer peak hour
HVAC _g	= HVAC interaction factor for annual natural gas consumption
-	

⁵² 10 CFR 430.32(a)

⁵³ Energy Star Refrigerators & Freezers Key Product Criteria

Focc	= Adjustment factor to acc	count for number of occupants
------	----------------------------	-------------------------------

- CF = Coincidence factor
- 8,760 = Hours in one year

Variable	Value	Notes	
kWh _{baseline}		See Baseline Efficiencies section below.	
kWhee		From application.	
Focc		See Occupant Adjustment Factor section below.	
HVACc		HVAC interaction factor for annual electric energy consumption (dimensionless). Vintage and HVAC type weighted average by city. If unknown, assume Single Family Home building type, New vintage, and AC with Gas Heat HVAC type. See Appendix D.	
HVACd		HVAC interaction factor for peak demand at utility summer peak hour (dimensionless). Vintage and HVAC type weighted average by city. If unknown, assume Single Family Home building type, New vintage, and AC with Gas Heat HVAC type. See <u>Appendix D</u> .	
HVACg		HVAC interaction factor for annual natural gas energy consumption (therms/kWh). Vintage and HVAC type weighted average by city. If unknown, assume Single Family Home building type, New vintage, and AC with Gas Heat HVAC type. See <u>Appendix D</u> .	
CF	1.0		

Summary of Variables and Data Sources

Occupant Adjustment Factor (Focc)

The occupant adjustment factor is used to adjust the energy savings according to the number of occupants in the residence (if applicable), as shown in the table below. If unknown, apply 0 occupants as a default value.

Number of Occupants	F _{occ} ⁵⁴
0 occupants	1.00
1 occupant	1.05
2 occupants	1.10
3 occupants	1.13
4 occupants	1.15
5 or more	1.16

Coincidence Factor (CF)

The recommended value for the coincidence factor is 1.0.55

⁵⁴ The Occupant Adjustment Factor is developed from simulating audits within the ORNL weatherization tool, National Energy Audit Tool (NEAT), Oak Ridge National Laboratory, 2012.

⁵⁵ No source specified – update pending availability and review of applicable references.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a minimally code compliant refrigerator, refrigerator-freezer or freezer as defined in the Measure Description section above. Baseline annual electric consumption (kWh/yr) shall align with federally mandated maximum energy use associated with the Product Class and Adjusted Volume (AV in ft³ or av in L) of the qualifying equipment. Federal standard annual electric consumption data is provided in the directory of ENERGY STAR[®] qualified Refrigerators⁵⁶ and Freezers⁵⁷ according to the make and model of the qualifying equipment. The values specified by ENERGY STAR[®] incorporate conversion from total capacity to Adjusted Volume as dictated by the Code of Federal Regulations.⁵⁸ For this reason, kWh_{baseline} must be determined from the ENERGY STAR[®] directory.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is an ENERGY STAR[®] qualified refrigerator, refrigerator-freezer or freezer as defined in the Measure Description section above. Annual energy consumption of the compliance condition shall be determined from the directory of ENERGY STAR[®] qualified Refrigerators⁵⁹ and Freezers⁶⁰ according to the make and model of the qualifying equipment.

Operating Hours

Refrigeration products are assumed to be plugged into an electrical outlet 8,760 hours per year. Compressor cycling is inherent in the specified annual energy consumption of baseline and qualifying equipment.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

High-efficiency refrigeration products reject less heat into the conditioned space than standard equipment, increasing space heating requirements while decreasing cooling load. The HVAC interaction factors calculated from the prototypical building DOE-2 models as a function of the building and HVAC system type are shown in <u>Appendix D</u>.

Ancillary Electric Savings Impacts

High-efficiency refrigeration products reject less heat into the conditioned space than standard equipment, increasing space heating requirements while decreasing cooling load. The HVAC

⁵⁶ ENERGY STAR® Certified Residential Refrigerators Product Finder

https://www.energystar.gov/productfinder/product/certified-residential-refrigerators/results ⁵⁷ ENERGY STAR® Certified Residential Freezers Product Finder

https://www.energystar.gov/productfinder/product/certified-residential-freezers/results

⁵⁸ 10 CFR 430 Subpart B, Appendices A and B

⁵⁹ ENERGY STAR® Certified Residential Refrigerators Product Finder

https://www.energystar.gov/productfinder/product/certified-residential-refrigerators/results

⁶⁰ ENERGY STAR® Certified Residential Freezers Product Finder

https://www.energystar.gov/productfinder/product/certified-residential-freezers/results

interaction factors calculated from the prototypical building DOE-2 models as a function of the building and HVAC system type are shown in <u>Appendix D</u>.

References

- 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>https://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>
- 2. Energy Star Refrigerators & Freezers Key Product Criteria, Sept 15, 2014 Available from:
 - https://www.energystar.gov/products/appliances/refrigerators/key_product_criteria
- 3. Oak Ridge National Laboratory, National Energy Audit Tool (NEAT), 2012 Available from: <u>https://weatherization.ornl.gov/assistant_obtain.shtml</u>
- 4. ENERGY STAR® Certified Residential Refrigerators Product Finder Available from: <u>https://www.energystar.gov/productfinder/product/certified-residential-refrigerators/results</u>
- 5. ENERGY STAR® Certified Residential Freezers Product Finder Available from: <u>https://www.energystar.gov/productfinder/product/certified-residential-freezers/results</u>
- 10 CFR 430 Subpart B, Appendix A Uniform Test Method for Measuring the Energy Consumption of Refrigerators, Refrigerator-Freezers, and Miscellaneous Refrigeration Products

Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=6dc64a198ad50a16b0ff6af63189872b&mc=true&n=pt10.3</u> .430&r=PART&ty=HTML#ap10.3.430_127.a

 10 CFR 430 Subpart B, Appendix B – Uniform Test Method for Measuring the Energy Consumption of Freezers Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=6dc64a198ad50a16b0ff6af63189872b&mc=true&n=pt10.3</u>.430&r=PART&ty=HTML#ap10.3.430_127.b

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
7-13-3	7/31/2013
7-13-41	7/31/2013
9-13-1	9/27/2013
3-18-7	3/29/2018

APPLIANCE – CONTROL

ADVANCED POWER STRIP

Measure Description

This measure covers the installation of Tier 1 and Tier 2 advanced power strips (APS) installed in home entertainment centers (AV Equipment) and home offices (IT Equipment). An APS reduces energy consumption by shutting off the supply power to electronic devices when they are not in active use. This measure applies to power strips with 5 outlets or more.

Tier 1 APS, also known as master-controlled APS, are designed to reduce standby energy waste by monitoring the power state of a master device (typically a TV or desktop computer) using current-sensing technology and cutting power to controlled (or switched) devices when the master device is off. This reduces the energy and power consumption of interconnected equipment (i.e. entertainment centers and home offices) by eliminating standby loads and consumption of devices left on but not in use. Tier 1 APS applies to both home office and entertainment center equipment.

Tier 2 APS reduce active and standby energy waste by monitoring user engagement and cutting power to all devices when a set period of inactivity is detected. This is accomplished through the use of infrared (IR) sensing and motion-sensing technology, in addition to the master/switched capability of a Tier 1 APS. Active power waste occurs when electronic equipment is on, but the equipment is not being used. Standby power loss occurs when energy is consumed by equipment while it is turned off and in idle mode, but is still plugged in. Tier 2 APS realize savings by reducing both active and standby power loss, which can provide significant energy savings over a Tier 1 Advanced Power Strip. For the purposes of this measure, Tier 2 APS apply to entertainment center equipment only; there are no claimable incremental savings associated with installation of a Tier 2 APS in a home office.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times (\Delta kWh/unit)$

Peak Coincident Demand Savings

$$\Delta kW = \frac{\Delta kWh}{hrs_{off}} \times CF$$

Annual Gas Energy Savings

 $\Delta Therms = N/A$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings

= Number of measures installed under the program
= Annual electric energy savings per unit
= Annual hours that the connected system is not in use or is turned off
= Coincidence Factor

Variable	Value	Notes
(ΔkWh/unit)		Lookup based on tier, connected equipment type and existing condition in Annual Electric Energy Savings per Unit table below.
hrs _{off}	Tier 1: 7,340 Tier 2: 8,048	See Operating Hours section below
CF	0.8	

Annual Electric Energy Savings per Unit (ΔkWh/unit)

Annual electric energy savings are shown in the table below, where the Baseline condition is equivalent to the existing case and Connected Equipment is the type of equipment to be controlled with the installed APS. Unknown designations are provided for use in retailer or online market place point-of-sale programs, in which the application or existing condition is unknown.

APS	Connected		
Tier	Equipment	Baseline	∆kWh/unit
Tier 1	AV Equipment	Standard Power Strip	75.1^{61}
Tier 1	IT Equipment	Standard Power Strip	31 ⁶²
Tier 1	Unknown	Standard Power Strip	57.5^{63}
Tier 2	AV Equipment	Standard Power Strip	234^{64}
Tier 2	AV Equipment	Tier 1 Power Strip	158.9^{65}
Tier 2	AV Equipment	Unknown	158.9 ⁶⁶

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8.⁶⁷

Baseline System from which Savings are Calculated

The baseline condition for Tier 1 APS is AV or IT equipment plugged into a standard power strip. The baseline condition for Tier 2 APS is AV equipment plugged into either a standard power strip or Tier 1 APS.

⁶¹ New York State Energy Research and Development Authority, Advanced Power Strip Research Report, August 2011, p. 30.

⁶² Ibid.

⁶³ Ibid, p. 7. Calculated with weighted average where 60% of Tier 1 APS applications are used for AV equipment and 40% for IT and other smaller load applications.

⁶⁴ San Diego Gas & Electric, Tier 2 Advanced Power Strips in Residential and Commercial Applications, April 2015, p. 3

⁶⁵ Ibid. Calculated as incremental savings over a Tier 1 APS (234 - 75.1 = 158.9 kWh).

⁶⁶ Ibid. Conservatively assumes savings associated with replacement of a Tier 1 APS.

⁶⁷ No source specified – update pending availability and review of applicable references.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a Tier 1 or Tier 2 APS as defined in the Measure Description above meeting minimum performance requirements dictated by program eligibility criteria.

Operating Hours

Power strips are assumed to be plugged in at all times. The hrs_{off} term used above for the purposes of estimating peak coincident demand savings adopts a usage profile associated with AV equipment, as this provides the most conservative demand savings estimate. This equipment is assumed to be off for 20.11 hours per day and on but not in use for 1.94 hours per day.⁶⁸ For Tier 1 APS, only off hours lead to savings, thus the operating hours are 365 x 20.11 = 7,340. Savings are achieved for Tier 2 APS when equipment is off or on but not in use. Thus, the hours of operation used to determine demand savings are 365 x (20.11 + 1.94) = 8,048. No savings are achieved during the remaining 712 hours per year when equipment is in active use. This reporting of AV off hours aligns well with the NYSERDA APS research study, which found television off hours to be 19.1 per day in New York State.⁶⁹

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- New York State Energy Research and Development Authority, Advanced Power Strip Research Report, August 2011 Available from: <u>https://www.nyserda.ny.gov/Residents-and-Homeowners/Your-Home/Power-Management</u>
- San Diego Gas & Electric, Tier 2 Advanced Power Strips in Residential and Commercial Applications, April 2015 Available from: <u>http://www.etcc-</u> <u>ca.com/sites/default/files/reports/et14sdg8031_commerical_tier_2_aps.pdf</u>
- California Plug Load Research Center, Tier 2 Advanced Power Strip Evaluation for Energy Saving Incentive, May 2014 Available from: <u>http://embertec.com/assets/pdf/CalPlug_Tier2_APS_Evaluation.pdf</u>

⁶⁸ California Plug Load Research Center, Tier 2 Advanced Power Strip Evaluation for Energy Saving Incentive, May 2014, p. 36

⁶⁹ New York State Energy Research and Development Authority, Advanced Power Strip Research Report, August 2011, p. 8

Record of Revision

Record of Revision Number	Issue Date
1	12/31/2015
1-17-2	12/31/2016
3-18-1	3/29/2018

APPLIANCE RECYCLING

AIR CONDITIONER – ROOM (RAC) RECYCLING

Measure Description

In many cases where an air conditioning unit is replaced by a homeowner, the existing unit is retained, sold, or donated for use elsewhere and represents additional load on the grid. This measure covers recycling of the existing functional equipment, thereby eliminating the consumption associated with that equipment. Air conditioner recycling programs (also called "bounty" programs) receive energy savings credit for permanently removing inefficient functional air conditioners from the electric grid. Only recycled equipment 5 years old or older are eligible for energy savings claims.

This measure covers the recycling of inefficient room air conditioners in residential applications. A room air conditioner is a consumer product, other than a "packaged terminal air conditioner," which is powered by a single phase electric current and which is an encased assembly designed as a unit for mounting in a window or through the wall for the purpose of providing delivery of conditioned air to an enclosed space. It includes a prime source of refrigeration and may include a means for ventilating and heating.⁷⁰

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times \frac{BTUh/unit}{1,000} \times \frac{1}{CEER_{baseline}} \times EFLH_{cooling}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times \frac{BTUh/unit}{1,000} \times \frac{1}{CEER_{baseline}} \times CF$$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

= Annual electric energy savings
= Peak coincident demand electric savings
= Annual gas energy savings
= Number of measures installed under the program
= British Thermal Units per hour of air conditioning per unit
= Baseline condition or measure
= Combined Energy Efficiency Ratio
= Equivalent full-load hours

70 10 CFR 430.2

CF	= Coincidence factor
1,000	= Conversion factor, one kW equals 1,000 Watts

Variable	Value	Notes
BTUh/unit		From application, or use 7,829 as default. ⁷¹
CEER _{baseline}		If known, use the nameplate efficiency of the recycled equipment, from application. Nameplate EER may be converted to CEER by dividing EER by 1.01 (EER/1.01 = CEER). ⁷² If unknown, see Baseline Efficiencies section below.
EFLH _{cooling}		Cooling equivalent full-load hours, lookup from Operating Hours section below based on location.
CF	0.3	

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.3.⁷³ The average Seasonal CF based on 2007 weather data used for this measure aligns with results of a sampling study conducted in Con Edison territory, citing a CF = 0.31.⁷⁴

Baseline Efficiencies from which Savings are Calculated

The baseline condition is equivalent to the existing equipment. $CEER_{baseline}$ shall be set equal to the nameplate efficiency of the existing unit, converted from EER to CEER via the conversion CEER = EER/1.01, if necessary. If nameplate efficiency is unavailable, use the rated efficiency ratio based on recycled equipment type and capacity per the table below.

The CEER values listed in the table below reflect the minimum performance required by the Code of Federal Regulations effective October 1, 2000 to May 31, 2014.⁷⁵

⁷¹ RLW Analytics, Coincidence Factor Study: Residential Room Air Conditioners, June 2008, p. 22 (based on population average)

⁷² Conversion factor developed by comparing EER and CEER values reported in ENERGY STAR[®] Program Requirements for Room Air Conditioners Version Eligibility Criteria 3.1

⁷³ RLW Analytics, Coincidence Factor Study: Residential Room Air Conditioners, June 2008, p. iv (based on average Seasonal CF for all load zones using 2007 weather data)

⁷⁴ Northeast Energy Efficiency Partnerships, Loadshape Report and Catalogue

⁷⁵ 10 CFR 430.32(b), CFR EER values were converted to CEER values by dividing by 1.01. Conversion factor developed by comparing EER and CEER values reported in ENERGY STAR[®] Program Requirements for Room Air Conditioners Version Eligibility Criteria 3.1.

Product Type	Product Class Capacity (BTU/h)	Federal Standard With Louvered Sides (CEER)	Federal Standard Without Louvered Sides (CEER)
	< 6,000	9.6	8.9
	6,000 to 7,999	9.6	8.9
RAC without Reverse Cycle	8,000 to 10,999	9.7	8.4
	11,000 to 13,999	9.7	8.4
	14,000 to 19,999	9.6	8.4
	20,000 to 27,999	8.4	8.4
	\geq 28,000	8.4	8.4
DAC with	< 14,000	8.9	8.4
RAC with Reverse Cycle	14,000 to 19,999	8.9	7.9
	≥ 20,000	8.4	7.9
Casement Only	All	8	3.6
Casement-Slider	All		9.4

Compliance Efficiency from which Incentives are Calculated

The compliance condition is the recycling of an existing room air conditioner as defined in the Measure Description section above.

Operating Hours

Cooling equivalent full load hours for residential room air conditioners shall be established based on location per the table below. $EFLH_{cooling}$ values below were determined by calculating the ratio of RAC cooling EFLH in Albany⁷⁶ to average cooling EFLH in Albany per <u>Appendix G</u> and applying it to the average EFLH for each city. EFLH was averaged from <u>Appendix G</u> over vintage and building type for each city.

City	EFLH _{cooling}
Albany	224
Binghamton	171
Buffalo	219
Massena	187
NYC	364
Poughkeepsie	282
Syracuse	226

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

N/A

⁷⁶ RLW Analytics, Coincidence Factor Study: Residential Room Air Conditioners, June 2008, p. iv (based on 2007 FLEH for Albany)

Ancillary Electric Savings Impacts

N/A

References

- 10 CFR 430.2 Definitions Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=6dc64a198ad50a16b0ff6af63189872b&mc=true&n=pt10.3</u>.430&r=PART&ty=HTML#se10.3.430_12
- RLW Analytics, Final Report Coincidence Factor Study: Residential Room Air Conditioners. June 23, 2008 Available from: <u>http://www.puc.state.nh.us/electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/124_SPWG%20Room%20%20AC%20Evaluation%20FINALReport%20Ju ne%2023%20ver7.pdf</u>
- ENERGY STAR[®] Program Requirements Product Specification for Room Air Conditioners Eligibility Criteria Version 3.1 Available from: <u>https://www.energystar.gov/sites/default/files/specs/ENERGY%20STAR%20Version%2</u> 03.1%20Room%20Air%20Conditioner%20Program%20Requirements.pdf
- 4. Northeast Energy Efficiency Partnerships, Loadshape Report and Catalogue Available from: <u>http://neep.org/loadshape-report-and-catalogue</u>
- 5. 10 CFR 430.32 Energy and water conservation standards and their compliance dates Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=6dc64a198ad50a16b0ff6af63189872b&mc=true&n=pt10.3</u> .430&r=PART&ty=HTML#se10.3.430_132

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
7-13-37	7/31/2013
3-18-8	3/29/2018

REFRIGERATOR AND FREEZER RECYCLING

Measure Description

In many cases, when a refrigerator or freezer is replaced by a homeowner, the existing unit is retained, sold or donated for use elsewhere, representing additional load on the grid. This measure covers recycling of the existing, functional equipment, thereby eliminating the consumption associated with that equipment. Refrigerator and freezer recycling programs (also called "bounty" programs) receive energy savings credit for permanently removing inefficient, functional refrigerators and freezers from the electric grid.

This measure covers the recycling of primary (i.e. installed in a kitchen) and secondary (i.e. installed elsewhere) refrigerators, refrigerator-freezers and freezers. To account for the fact that secondary equipment is occasionally installed and operating for only part of the year, a part-time use adjustment factor has been applied to the annual gross savings for secondary units to establish average per unit deemed electric savings.

This measure does not cover the recycling of equipment classified by the Code of Federal Regulations as "Compact refrigerator/refrigerator-freezer/freezer". This refers to any refrigerator, refrigerator-freezer or freezer with a total refrigerated volume of less than 7.75 cubic feet (220 liters), where the total refrigerated volume has been determined in accordance with the procedure prescribed in Appendix A (refrigerators and refrigerator-freezers) or B (freezers) of 10 CFR 430 Subpart B.⁷⁷

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times (\Delta kWh/unit)$

Peak Coincident Demand Savings

 $\Delta kW = units \times \Delta kWh/8,760 \times TAF \times LSAF \times CF$

Annual Gas Energy Savings

 $\Delta therms = N/A$

^{77 10} CFR 430.2

where:	
ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
(∆kWh/unit)	= Gross deemed annual electric savings per unit
TAF	= Temperature Adjustment Factor
LSAF	= Load Shape Adjustment Factor
CF	= Coincidence Factor
8,760	= Hours in one year

Summary of Variables and Data Sources

There are several conditions that impact the estimated savings available from a refrigerator and/or freezer-recycling program. Factors such as the average type, make, model, size, and age of units recycled significantly impact the savings. Variances in these conditions have a significant impact of the level of savings that can be achieved. In addition, the average number of hours these units are plugged in and operating impact savings. Likewise, the environmental and operational conditions also impact the energy savings. These variables make establishing a projected engineering based calculation approach for per unit savings a complex task that is prone to error because of the effects of the compounding uncertainty associated with the potential variance within each of the key estimation variables. However, savings projections in this Tech Manual are based on impact evaluations completed in New York State.

The following deemed energy impact estimates shall be used in New York for refrigerator and freezer recycling programs.

Variable	Value	Notes
(ΔkWh/unit)	Primary Refrigerator – 1,218 ⁷⁸ Secondary Refrigerator – 794 ⁷⁹ Freezer - 846 ⁸⁰	
TAF	1.22	Temperature Adjustment Factor; reflects load variance during summer peak due to increased ambient temperature conditions. ⁸¹
LSAF	1.06	Load Shape Adjustment Factor; reflects the instantaneous differential from annual average load coincident with peak. ⁸²
CF	1.0	

Coincidence Factor (CF)

The recommended value for the coincidence factor is 1.0.⁸³

Baseline Efficiencies from which Savings are Calculated

The savings calculations above apply to recycling of a functioning primary⁸⁴ or secondary refrigerator, refrigerator-freezer or freezer with total refrigerated volume of 7.75 cubic feet (220 liters) or more.

Compliance Efficiency from which Incentives are Calculated

N/A

Operating Hours

Primary refrigerators or freezers are assumed to be connected to an electrical outlet 8,760 hours per year. Secondary units may only be connected part-time, but 8,760 hours per year is utilized in these cases as well for the sake of establishing conservative estimates of peak coincident demand savings.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

⁷⁸ Cadmus memo to Consolidated Edison, "Recommended Gross Savings Values for Refrigerator Recycling Programs", December 17, 2015

⁷⁹ Ibid.

⁸⁰ Based on Energy & Resource Solutions "Con Edison EEPS Programs - Impact Evaluation of Residential Appliance Bounty Program", May 2015. Gross unit consumption of 1,267 kWhs x part use factor of 0.685 = 846 kWhs

 ⁸¹ Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004. It assumes 58% of New York homes have central air conditioning.
 ⁸² Ibid.

⁸³ *No source specified – update pending availability and review of applicable references*

⁸⁴ Savings can be claimed for recycling a primary refrigerator as long as savings for that replacement were not claimed by another energy efficiency program.

Ancillary Fossil Fuel Savings Impacts

Ancillary fossil fuel savings impacts, if appropriate, will be researched and incorporated into this measure algorithm in future revisions to the TRM.

Ancillary Electric Savings Impacts

Ancillary electric savings impacts, if appropriate, will be researched and incorporated into this measure algorithm in future revisions to the TRM.

References

- 10 CFR 430.2 Definitions. Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=433d4d2525eac3e38a1ede79f3b5c0ed&mc=true&n=pt10.3</u> .430&r=PART&ty=HTML#se10.3.430_12
- 2. Cadmus memo to Consolidated Edison, "Recommended Gross Savings Values for Refrigerator Recycling Programs", December 17, 2015
- Con Edison EEPS Programs Impact Evaluation of Residential Appliance Bounty Program, Energy & Resource Solutions (ERS), May 4, 2015 Available from: <u>https://legacyold.coned.com/energyefficiency/PDF/ConEd_Residential_Appliance_Bount_y_Program_Final_Report.pdf</u>
- Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 Available from: <u>http://www.waptac.org/data/files/website_docs/training/standardized_curricula/curricula_resources/blasnik_measurement%20and%20verification%20of%20residential%20refriger
 </u>

ator.pdf

 National Renewable Energy Laboratory, The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures, Chapter 7: Refrigerator Recycling Evaluation Protocol, April 2013.

Available from: https://www.energy.gov/sites/prod/files/2013/05/f0/53827-7.pdf

Record of Revision

Record of Revision Number	Issue Date
2	10/15/2010
7-13-4	7/31/2013
9-13-2	9/2/2013
6-15-2	6/1/2015
12-17-2	12/31/2017

BUILDING SHELL

AIR LEAKAGE SEALING

Measure Description

Reduction in the natural infiltration rate of the home through sealing air leaks in the building envelope. These algorithms are used for single-family and smaller multi-family buildings where the use of a blower door is feasible. An alternate method for estimating savings that is based on the building's heated square footage is also provided for larger multi-family buildings. Method for Calculating Annual Energy and Peak Coincident Demand Savings

(with blower door test)

Annual Electric Energy Savings

$$\Delta kWh = units \times \left(\frac{\Delta CFM_{50}}{n - factor}\right)_{\times} \left(\frac{\Delta kWh}{CFM}\right)_{\times} \left(\frac{SEER_{\text{baseline}}}{SEER_{\text{part}}}\right)_{\times} \left[\frac{\overline{\eta}_{\text{dist,baseline}}}{\overline{\eta}_{\text{dist,part}}}\right]_{\text{cooling}}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times \left(\frac{\Delta CFM_{50}}{n - factor}\right) \times \left(\frac{\Delta kW}{CFM}\right) \times \left(\frac{EER_{\text{baseline}}}{\overline{EER}_{\text{part}}}\right) \times \left[\frac{\eta_{\text{dist,pk,baseline}}}{\eta_{\text{dist,pk,part}}}\right]_{cooling} \times CF$$

Annual Gas Energy Savings

$$\Delta \text{therms} = \text{units} \times \left(\frac{\Delta \text{CFM}_{50}}{n - \text{factor}}\right) \times \left(\frac{\Delta \text{therm}}{\text{CFM}}\right) \times \left(\frac{\text{AFUE}_{\text{baseline}}}{\text{AFUE}_{\text{part}}}\right) \times \left[\frac{-\overline{\eta}_{\text{dist},\text{baseline}}}{\overline{\eta}_{\text{dist},\text{part}}}\right]_{\text{heating}}$$

Method for Calculating Annual Energy and Peak Coincident Demand Savings (without blower door test)

Annual Electric Energy Savings

$$\Delta kWh = units \times floor area (1,000 ft2) \times \left(\frac{\Delta kWh}{1000 ft^2}\right)$$

Peak Coincident Demand Savings

$$\Delta kW = units \times floor area (1,000 ft^2) \times \left(\frac{\Delta kW}{1000 ft^2}\right) \times CF$$

Annual Gas Energy Savings

$$\Delta$$
therm = units × floor area (1,000 ft²) × $\left(\frac{\Delta$ therm}{1000 ft²}\right)

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therm	= Annual gas energy savings
units	= Number of measures installed under the program
AFUE	= Annual fuel utilization efficiency
CFM	= Cubic feet per minute
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt- hour, (used for average U.S. location/region)
EER	= Energy efficiency ratio under peak conditions
EER	= Seasonal average energy efficiency ratio over the cooling season BTU/watt- hour, (used for a particular climate/building)
CF	= Coincidence factor
n-factor	= Correction factor
η	= Energy efficiency (0 -100%)
$\overline{\eta}$	= Average energy efficiency (0 -100%)
part	= Participant
dist	= Distribution
pk	= Peak
baseline	= Baseline condition or measure
Δ	= Change, difference, or savings
ft ²	= Square foot
floor area	= Conditioned floor area

Variable	Value	Notes
Floor area		From application
ΔCFM_{50}		change in infiltration rate (cfm) at measured 50 Pa
∆kWh/CFM		From prototype simulations, HVAC type weighted average by city. Use actual CFM ₅₀ reduction from blower door test.
∆kW/CFM		From prototype simulations, HVAC type weighted average by city. Use actual CFM ₅₀ reduction from blower door test.
∆therm/CFM		From prototype simulations, HVAC type weighted average by city. Use actual CFM_{50} reduction from blower door test.
n-factor	15	2 story home with normal wind exposure in NY climate
1,000ft ²		1,000 ft ² of conditioned floor area
$\Delta kWh/1,000ft^2$		From prototype simulations, Vintage and HVAC type weighted average by city.
$\Delta kW/1,000ft^2$		From prototype simulations, Vintage and HVAC type weighted average by city.
Δ therm/1,000ft ²		From prototype simulations, Vintage and HVAC type weighted average by city.
EER _{baseline}	11.1	
$\overline{\text{EER}}_{\text{part}}$		Participant population average, defaults to EER _{baseline} (no adjustment)
SEER _{baseline}	13	
SEER _{part}		Participant population average, Defaults to SEER _{baseline} (no adjustment)
AFUE _{baseline}	78%	
AFUE _{part}		Participant population average, Defaults to AFUE _{baseline} (no adjustment)
$-\eta$ dist, baseline	0.956	
$\overline{\eta}$ dist, part		Distribution system efficiency under peak conditions within participant population, participant population average defaults to $\overline{\eta}$ dist, baseline .(no adjustment)
$\eta_{ m dist, pk, baseline}$	0.956	Distribution system efficiency under peak conditions used in simulation
$\eta_{\rm dist, pk, part}$		Participant population average, defaults to $\eta_{\text{dist, pk, baseline}}$ (no adjustment)

Summary of Variables and Data Sources

Unit energy and demand savings calculated from the building prototype simulation models are shown in <u>Appendix E</u>. The savings normalized to infiltration rate reduction are tabulated by building type, location, and HVAC system type. The savings normalized per square foot of floor area are tabulated by building type, vintage, and HVAC system type.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8

Baseline Efficiencies from which Savings are Calculated

Baseline natural infiltration rate is assumed be one air change per hour (ACH) for old vintage homes, and 0.5 ACH for average vintage homes.

Compliance Efficiency from which Incentives are Calculated

See <u>Appendix E</u>.

Operating Hours

The energy savings for insulation are dependent on the HVAC system operating hours and thermostat set points. See <u>Appendix A</u> for the modeling assumptions for each building prototype.

Effective Useful Life (EUL)

Years: 15 Source: GDS

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- 1. Correction for blower door infiltration rate to natural air changes based on relationships from Sherman, "Estimation of Infiltration for Leakage and Climate Indicators," Energy and Buildings, 10, 1987. Assumes a climate factor of 18.5 and a height correction factor of 0.8.
- Typical values for demand coincidence factors (CF) taken from Engineering Methods for Estimating the Impacts of Demand-Side Management Programs. Volume 2: Fundamental Equations for Residential and Commercial End-Uses. TR-100984S Vol. 2. Electric Power Research Institute, Palo Alto, CA August, 1993.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
7-13-25	7/31/2013

HOT WATER PIPE INSULATION

Measure Description

This section covers pipe insulation in space heating and domestic hot water (DHW) system distribution system applications. The savings depend on the type and size of the pipe, insulation type and thickness, hot water temperature and piping system ambient temperature.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times L \times \frac{\left[\left(UA / L \right)_{baseline} - \left(UA / L \right)_{ee} \right]}{\eta_{h} \times 3,412} \times \overline{\Delta T} \times hr$$

Peak Coincident Demand Savings

$$\Delta kW = units \times L \times \frac{\left[\left(UA \,/\, L \right)_{\text{baseline}} - \left(UA \,/\, L \right)_{\text{ee}} \right]}{\eta_{\text{h}} \times 3{,}412} \times \Delta T_{\times} \, CF$$

Annual Gas Energy Savings

$$\Delta therms = units \times L \times \frac{\left[\left(UA / L \right)_{baseline} - \left(UA / L \right)_{ee} \right]}{\eta_h \times 100,000} \times \overline{\Delta T} \times hr$$

where:

= Annual electric energy savings
= Peak coincident demand electric savings
= Annual gas energy savings
= Number of measures installed under the program
= Coincidence factor
= Length
= Change, difference, or savings
= Temperature
= Average temperature difference
= Baseline condition or baseline measure
= Energy efficient
= Heater
= Heat loss coefficient (BTU/hr-°F)
= Conversion factor, one kW equals 3,412.14 BTU/h
= Hours in one year
= Conversion factor (BTU/therm), one therm equals 100,000 BTU's

Variable	Value	Notes
L	From application	Length of insulation installed
difference	between water within the pipe and	l air under peak conditions;
ΔΤ	60°F (service hot water) 100°F (hot water heat) 130°F (steam heat)	Temperature difference between the hot water in the pipe and surrounding air temperature (°F); 130°F hot water temp, 70°F room temp 160 °F hot water temp, 60°F room temp 190 °F steam temp, 60°F room temp
average te	mperature(°F) difference between	water within the pipe and air temperature;
ΔT	60°F (service hot water) 100°F (hot water heat) 130°F (steam heat)	Average temperature difference between the hot water in the pipe and surrounding air temperature (°F); 130°F hot water temp, 70°F room temp 160 °F hot water temp, 60°F room temp 190 °F steam temp, 60°F room temp
UA/L	From table above	Overall pipe heat loss coefficient per unit length (BTU/hr-°F-ft), value based on pipe size, insulation type and insulation thickness
η _h	0.97 (electric water heater)0.75 (gas water heater)0.80 (gas hot water heat)0.75 (gas steam heat)	
hr	Service hot water: 8760hr Space Heat: EFLH _{heating} (SF and MF low-rise) 3240 (MF high-rise)	EFLH _{heating} from <u>Appendix G</u> .

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor for domestic water heating is 0.8. The recommended value for the coincidence factor for hydronic space heating is 0.0.

Baseline Efficiencies from which Savings are Calculated

The UA_{baseline} assumes uninsulated copper pipe for water heating applications, and uninsulated copper or steel pipes for space heating applications.

The overall heat transfer coefficient per foot of pipe for the base and improved (insulated) piping is shown in the tables below.

Pipe Size	Ba	re Copper Pipi	Bare Steel	Piping	
(nominal)	Service Hot Hot water		Steam heat	Hot water heat	Steam heat
(in.)	Water	heat			
0.75	0.40	0.45	0.49	0.73	0.78
1	0.50	0.56	0.61	0.89	0.95
1.25	0.59	0.67	0.72	1.10	1.18
1.5	0.68	0.78	0.83	1.24	1.33
2	0.86	0.98	1.05	1.52	1.63
2.5	1.04	1.18	1.26	1.81	1.94
3	1.21	1.37	1.47	2.16	2.32
4	1.54	1.75	1.88	2.72	2.92

Baseline Uninsulated Pipe Heat Loss Coefficient (UA/L) in BTU/hr-°F-ft

Insulated Copper Pipe Heat Loss Coefficient (UA/L) in BTU/hr-°F-ft

Pipe Size		Fiber	glass			Rigid	foam	
(nominal)	0.5 in	1.0 in	1.5 in	2.0 in	0.5 in	1.0 in	1.5 in	2.0 in
(in.)								
0.75	0.17	0.11	0.09	0.08	0.12	0.08	0.06	0.05
1	0.21	0.13	0.10	0.09	0.15	0.09	0.07	0.06
1.25	0.24	0.15	0.11	0.10	0.17	0.10	0.08	0.07
1.5	0.27	0.16	0.13	0.11	0.20	0.12	0.09	0.08
2	0.34	0.20	0.15	0.12	0.24	0.14	0.11	0.09
2.5	0.41	0.23	0.17	0.14	0.29	0.17	0.12	0.10
3	0.47	0.26	0.19	0.16	0.34	0.19	0.14	0.11
4	0.60	0.33	0.24	0.19	0.43	0.24	0.17	0.14

Insulated Steel Pipe Heat Loss Coefficient (UA/L) in BTU/hr-°F-ft

Pipe Size		Fiberglass				Rigid	foam	
(nominal)	0.5 in	1.0 in	1.5 in	2.0 in	0.5 in	1.0 in	1.5 in	2.0 in
(in.)								
0.75	0.20	0.12	0.10	0.08	0.14	0.09	0.07	0.06
1	0.23	0.14	0.11	0.09	0.17	0.10	0.08	0.07
1.25	0.28	0.17	0.13	0.11	0.20	0.12	0.09	0.08
1.5	0.31	0.18	0.14	0.12	0.22	0.13	0.10	0.08
2	0.37	0.21	0.16	0.13	0.27	0.15	0.12	0.10
2.5	0.44	0.25	0.18	0.15	0.32	0.18	0.13	0.11
3	0.52	0.29	0.21	0.17	0.38	0.21	0.15	0.12
4	0.65	0.36	0.26	0.21	0.47	0.26	0.18	0.15

The efficiency of an electric storage type water heater is assumed to be 0.97. The efficiency of a non-condensing storage type water heater is assumed to be 0.75. For space heating applications, the efficiency of a gas hot water boiler is assumed to be 0.80 and the efficiency of a gas steam heating boiler is assumed to be 0.75.

The ambient temperature difference between the water temperature and the ambient room

temperature is used to calculate the pipe losses. Water heaters are generally located in conditioned or partially conditioned spaces to avoid freezing. A room temperature of 70°F is the default value. A water heater set point temperature of 130°F is the default value.

Similarly, space-heating boilers are generally located in conditioned or partially conditioned spaces to avoid freezing. A room temperature of 60° F is the default value. An average water temperature of 160° F is the default value for hot water boilers, and an average steam pipe temperature of 190° F is the default value for steam boilers.

Compliance Efficiency from which Incentives are Calculated

The UA_{ee} for insulated pipes was calculated for fiberglass and rigid foam pipe insulation of various thicknesses. Service hot water pipe insulation for non-recirculating systems common in single-family buildings is limited to the first 12 feet of hot water supply pipe leaving the water heater. Recirculating systems common in multi-family buildings should use the full length of installed pipe insulation to calculate savings. Space heating pipe insulation is limited to insulation installed in unheated spaces only.

Insulated pipe losses were calculated using a k value of 0.25 BTU-in/SF-°F for fiberglass and 0.18 BTU-in/SF-°F for rigid foam insulation. Pipe wall resistance and exterior film resistance were neglected.

Operating Hours

The water heater is assumed to be available during all hours. Single-family and multi-family lowrise buildings should use the heating equivalent full-load hours as shown in <u>Appendix G</u>. Systems in high-rise multi-family buildings should use 3240 operating hours per year.

Effective Useful Life (EUL)

Years: 13, Electric water heater Years: 11, Natural gas water heater Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1. The uninsulated pipe losses were obtained from the 2001 ASHRAE Handbook of Fundamentals, Chapter 25, Tables 11A and 12.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
7-13-15	7/31/2013

OPAQUE SHELL INSULATION

Measure Description

This measure covers improvements to the thermal conductance of the opaque building shell, which includes upgrading insulation in walls, ceilings, floors, etc. Energy and demand saving are realized through reductions in the building heating and cooling loads.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times ft^{2} \times \left(\frac{\Delta kWh}{ft^{2}}\right) \times \left(\frac{SEER_{\text{baseline}}}{SEER_{\text{part}}}\right) \times \left[\frac{\overline{\eta}_{\text{dist,baseline}}}{\overline{\eta}_{\text{dist,part}}}\right]_{\text{cooling}}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times ft^{2} \times \left(\frac{\Delta kW}{ft^{2}}\right) \times \left(\frac{EER_{baseline}}{EER_{part}}\right) \times \left[\frac{\eta_{dist,pk,baseline}}{\eta_{dist,pk,part}}\right]_{cooling} \times CF$$

Annual Gas Energy Savings

$$\Delta therms = units \times ft^2 \times \left(\frac{\Delta therm}{ft^2}\right) \times \left(\frac{AFUE_{\text{baseline}}}{AFUE_{\text{part}}}\right) \times \left[\frac{\overline{\eta}_{\text{dist,baseline}}}{\overline{\eta}_{\text{dist,part}}}\right]_{\text{heating}}$$

where:

Δ kWh	= Annual electricity energy savings
$\Delta \mathrm{kW}$	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
ft ²	= Square foot
CF	= Coincidence factor
AFUE	= Annual fuel utilization efficiency
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt-
	hour, (used for average U.S. location/region)
EER	= Energy efficiency ratio under peak conditions
$\overline{\eta}$	= Average energy efficiency $(0 - 100\%)$
η	= Energy efficiency (0 -100%)
dist	= Distribution
baseline	= Baseline condition or measure
part	= Participant

Variable	Value	Notes
ft ²		From application
$\Delta kWh / ft^2$		HVAC type weighted average by city based on the
		combination of the existing and installed R-value
$\Lambda kW / ft^2$		HVAC type weighted average by city based on the
		combination of the existing and installed R-value
Atherm / ft^2		HVAC type weighted average by city based on the
		combination of the existing and installed R-value
EER _{baseline}	11.1	
EER _{part}		Participant population average defaults to EER _{baseline} (no
		adjustment)
SEER _{baseline}	13	SEER used in the simulations
		SEER of cooling system within participant population
SEER _{part}		Participant population average defaults to SEER _{baseline} (no
		adjustment)
AFUE _{baseline}	78%	AFUE of heating system within participant population.
	1070	AFUE used in the simulations
AFUE _{part}		Participant population average. Defaults to AFUE _{baseline} (no
		adjustment)
η dist, baseline	0.956	Distribution system seasonal efficiency used in simulations
		Distribution system seasonal efficiency within participant
$\overline{\eta}$ dist, part		population. Participant population average defaults to $\overline{\eta}_{\text{dist,}}$
		baseline (no adjustment)
$\eta_{ m dist, pk, baseline}$	0.956	Distribution system efficiency under peak conditions used in
		simulation
$\eta_{_{ m dist,pk,part}}$		Distribution system efficiency under peak conditions within
		participant population. Participant population average
		defaults to
		$\eta_{\text{dist, pk, baseline}}$ (no adjustment)

Summary of Variables and Data Sources

Unit energy and demand savings calculated from the building prototype simulation models are shown in <u>Appendix E</u>. The savings are tabulated by building type and HVAC system type across a range of pre-existing (baseline) and upgraded insulation R-values.

These values can be adjusted to account for heating and cooling system efficiencies that vary from the values used in the simulations. In the absence HVAC system or distribution system efficiency data, no adjustment is made.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8

Baseline Efficiencies from which Savings are Calculated

Energy savings over a variety of baseline wall and ceiling insulation levels are listed in <u>Appendix</u> <u>E</u>. The baseline R-value must be captured in the program application. Interpolation of the data in Appendix E is permitted.

Compliance Efficiency from which Incentives are Calculated

Energy savings over a variety of measure wall and ceiling insulation levels are listed in <u>Appendix</u> <u>E</u>. The installed R-value must be captured in the program application. Interpolation of the data in Appendix E is permitted. Note: The data in Appendix E represent the total R-value of the existing plus added insulation.

Operating Hours

The energy savings for insulation are dependent on the HVAC system operating hours and thermostat set points. See <u>Appendix A</u> for the modeling assumptions for each building prototype.

Effective Useful Life (EUL)

Years: 30 Source: Energy Trust of Oregon, Inc.

Ancillary Fossil Fuel Savings Impacts Ancillary Electric Savings Impacts

References

 Typical values for coincidence factors (CF) taken from Engineering Methods for Estimating the Impacts of Demand-Side Management Programs. Volume 2: Fundamental Equations for Residential and Commercial End-Uses. TR-100984S Vol. 2. Electric Power Research Institute, Palo Alto, CA August, 1993.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
7-13-25	7/31/2013
7-13-38	7/31/2013

WINDOW AND THROUGH-THE-WALL AIR CONDITIONER COVER AND GAP SEALER Measure Description

A rigid, insulated cover, installed on the inside of a window or through-the-wall room air conditioning (RAC) unit, and the gap surrounding the unit. The cover is designed for RAC units left in place throughout the heating season; covers must be installed and maintained by building facility's staff.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings = N/A

Peak Coincident Demand Savings = N/A

Annual Gas Energy Savings

$$\Delta therms = units \times \left(\frac{1.08 \times CFM \times HDD \times 24 \text{ hrs/day}}{HPs}\right) / 100,000$$

where:

Δ kWh	= Annual electricity energy savings
$\Delta \mathrm{kW}$	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
1.08	= Specific heat of air \times density of inlet air @ 70°F \times 60 min/hr
CFM	= Cubic foot per minute
HDD	= Heating degree day
HPs	= Heating plant seasonal efficiency
100,000	= Conversion factor (BTU/therm), one therm equals 100,000 BTU's

Summary of Variables and Data Sources

Variable	Value	Notes
Low-End Estimate at 5 Pa Indoor- Outdoor Pressure Differential	23	Annual Deemed Energy Savings Values (therms), for New York City
High-End Estimate at 10 Pa Indoor-Outdoor Pressure Differential	32	Annual Deemed Energy Savings Values (therms), for New York City
Indoor-Outdoor Pressure Differential	28	When indoor-outdoor pressure differential is not known, use the rounded average of 28 therms.
Heating plant seasonal efficiency, HPs	0.70	This value used in Urban Green Building Council study ¹ .
HDD	4,500	NYC Climate
CFM low end	13	Field tested leakage at 5 Pa indoor-outdoor

Variable	Value	Notes
		differential pressure
CFM high end	19	Field tested leakage at 10 Pa indoor-outdoor differential pressure

Note: Pa = Pascal, the standard unit of pressure or stress in the International system of units (SI)

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.

Baseline Efficiencies from which Savings are Calculated

Compliance Efficiency from which Incentives are Calculated

Operating Hours

Effective Useful Life (EUL)

Years: 5 Source: Window Sentry

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1. There Are Holes in Our Walls; A Report Prepared for the Urban Green Building Council, by Steven Winter Associates, April 2011.

Record of Revision

Record of Revision Number	Issue Date
6-14-1	6/19/2014

WINDOW REPLACEMENT

Measure Description

ENERGY STAR[®] windows with reduced thermal conductance and solar heat gain coefficient are an assembled unit consisting of a frame/sash component holding one or more pieces of glazing functioning to admit light and/or air into an enclosure and designed for a vertical installation in an external wall of a residential building.⁸⁵

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times \frac{area_g}{100} \times \frac{\Delta kWh}{100 ft^2} \times \frac{SEER_{baseline}}{SEER_{part}} \times \left[\frac{\bar{\eta}_{dist, baseline}}{\bar{\eta}_{dist, part}}\right]_{cooling}$

Peak Coincident Demand Savings

$$\Delta kW = units \times \frac{area_g}{100} \times \frac{\Delta kW}{100 ft^2} \times \frac{EER_{baseline}}{EER_{part}} \times \left[\frac{\eta_{dist,pk,baseline}}{\eta_{dist,pk,part}}\right]_{cooling} \times CF$$

Annual Gas Energy Savings

$$\Delta therms = units \times \frac{area_g}{100} \times \frac{\Delta therm}{100 ft^2} \times \frac{AFUE_{baseline}}{AFUE_{part}} \times \left[\frac{\bar{\eta}_{dist, baseline}}{\bar{\eta}_{dist, part}}\right]_{heating}$$

where:

∆kWh	= Annual electricity energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
areag	= Glazing area (in ft^2)
EER	= Energy efficiency ratio under peak conditions
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt-
	hour, (used for average U.S. location/region)
AFUE	= Annual fuel utilization efficiency
CF	= Coincidence factor
part	= Participant
dist	= Distribution
η	= Energy efficiency $(0 - 100\%)$
$\overline{\eta}$	= Average energy efficiency (0 -100%)

⁸⁵ ENERGY STAR[®] Product Specification Residential Windows, Doors, and Skylights, Eligibility Criteria, V6.0, January 2014

Variable	Value	Notes
areag		Glazing area from application
$\Delta kWh/100ft^2$		HVAC type weighted average by city, use existing window
		type or vintage default for baseline.
$\Lambda kW/100ft^2$		HVAC type weighted average by city, use existing window
		type or vintage default for baseline.
$A therm / 100 ft^2$		HVAC type weighted average by city, use existing window
		type or vintage default for baseline.
EER _{baseline}	11.1	EER used in the simulations
FFR		EER of cooling systems within participant population,
LERepart		average defaults to EER _{baseline} (no adjustment)
SEER _{baseline}	13	SEER used in the simulations ⁸⁷
SEER		SEER of cooling system within participant population,
SELICPart		average defaults to SEER _{baseline} (no adjustment)
AFUE _{baseline}	80%	AFUE used in the simulations ⁸⁸
AFUE		AFUE of heating system within participant population,
7 H O L part		average defaults to AFUE _{baseline} (no adjustment)
$ar\eta_{dist,baseline}$	0.956	Distribution system seasonal efficiency used in simulations
$\bar{\eta}_{dist,part}$		Distribution system seasonal efficiency within participant
		population, average defaults to $\bar{\eta}_{dist, baseline}$ (no adjustment)
$\eta_{dist,pk,baseline}$	0.956	Distribution system efficiency under peak conditions used in
		simulation
$\eta_{dist,pk,part}$		Distribution system efficiency under peak conditions within
		participant population, average defaults to $\eta_{dist,pk,baseline}$
		(no adjustment)

Summary of Variables and Data Sources⁸⁶

Unit energy and demand savings calculated from the building prototype simulation models are shown in <u>Appendix F</u>. The savings are tabulated by location, building type, and HVAC system type for a variety of combinations of existing window and improved window types.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.69.89

Baseline Efficiencies from which Savings are Calculated³

A variety of existing window combinations are shown in the unit savings tables in <u>Appendix F</u>, including single pane clear glass, double pane clear and a minimally code compliant window. Energy savings are estimated based on the characteristics of the existing window. Single pane

⁸⁶ Due to schedule of revisions, values specified here may not align with those presented throughout appendices.

⁸⁷ 10 CFR 430.32 (c)(1)(i) – Assumes a 3-ton split AC.

⁸⁸ 10 CFR 430.32 (e)(2)(i)(A) – Assumes an 80 MBh gas furnace.

⁸⁹ Based on BG&E 'Development of Residential Load Profile for Central Air Conditioners and Heat Pumps' research, the Maryland Peak Definition coincidence factor is 0.69. This study is not publicly available, but is referenced by the Mid-Atlantic TRM Version 6.0 published May 2016. MD factor used as approximation for NY-specific value.

clear glass is the default for the old vintage, while double pane clear glass is the default for the average vintage. The minimally code compliant window is assumed to be the base case for new construction or window replacement projects.

Compliance Efficiency from which Incentives are Calculated

A typical window meeting the current ENERGY STAR[®] specifications is assumed to be the installed measure. The specifications assumed are listed below.⁹⁰

U-Value (Btu/h ft²-ºF)	Solar Heat Gain Coefficient (SHGC)
≤0.27	Any
0.28	≥0.32
0.29	≥0.37
0.30	≥0.42

Operating Hours

The energy savings for windows are dependent on the HVAC system operating hours and thermostat set points. See <u>Appendix A</u> for the modeling assumptions for each building prototype.

Effective Useful Life (EUL)

Years: 20 Source: DEER 2014⁹¹

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- ENERGY STAR[®] Product Specification Residential Windows, Doors, and Skylights, Eligibility Criteria, Version 6.0, January 2014 Available from: <u>https://www.energystar.gov/sites/default/files/ES_Final_V6_Residential_WDS_Spec.pdf</u>
- 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>

⁹⁰ ENERGY STAR[®] Product Specification Residential Windows, Doors, and Skylights, Eligibility Criteria, V6.0, January 2014

⁹¹ CA DEER – 2014 Updated EUL Records
3. BG&E: Development of Residential Load Profile for Central Air Conditioners and Heat Pumps, via *Mid-Atlantic Technical Reference Manual Version 6.0*, May 2016 (accessed March 21, 2017)

Available from: http://www.neep.org/mid-atlantic-technical-reference-manual-v6

- 4. Window properties, for baseline windows, taken from 2013 ASHRAE Handbook of Fundamentals, Chapter 15.
- 5. California Public Utilities Commission: Database for Energy Efficient Resources (DEER) 2014, Updated-EULrecords_02-05-2014; EUL ID: BS-Win. Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
6-17-1	6/30/2017

Return to Table of Contents

Domestic Hot Water

HEAT PUMP WATER HEATER (HPWH) – AIR SOURCE

Measure Description

This measure covers the installation of electric storage tank water heaters that use heat pump technology to move heat from the air (inside or outside the building) to the water storage tank and are designed to heat and store potable water at a thermostatically controlled temperature of less than 180°F. It is not intended for equipment delivering process or space heating hot water. It applies to electric heat pump water heaters with a maximum current rating of 24 amperes at a voltage no greater than 250 volts and with a rated storage tank capacity of 120 gallons or less.^{92,93}

This measure applies to new construction/major renovation projects and replacement of existing electric water heaters and assumes baseline to be a minimally code compliant electric storage type water heater.

This measure applies to residential applications as well as residential-duty water heaters installed in commercial settings. In the latter case, this methodology shall be employed utilizing typical GPD values as defined in the "Gallons per Day (GPD)" section of the Commercial Storage Tank Water Heater measure detailed in this document.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\begin{split} \Delta kWh &= units \times \frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{3,412} \times \left[\frac{1}{UEF_{baseline}} - \frac{1}{UEF_{ee} \times F_{derate}}\right] \\ &+ \Delta kWh_{cooling} - \left(\Delta kWh_{heating} \times F_{ElecHeat}\right) \\ \Delta kWh_{cooling} &= units \times \frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{3,412} \times \left[1 - \frac{1}{UEF_{ee}}\right] \times F_{Loc} \\ &\times \frac{F_{Cool}}{SEER/3.412} \\ \Delta kWh_{heating} &= units \times \frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{3,412} \times \left[1 - \frac{1}{UEF_{ee}}\right] \times F_{Loc} \\ &\times \frac{F_{Loc}}{3,412} \\ \Delta kWh_{heating} &= units \times \frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{3,412} \times \left[1 - \frac{1}{UEF_{ee}}\right] \times F_{Loc} \\ &\times \frac{F_{Heat}}{HSPF/3.412} \end{split}$$

Peak Coincident Demand Savings

 $\Delta kW = units \times (\Delta kW/unit)$

January 1, 2019

 ⁹² ENERGY STAR[®] Program Requirements Product Specification for Residential Water Heaters, Eligibility Criteria Version 3.2, September 2017
 ⁹³ 10 CFR 430.2

Annual Gas Energy Savings

$$\begin{split} \Delta therms &= units \times \frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{3,412} \times \left[1 - \frac{1}{UEF_{ee}}\right] \times F_{Loc} \times F_{GasHeat} \\ &\times \frac{F_{Heat}}{AFUE} \end{split}$$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
GPD	= Gallons per day
ΔT_{main}	= Average temperature difference between water heater set point temperature and
	the supply water temperature in water main (°F)
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
UEF	= Uniform energy factor
Fderate	= Efficiency derating factor used to account for the degradation of heat pump
	performance present in systems installed in unconditioned spaces
$\Delta kWh_{cooling}$	= Annual electric cooling energy savings as a result of interactivity with the
	building's HVAC system (electric cooling bonus)
$\Delta kWh_{heating}$	= Annual electric heating energy savings as a result of interactivity with the
	building's HVAC system (electric heating penalty)
FElecHeat	= Electric heating factor, used to exclude electric heating penalty if no electric
	heating is present
F _{Loc}	= Installation location factor, used to exclude interactive HVAC impacts for
	systems installed in unconditioned spaces
F _{Cool}	= Cooling factor, used to account for the percentage of heat extracted from
	ambient air by the heat pump water heater that reduces space cooling load
SEER	= Seasonal average energy efficiency ratio over the cooling season,
_	BTU/watthour, (used for average U.S. location/region)
F _{Heat}	= Heating factor, used to account for the percentage of heat extracted from
	ambient air by the heat pump water heater that increases space heating load
HSPF	= Heating seasonal performance factor, BTU/watt-hour, total heating output
	(supply heat) in BTU (including electric heat) during the heating season / total
-	electric energy heat pump consumed (in watt-hour)
FGasHeat	= Gas heating factor, used to exclude gas heating penalty if no gas heating is
	present
AFUE	= Annual fuel utilization efficiency, seasonal energy efficiency for fuel heating
(. 1	equipment
$(\Delta K W/unit)$	= Deemed peak coincident demand savings per measure
505 9 22	= Days in one year
8.33 2.412	= Energy required (BTU) to neat one gailon of water by one degree Fahrenheit
3,412	= Conversion factor, one κ win equals 3,412 BTU

Variable	Value	Notes
GPD	17.2 X # of people	Calculated based on number of people served by the system. If unknown, use 46 GPD. ⁹⁴
ΔT_{main}	T _{set} - T _{main}	Average temperature difference between water heater set point temperature and the supply water temperature in water main (°F).
T _{set}	140	Water heater set point temperature (°F). ⁹⁵
T_{main}		Supply water temperature in water main (°F). Lookup in Cold Water Inlet Temperature table below based on nearest city.
UEF _{baseline}		Uniform Energy Factor of the baseline condition. See Baseline Efficiencies section below for details regarding derivation of this input.
UEF _{ee}		Uniform Energy Factor of the energy efficient measure, from application.
F _{derate}		For equipment installed in unconditioned spaces, lookup in Derate Factor table below based on installation location and nearest city. For equipment installed in conditioned spaces, a value of 1.0 shall be used.
FElecHeat		Use a value of 1.0 if the building is electrically heated. Otherwise, use 0.0.
F _{Loc}		Use a value of 1.0 if the water heater is installed in a conditioned space. Otherwise, use 0.0.
F _{Cool}		Lookup in HVAC Interactivity table below based on nearest city.
SEER	13	Assumed efficiency of existing air conditioning system, based on a minimally code compliant, 3- ton, split system AC. ⁹⁶
F _{Heat}		Lookup in HVAC Interactivity table below based on nearest city.
HSPF	Heat Pump – 8.2 Electric Resistance – 3.412	Assumed efficiency of electric heating system, based on a COP of 1.0 for electric resistance heating and a minimally code compliant, 3-ton split system HP for heat pumps. ⁹⁷

Summary of Variables and Data Sources

⁹⁴ Water Research Foundation: Residential End Uses of Water, Version 2, April 2016, p. 5; 17.2 GPD equated from the report findings indicating an average 2.65 people per household and 45.5 GPD per household. ⁹⁵ Per OSHA recommendations for prevention of Legionella bacterial growth

⁽https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html) ⁹⁶ ECCCNYS 2016, Table C403.2.3(1) & NYCECC 2016, Table C403.2.3(1)

⁹⁷ ECCCNYS 2016, Table C403.2.3(2) & NYCECC 2016, Table C403.2.3(2)

Variable	Value	Notes
F _{GasHeat}		Use a value of 1.0 if the building is gas heated. Otherwise, use 0.0.
AFUE	80%	Assumed efficiency of gas heating system, based on a minimally code compliant, 80 MBH gas furnace. ⁹⁸
$(\Delta kW/unit)$	0.17	Deemed peak coincident demand savings ⁹⁹

Cold Water Inlet Temperature (T_{main})

Supply water main temperatures vary according to climate, and are approximately equal to the annual average outdoor temperature plus 6° F.¹⁰⁰ Supply main temperatures based on the annual outdoor temperature are shown below.

City	Annual average outdoor temperature ¹⁰¹ (°F)	T _{main} (°F)
Albany	48.3	54.3
Binghamton	46.3	52.3
Buffalo	48.3	54.3
Massena	43.5	49.5
NYC	55.4	61.4
Poughkeepsie	49.8	55.8
Syracuse	48.3	54.3

Derate Factor

Standard testing conditions for rating of heat pump water heaters require a dry bulb temperature of $67.5^{\circ}F \pm 1^{\circ}F$ and a relative humidity of $50\% \pm 2\%$.¹⁰² The reported efficiency of heat pump water heaters is established at these conditions; however, heat pump efficiency degrades at lower ambient temperatures. The Derate Factor is established to adjust the published efficiency of the qualifying heat pump water heater when the system is installed in semi-conditioned or unconditioned spaces, namely, garages and basements. The values shown below were derived from Table 10 of Residential Heat Pump Water Heater Evaluation: Lab Testing & Energy Use Estimates published by Bonneville Power Administration in 2011^{103} and verified via comparison with results from the 2013 NEEA Heat Pump Water Heater Field Study Report.¹⁰⁴ Average values from northwest heating zones 1 (<6,000 HDD), 2 (6,000 – 7,500 HDD) and 3 (>7,500 HDD)¹⁰⁵ from this analysis and comparison were then mapped to representative NY climate regions as shown

^{98 10} CFR 430.32 (e) (2) (i) (A)

⁹⁹ "Field Testing of Pre-Production Prototype Heat Pump Water Heaters" Federal Energy Management Program, DOE/EE-0317, May 2007.

¹⁰⁰ Burch, Jay and Christensen, Craig, "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory

¹⁰¹ Average annual outdoor temperatures taken from NCDC 1981-2010 climate normals

¹⁰² 10 CFR 430 Subpart B Appendix E

¹⁰³ Residential Heat Pump Water Heater Evaluation: Lab Testing & Energy Use Estimates, Bonneville Power Administration, November 2011

¹⁰⁴ NEEA Heat Pump Water Heater Field Study Report, Fluid Market Strategies, October 2013

¹⁰⁵ NW Council Heating/Cooling zone maps

City	F _{derate} (Unconditioned Basement Installation)	F _{derate} (Garage Installation)
Albany	0.80	0.78
Binghamton	0.80	0.78
Buffalo	0.80	0.78
Massena	0.75	0.69
NYC	0.86	0.83
Poughkeepsie	0.80	0.78
Syracuse	0.80	0.78

below.

HVAC Interactivity

Because heat pump water heaters operate via the transfer of heat from the ambient air to the water in the storage tank, systems installed in conditioned spaces will interact with the building's HVAC system. The values shown in the table below reflect the percentage of heat extracted from the ambient air by the heat pump that either decreases the building's cooling load (F_{Cool}) or increases the building's heating load (F_{Heat}). These values were derived from Table 12 of Residential Heat Pump Water Heater Evaluation: Lab Testing & Energy Use Estimates published by Bonneville Power Administration in 2011¹⁰⁶ and key operating assumptions specified therein. Average values from northwest heating zones 1 (<6,000 HDD), 2 (6,000 – 7,500 HDD) and 3 (>7,500 HDD)¹⁰⁷ were then mapped to representative NY climate regions and scaled linearly based on regional HDD and CDD. The HDD and CDD values are based on 30-year averages of U.S annual climate normals between 1981 and 2010 using base 65° F.¹⁰⁸

City	CDD	F _{Cool}	HDD	F _{Heat}
Albany	597	0.26	6680	0.70
Binghamton	382	0.17	7193	0.76
Buffalo	544	0.24	6617	0.70
Massena	363	0.16	8196	0.84
Poughkeepsie	671	0.29	6210	0.65
NYC	1160	0.51	4671	0.49
Syracuse	570	0.25	6651	0.70

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A. Deemed demand savings values incorporate system peak coincidence considerations.

¹⁰⁶ Residential Heat Pump Water Heater Evaluation: Lab Testing & Energy Use Estimates, Bonneville Power Administration, November 2011

¹⁰⁷ NW Council Heating/Cooling zone maps

¹⁰⁸ HDD/CDD taken from NCDC 1981-2010 climate normals

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a minimally code compliant electric storage water heater with storage tank capacity and draw pattern equivalent to the proposed case.

UEF_{baseline} shall be calculated as a function of qualifying equipment tank volume (v_t) per federal standards¹⁰⁹ as shown in the table below, using the qualifying equipment capacity and draw pattern. Draw pattern can be established based on the proposed equipment First Hour Rating (FHR), rated in gallons. See First Hour Rating vs. Draw Pattern table below. If FHR is unknown, a Medium draw pattern should be assumed for equipment with rated storage capacity \leq 50 gallons and a High draw pattern should be assumed otherwise.¹¹⁰

Product Class	Rated Storage Volume and Input Rating	Draw Pattern	UEFbaseline
	\geq 20 gal and \leq 55 gal	Very Small	0.8808 - (0.0008 x v _t)
		Low	0.9254 - (0.0003 x v _t)
Electric Storage Water Heater		Medium	0.9307 - (0.0002 x v _t)
		High	0.9349 - (0.0001 x v _t)
	> 55 gal and ≤ 120 gal	Very Small	1.9236 - (0.0011 x v _t)
		Low	2.0440 - (0.0011 x v _t)
		Medium	2.1171 - (0.0011 x v _t)
		High	2.2418 - (0.0011 x v _t)

 $v_t = tank$ volume in gallons

First Hour Rating vs. Draw Pattern¹¹¹

First Hour Rating	Draw Pattern
<18 gallons	Very Small
≥ 18 and < 51 gallons	Low
\geq 51 and <75 gallons	Medium
≥75 gallons	High

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a heat pump water heater meeting minimum performance requirements dictated by program eligibility criteria.

Operating Hours

Water heater run hours are not utilized in the estimation of energy or demand savings, but water heater is assumed to be available for operation 8,760 hours per year.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

¹⁰⁹ 10 CFR 430.32(d)

¹¹⁰ Based on review of typical usage bins for AHRI certified residential water heating equipment (<u>https://www.ahridirectory.org/ahridirectory/pages/home.aspx</u>)

¹¹¹ 10 CFR 429.17

Ancillary Fossil Fuel Savings Impacts

Heat pump water heaters installed in conditioned spaces will result in an increase in space heating load due to the extraction of heat from the ambient air. This interactivity is addressed in the prescribed methodology.

Ancillary Electric Savings Impacts

Heat pump water heaters installed in conditioned spaces will result in an increase in space heating load and a decrease in cooling load due to the extraction of heat from the ambient air. This interactivity is addressed in the prescribed methodology.

References

- ENERGY STAR[®] Program Requirements Product Specification for Residential Water Heaters, Eligibility Criteria Version 3.2, September 2017 Available from: <u>https://www.energystar.gov/sites/default/files/Water%20Heaters%20Final%20Version</u> %203.2_Program%20Requirements_0.pdf
- 2. 10 CFR 430.2 Definitions Available from: <u>https://www.ecfr.gov/cgi-bin/text-idx?rgn=div8&node=10:3.0.1.4.18.1.9.2</u>
- Water Research Foundation: "Residential End Uses of Water, Version 2: Executive Report", April 2016
 Augilable from: http://www.waterrf.org/DublicBenortLibrow/4200A.pdf

Available from: http://www.waterrf.org/PublicReportLibrary/4309A.pdf

- 4. OSHA Legionnaire's Disease eTool: Section II: C-1. Domestic Hot-Water Systems Available from: <u>https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html</u>
- 5. AHRI Directory of Certified Product Performance Available from: <u>https://www.ahridirectory.org/ahridirectory/pages/home.aspx</u>
- ECCCNYS 2016, per IECC 2015; Table C403.2.3(1): Minimum Efficiency Requirements: Electrically Operated Unitary Air Conditioners and Condensing Units & Table C403.2.3(2): Minimum Efficiency Requirements: Electrically Operated Unitary and Applied Heat Pumps Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-ce-</u>

Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-ce-</u> <u>commercial-energy-efficiency</u>

 NYCECC 2016; Table C403.2.3(1): Minimum Efficiency Requirements: Electrically Operated Unitary Air Conditioners and Condensing Units & Table C403.2.3(2): Minimum Efficiency Requirements: Electrically Operated Unitary and Applied Heat Pumps

Available from:

https://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2016ECC_CH C4.pdf§ion=energy_code_2016

- 8. 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>
- 9. "Field Testing of Pre-Production Prototype Heat Pump Water Heaters" Federal Energy Management Program, DOE/EE-0317, May 2007

Available from:

https://energy.gov/sites/prod/files/2014/01/f7/heat_pump_water_heater_testing.pdf

 Burch, Jay and Craig Christensen; "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory. Available from:

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=05D73BA6EF5ECCF71969D0 83FB317991?doi=10.1.1.515.6885&rep=rep1&type=pdf

11. NOAA National Centers for Environmental Information – NCDC 1981-2010 Climate Normals

Available from: https://www.ncdc.noaa.gov/cdo-web/datatools/normals

- 12. 10 CFR 430 Subpart B Test Procedures, Appendix E Uniform Test Method for Measuring the Energy Consumption of Water Heaters Available from: <u>https://www.ecfr.gov/cgibin/retrieveECFR?gp=&SID=9624a8ba0987aaae248454c49194a661&mc=true&n=pt10.</u> <u>3.430&r=PART&ty=HTML#ap10.3.430_127.e</u>
- 13. "Residential Heat Pump Water Heater Evaluation: Lab Testing & Energy Use Estimates", Bonneville Power Administration, November 2011 Available from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.401.3815&rep=rep1&type=pdf

14. NEEA Heat Pump Water Heater Field Study Report, Fluid Market Strategies, October 2013

Available from: <u>http://neea.org/docs/default-source/reports/heat-pump-water-heater-field-study-report.pdf?sfvrsn=5</u>

- 15. NW Council Heating/Cooling Zone Maps Available from: <u>https://www.bpa.gov/EE/Sectors/Residential/Documents/PNWHeatingandCoolingClimat</u> eZoneAssignmentsbyCounty.pdf
- 16. 10 CFR 429.17 Water heaters. Available from: <u>https://www.ecfr.gov/cgi-bin/text-idx?rgn=div5&node=10:3.0.1.4.17#se10.3.429_117</u>

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
6-13-3	6/30/2013
11-13-2	11/26/2013
12-17-3	12/31/2017

Return to Table of Contents

INDIRECT WATER HEATER

Measure Description

This measure covers the installation of a gas indirect-fired storage water heating system in which the stored water is heated via hot water produced by a gas boiler rather than direct input from electric elements or gas burners. In such a system, a heat exchanger separates the potable water in the water heater from the boiler water. This measure applies to indirect-fired systems comprising a boiler with input heating capacity less than 300,000 Btu/h and a storage tank with a capacity of 20 to 120 gallons. Larger equipment installed in whole building or multi-unit multifamily settings shall use the Commercial and Industrial Indirect Water Heater measure detailed in this document.

This measure estimates savings associated with the delivery of potable hot water only and assumes the installation of zone priority controls to interrupt demand for space heating hot water until domestic hot water demand is met.

This measure assumes baseline to be a minimally code compliant gas storage type water heater with storage capacity equivalent to the proposed case.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = N/A$$

Peak Coincident Demand Savings

$$\Delta kW = N/A$$

Annual Gas Energy Savings

$$\begin{split} \Delta therms &= units \times \left[\frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{100,000} \times \left[\frac{1}{Eff_{baseline}} - \frac{1}{Eff_{ee}} \right] \\ &+ \left[\frac{UA_{baseline}}{Eff_{baseline}} - \frac{UA_{ee}}{Eff_{ee}} \right] \times \frac{\Delta T_{amb}}{100,000} \times 8,760 \right] \end{split}$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
GPD	= Gallons per day
ΔT_{main}	= Average temperature difference between water heater set point temperature and the supply water temperature in water main ($^{\circ}F$)
ΔT_{amb}	= Average temperature difference between water heater set point temperature and the surrounding ambient air temperature (°F)
baseline	= Baseline condition or measure

ee	= Energy efficient condition or measure
Eff	= Efficiency
UA	= Overall heat loss coefficient (BTU/hr-°F)
365	= Days in one year
8.33	= Energy required (BTU) to heat one gallon of water by one degree Fahrenheit
100,000	= Conversion factor (BTU/therm), one therm equals 100,000 BTU
8,760	= Hours in one year

Variable	Value	Notes
GPD	17.2 X # of people	Calculated based on number of people served by the system. If unknown, use 46 GPD. ¹¹²
ΔT_{main}	T _{set} - T _{main}	Average temperature difference between water heater set point temperature and the supply water temperature in water main (°F)
ΔT_{amb}	70 (T _{set} - T _{amb})	Average temperature difference between water heater set point temperature and the surrounding ambient air temperature (°F)
T _{set}	140	Water heater set point temperature (°F). ¹¹³
T _{main}		Supply water temperature in water main (°F). Lookup in Cold Water Inlet Temperature table below based on nearest city.
T _{amb}	70	Surrounding ambient air temperature (°F). ¹¹⁴
Effbaseline	75%	Efficiency of the baseline condition. ¹¹⁵
Eff _{ee}		Efficiency of energy efficient indirect-system boiler (AFUE), from application.
UA _{baseline}	7.85	Overall heat loss coefficient of the baseline condition (BTU/hr-°F). ¹¹⁶

Summary of Variables and Data Sources

¹¹² Water Research Foundation: Residential End Uses of Water, Version 2, April 2016, p. 5; 17.2 GPD equated from the report findings indicating an average 2.65 people per household and 45.5 GPD per household.

¹¹³ Per OSHA recommendations for prevention of Legionella bacterial growth

⁽https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html)

¹¹⁴ Water heaters are generally located in conditioned or partially conditioned spaces with a typical average temperature of 65°F to 70°F to avoid freezing. A value of 70°F is used for the purposes of estimating tank/ambient air temperature differential, which aligns with standby loss specification testing standards.

¹¹⁵ Per 10 CFR 430, typical recovery efficiency of a gas water heater, which is used for the purposes of this measure as a proxy for thermal efficiency, is 0.75. See for example, 10 CFR 430 Subpart B Appendix C1, 5.6.1.1.

¹¹⁶ Based on computation of heat loss coefficients via conversion equations found in 10 CFR 429, 430, and 431 Docket No. EERE-2015-BT-TP-0007, Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters. Heat loss coefficient was equated for two minimally code compliant gas storage water heaters found to be the most typical in terms of storage and input capacity, representing storage type water heaters of between 20 and 55 gallon capacity (40 gallon, 40,000 Btu/h assumed) and between 55 and 120 gallon capacity (75 gallon, 76,000 Btu/h assumed). Results of heat loss coefficient evaluation at these two data points agreed to within 0.3%, so the lower of the two was selected to represent the UA_{baseline} term.

Variable	Value	Notes
UA _{ee}		Overall heat loss coefficient of the energy efficient measure (BTU/hr-°F). Calculate per Qualifying Heat Loss Coefficient section below, based on qualifying equipment standby loss specification, rated in °F/hr. If unknown, assume $UA_{ee} = 5.4$. ¹¹⁷

Cold Water Inlet Temperature (T_{main})

Supply water main temperatures vary according to climate, and are approximately equal to the annual average outdoor temperature plus 6°F.¹¹⁸ Supply main temperatures based on the annual outdoor temperature are shown below.

City	Annual average outdoor temperature ¹¹⁹ (°F)	T _{main} (°F)
Albany	48.3	54.3
Binghamton	46.3	52.3
Buffalo	48.3	54.3
Massena	43.5	49.5
NYC	55.4	61.4
Poughkeepsie	49.8	55.8
Syracuse	48.3	54.3

Qualifying Heat Loss Coefficient (UAee)

Indirect-fired water heater storage tanks are tested and rated for standby losses (in $^{\circ}F/hr$) at standard testing conditions in accordance with testing standards.¹²⁰ The qualifying equipment standby loss specification (SL_{ee}), where available, shall be used in the formula below, along with tank volume (v_{ee}) to establish the qualifying equipment heat loss coefficient (UA_{ee}).

$$UA_{ee} = \frac{SL_{ee}}{70} \times v_{ee} \times 8.33$$

where:

UA _{ee}	= Overall heat loss coefficient (BTU/hr- $^{\circ}$ F) of the energy efficient condition or
	measure
SLee	= Standby loss specification (°F/hr) of the energy efficient condition or measure
Vee	= Rated storage capacity (gallons) of the energy efficient condition or measure
70	= Temperature differential (°F) utilized in standby loss testing procedure
8.33	= Energy required (BTU) to heat one gallon of water by one degree Fahrenheit

¹¹⁷ Based on the average standby loss specification (in °F/hr) of AHRI-certified Indirect Water Heater storage tanks, per the AHRI Directory.

¹¹⁸ Burch, Jay and Christensen, Craig, "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory

¹¹⁹ Average annual outdoor temperatures taken from NCDC 1981-2010 climate normals

¹²⁰ GAMA Testing Standard: Performance of Indirect-Fired Water Heaters, March 2003

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies from which Incentives are Calculated

The baseline condition is a minimally code compliant gas storage type water heater with a recovery efficiency of 75%, tank volume equal to the energy efficient condition and heat loss coefficient as indicated above.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is an indirect gas-fired water heating system meeting minimum performance requirements dictated by program eligibility criteria.

Operating Hours

Water heater run hours are not utilized in the estimation of energy or demand savings, but water heater is assumed to be available for operation 8,760 hours per year. Additionally, it is assumed standby losses are incurred 8,760 hours per year.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

Reduction in standby heat losses will have a negligible impact on space heating when the water heater is located in conditioned space. Consideration of these effects is not included in this methodology.

Ancillary Electric Savings Impacts

Reduction in standby heat losses will have a negligible impact on space heating and cooling when the water heater is located in conditioned space. Consideration of these effects is not included in this methodology.

References

1. Water Research Foundation: "Residential End Uses of Water, Version 2: Executive Report", April 2016

Available from: <u>http://www.waterrf.org/PublicReportLibrary/4309A.pdf</u>

- 2. OSHA Legionnaire's Disease eTool: Section II: C-1. Domestic Hot-Water Systems Available from: <u>https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html</u>
- 10 CFR 430 Subpart B Test Procedures, Appendix E Uniform Test Method for Measuring the Energy Consumption of Water Heaters Available from: <u>https://www.ecfr.gov/cgibin/retrieveECFR?gp=&SID=9624a8ba0987aaae248454c49194a661&mc=true&n=pt10.</u> <u>3.430&r=PART&ty=HTML#ap10.3.430_127.e</u>
- 10 CFR 430 Subpart B Test Procedures, Appendix C1 Uniform Test Method for Measuring the Energy Consumption of Dishwashers Available from: <u>https://www.ecfr.gov/cgi-bin/text-</u>

idx?SID=9acb5e05dd1d96230c64079cf0c03102&mc=true&node=pt10.3.430&rgn=div5 #ap10.3.430_127.c1

 10 CFR 429, 430, and 431 Docket No. EERE-2015-BT-TP-0007, Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters Available from: https://apercy.com/cites/prod/files/2016/08/f22/Water9/ 20Uesters9/ 20Test9/ 20Presedure

https://energy.gov/sites/prod/files/2016/08/f33/Water%20Heaters%20Test%20Procedure %20SNOPR.pdf

- 6. 10 CFR 431.110 Energy conservation standards and their effective dates. Available from: <u>https://www.ecfr.gov/cgi-bin/text-idx?SID=7a74a124de079734b1fa6e7aef0cdc0c&mc=true&node=pt10.3.431&rgn=div5#se10.3.431_1110</u>
- 7. AHRI Directory of Certified Product Performance Available from: <u>https://www.ahridirectory.org/ahridirectory/pages/home.aspx</u>
- Burch, Jay and Craig Christensen; "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory. Available from: <u>http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=05D73BA6EF5ECCF71969D0</u> 83FB317991?doi=10.1.1.515.6885&rep=rep1&type=pdf
- 9. NOAA National Centers for Environmental Information NCDC 1981-2010 Climate Normals

Available from: <u>https://www.ncdc.noaa.gov/cdo-web/datatools/normals</u>

10. GAMA Testing Standard: Performance of Indirect-Fired Water Heaters, March 2003 Available from:

http://www.ahrinet.org/App_Content/ahri/files/standards%20pdfs/Indirect-Fired%20Water%20Heater%20Testing%20Standard03.pdf

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
6-13-2	6/30/2013
7-13-5	7/31/2013
7-13-6	7/31/2013
7-13-29	7/31/2013
7-13-33	7/31/2013
7-13-34	7/31/2013
7-13-35	7/31/2013
11-13-2	11/26/2013
12-17-4	12/31/2017

Return to Table of Contents

STORAGE TANK AND INSTANTANEOUS DOMESTIC WATER HEATER

Measure Description

This measure covers the installation of storage tank water heaters designed to heat and store water at a thermostatically controlled temperature, as well as instantaneous type water heaters, which heat water but contain no more than one gallon of water per 4,000 BTU per hour of input. This measure applies to potable hot water delivery only; it is not applicable to hot water heaters used for process loads or space heating. Additionally, qualifying equipment must be designed to heat water to a temperature no greater than 180°F and, if electric power is required for operation, must use a single-phase external power supply.

Storage type units include residential gas storage water heaters with a nominal input of 75,000 BTU per hour or less and a rated storage capacity between 20 and 100 gallons, residential-duty commercial gas storage water heaters with a nominal input of greater than 75,000 BTU per hour and less than or equal to 105,000 BTU per hour and a rated storage capacity between 20 and 120 gallons and electric storage water heaters with an input of 12 kilowatts or less and a rated storage capacity between 20 and 120 gallons.

Instantaneous type units include gas instantaneous water heaters with a rated input capacity of greater than or equal to 50,000 and less than 200,000 BTU per hour and a manufacturer's specified storage capacity of less than 2 gallons, residential electric instantaneous water heaters with an input of 12 kilowatts or less and a manufacturer's specified storage capacity of less than 2 gallons and residential-duty commercial electric instantaneous water heaters with an input of greater than 12 kilowatts and less than or equal to 56.8 kilowatts and a manufacturer's specified storage capacity of 2 gallons or less.¹²¹

This measure applies to replacement of existing storage type and instantaneous water heaters using the same heating fuel (gas or electric) as the proposed case. For new construction, this measure assumes baseline to be a minimally code compliant water heater of the same type (storage or instantaneous) and using the same heating fuel (gas or electric) as the proposed case.

This measure applies to residential applications as well as residential-duty water heaters installed in commercial settings. In the latter case, this methodology shall be employed utilizing typical GPD values as defined in the "Gallons per Day (GPD)" section of the Commercial Storage Tank Water Heater measure detailed in this document.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings (Electric Equipment Only)

$$\Delta kWh = units \times \frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{3,412} \times \left[\frac{1}{UEF_{baseline}} - \frac{1}{UEF_{ee}}\right]$$

¹²¹ Definitions of qualifying system types and specifications per 10 CFR 430.2 and revised in accordance with the limitations imposed by 10 CFR 430.32(d) and 10 CFR 431.110(b).

Peak Coincident Demand Savings (Electric Equipment Only)

$$\Delta kW = units \times \frac{(UA_{baseline} - UA_{ee}) \times \Delta T_{amb}}{3,412} \times CF$$

Annual Gas Energy Savings (Gas Equipment Only)

$$\Delta therms = units \times \frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{100,000} \times \left[\frac{1}{UEF_{paseline}} - \frac{1}{UEF_{ee}}\right]$$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
GPD	= Gallons per day
ΔT_{main}	= Average temperature difference between water heater set point temperature and
	the supply water temperature in water main (°F)
ΔT_{amb}	= Average temperature difference between water heater set point temperature and
	the surrounding ambient air temperature (°F)
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
UEF	= Uniform energy factor
UA	= Overall heat loss coefficient (BTU/hr- $^{\circ}$ F)
CF	= Coincidence factor
365	= Days in one year
8.33	= Energy required (BTU) to heat one gallon of water by one degree Fahrenheit
3,412	= Conversion factor, one kWh equals 3,412 BTU
100,000	= Conversion factor (BTU/therm), one therm equals 100,000 BTU

Summary of Variables and Data Sources

Variable	Value	Notes
GPD	17.2 X # of people	Calculated based on number of people served by the system. If unknown, use 46 GPD. ¹²²
ΔT_{main}	T _{set} - T _{main}	Average temperature difference between water heater set point temperature and the supply water temperature in water main (°F)
ΔT_{amb}	70 (T _{set} - T _{amb})	Average temperature difference between water heater set point temperature and the surrounding ambient air temperature (°F)

¹²² Water Research Foundation: Residential End Uses of Water, Version 2, April 2016, p. 5; 17.2 GPD equated from the report findings indicating an average 2.65 people per household and 45.5 GPD per household.

Variable	Value	Notes
T _{set}	140	Water heater set point temperature (°F). ¹²³
		Supply water temperature in water main (°F).
T _{main}		Lookup in Cold Water Inlet Temperature table
		below based on nearest city.
T _{amb}	70	Surrounding ambient air temperature (°F). ¹²⁴
		Uniform Energy Factor of the baseline condition.
UEF _{baseline}		See Baseline Efficiencies section below for
		details regarding derivation of this input.
UEF _{ee}		Uniform Energy Factor of the energy efficient
		measure, from application
IIA	7 85	Overall heat loss coefficient of the baseline
UAbaseline	7.85	condition (BTU/hr-°F). ¹²⁵
		Overall heat loss coefficient of the energy
UA _{ee}		efficient measure (BTU/hr-°F). For instantaneous
		water heaters, set $UA_{ee} = 0$. For storage type
		water heaters, set $UA_{ee} = 5.4$. ¹²⁶
CF	0.8	

Cold Water Inlet Temperature (T_{main})

Supply water main temperatures vary according to climate, and are approximately equal to the annual average outdoor temperature plus 6°F.¹²⁷ Supply main temperatures based on the annual outdoor temperature are shown below.

¹²³ Per OSHA recommendations for prevention of Legionella bacterial growth

⁽https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html)

¹²⁴ Water heaters are generally located in conditioned or partially conditioned spaces with a typical average temperature of 65°F to 70°F to avoid freezing. A value of 70°F is used for the purposes of estimating tank/ambient air temperature differential, which aligns with standby loss specification testing standards.

¹²⁵ Based on computation of heat loss coefficients via conversion equations found in 10 CFR 429, 430, and 431 Docket No. EERE-2015-BT-TP-0007, Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters. Heat loss coefficient was equated for two minimally code compliant gas storage water heaters found to be the most typical in terms of storage and input capacity, representing storage type water heaters of between 20 and 55 gallon capacity (40 gallon, 40,000 Btu/h assumed) and between 55 and 120 gallon capacity (75 gallon, 76,000 Btu/h assumed). Results of heat loss coefficient evaluation at these two data points agreed to within 0.3%, so the lower of the two was selected to represent the UA_{baseline} term.

¹²⁶ Based on the average standby loss specification (in °F/hr) of AHRI-certified Indirect Water Heater storage tanks, per the AHRI Directory.

¹²⁷ Burch, Jay and Christensen, Craig, "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory

City	Annual average outdoor temperature ¹²⁸ (°F)	T _{main} (°F)
Albany	48.3	54.3
Binghamton	46.3	52.3
Buffalo	48.3	54.3
Massena	43.5	49.5
NYC	55.4	61.4
Poughkeepsie	49.8	55.8
Syracuse	48.3	54.3

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8^{129} .

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a minimally code compliant gas or electric storage or instantaneous type water heater (based on proposed conditions) with tank volume, input capacity and draw pattern equivalent to the proposed case.

UEF_{baseline} shall be calculated as a function of qualifying equipment tank volume (v_t) for storage type water heaters or looked up for instantaneous water heaters per federal standards from the appropriate table (Residential Water Heaters or Residential-Duty Commercial Water Heaters) below, using the qualifying equipment type, capacity and draw pattern. Draw pattern can be established based on the proposed equipment First Hour Rating (FHR), rated in gallons, for storage type water heaters or Max Gallons per Minute (GPM), rated in gallons/minute, for instantaneous water heaters. See the First Hour Rating vs. Draw Pattern and Max GPM vs. Draw Pattern tables below for storage type and instantaneous water heaters, respectively. If FHR or Max GPM is unknown, a Medium draw pattern should be assumed for storage type water heaters with rated storage capacity \leq 50 gallons and a High draw pattern should be assumed otherwise.¹³⁰

¹²⁸ Average annual outdoor temperatures taken from NCDC 1981-2010 climate normals

¹²⁹ No source specified – update pending availability and review of applicable references.

¹³⁰ Based on review of typical usage bins for AHRI certified residential water heating equipment (<u>https://www.ahridirectory.org/ahridirectory/pages/home.aspx</u>)

Product Class	Rated Storage Volume and Input Rating	Draw Pattern	UEFbaseline
	· · · · · ·	Very Small	$0.3456 - (0.0020 \text{ x v}_{t}^{*})$
	> 20 colored < 55 col	Low	0.5982 - (0.0019 x v _t)
	≥ 20 gai and ≤ 55 gai	Medium	0.6483 - (0.0017 x v _t)
Gas-Fired Storage		High	0.6920 - (0.0013 x v _t)
Water Heater		Very Small	0.6470 - (0.0006 x v _t)
	100 cm^2	Low	0.7689 - (0.0005 x v _t)
	> 55 gai and ≤ 100 gai	Medium	0.7897 - (0.0004 x v _t)
		High	0.8072 - (0.0003 x vt)
		Very Small	0.8808 - (0.0008 x v _t)
	> 20 colored < 55 col	Low	0.9254 - (0.0003 x v _t)
	\geq 20 gai and \geq 55 gai	Medium	0.9307 - (0.0002 x v _t)
Electric Storage		High	0.9349 - (0.0001 x v _t)
Water Heater	> 55 gal and ≤ 120 gal	Very Small	1.9236 - (0.0011 x v _t)
		Low	2.0440 - (0.0011 x v _t)
		Medium	2.1171 - (0.0011 x v _t)
		High	2.2418 - (0.0011 x v _t)
		Very Small	0.80
Instantaneous Gas- Fired Water Heater	< 2 gal and $> 50,000$	Low	0.81
	Btu/h	Medium	0.81
		High	0.81
Instantancous		Very Small	0.91
Floatria Water		Low	0.91
Heater	< 2 gai	Medium	0.91
1 ICalCI		High	0.92

Residential Water Heaters¹³¹

 $v_t = tank volume in gallons$

Residential-Duty Commercial Water Heaters¹³²

Product Class	Rated Storage Volume and Input Rating	Draw Pattern	UEFbaseline
	>75000 Ptu/h and \leq	Very Small	$0.2674 - (0.0009 \text{ x v}_{t}^{*})$
Gas-Fired Storage	$> 75,000$ Btu/n and ≤ 120	Low	0.5362 - (0.0012 x v _t)
Water Heater		Medium	0.6002 - (0.0011 x v _t)
	gai	High	0.6597 - (0.0009 x v _t)
Instantoneous		Very Small	0.80
Electric Water	$>12~kW$ gal and $\leq 55~gal$	Low	0.80
		Medium	0.80
Tieatei		High	0.80

 $v_t = tank volume in gallons$

¹³¹ 10 CFR 430.32(d) ¹³² 10 CFR 431.110(b)

First Hour Rating	Draw Pattern
< 18 gallons	Very Small
\geq 18 and < 51 gallons	Low
\geq 51 and < 75 gallons	Medium
\geq 75 gallons	High

First Hour Rating vs. Draw Pattern (Storage Type Only)¹³³

Max GPM vs. Draw Pattern (Instantaneous Only)¹³⁴

Max GPM	Draw Pattern
< 1.7 gallons/minute	Very Small
\geq 1.7 and < 2.8 gallons/minute	Low
\geq 2.8 and < 4.0 gallons/minute	Medium
\geq 4.0 gallons/minute	High

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a gas or electric storage or instantaneous type water heater as defined in the Measure Description section above meeting minimum performance requirements dictated by program eligibility criteria.

Operating Hours

Water heater run hours are not utilized in the estimation of energy or demand savings, but water heater is assumed to be available for operation 8,760 hours per year. Additionally, it is assumed standby losses are incurred 8,760 hours per year.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

Reduction in standby heat losses will have a negligible impact on space heating when the water heater is located in conditioned space. Consideration of these effects is not included in this methodology.

Ancillary Electric Savings Impacts

Reduction in standby heat losses will have a negligible impact on space heating and cooling when the water heater is located in conditioned space. Consideration of these effects is not included in this methodology.

¹³³ 10 CFR 429.17
¹³⁴ 10 CFR 429.17

References

- 1. 10 CFR 430.2 Definitions. Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=78ea8c7c6bf5379d6e0fd2b41e335739&mc=true&n=pt10.3</u> .430&r=PART&ty=HTML#se10.3.430_12
- 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>
- 3. 10 CFR 431.110 Energy conservation standards and their effective dates. Available from: <u>https://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=a69096e892b13c204bbe6da3a92f8111&mc=true&node=se10.3.431_1110&rgn</u> <u>=div8</u>
- 4. Water Research Foundation: "Residential End Uses of Water, Version 2: Executive Report", April 2016 Available from: http://www.waterrf.org/PublicReportLibrary/4309A.pdf
- 5. OSHA Legionnaire's Disease eTool: Section II: C-1. Domestic Hot-Water Systems Available from: https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html
- 10 CFR 430 Subpart B Test Procedures, Appendix E Uniform Test Method for Measuring the Energy Consumption of Water Heaters Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=9624a8ba0987aaae248454c49194a661&mc=true&n=pt10.</u> 3.430&r=PART&ty=HTML#ap10.3.430_127.e
- 10 CFR 429, 430, and 431 Docket No. EERE-2015-BT-TP-0007, Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters Available from:

https://energy.gov/sites/prod/files/2016/08/f33/Water%20Heaters%20Test%20Procedure %20SNOPR.pdf

- 8. AHRI Directory of Certified Product Performance Available from: <u>https://www.ahridirectory.org/ahridirectory/pages/home.aspx</u>
- Burch, Jay and Craig Christensen; "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory. Available from: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=05D73BA6EF5ECCF71969D0

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=05D73BA6EF5ECCF71969D0 83FB317991?doi=10.1.1.515.6885&rep=rep1&type=pdf

10. NOAA National Centers for Environmental Information – NCDC 1981-2010 Climate Normals

Available from: https://www.ncdc.noaa.gov/cdo-web/datatools/normals

11. 10 CFR 429.17 Water heaters. Available from: <u>https://www.ecfr.gov/cgi-bin/text-idx?rgn=div5&node=10:3.0.1.4.17#se10.3.429_117</u>

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
6-13-1	6/30/2013
7-13-6	7/31/2013
11-13-2	11/26/2013
12-17-5	12/31/2017

Return to Table of Contents

Domestic Hot Water – Control

FAUCET – LOW-FLOW AERATOR

Measure Description

A low-flow faucet aerator is a water saving device with rated gallons per minute (gpm) less than maximum allowable flowrate as mandated by federal, state and regional code. New York City plumbing code and New York State construction code dictate a maximum flowrate of 2.2 gpm for sink faucets and 1.5 gpm for lavatory faucets. This is a retrofit direct install measure or a new installation.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times H_2 O_{savings} \times (T_{faucet} - T_{main}) \times \frac{8.33}{3,412} \times \frac{1}{UEF}$$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

$$\Delta therms = units \times H_2 O_{savings} \times (T_{faucet} - T_{main}) \times \frac{8.33}{100,000} \times \frac{1}{UEF}$$

Note: to estimate the annual gallons of water saved from installation of measure

$$H_2O_{savings} = (GPM_{baseline} - GPM_{ee}) \times Flow_r \times \frac{minutes}{use} \times \frac{uses}{day} \times 365 \frac{days}{yr}$$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
H ₂ O _{savings}	= Water savings
Т	= Temperature (°F)
UEF	= Uniform energy factor
GPM	= Gallon per minute
Flow _r	= Flow rate restricted
8.33	= Energy required (BTU's), to heat one gallon of water by one degree Fahrenheit
100,000	= Conversion factor, (BTU/therm), one therm equals 100,000 BTU's
3,412	= Conversion factor, one kW equals 3,412.14 BTU/h

Variable	Value	Notes		
CDM	1.5	GPM for energy efficient measure, from application (Non-lavatory faucets)		
OFMee	1.0	GPM for energy efficient measure, from application (Lavatory faucets)		
GPM.	2.2	GPM for baseline measure (Non-lavatory faucets) ^{135,136}		
OFMbaseline	1.5	GPM for baseline measure (Lavatory faucets) ^{1,2}		
Flow _r	0.75	Flow restriction factor of faucet aerator		
minutes/use	0.5 Estimated duration of use (based on approximately 8.5 minutes of faucet usage per faucet per day; assumes 26 minutes of faucet usage household per day and 3 faucets per household) ¹³⁷			
uses/day	17	Estimated number of uses per day (based on approximately 8.5 minutes of usage per faucet per day; assumes 26 minutes of faucet usage per household per day and 3 faucets per household) ¹³⁸		
1,629		Calculated gallons of water saved per year based on installation of energy efficient measure (Non-lavatory faucets)		
112Osavings	1,163	Calculated gallons of water saved per year based on installation of energy efficient measure (Lavatory faucets)		
T _{faucet}	80	The typical water temperature leaving the faucet in °F		
T _{main}		Average inlet water temperature (see appending table) (°F)		
UEF	See UEF Table Below	⁷ Uniform Energy Factor based on product class, size, input rating draw pattern (if unknown, assume high draw pattern) ¹³⁹		

Summary of Variables and Data Sources

Inlet water temperature from main, by location is shown below.

City	Annual average outdoor temperature (°F)	T main (°F)	
Albany	48.2	54.2	
Binghamton	46.9	52.9	
Buffalo	48.3	54.3	
Massena	44.7	50.7	
Syracuse	48.6	54.6	
Upstate Average	47.3	53.3	
Long Island	56.5	62.5	
NYC	56.5	55.0	

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

¹³⁸ Ibid.

¹³⁹ 10 CFR 430.32(d)

¹³⁵ 2017 NYS Uniform Code Supplement, Table P2903.2
¹³⁶ 2014 NYC Plumbing Code, Table 604.4

¹³⁷ Water Research Foundation: Residential End Uses of Water, Version 2, April 2016

Baseline Efficiencies from which Savings are Calculated

The Summary of Variables and Data Sources provides the baseline (standard) and low flow aerator water flows, related input assumptions, and the resulting water savings. Assumptions regarding average duration of use and number of uses per day are also presented. Uniform Energy Factor is determined for the assumed water heater system configurations cited per the table below (from Code of Federal Regulations 10 CFR 430.32(d)).

Product Class	Rated Storage Volume and Input Rating	Draw Pattern	Uniform Energy Factor
		Very Small	0.3456 - (0.0020 x V _t *)
	> 20 gal and < 55 gal	Low	0.5982 - (0.0019 x V _t)
		Medium	0.6483 - (0.0017 x V _t)
Gas-Fired Storage		High	0.6920 - (0.0013 x V _t)
Water Heater		Very Small	0.6470 - (0.0006 x V _t)
	> 55 gal and < 100 gal	Low	0.7689 - (0.0005 x V _t)
	· 55 gui una <u>-</u> 100 gui	Medium	0.7897 - (0.0004 x V _t)
		High	0.8072 - (0.0003 x V _t)
		Very Small	0.8808 - (0.0008 x V _t)
	> 20 gal and < 55 gal	Low	0.9254 - (0.0003 x V _t)
		Medium	0.9307 - (0.0002 x V _t)
Electric Storage		High	0.9349 - (0.0001 x V _t)
Water Heater		Very Small	1.9236 - (0.0011 x V _t)
	> 55 gal and < 100 gal	Low	2.0440 - (0.0011 x V _t)
	· 55 gui una <u>-</u> 100 gui	Medium	2.1171 - (0.0011 x V _t)
		High	2.2418 - (0.0011 x V _t)
		Very Small	0.80
Instantaneous Gas-	< 2 gal and > 50,000	Low	0.81
Fired Water Heater	Btu/h	Medium	0.81
		High	0.81
.		Very Small	0.91
Instantaneous Electric Water	len C >	Low	0.91
Heater		Medium	0.91
		High	0.92

 $V_t = Rated Storage Volume (gal)$

Compliance Efficiency from which Incentives are Calculated

Compliance flow rates are specified in the Summary of Variables and Data Sources above.

Operating Hours

Operating hours are assumed at 365 days per year.

Effective Useful Life (EUL)

Years: 10 Source: DEER 2014¹⁴⁰

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

 NYS 2017 Uniform Code Supplement, March 2017: Section 2.39 – 2015 IRC Table P2903.2 (Maximum Flow Rates and Consumption for Plumbing Fixtures and Fixture Fittings)

Available from: <u>https://www.dos.ny.gov/dcea/pdf/2017-Uniform-Code-Supplement-3-17-2017.pdf</u>

- NYC Plumbing Code, 2014; Table 604.4: Maximum Flow Rates and Consumption for Plumbing Fixtures and Fixture Fittings Available from: <u>http://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2014CC_PC_Chapter6_Water_Supply_and_Distribution.pdf§ion=conscode_2014</u>
- Water Research Foundation: "Residential End Uses of Water, Version 2: Executive Report", April 2016 Available from: <u>http://www.waterrf.org/PublicReportLibrary/4309A.pdf</u>
- 4. 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn=div8</u>
- 5. Average annual outdoor temperature taken from the National Renewable Energy Laboratory TMY 3 long-term average weather data sets, processed with the DOE-2.2 weather data statistics package. Available from: https://www.nrel.gov
- 6. Water mains temperatures estimated from annual average temperature taken from: Burch, Jay and Craig Christensen; "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory. Available from: http://citasaerx_ist_psu_edu/viewdoc/download2doi=10.1.1.515_6885&ren=ren1&type=pdf
- <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.515.6885&rep=rep1&type=pdf</u>
 7. California Public Utilities Commission: Database for Energy Efficient Resources
- (DEER) 2014, Updated-EULrecords_02-05-2014; EUL ID: WtrHt-WH-Aertr. Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

¹⁴⁰ CA DEER – 2014 Updated EUL Records

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
6-13-5	6/30/2013
7-13-7	7/31/2013
6-17-2	6/30/2017

Return to Table of Contents

THERMOSTATIC SHOWER RESTRICTION VALVE

Measure Description

A thermostatic valve attached to a showerhead supply for reduction of domestic hot water flow and associated energy usage. The device restricts hot water flow through the showerhead by activating the trickle or stop flow mode when water reaches a temperature set point of 95°F, or slightly lower, depending on manufacturer.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times kWh savings$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 Δ therms = units × therm savings

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
CF	= Coincidence factor

Summary of Variables and Data Sources

Variable	Value	Notes
kWh savings	As defined in kWh Savings table below	Deemed annual electric energy savings for electric resistance storage tank water heater. Look up based on location and water usage rate (table below).
therm savings	As defined in Therm Savings table below	Deemed annual gas energy savings for natural gas storage tank water heater. Look up based on location and water usage rate (table below).
GPM _{ee}		Gallons per minute for energy efficient measure, from application
Throttle _{fac}	0.9	Used in LBNL study to adjust for occupant reduction in flow rate ¹⁴¹

¹⁴¹ LBNL: Potential Water and Energy Savings from Showerheads, March 2006

Variable	Value	Notes
Wasta Tima 1.58		Average value calculated from total water waste duration of
waste Time	1.50	five shower events $(1 \text{ min.}, 35 \text{ secs.})^{142}$
Showers/day	2	Calculated from LBNL study based on assumption of 2.59
Showers/day	2	persons/household and 0.75 showers per day per capita ¹⁴³
т.		Average inlet water temperature (°F) by location is shown
1 main		below.
		Average temperature at showerhead; conservative assumption
T _{shower}	105°F	based on NYS plumbing code, EPA MFHR program and
		ASSE 1070-2014
		Uniform Energy Factor based on product class, size, input
UEF _{elec}	0.93	rating and draw pattern. Assumes electric storage water heater
		with 40-gal capacity at high draw. ¹⁴⁴
		Uniform Energy Factor based on product class, size, input
UEFgas	0.64	rating and draw pattern. Assumes natural gas storage water
		heater with 40-gal capacity at high draw. ¹⁴⁵

kWh Savings

Location	Flow Rate (GPM)				
	1	1.25	1.5	1.75	2
Albany	138	173	207	242	277
Binghamton	142	177	213	248	284
Buffalo	138	173	207	242	276
Massena	148	185	222	259	296
Syracuse	137	172	206	240	274
Upstate Average	141	176	211	246	281
Long Island	116	145	174	202	231
NYC	136	170	204	238	272

The values in the kWh Savings table were calculated as follows, using the assumed values listed in the Summary of Variables and Data Sources table above:

$$kWh \ Savings = GPM_{ee} \times Throttle_{fac} \times Waste \ Time \times \frac{Showers}{day} \times 365 \frac{days}{year} \times (T_{shower} - T_{main}) \times \frac{8.33}{3,412} \times \frac{1}{UEF_{elec}}$$

 ¹⁴² LBNL: Water and Energy Wasted During Residential Shower Events, September 2011
 ¹⁴³ LBNL: Potential Water and Energy Savings from Showerheads, March 2006
 ¹⁴⁴ 10 CFR 430.32(d)

¹⁴⁵ Ibid.

Location	Flow Rate (GPM)				
Location	1	1.25	1.5	1.75	2
Albany	6.9	8.6	10.3	12.0	13.7
Binghamton	7.0	8.8	10.6	12.3	14.1
Buffalo	6.9	8.6	10.3	12.0	13.7
Massena	7.3	9.2	11.0	12.8	14.7
Syracuse	6.8	8.5	10.2	11.9	13.6
Upstate Average	7.0	8.7	10.5	12.2	14.0
Long Island	5.7	7.2	8.6	10.0	11.5
NYC	6.8	8.4	10.1	11.8	13.5

Therm Savings

The values in the Therm Savings table were calculated as follows, using the assumed values listed in the Summary of Variables and Data Sources table above:

$$\begin{array}{l} Therm\,Savings \ = \ GPM_{ee} \ \times \ Throttle_{fac} \ \times Waste \ Time \ \times \frac{Showers}{day} \times 365 \frac{days}{year} \times \\ (T_{shower} - \ T_{main}) \ \times \frac{8.33}{100,000} \ \times \frac{1}{UEF_{gas}} \end{array}$$

Inlet water temperature from main, by location is shown below.

City	Annual average outdoor temperature (°F)	Tmain (°F)	
Albany	48.2	54.2	
Binghamton	46.9	52.9	
Buffalo	48.3	54.3	
Massena	44.7	50.7	
Syracuse	48.6	54.6	
Upstate Average	47.3	53.3	
Long Island	56.5	62.5	
NYC	56.5	55.0	

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies from which Savings are Calculated

If known and in compliance with applicable code, the actual flowrate of the showerhead should be used for determination of per unit energy savings from the tables above. Otherwise, a baseline of 2.0 gallons per minute shall be used for compliance in New York State (per 2017 NYS Uniform Code Supplement) and New York City, (per 2014 update to NYC Plumbing Code). Uniform Energy Factor is determined for the assumed water heater system configurations cited per the table below (from Code of Federal Regulations 10 CFR 430.32(d)).

Product Class	Rated Storage Volume and Input Rating	Draw Pattern	Uniform Energy Factor
		Very Small	$0.3456 - (0.0020 \text{ x V}_{t}^{*})$
	> 20 gal and < 55 gal	Low	0.5982 - (0.0019 x V _t)
	\geq 20 gal and \leq 55 gal	Medium	0.6483 - (0.0017 x V _t)
Gas-Fired Storage		High	0.6920 - (0.0013 x V _t)
Water Heater		Very Small	0.6470 - (0.0006 x V _t)
	> 55 gal and ≤ 100 gal	Low	0.7689 - (0.0005 x V _t)
		Medium	0.7897 - (0.0004 x V _t)
		High	0.8072 - (0.0003 x V _t)
Electric Storage		Very Small	0.8808 - (0.0008 x V _t)
	\geq 20 gal and \leq 55 gal	Low	0.9254 - (0.0003 x V _t)
		Medium	0.9307 - (0.0002 x V _t)
		High	0.9349 - (0.0001 x V _t)
Water Heater	> 55 gal and ≤ 100 gal	Very Small	1.9236 - (0.0011 x V _t)
		Low	2.0440 - (0.0011 x V _t)
		Medium	2.1171 - (0.0011 x V _t)
		High	2.2418 - (0.0011 x V _t)
Instantaneous Gas- Fired Water Heater		Very Small	0.80
	< 2 gal and > 50,000 Btu/h	Low	0.81
		Medium	0.81
		High	0.81
Instantaneous Electric Water Heater		Very Small	0.91
	< 2 gal	Low	0.91
		Medium	0.91
		High	0.92

 $V_t = Rated Storage Volume (gal)$

Compliance Efficiency from which Incentives are Calculated

Compliance conditions require installation of a program qualified thermostatic shower restriction valve.

Operating Hours

Number of showers per day and duration of water waste are as listed above in Summary of Variables and Data Sources.

Effective Useful Life (EUL)

Years: 10 Source: UPC¹⁴⁶

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

1. NYS 2017 Uniform Code Supplement, March 2017: Section 2.39 – 2015 IRC Table P2903.2 (Maximum Flow Rates and Consumption for Plumbing Fixtures and Fixture Fittings)

Available from: https://www.dos.ny.gov/dcea/pdf/2017-Uniform-Code-Supplement-3-17-2017.pdf

- 2. NYC Plumbing Code, 2014; Table 604.4: Maximum Flow Rates and Consumption for Plumbing Fixtures and Fixture Fittings Available from: http://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2014CC_PC_ Chapter6_Water_Supply_and_Distribution.pdf§ion=conscode_2014
- 3. Lawrence Berkeley National Laboratory (LBNL): "Potential Water and Energy Savings from Showerheads", March 2006 Available from: http://www.maptesting.com/assets/files/Biermayer,%20P.%20(2006)%20Potential%20Water%20and% 20Energy%20Savings%20from%20Showerheads.pdf
- 4. Lawrence Berkeley National Laboratory (LBNL): "Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems", September 2011

Available from:

https://efficiency.lbl.gov/sites/all/files/water_and_energy_wasted_during_residential_sho wer_events_findings_from_a_pilot_field_study_of_hot_water_distribution_systems_lbnl -5115e.pdf

- 5. 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: http://www.ecfr.gov/cgi-bin/textidx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= div8
- 6. Average annual outdoor temperature taken from the National Renewable Energy Laboratory TMY 3 long-term average weather data sets, processed with the DOE-2.2 weather data statistics package.

Available from: https://www.nrel.gov

7. Water mains temperatures estimated from annual average temperature taken from: Burch, Jay and Craig Christensen; "Towards Development of an Algorithm for Mains Water

¹⁴⁶ Uniform Plumbing Code (UPC)

Temperature." National Renewable Energy Laboratory. Available from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.515.6885&rep=rep1&type=pdf

8. Uniform Plumbing Code (UPC) certification under the International Association of Plumbing and Mechanical Officials standard IGC 244-2007a.

Record of Revision

Record of Revision Number	Issue Date
6-14-2	6/19/2014
6-17-3	6/30/2017

Return to Table of Contents

SHOWERHEAD – LOW FLOW

Measure Description

A low flow showerhead is a water saving showerhead with rated gallons per minute (gpm) less than maximum allowable flowrate as mandated by federal, state and regional code. New York City plumbing code and New York State construction code dictate a maximum flowrate of 2.0 gpm for showerheads. This is a retrofit direct install measure or a new installation.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times H_2 O_{savings} \times (T_{shower} - T_{main}) \times \frac{8.33}{3,412} \times \frac{1}{UEF}$$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

$$\Delta therms = units \times H_2 O_{savings} \times (T_{shower} - T_{main}) \times \frac{8.33}{100,000} \times \frac{1}{UEF}$$

Note: to estimate the annual gallons of water saved from installation of measure

$$H_2O_{savings} = (GPM_{baseline} - GPM_{ee}) \times Throttle_{fac} \times \frac{minutes}{use} \times \frac{uses}{day} \times 365 \frac{days}{yr}$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
H ₂ O _{savings}	= Water savings
Т	= Temperature (°F)
UEF	= Uniform energy factor
GPM	= Gallon per minute
Throttle _{fac}	= Throttle factor
8.33	= Energy required (BTU's), to heat one gallon of water by one degree Fahrenheit
100,000	= Conversion factor, (BTU/therm), one therm equals 100,000 BTU's
3,412	= Conversion factor, one kW equals 3,412.14 BTU/h

Variable	Value	Notes	
GPMee		Gallons per minute for energy efficient measure,	
		from application	
GPM _{baseline}	2.0	Gallons per minute for baseline ^{147,148}	
Throttle _{fac}	0.0	Used in LBNL study to adjust for occupant	
	0.9	reduction in flow rate ¹⁴⁹	
minutes/use	8.2	Average shower duration per LBNL study. ¹⁵⁰	
		Calculated from LBNL study based on assumption	
uses/day	2	of 2.59 persons/household and 0.75 showers per	
		day per capita. ¹⁵¹	
т.		Average inlet water temperature (°F) by location is	
1 main		shown below.	
		Average temperature at showerhead; conservative	
T _{shower}	105 ⁰ F	assumption based on 2014 NYS plumbing code,	
		EPA MFHR program and ASSE 1070-2014	
UEF	See UEF Table Below	Uniform Energy Factor based on product class,	
		size, input rating and draw pattern (if unknown,	
		assume high draw pattern) ¹⁵²	

Summary of Variables and Data Sources

Inlet water temperature from main, by location is shown below.

City	Annual average outdoor temperature (⁰ F)	T mains (°F)
Albany	48.2	54.2
Binghamton	46.9	52.9
Buffalo	48.3	54.3
Massena	44.7	50.7
Syracuse	48.6	54.6
Upstate Average	47.3	53.3
Long Island	56.5	62.5
NYC	56.5	55.0

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

¹⁴⁷ 2017 NYS Uniform Code Supplement, Table P2903.2
¹⁴⁸ 2014 NYC Plumbing Code, Table 604.4
¹⁴⁹ LBNL: Potential Water and Energy Savings from Showerheads, March 2006

¹⁵⁰ Ibid.

¹⁵¹ Ibid.

¹⁵² 10 CFR 430.32(d)

Baseline Efficiencies from which Savings are Calculated

The Summary of Variables and Data Sources provides the baseline (standard) water flow and related input assumptions. Assumptions regarding average duration of use and number of uses per day are also presented. Uniform Energy Factor is determined for the assumed water heater system configurations cited per the table below (from Code of Federal Regulations 10 CFR 430.32(d)).

Product Class	Rated Storage Volume and Input Rating	Draw Pattern	Uniform Energy Factor
	\geq 20 gal and \leq 55 gal	Very Small	0.3456 - (0.0020 x V _t *)
		Low	0.5982 - (0.0019 x V _t)
		Medium	0.6483 - (0.0017 x V _t)
Gas-Fired Storage		High	0.6920 - (0.0013 x V _t)
Water Heater	> 55 gal and ≤ 100 gal	Very Small	0.6470 - (0.0006 x V _t)
		Low	0.7689 - (0.0005 x V _t)
		Medium	0.7897 - (0.0004 x V _t)
		High	0.8072 - (0.0003 x V _t)
		Very Small	0.8808 - (0.0008 x V _t)
	\geq 20 gal and \leq 55 gal	Low	0.9254 - (0.0003 x V _t)
		Medium	0.9307 - (0.0002 x V _t)
Electric Storage Water Heater		High	0.9349 - (0.0001 x V _t)
	> 55 gal and ≤ 100 gal	Very Small	1.9236 - (0.0011 x V _t)
		Low	2.0440 - (0.0011 x V _t)
		Medium	2.1171 - (0.0011 x V _t)
		High	2.2418 - (0.0011 x V _t)
Instantaneous Gas- Fired Water Heater		Very Small	0.80
	< 2 gal and > 50,000 Btu/h	Low	0.81
		Medium	0.81
		High	0.81
Instantaneous Electric Water Heater		Very Small	0.91
	< 2 gal	Low	0.91
	< 2 gai	Medium	0.91
		High	0.92
Compliance Efficiency from which Incentives are Calculated

Compliance flow rate is less than the specified baseline value (<2.0 gpm) or less than the more restrictive codes or guidelines of local governments, municipalities or entities which, for example, participate in the US EPA Water Sense[®] Partnership Program.

Operating Hours

Assumed duration of shower and assumed number of showers per day as listed above in Summary of Variables and Data Sources.

Effective Useful Life (EUL)

Years: 10 Source: DEER 2014¹⁵³

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- NYS 2017 Uniform Code Supplement, March 2017: Section 2.39 2015 IRC Table P2903.2 (Maximum Flow Rates and Consumption for Plumbing Fixtures and Fixture Fittings) Available from: <u>https://www.dos.ny.gov/dcea/pdf/2017-Uniform-Code-Supplement-3-</u> 17-2017.pdf
- NYC Plumbing Code, 2014; Table 604.4: Maximum Flow Rates and Consumption for Plumbing Fixtures and Fixture Fittings Available from: <u>http://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2014CC_PC_Chapter6_Water_Supply_and_Distribution.pdf§ion=conscode_2014</u>
- Lawrence Berkeley National Laboratory (LBNL): "Potential Water and Energy Savings from Showerheads", March 2006 Available from: <u>http://www.map-testing.com/assets/files/Biermayer,%20P.%20(2006)%20Potential%20Water%20and%</u> 20Energy%20Savings%20from%20Showerheads.pdf
- 4. 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>
- 5. Average annual outdoor temperature taken from the National Renewable Energy Laboratory TMY 3 long-term average weather data sets, processed with the DOE-2.2 weather data statistics package.

¹⁵³ CA DEER – 2014, Updated EUL Records

Available from: <u>https://www.nrel.gov</u>

6. Water mains temperatures estimated from annual average temperature taken from: Burch, Jay and Craig Christensen; "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory. Available from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.515.6885&rep=rep1&type=pdf

 California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-05-2014; EUL ID: WtrHt-WH-Shrhd Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
6-13-4	6/30/2013
6-15-1	6/15/2015
6-17-4	6/30/2017

HEATING, VENTILATION AND AIR CONDITIONING (HVAC)

AIR CONDITIONER - CENTRAL (CAC)

Measure Description

This measure covers the installation of high-efficiency central air conditioners in residential applications. A central air conditioner is a product, other than a packaged terminal air conditioner, which is powered by single phase electric current, air cooled, rated below 65,000 Btu per hour, not contained within the same cabinet as a furnace with rated capacity above 225,000 Btu per hour, and is a cooling unit only. A central air conditioner may consist of a single-package unit or an outdoor unit and one or more indoor units, including multi-head mini-split systems.¹⁵⁴ The baseline case shall be minimally code compliant equipment of the same type and capacity as in the proposed case, which shall be sized in accordance with federal, state and local energy conservation code.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times tons/unit \times \left(\frac{12}{SEER_{baseline}} - \frac{12}{SEER_{ee}}\right) \times EFLH_{cooling}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times tons/unit \times \left(\frac{12}{EER_{baseline}} - \frac{12}{EER_{ee}}\right) \times CF$$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings		
ΔkW	= Peak coincident demand electric savings		
∆therms	= Annual gas energy savings		
units	= Number of measures installed under the program		
tons/unit	= Tons of air conditioning per unit, based on AHRI certification or nameplate data		
	of condenser or matched pair (condenser and coil)		
ee	= Energy efficient condition or measure		
baseline	= Baseline condition or measure		
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt-		
	hour, (used for average U.S. location/region)		
EFLH	= Equivalent full-load hours		
EER	= Energy efficiency ratio under peak conditions		
CF	= Coincidence factor		
12	= kBTUh/ton of air conditioning capacity		

154 10 CFR 430.2

Variable	Value	Notes
tong		From application, default to average system size from applications
tons		if unknown
SEED.		Lookup from Baseline Efficiencies table below based on product
SEEKbaseline		class and size.
SEER _{ee}		From application
EFLH _{cooling}		Lookup based on building type, vintage and location from
		Appendix G.
EER _{baseline}		Lookup from Baseline Efficiencies table below based on product
		class and size.
EER _{ee}		From application
CF	0.69	

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.69.¹⁵⁵

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a central air conditioner as defined in the Measure Description section above, with rated SEER and EER per the table below. The SEER values listed in the table below reflect the minimum performance required by federal standards. Minimum EER requirements are not specified by federal standards for the state of New York, nor are they mandated by state or city code for residential equipment. For this equipment, baseline EER is established as follows¹⁵⁶:

$$EER = (1.12 \times SEER) - (0.02 \times SEER^2)$$

Resultant values from application of this equation are tabulated in the baseline efficiencies table below.

Product Class	Seasonal Energy Efficiency Ratio (SEER) ¹⁵⁷	Energy Efficiency Ratio (EER)
Split System – Air Conditioner (<45 kBTUh)	13.0	11.2
Split System – Air Conditioner (\geq 45 and <65 kBTUh)	13.0	11.2
Single Package – Air Conditioner	14.0	11.8

¹⁵⁵ Based on BG&E 'Development of Residential Load Profile for Central Air Conditioners and Heat Pumps' research, the Maryland Peak Definition coincidence factor is 0.69. This study is not publicly available, but is referenced by the Mid-Atlantic TRM Version 7.0 published May 2017 and by M. M. Straub, Using Available Information for Efficient Evaluation of Demand-Side Management Programs, Electricity Journal, September 2011 and supported by research conducted by Cadmus on behalf of the TRM Management Committee.
¹⁵⁶ DOE. Building America House Simulation Protocols, October 2010

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a central air conditioner as defined in the Measure Description section above meeting minimum performance requirements dictated by program guidelines.

Operating Hours

Cooling EFLH data by location, building type and vintage are tabulated in <u>Appendix G</u>.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

Minor heating interactions are expected with efficient furnace fans utilized in most high efficiency air conditioners. These impacts are expected to be negligible and have not been addressed in the prescribed methodology at this time.

Ancillary Electric Savings Impacts

N/A

References

- 10 CFR 430.2 Definitions. Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=5caa706c36f6a4bc5850185c41f2175f&mc=true&n=pt10.3.</u> <u>430&r=PART&ty=HTML#se10.3.430_12</u>
- BG&E, Development of Residential Load Profile for Central Air Conditioners and Heat Pumps, via Mid-Atlantic Technical Reference Manual Version 7.0, May 2017 (accessed October 26, 2017)

Available from:

http://neep.org/sites/default/files/resources/Mid_Atlantic_TRM_V7_FINAL.pdf

- M. M. Straub, Using Available Information for Efficient Evaluation of Demand-Side Management Programs, Electricity Journal, September 2011 Available from: <u>https://www.sciencedirect.com/science/article/pii/S1040619011001941</u>
- 4. Building America House Simulation Protocols, Robert Hendron and Cheryn Engebrecht, National Renewable Energy Laboratory, October 2010 Available from: <u>https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/house_simul</u> ation_revised.pdf
- 5. 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn=</u> <u>div8</u>

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
12-17-6	12/31/2017

AIR CONDITIONER - ROOM (RAC)

Measure Description

This measure covers the installation of high-efficiency room air conditioners in residential applications. A room air conditioner is a consumer product, other than a packaged terminal air conditioner, which is powered by a single phase electric current and is an encased assembly designed as a unit for mounting in a window or through the wall for the purpose of providing delivery of conditioned air to an enclosed space. It includes a prime source of refrigeration and may include a means for ventilation and heating.¹⁵⁸ The baseline case shall be minimally code compliant equipment of the same type and capacity as in the proposed case, which shall be sized in accordance with federal, state and local energy conservation code. This measure is not applicable to central air conditioner systems.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times \frac{BTUh/unit}{1,000} \times \left(\frac{1}{CEER_{baseline}} - \frac{1}{CEER_{ee}}\right) \times EFLH_{cooling}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times \frac{BTUh/unit}{1,000} \times \left(\frac{1}{CEER_{baseline}} - \frac{1}{CEER_{ee}}\right) \times CF$$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
BTUh/unit	= British Thermal Units per hour of air conditioning per unit
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
CEER	= Combined Energy Efficiency Ratio
EFLH	= Equivalent full-load hours
CF	= Coincidence factor
1,000	= Conversion factor, one kW equals 1,000 Watts

^{158 10} CFR 430.2

Variable	Value	Notes
BTUh/unit		From application
CEER _{baseline}		Lookup from Baseline Efficiencies section below
		based on equipment type and capacity.
CEER _{ee}		From application
EFLH _{cooling}		Cooling equivalent full-load hours, lookup from
		Operating Hours section below based on location.
CF	0.3	

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.3.¹⁵⁹ The average Seasonal CF based on 2007 weather data used for this measure aligns with results of a sampling study conducted in Con Edison territory, citing a CF = 0.31.¹⁶⁰

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a room air conditioner as defined in the Measure Description section above with type and capacity equivalent to the proposed case and rated CEER per the table below. The CEER values listed in the table below reflect the minimum performance required by federal standards.¹⁶¹

Product Type	Product Class Capacity	Federal Standard With Louvered Sides	Federal Standard Without Louvered Sides
	(BTU/h)	(CEER)	(CEER)
	< 6,000	11.0	10.0
	6,000 to 7,999	11.0	10.0
RAC without Reverse Cycle	8,000 to 10,999	10.9	9.6
	11,000 to 13,999	10.9	9.5
	14,000 to 19,999	10.7	9.3
	20,000 to 27,999	9.4	9.4
	≥ 28,000	9.0	9.4
Casement Only	All	9.5	
Casement-Slider	All	10.4	

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a room air conditioner as defined in the Measure Description section above meeting minimum performance requirements dictated by program guidelines.

¹⁵⁹ RLW Analytics, Coincidence Factor Study: Residential Room Air Conditioners, June 2008, p. iv (based on average Seasonal CF for all load zones using 2007 weather data)

¹⁶⁰ Northeast Energy Efficiency Partnerships, Loadshape Report and Catalogue

¹⁶¹ 10 CFR 430.32(b)

Operating Hours

Cooling equivalent full load hours for residential room air conditioners shall be established based on location per the table below. $EFLH_{cooling}$ values below were determined by calculating the ratio of RAC cooling EFLH in Albany¹⁶² to average cooling EFLH in Albany per <u>Appendix G</u> and applying it to the average EFLH for each city. EFLH was averaged from <u>Appendix G</u> over vintage and building type for each city.

City	EFLH cooling
Albany	224
Binghamton	171
Buffalo	219
Massena	187
Poughkeepsie	282
NYC	364
Syracuse	226

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- 1. 10 CFR 430.2 Definitions. Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=ccdb0d0ac67a5eab52718c408f0739a1&mc=true&n=pt10.3</u> .430&r=PART&ty=HTML#se10.3.430_12
- RLW Analytics, Coincidence Factor Study: Residential Room Air Conditioners, June 2008 Available from:

 $\label{eq:https://library.cee1.org/system/files/library/8791/CEE_Eval_FinalReportCoincidenceFact_orStudyResidentialRoomAirConditioners2008_23Jun2008.pdf$

3. Northeast Energy Efficiency Partnerships, Loadshape Report and Catalogue June 2016 Available from: <u>http://www.neep.org/loadshape-report-and-catalogue</u>

¹⁶² RLW Analytics, Coincidence Factor Study: Residential Room Air Conditioners, June 2008, p. iv (based on 2007 FLEH for Albany)

4. 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn=</u> <u>div8</u>

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
3-18-2	3/29/2018

AIR CONDITIONER AND HEAT PUMP - REFRIGERANT CHARGE CORRECTION

Measure Description

Correcting refrigerant charge on air conditioners and heat pumps in single-family and multi-family residential applications.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times tons/unit \times \left(\frac{12}{SEER_{uncorr}} - \frac{12}{SEER_{corr}}\right) \times EFLH_{cooling}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times tons/unit \times \left(\frac{12}{EER_{pk,uncorr}} - \frac{12}{EER_{corr}}\right) \times CF$$

Annual Gas Energy Savings

 Δ therms = N/A

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
tons/unit	= Tons of air conditioning per unit, based on nameplate data
EFLH	= Equivalent full-load hours
EER	= Energy efficiency ratio under peak conditions
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt- hour, (used for average U.S. location/region)
CF	= Coincidence factor
uncorr	= Uncorrected
corrected	= Corrected
pk	= Peak
12	= kBTUh/ton of air conditioning capacity

Summary of Variables and Data Sources

Variable	Value	Notes
tons	From application	From application or use 3 as default.
SEER _{corr}	From application	Unit nameplate SEER or default to 10 if unknown
EER _{corr}	From application	Unit EER or 9.2 as default
SEED From application		Use 0.9 adjustment factor or figure above if charge
SEEKuncorr	From application	adjustment data available

Variable	Value	Notes
EER _{pk} , uncorr	From application	Use 0.9 adjustment factor or figure above if charge adjustment data available
EFLH _{cooling}		Vintage weighted average by city.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8

Baseline Efficiencies from which Savings are Calculated

The SEER is an estimate of the average efficiency of the air conditioner over the cooling season, based on an average U.S. city. Programs should use the manufacturers' rated SEER until data can be developed that is more appropriate for NY climates. The EER is the ARI rated full-load efficiency of the unit, which is used to estimate the unit efficiency under peak conditions.

The efficiency improvement resulting from refrigerant charge adjustment depends on how far off the unit was before the adjustment was done, and whether the adjustment was done correctly. The DEER study lists two levels of charge adjustment, with a corresponding efficiency improvement: efficiency gains of 7% for refrigerant charge adjustments less than 20%, and efficiency gains of 16% for refrigerant charge adjustments greater than 20%. The magnitude of the charge adjustments expected are not known at this time, so a default value of 10% improvement in unit efficiency is recommended, the efficiency of an uncorrected unit is 10% below that of a corrected unit.

Parameter	Recommended Values	
EER _{pk, uncorr}	$0.9 imes EER_{pk,\ corr}$	
SEERuncorr	$0.9 imes \text{SEER}_{ ext{corr}}$	

If the actual charge adjustment is recorded by the program, the efficiency adjustment factor as a function of charge adjustment is taken from the Figure below¹⁶³. Note the efficiency change depends on the type of expansion valve. Use the curve labeled TXV for units with thermal expansion valves; otherwise use the curve labeled short orifice.

Efficiency change as a function of charge adjustment

¹⁶³ Efficiency as a function of charge adjustment from Small HVAC System Design Guide, New Buildings Institute, 2003.

Use uncorrected efficiency adjustment factor listed above if charge adjustment is not known, or base on actual charge adjustment and figure above.

Compliance Efficiency from which Incentives are Calculated

Operating Hours

EFLH data by location, building type and vintage are tabulated in <u>Appendix G</u>.

Effective Useful Life (EUL)

Years: 10 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- 1. Typical efficiency change with charge adjustment taken from the California DEER update study: 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study, Final Report, Itron, Inc. Vancouver, WA. December 2005. Available at
- 2. www.calmac.org/publications/2004-05_DEER_Update_Final_Report-Wo.pdf
- 3. Efficiency change as a function of charge adjustment curve taken from Small HVAC System Design Guide, New Buildings Institute, White Salmon, WA for the California Energy Commission.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010

AIR CONDITIONER AND HEAT PUMP - RIGHT-SIZING

Measure Description

This section covers right sizing of residential central air conditioners and heat pumps. Right-sizing is a set of activities used to estimate building peak cooling load and correct system over-sizing when replacing air conditioners or heat pumps in single-family and multi-family residential applications. Equation below estimates savings from correcting over-sizing only; efficiency improvements from unit replacement are covered under the central air conditioner section.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times tons/unit \times \left(\frac{12}{SEER}\right) \times EFLH_{cooling} \times PSF_{consumption}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times tons/unit \times \left(\frac{12}{\ EER}\right) \times PSF_{consumption} \times CF$$

Annual Gas Energy Savings

 Δ therms = N/A

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
tons/unit	= Tons of air conditioning per unit, based on nameplate data
EFLH	= Equivalent full-load hours
EER	= Energy efficiency ratio under peak conditions
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt-
	hour, (used for average U.S. location/region)
CF	= Coincidence factor
PSF	= Proper sizing factor
cooling	= Cooling
consumption	= Consumption
12	= kBTUh/ton of air conditioning capacity

Variable	Value	Notes
tons		From application
EER	11.09	Normal replacement
SEER	13	Normal replacement
EFLH _{cooling}		Lookup by vintage and city.
PSF _d	0.10	Proctor, 2009
PSF _c	0.03	Proctor, 2009

Summary of Variables and Data Sources

Proper Sizing factor (PSF)

PSF is used to estimate the energy and demand savings from right-sizing. This factor accounts for energy savings from improved part-load performance due to reductions in unit on/off cycling; and demand savings from a lower unit connected load.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8

Baseline Efficiencies from which Savings are Calculated

The SEER is an estimate of the average efficiency of the air conditioner over the cooling season, based on an average U.S. city. Programs should use the manufacturers' rated SEER until data can be developed that is more appropriate for NY climates.

The EER is the Air-Conditioning & Refrigeration Institute (ARI), rated full-load efficiency of the unit, which is used to estimate the unit efficiency under peak conditions.

Compliance Efficiency from which Incentives are Calculated

Operating Hours

Cooling EFLH data by location, building type and vintage are tabulated in <u>Appendix G</u>.

Effective Useful Life (EUL)

Years: 15 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1. Proper sizing factors are taken from Proctor, J. AC Sizing, Electrical Peak, and Energy Savings. Proctor Engineering Group. 2009.

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

BLOWER FAN – WITH ELECTRONICALLY COMMUTATED (EC) MOTOR FOR FURNACE DISTRIBUTION

Measure Description

This measure covers the retrofit of direct-drive Permanent Split Capacitor (PSC) motors with the installation of Electronically Commutated (EC) motors on gas furnace distribution system supply fans in residential applications. Energy savings are realized through reductions in fan power due to improved motor efficiency.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times (\Delta kWh/unit)$

Peak Coincident Demand Savings

 $\Delta kW = units \times (\Delta kW/unit) \times CF$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of motors installed under the program
$(\Delta kWh/unit)$	= Annual electric savings per motor installed
$(\Delta kW/unit)$	= Electric demand savings per motor installed
CF	= Coincidence factor

Summary of Variables and Data Sources

Variable	Value	Notes
(ΔkWh/unit)		Lookup based on location and HVAC system type in table below. ¹⁶⁴
$(\Delta kW/unit)$	0.117	Derived from Focus on Energy evaluation. ¹⁶⁵
CF	0.680	

 ¹⁶⁴ Cadmus Group, Focus on Energy Evaluated Deemed Savings Changes, November 2014
 ¹⁶⁵ Ibid.

The deemed annual electric energy savings are determined for each New York location by scaling the energy savings derived from the evaluation of a 2014 Wisconsin ECM metering study using heating degree days and cooling degree days for each location.¹⁶⁶ The Wisconsin study metered furnaces in 67 homes in Wisconsin in 2012 and 2013.

The total energy savings for each New York location are provided in the "Total" columns below. The energy savings are determined by summing the savings attributed to each furnace mode: circulation, heating and cooling. Homes with a central A/C receive the savings in the "Total (with Central A/C)" column. Homes without a central A/C receive the savings in the "Total (without Central A/C)": these savings exclude the "Cooling Mode" savings. The HDD and CDD values are based on 30-year averages of U.S annual climate normals between 1981 and 2010 using base 65° F.¹⁶⁷

	Annual Energy Saved (ΔkWh/unit)						
City	Total (with Central A/C)	Total (without Central A/C)	Circulation Mode	Heating Mode	Cooling Mode	HDD	CDD
Albany	404	333	211	122	71	6,680	597
Binghamton	388	342	211	131	46	7,193	382
Buffalo	397	332	211	121	65	6,617	544
Massena	404	361	211	150	43	8,196	363
Poughkeepsie	404	324	211	113	80	6,210	671
NYC	435	296	211	85	139	4,671	1,160
Syracuse	401	333	211	122	68	6,651	570

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.680.¹⁶⁸

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a residential furnace (with or without central AC) with a direct-drive PSC distribution system blower motor.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a residential furnace (with or without central AC) with an EC distribution system blower motor.

¹⁶⁶ The percent difference in HDD is applied to the Heating Mode column kWh savings and the percent difference in the CDD is applied to the Cooling Mode column kWh savings.

¹⁶⁷ Annual/Seasonal Normals taken from <u>http://www.ncdc.noaa.gov/cdo-web/datatools/normals</u>

¹⁶⁸ Cadmus Group, Focus on Energy Evaluated Deemed Savings Changes, November 2014

Operating Hours

While deemed savings are associated with operating hours, savings values are established based on a comparison of heating and cooling degree days for various locations in NY state and Wisconsin. As such, operating hours are not directly applied in the methodology prescribed for this measure, though they are embedded in the derivation of deemed savings. Circulation mode savings and by association, operating hours, are assumed to align with findings of the Wisconsin ECM metering study. Thus, savings associated with circulation-only mode are equivalent across all climate zones.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- Cadmus Group, Inc., Focus on Energy Evaluated Deemed Savings Changes, prepared for The Public Service Commission of Wisconsin, November 14, 2014 Available from: <u>https://focusonenergy.com/sites/default/files/FoE_Deemed_WriteUp%20CY14%20Final.</u> pdf
- 2. Cadmus Group, Inc., June 4, 2014 ECM Metering Results Memo. Delivered to Carol Stemrich, PSC of Wisconsin.
- 3. NOAA National Centers for Environmental Information 1981-2010 Normals. Available from: <u>http://www.ncdc.noaa.gov/cdo-web/datatools/normals</u>

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
1	3/31/2016
6-16-2	6/30/2016
12-17-7	12/31/2017

<u>CIRCULATOR PUMP – WITH ELECTRONICALLY COMMUTATED (EC) MOTOR, FOR</u> <u>Hydronic Distribution</u>

Measure Description

This section covers electronically commutated (EC) motors in hydronic distribution circulators. A circulator pump is a specific type of pump used to circulate liquids in a closed distribution system. They are commonly found circulating water in a hydronic heating or cooling system. Because they only circulate liquid within a closed circuit, they only need to overcome the friction of a piping system (as opposed to lifting a fluid from a point of lower potential energy to a point of higher potential energy).

Circulator pumps as used in hydronic systems are usually electrically powered centrifugal pumps. As used in homes, they are often small, sealed, and rated at a fraction of a horsepower, but in commercial applications they range in size up to many horsepower and the electric motor is usually separated from the pump body by some form of mechanical coupling. The sealed units used in home applications often have the motor rotor, pump impeller, and support bearings combined and sealed within the water circuit. This avoids one of the principal challenges faced by the larger, two-part pumps: maintaining a water-tight seal at the point where the pump drive shaft enters the pump body.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times hp \times \left(\frac{1}{Eff}\right) - \left(\frac{1}{Eff_{ee}}\right) \times 0.746 \times hrs$$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 Δ therms = N/A

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= The number of measures installed under the program
hp	= Horsepower
Eff	= Efficiency
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
0.746	= Conversion factor (kW/hp), 746 watts equals one electric horsepower
hrs	= Hours

Variable	Value	Notes
hp		Circulator motor horsepower, from application
Eff _{baseline}	50%	Efficiency of baseline motor
Effee	80%	Efficiency of energy efficient motor
		Circulator pump operating hours, National
hrs	3,240	Grid estimate

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.0.

Baseline Efficiencies from which Savings are Calculated

The baseline efficiency of a standard permanent split-capacitor (PSC) motor is estimated to be 50%. The measure efficiency of a fractional horsepower EC motor is estimated to be 80%. High efficiency circulators may include better impeller design that will increase kWh savings, but may have a negative impact on gas consumption. These effects are ignored.

Compliance Efficiency from which Incentives are Calculated

Operating Hours

Annual heating hours are based on a continuously running circulator. Savings will be less if the circulator cycles on and off with a call for heat.

Effective Useful Life (EUL)

Years: 15 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

Record of Revision

Record of Revision Number	Issue Date	
0	10/15/2010	

DUCT SEALING AND INSULATION

Measure Description

Sealing and insulation of the space heating and air conditioning duct distribution system in singlefamily and multi-family homes. This measure reduces leakage into unconditioned and outdoor space improving system efficiency. This measure is to be installed with the assistance of a ductblaster test on the distribution system.

A duct blaster test, similar in concept to a whole-house blower door test, is turned on to pressurize the duct system to 25 Pascal's (a pressure which represents typical operating pressures for forcedair systems). The airflow through the duct blaster fan (which is displayed in cfm on the duct blaster's manometer) equals the flow escaping through leaks in the duct system. The results are reported as "cfm @ 25 Pascal's".

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times tons/unit \times \left(\frac{12}{SEER}\right) \times EFLH_{cooling} \times \left[1 - \frac{\eta_{dist, baseline}}{\overline{\eta}_{dist, ee}}\right]_{cooling} + \left(\frac{kBTUh_{out}}{unit}\right) \times \left(\frac{EFLH_{heating}}{HSPF}\right) \times \left[1 - \frac{\overline{\eta}_{dist, baseline}}{\overline{\eta}_{dist, ee}}\right]_{heating}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times tons/unit \times \left(\frac{12}{EER}\right) \times \left[1 - \frac{\eta_{dist, pk, baseline}}{\eta_{dist, pk, ee}}\right] \times CF$$

Annual Gas Energy Savings

$$\Delta \text{therms} = \text{units} \times \left(\frac{\text{kBTUh}_{\text{in}}}{\text{unit}}\right) \times \left(\frac{\text{EFLH}_{\text{heating}}}{100}\right) \times \left[1 - \frac{\overline{\eta}_{\text{dist,baseline}}}{\overline{\eta}_{\text{dist,ee}}}\right]_{\text{heating}}$$

where:

Δ kWh	= Annual electric energy savings
$\Delta \mathrm{kW}$	= Peak coincident demand electric savings
∆therm	= Annual gas energy savings
units	= Number of measures installed under the program
unit	= Measure
in	= Input capacity
out	= Output capacity
dist	= Distribution
cooling	= Cooling

heating	= Heating
dist	= Distribution
ee	= Energy efficient condition or measure
baseline	= Baseline condition or measure
pk	= Peak
kBTUh	= Annual gas input rating per unit in kBTU/hr
ton/unit	= The nominal rating of the cooling capacity of the air conditioner or heat pump in tons
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt- hour, (used for average U.S. location/region)
EER	= Energy efficiency ratio under peak conditions
HSPF	= Heating season performance factor
$\overline{\eta}$	= Average energy efficiency (0 -100%)
η	= Energy efficiency (0 -100%)
EFLH	= Equivalent full-load hours
CF	= Coincidence factor
12	= kBTUh/ton of air conditioning capacity
100	= Conversion factor, kBTUh/therm

Summary of Variables and Data Sources

Variable	Value	Notes	
AC measure			
tons		From application	
(LED	10	Existing unit	
SEEK	13	New construction	
η dist, baseline	$-\frac{1}{\eta}$ dist, baseline		
η dist, ee	$\overline{\eta}$ dist, ee		
$\frac{1}{\eta}$ dist, baseline	0.956	Statewide cooling average for uninsulated duct with 20% leakage. Use measured leakage if available	
$\overline{\eta}$ dist, ee		Use statewide average; specs based on new vs. existing construction. Measured leakage OK if available. Use appropriate R-value if duct insulation is also included.	
EFLH _{cooling}		Vintage weighted average by city.	
EED	9.2	Existing unit	
EEKbaseline	11.1	new unit	
Heat pump measure			
kBTUh/unit _{out}		The nominal output rating of the heating capacity of the heat pump from application	
LICDE	6.8	Existing unit	
HSPF	8.1	New unit	

Variable	Value	Notes	
Furnace measure			
kBTUh _{in} /unit		The nominal input rating of the heating capacity of the furnace from application, from nameplate rated input in kBTU/hr.	
$\overline{\eta}$ dist, baseline	0.934	Statewide average based on uninsulated duct with 20% leakage. Measured leakage OK if available.	
$\overline{\eta}$ dist, ee		Statewide average; specs based on new vs. existing construction. Measured leakage OK if available. Use appropriate R-value if duct insulation is also included.	
EFLH _{heating}		Vintage weighted average by city.	

The SEER is an estimate of the average efficiency of the air conditioner over the cooling season. Most air conditioning equipment installed in residences has a SEER efficiency rating, which is an estimate of the seasonal energy efficiency for an average US city. Programs should use the manufacturers' rated SEER until data can be developed that is more appropriate for NY climates.

The EER is the ARI rated full-load efficiency of the unit, which is used to estimate the unit efficiency under peak conditions.

The HSPF is an estimate of the seasonal heating energy efficiency for an average US city. Programs should use the manufacturers' rated HSPF until data can be developed that are more appropriate for NY climates. See heat pump section for more information.

The cooling and heating season average distribution efficiencies for duct systems in residential buildings across seven New York cities are summarized in <u>Appendix H</u>. Ducts in single-family buildings are assumed to run in an unconditioned basement. Duct systems in low-rise multi-family buildings are assumed to run in an unconditioned space above an insulated ceiling in the top floor units, and through an unconditioned plenum space in the bottom floor units. High-rise buildings generally have hydronic systems.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8

Baseline Efficiencies from which Savings are Calculated

Duct systems are assumed to be located in an unconditioned plenum space between insulated finished ceiling and roof surface. The baseline HSPF for heat pumps should be set according to the method described in the sections on heat pump efficiency. The baseline efficiency ($\overline{\eta}_{base}$) for furnaces should be set according to the method described in the sections on furnace efficiency. Distribution system efficiency ($\overline{\eta}_{dist,baseline}$) should be set to the unsealed and uninsulated values from the duct leakage sealing section for the appropriate building type. Use measured data when available. If measured leakage not available use 20% as the default leakage rate. Uninsulated ducts are considered to be the baseline condition.

Compliance Efficiency from which Incentives are Calculated

The measure HSPF for heat pumps should be set according to the section on efficient heat pumps. The measure efficiency ($\overline{\eta}_{ee}$) for furnaces should be set according to the section on efficient furnaces. Distribution system efficiency ($\overline{\eta}_{dist,ee}$) should be based on measured duct leakage if available. If measured leakage not available, use the Air Conditioning Contractors of America (ACCA) Quality Installation (QI) Standard specifications as a default:

Construction type	Duct location	Total Leakage (%)	
New	Inside thermal envelope	10%	
New	Outside thermal envelope	6%	
Existing	All	20% or 50% reduction (whichever is greater)	

Operating Hours

Heating equivalent full-load hours calculated from building energy simulation models described in <u>Appendix A</u>. Nameplate capacity for heat pumps should include the full heating capacity of the heat pump system, including backup electric resistance heaters.

Effective Useful Life (EUL)

Years: 18 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- 1. ACCA QI specs can be found in: ANSI/ACCA Standard 5 QI-2007. <u>HVAC Quality</u> <u>Installation Specification</u>. Air Conditioning Contractors of America, Arlington, VA. <u>www.acca.org</u>
- An alternative source of distribution system efficiency calculation methods is included in <u>ANSI/ASHRAE Standard 152 – 2004 Method of Test for Determining the Design and</u> <u>Seasonal Efficiencies of Residential Thermal Distribution Systems</u>, American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, GA. <u>www.ashrae.org</u>
- 3. The US EPA estimates total duct leakage for typical residential construction at 20% of system airflow.

Record of Revision

Record of Revision Number	Issue Date	
1	10/15/2010	

FURNACE AND BOILER

Measure Description

This measure includes high efficiency gas fired furnaces, boilers, and unit heaters in low-rise residential building applications.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = N/A$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

$$\Delta therms = units \times \frac{kBTUh_{in}}{unit} \times \left(\frac{\eta_{ee}}{\eta_{baseline}} - 1\right) \times \frac{EFLH_{heating}}{100}$$

where:

= Annual electric energy savings
= Peak coincident demand electric savings
= Annual gas energy savings
= Number of measures installed under the program
= Fuel Input Rating
= Efficiency of energy efficient condition or measure
= Efficiency of baseline condition or measure
= Heating equivalent full-load hours
= Conversion factor (100 kBTU/Therm)

Summary of Variable and Data Sources

Variable	Value	Notes	
1-PTIIh.		Nominal heating input capacity is the nameplate input	
KD I UII _{in}		rating of the unit in kBTU/hr, from application.	
	See Baseline Efficiency	Baseline established by applicable energy	
n _{baseline}		conservation code, climatic zone, equipment type and	
		size, fuel source, as well as system configuration.	
n	See Compliance	From application; use metrics consistent with baseline	
Ilee	Efficiency	EFLH _{heating}	
EFLH _{heating}		Lookup based on building type and location,	
		Appendix G	

Efficiency is expressed as the ratio between the fuel input relative to the output. The efficiency of furnaces, boilers and unit heaters is customarily evaluated on the basis of one or more of three

standards, and are referred to as Thermal Efficiency (E_t), Combustion Efficiency, (E_c) or Annual Fuel Utilization Efficiency (AFUE).

Presently, the AFUE value is only applicable to smaller units. For larger units, use thermal and combustion efficiencies referenced on manufacturer's nameplate data in accordance with nationally recognized standards and testing agencies.

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies From Which Savings are Calculated

The baseline efficiency for residential furnaces, boilers, and unit heaters ($\eta_{baseline}$) is defined by the Code of Federal Regulations and subsequently adopted by the Energy Conservation Code of New York State¹⁶⁹, and the New York City Energy Conservation Code¹⁷⁰ as shown below.

Equipment Type	Size Range	ECCCNYS Minimum Efficiency for Climate Zones 4, 5 and 6	NYCECC Minimum Efficiency for NYC Boroughs in Climate Zone 4
Warm Air Furnace, Gas Fired	All Capacities	80% AFUE	80% AFUE
Boiler, Hot Water, Gas Fired	All Capacities	82% AFUE	82% AFUE
Boiler, Steam, Gas Fired	All Capacities	80% AFUE	80% AFUE

Systems Serving Single-Family Homes or Single Units¹⁷¹

¹⁶⁹ ECCCNYS 2016, Table C403.2.3(4) and Table C403.2.3(5)

¹⁷⁰ NYCECC 2016; Table C403.2.3(4) and Table C403.2.3(5)

¹⁷¹ 10 CFR 430.32(e)

Equipment Type	Size Range	ECCCNYS Minimum Efficiency for Climate Zones 4, 5 and 6	NYCECC Minimum Efficiency for NYC Boroughs in Climate Zone 4
Warm Air Furnace.	< 225 kBtu/h	78% AFUE or	78% AFUE or
Gas Fired		80% Et	80% Et
Gustifica	\geq 225 kBtu/h	80% Et	80% Et
Warm Air Unit Heaters, Gas Fired	All Capacities	80% Ec	80% Ec
Boiler, Hot Water, Gas Fired	< 300 kBtu/h	80% AFUE	80% AFUE
	\geq 300 kBtu/h and \leq 2,500 kBtu/h	80% Et	80% Et
	> 2,500 kBtu/h	82% Ec	82% Ec
Boiler, Steam, Gas	< 300 kBtu/h	75% AFUE	75% AFUE
Fired, All Except	\geq 300 kBtu/h and \leq 2,500 kBtu/h	79% Et	79% Et
Natural Draft	> 2,500 kBtu/h	79% Et	79% Et
Boiler, Steam, Gas	< 300 kBtu/h	75% AFUE	75% AFUE
Fired, Natural \geq 300 kBtu/h and \leq 2,500 kBtu/		77% Et	77% Et
Draft	Draft > 2,500 kBtu/h		77% Et

Systems Serving Multiple Dwelling Units

Compliance Efficiencies from Which Incentives are Calculated

Equipment Type	Size Range	Minimum Compliance Efficiency for Climate Zones 4, 5 and 6	Minimum Compliance Efficiency for NYC Boroughs in Climate Zone 4
Warm Air Furnace,	< 225 kBtu/h	92% AFUE	92% AFUE
Gas Fired	\geq 225 kBtu/h	90% Et	90% Et
Warm Air Unit Heaters, Gas Fired	All Capacities	83% Ec	83% Ec
Boiler, Non-	< 300 kBtu/h	85% AFUE	85% AFUE
Condensing, Hot	\geq 300 kBtu/h and \leq 2,500 kBtu/h	85% Et	85% Et
Water, Gas Fired	> 2,500 kBtu/h	88% Ec	88% Ec
Boiler,	< 300 kBtu/h	90% AFUE	90% AFUE
Condensing, Hot	\geq 300 kBtu/h and \leq 2,500 kBtu/h	90% Et	90% Et
Water, Gas Fired	> 2,500 kBtu/h	93% Ec	93% Ec
Boiler, Steam, Gas	< 300 kBtu/h	82% AFUE	82% AFUE
Fired, All Except	\geq 300 kBtu/h and \leq 2,500 kBtu/h	82% Et	82% Et
Natural Draft	> 2,500 kBtu/h	82% Et	82% Et
Boiler, Steam, Gas	< 300 kBtu/h	82% AFUE	82% AFUE
Fired, Natural	\geq 300 kBtu/h and \leq 2,500 kBtu/h	82% Et	82% Et
Draft	> 2,500 kBtu/h	82% Et	82% Et

Operating Hours

Heating equivalent full-load hours were calculated from a DOE-2.2 simulation of prototypical single and multi-family residential buildings. Operating hour assumptions for the prototypical building models are described in <u>Appendix A</u>. The heating EFLH for commercial buildings in NY are shown in <u>Appendix G</u>.

Effective Useful Life (EUL)

See <u>Appendix P</u>: Effective Useful Life (EUL)

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

High efficiency furnaces may be packaged with high efficiency cooling equipment and/or electronically commutated blower motors, which may provide electricity savings. Draft fans, when present, will increase electricity consumption.

References

- 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>
- ECCCNYS 2016, per IECC 2015; Table C403.2.3(4): Warm-Air Furnaces And Combination Warm-Air Furnaces/Air-Conditioning Units, Warm-Air Duct Furnaces And Unit Heaters, Minimum Efficiency Requirements & Table C403.2.3(5): Minimum Efficiency Requirements: Gas- And Oil-Fired Boilers. Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-cecommercial-energy-efficiency</u>
- NYCECC 2016; Table C403.2.3(4): Warm-Air Furnaces And Combination Warm-Air Furnaces/Air-Conditioning Units, Warm-Air Duct Furnaces And Unit Heaters, Minimum Efficiency Requirements & Table C403.2.3(5): Minimum Efficiency Requirements: Gas-And Oil-Fired Boilers Available from:

Available from:

https://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2016ECC_CH C4.pdf§ion=energy_code_2016

4. 2015 ASHRAE Handbook – HVAC Applications, Table 4: Comparison of Service Life Estimates

Record of Revision Number	Issue Date
1	10/15/2010
7-13-32	7/31/2013
8-13-1	8/31/2013
6-15-5	6/1/2015
1-16-2	12/31/2015
6-17-5	6/30/2017

Record of Revision

FURNACE TUNE-UP

Measure Description

This measure covers tune-up of residential natural gas furnaces to improve seasonal heating efficiency. A tune-up involves the inspection, cleaning, and or adjustment of furnace and appurtenances per manufacturer's recommendations. This measure addresses tune up benefits associated with heating performance only.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = \Delta therms \times (\Delta kWh / \Delta therms)$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

$$\Delta therms = units \times \frac{kBTUh_{in}}{unit} \times \frac{EFLH_{heating}}{100} \times ESF$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
kBTUh _{in}	= Annual gas input rating
EFLH	= Equivalent full-load hours
ESF	= Energy savings factor
$(\Delta kWh/\Delta Therms)$	= Annual electric energy savings per unit annual gas energy savings
100	= Conversion factor, one therm equals 100 kBTU

Summary of	Variables	and Data	Sources
------------	-----------	----------	---------

Variable	Value	Notes
kBTUh _{in}		From application.
		Look up based on building type, vintage and location
EFLTheating		in <u>Appendix G</u> .
ESE	0.05	The energy savings factor for furnace tune-ups is used
ЕЭГ		to estimate the annual heating energy savings. ¹⁷²
(Al-Wh/AThorma)	0.5	Savings resultant from reduced fan run time due to
$(\Delta \mathbf{K} \mathbf{W} \mathbf{H} \Delta \mathbf{I} \mathbf{Herms})$	0.5	improved efficiency and cycling of furnace. ¹⁷³

 ¹⁷² Energy savings on the order of 2% - 5% were realized from a boiler tune-up program in the Pacific Northwest.
 Building Tune-Up and Operations Program Evaluation. Washington State University Energy Program, p. 5.
 ¹⁷³ Electricity Savings from Variable-Speed Furnaces in Cold Climates, Scott Pigg, Energy Center of Wisconsin & Tom Talerico, Glacier Consulting Group

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a residential gas-fired furnace that has not received a tune-up in 5 years or more.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a residential gas-fired furnace that has undergone a tune-up in accordance with the manufacturer's recommendations.

Operating Hours

Heating equivalent full-load hours were calculated from a DOE-2.2 simulation of prototypical single and multi-family residential buildings. Operating hour assumptions for the prototypical building models are described in <u>Appendix A</u>. The heating EFLH for commercial buildings in NY are shown in <u>Appendix G</u>.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- 1. Dethman and Kunkle, Building Tune-Up and Operations Program Evaluation. Washington State University Energy Program, 2007. Available from: <u>https://library.ceel.org/system/files/library/1808/990.pdf</u>
- Electricity Savings from Variable-Speed Furnaces in Cold Climates, Scott Pigg, Energy Center of Wisconsin & Tom Talerico, Glacier Consulting Group Available from: https://aceee.org/files/proceedings/2004/data/papers/SS04 Panel1 Paper23.pdf

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
3-18-13	3/29/2018

HEAT PUMP - AIR SOURCE (ASHP)

Measure Description

This measure covers the installation of high-efficiency air source heat pumps in residential applications. An air source heat pump is a product, other than a packaged terminal heat pump, which is powered by single phase electric current, air cooled, rated below 65,000 Btu per hour, not contained within the same cabinet as a furnace with rated capacity above 225,000 Btu per hour, and operates as a heat pump. An air source heat pump may consist of a single-package unit or an outdoor unit and one or more indoor units, including multi-head mini-split systems.¹⁷⁴ The baseline case shall be minimally code compliant equipment of the same type and capacity as in the proposed case, which shall be sized in accordance with federal, state and local energy conservation code. Baseline and proposed equipment is assumed to include electric resistance supplemental heating of the same capacity. Thus, although rated capacity and efficiencies used in this measure incorporate supplemental heating elements, no savings are attributed to reduction in electric resistance heating capacity.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = \Delta kWh_{cooling} + \Delta kWh_{heating}$

$$\Delta kWh_{cooling} = units \times tons/unit \times \left(\frac{12}{SEER_{baseline}} - \frac{12}{SEER_{ee}}\right) \times EFLH_{cooling}$$

$$\Delta kWh_{heating} = units \times \frac{kBTUh_{out}}{unit} \times \left(\frac{1}{HSPF_{baseline}} - \frac{1}{HSPF_{ee}}\right) \times EFLH_{heating} \frac{kBTUh_{out}}{unit} \times \left(\frac{1}{HSPF_{baseline}} - \frac{1}{HSPF_{ee}}\right) \times EFLH_{heating}$$

Peak Coincident Demand Electric Savings

$$\Delta kW = units \times tons/unit \times \left(\frac{12}{EER_{baseline}} - \frac{12}{EER_{ee}}\right) \times CF$$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

= Annual electric energy savings
= Peak coincident demand electric savings
= Annual gas energy savings
= Number of units installed under the program
= Tons of air conditioning per unit, based on AHRI certification or nameplate data

¹⁷⁴ 10 CFR 430.2

	of condenser or matched pair (condenser and coil)
kBTUhout/unit	= The nominal rating of the heating output capacity of the heat pump in kBTU/hr
	(including supplemental heaters) per unit, based on AHRI certification or
	nameplate data of condenser or matched pair (condenser and coil)
ee	= Energy efficient condition or measure
baseline	= Baseline condition or measure
HSPF	= Heating seasonal performance factor, BTU/watt-hour, total heating output
	(supply heat) in BTU (including supplemental heaters) during the heating season /
	total electric energy heat pump consumed (in watt-hour)
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt-
	hour, used for average U.S. location/region
EER	= Energy efficiency ratio under peak conditions
EFLH	= Equivalent full-load hours
CF	= Coincidence factor
12	= kBTUh/ton of air conditioning capacity

Variable	Value	Notes		
tong		From application, default to average system size from applications		
tons		if unknown		
kBTUhout		From application		
SEED.		Lookup from Baseline Efficiencies table below based on product		
SEEKbaseline		class and size.		
SEER _{ee}		From application		
EELU		Lookup based on building type, vintage and location from		
LI LI Icooling		Appendix G.		
LICDE		Lookup from Baseline Efficiencies table below based on product		
IIST I baseline		class and size.		
HSPF _{ee}		From application		
		Lookup based on building type, vintage and location from		
EFLInheating		Appendix G.		
EED.		Lookup from Baseline Efficiencies table below based on product		
LERbaseline		class and size.		
EER _{ee}		From application		
CF	0.69			

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.69.¹⁷⁵ Baseline Efficiencies from which Savings are Calculated

¹⁷⁵ Based on BG&E 'Development of Residential Load Profile for Central Air Conditioners and Heat Pumps' research, the Maryland Peak Definition coincidence factor is 0.69. This study is not publicly available, but is referenced by the Mid-Atlantic TRM Version 7.0 published May 2017 and by M. M. Straub, Using Available Information for Efficient Evaluation of Demand-Side Management Programs, Electricity Journal, September 2011 and supported by research conducted by Cadmus on behalf of the TRM Management Committee.

The baseline condition is an air source heat pump as defined in the Measure Description section above, with rated SEER, EER and HSPF per the table below. The SEER and HSPF values listed in the table below reflect the minimum performance required by federal standards. Minimum EER requirements are not specified by federal standards for the state of New York, nor are they mandated by state or city code for residential equipment. For this equipment, baseline EER is established as follows¹⁷⁶:

$$EER = (1.12 \times SEER) - (0.02 \times SEER^2)$$

Resultant values from application of this equation are tabulated in the baseline efficiencies table below.

Product Class	Seasonal Energy Efficiency Ratio (SEER) ¹⁷⁷	Energy Efficiency Ratio (EER)	Heating Seasonal Performance Factor (HSPF) ¹⁷⁸
Split System – Heat Pump (<45 kBTUh)	14.0	11.8	8.2
Split System – Heat Pump (\geq 45 and < 65 kBTUh)	14.0	11.8	8.2
Single Package – Heat Pump	14.0	11.8	8.0

Compliance Efficiency from which Incentives are Calculated

The compliance condition is an air source heat pump as defined in the Measure Description section above meeting minimum performance requirements dictated by program guidelines.

Operating Hours

Cooling and heating EFLH data by location, building type and vintage are tabulated in <u>Appendix</u> <u>G</u>.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

Minor heating interactions are expected with efficient furnace fans utilized in most high efficiency air conditioners. These impacts are expected to be negligible and have not been addressed in the prescribed methodology at this time.

Ancillary Electric Savings Impacts

N/A

¹⁷⁶ DOE, Building America House Simulation Protocols, October 2010

¹⁷⁷ 10 CFR 430.32 (c)(1)

¹⁷⁸ 10 CFR 430.32 (c)(1)

References

- 1. 10 CFR 430.2 Definitions. Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=1e73ba2d0d27b530cf49a60ebc08b7ae&mc=true&n=pt10.3</u> .430&r=PART&ty=HTML#se10.3.430_12
- BG&E, Development of Residential Load Profile for Central Air Conditioners and Heat Pumps, via Mid-Atlantic Technical Reference Manual Version 7.0, May 2017 (accessed October 26, 2017) Available from:

http://neep.org/sites/default/files/resources/Mid_Atlantic_TRM_V7_FINAL.pdf

- M. M. Straub, Using Available Information for Efficient Evaluation of Demand-Side Management Programs, Electricity Journal, September 2011 Available from: https://www.sciencedirect.com/science/article/pii/S1040619011001941
- 4. Building America House Simulation Protocols, Robert Hendron and Cheryn Engebrecht, National Renewable Energy Laboratory, October 2010 Available from: <u>https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/house_simul</u> ation_revised.pdf
- 5. 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn=</u> div8

Record of Revision

Record of Revision Number	Issue Date	
1	10/15/2010	
12-17-8	12/31/2017	
HEAT PUMP – GROUND SOURCE (GSHP)

Measure Description

This measure covers the installation of a ground source heat pump (GSHP) system with a closed loop heat exchanger field, which provides heating and cooling for space conditioning by the water to air transference of ground temperatures through a typical air-duct distribution system in a detached single-family residential home. This measure applies to GSHPs with a rated cooling capacity of <65,000 BTU/h. The baseline efficiency used for a GSHP is the efficiency level of the minimally code compliant replacement equipment for the existing heating and cooling systems. The GSHP analysis associated with this measure is based on several assumptions consistent with best practice design for a detached single-family residential building:

ECCCNYS states systems shall be sized in accordance with ACCA Manual S based on building loads calculated in accordance with ACCA Manual J or other approved heating and cooling calculation methodologies.¹⁷⁹

The building peak heating load in New York typically exceeds the peak cooling load, therefore it is assumed that the GSHP runs at part-load during peak cooling hours.

The ground loop heat exchanger is adequately sized and installed properly to allow the GSHP to meet the peak heating load without electric resistance auxiliary heat.

The GSHP is equipped with either a two stage or variable speed compressor system, a variable speed or constant speed ground loop circulator pump, and a variable-speed blower distribution fan. This is a compliance requirement for application of this measure.

The GSHP efficiency is rated in accordance with ISO-13256, and performance tables are provided by the manufacturer showing the efficiency and capacity of the unit under full and part load conditions.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = \left\{ \begin{bmatrix} ACL \times \frac{1}{1,000} \times \left(\frac{F_{CEC}}{EER_{baseline}} - \frac{1}{EER_{part adj,ee}} \right) \times EFLH_{cooling} \times F_{EFLH} \end{bmatrix} + \left[AHL \times \frac{1}{1,000} \times \left(\frac{F_{EH}}{COP_{baseline}} - \frac{1}{COP_{part adj,ee}} \right) \times \frac{EFLH_{heating} \times F_{EFLH}}{3.412} \right] \right\}$$

Peak Coincident Demand Savings

$$\Delta kW = \left\{ ACL \times \frac{1}{1,000} \times \left(\frac{F_{CEC}}{EER_{baseline}} - \frac{1}{EER_{part\;adj,ee}} \right) \right\} \times CF$$

¹⁷⁹ ECCCNYS 2016, Section R403.7

Annual Gas Energy Savings

$$\Delta therms = units \times \left\{ AHL \times \frac{1}{100,000} \times \frac{F_{GH}}{AFUE_{baseline}} \times EFLH_{heating} \times F_{EFLH} \right\}$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand savings
∆therm	= Annual fossil fuel savings
ACL	= Actual cooling load (BTU/h)
AHL	= Actual heating load (BTU/h)
F _{CEC}	= Central electric cooling factor; used to account for the presence or absence of a central electric cooling system
F_{EH}	= Electric heating factor; used to account for the presence or absence of an
	electric heating system
F _{GH}	= Gas heating factor; used to account for the presence or absence of a gas heating
	system
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
EER	= Energy efficiency ratio (BTU/W-hour)
COP	= Coefficient of performance, ratio of output energy/input energy
EER _{part adj}	= Energy efficiency ratio (BTU/W-hour) at part-load adjusted for fan and pump
	power
COP _{part adj}	= Coefficient of performance, ratio of output/input energy at part-load adjusted for fan and pump power
AFUE	= Annual fuel utilization efficiency, seasonal efficiency for fuel heat equipment
EFLH	= Equivalent full-load hours
F _{EFLH}	= Adjustment factor to account for oversizing assumption embedded in EFLH
CF	= Coincidence Factor
1,000	= Conversion factor, one kW equals 1,000 Watts
3.412	= Conversion factor, one watt-hour equals 3.412142 BTU
100,000	= Conversion factor, (BTU/therm), one therm equals 100,000 BTU's

Summary of Variables and Data Sources

Variable	Value	Notes
ACL		Determine based on Manual J calculation.
AHL		Determine based on Manual J calculation.
Eana		If a central electric cooling system is present, set equal to
LCEC		1. Otherwise, set equal to 0.
En		If a central electric heating system is present, set equal to
ГЕН		1. Otherwise, set equal to 0.
E		If a central gas heating system is present, set equal to 1.
1 GH		Otherwise, set equal to 0.

Variable	Value	Notes
		Electric cooling energy efficiency rating of baseline
EER _{baseline}		equipment. See Baseline Efficiency section below for
		details.
		Electric heating energy efficiency rating of baseline
COP _{baseline}		equipment. See Baseline Efficiency section below for
		details.
		Energy efficiency ratio from the manufacturer's catalog
EERpart adj, ee		data adjusted to account for applied fan and pump power.
		See Compliance Efficiency section below for details.
		Coefficient of performance (ratio of heat delivered to
		energy input to the compressor) from the manufacturer's
COPpart adj, ee		catalog data adjusted to account for applied fan and pump
		power. See Compliance Efficiency section below for
		details.
		Gas heating energy efficiency rating of baseline
AFUE _{baseline}		equipment. See Baseline Efficiency section below for
		details.
EEIU		Lookup based on building type and location from
		<u>Appendix G</u>
		Adjustment factor to EFLH to account for oversizing
F _{EFLH}	1.25	assumption embedded in EFLH data presented in
		Appendix G. (see Operating Hours section below)

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.69.¹⁸⁰

Baseline Efficiencies from Which Savings are Calculated

The baseline efficiency used for a GSHP is the efficiency level of the minimally code compliant replacement equipment for the existing heating and cooling systems. The minimally code compliant efficiency level shall comply with the requirements of the current state code, or under state law, an equal or more stringent code or standard adopted by the municipality or jurisdiction applicable to the installation site.

For example, the baseline efficiency level for a 3-ton GSHP with existing equipment in a normal/end-of-life replacement scenario in New York State (and where more stringent code is not enforced) would be: 1) For electric equipment, a split-system air conditioner with a SEER of 13¹⁸¹

¹⁸⁰ Based on BG&E 'Development of Residential Load Profile for Central Air Conditioners and Heat Pumps' research, the Maryland Peak Definition coincidence factor is 0.69. This study is not publicly available, but is referenced by the Mid-Atlantic TRM Version 7.0 published May 2017 and by M. M. Straub, Using Available Information for Efficient Evaluation of Demand-Side Management Programs, Electricity Journal, September 2011 and supported by research conducted by Cadmus on behalf of the TRM Management Committee. The TRM MC continues to coordinate with the New York Geothermal Energy Organization ("NY GEO") regarding right sizing adjustment factors and the use of coincidence factor.

^{181 10} CFR 430.32 (c)(1)(i)

or an air-source heat pump with a SEER of 14 and HSPF of 8.2^{182} ; 2) For fossil fuel equipment, with an existing natural gas furnace, an equivalent baseline efficiency, stated as the Annual Fuel Utilization Efficiency (AFUE), would be 80% ¹⁸³. Note, the baseline efficiency for electric resistance heat is a COP of 1.0. For electric resistance heating, no fan or pump power is considered.

Current code (Code of Federal Regulations 10 CFR 430.32, ECCCNYS 2016, NYCECC 2016 or local legislation) applicable to the installation site should be consulted for correct baseline system and efficiency values.

The baseline electric cooling efficiency term used for this measure is in terms of EER. Minimum EER requirements are not specified by federal standards for the state of New York, nor are they mandated by state or city code for residential equipment. For this equipment, baseline EER is established as follows¹⁸⁴:

$$EER = (1.12 \times SEER) - (0.02 \times SEER^2)$$

Air source heat pumps are rated under a standard set of conditions. For cooling, the differences between the rated conditions and those in New York are small, however for heating, the differences between the rated conditions and those experienced in New York are significant. To account for these differences during the heating season, a climate-adjustment factor, as defined in the table below, must be used to define the project baseline when that baseline is an air source heat pump.

The HSPF is the AHRI rated heating seasonal average efficiency expressed in terms of BTU/hrwatt. A seasonal average adjusted part-load COP of an air-source heat pump is used in the above equations. This baseline/adjusted part-load COP shall be calculated as:

$$COP_{baseline} = COP_{part \ adj} = \frac{HSPF \times F_{HSPF}}{3.412}$$

where:

COP _{part adj}	= Seasonal average adjusted COP of air-source heat pump
HSPF	= Heating seasonal performance factor of the baseline system, total heating output
	(supply heat) in BTU (including electric heat) during the heating season / total
	electric energy heat pump consumed (in watt/hr)
Fhspf	= HSPF Climate Adjustment Factor, from table below

3.412 = Conversion factor, one watt-hour equals 3.412142 BTU

TISET CHIMALE AUJUSTITIENT FACTOR (THSPF)			
City	HSPF < 8.5	HSPF ≥ 8.5	
Albany	0.70	0.67	
Binghamton	0.68	0.65	
Buffalo	0.73	0.70	

HSPF Climate Adjustment Factor (F_{HSPF})

¹⁸² 10 CFR 430.32 (c)(1)(ii)

¹⁸³ 10 CFR 430.32 (e)(2)(i)(A) – Assumes an 80 MBh gas furnace.

¹⁸⁴ DOE, Building America House Simulation Protocols, October 2010

City	HSPF < 8.5	HSPF ≥ 8.5
Massena	0.59	0.56
NYC	0.80	0.78
Poughkeepsie	0.62	0.59
Syracuse	0.69	0.66

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a ground source heat pump system as defined in the Measure Description section above meeting or exceeding minimum performance requirements dictated by program eligibility guidelines.

Ground source heat pumps are rated according to ISO-13256. The efficiency specifications in ISO-13256 account for the compressor energy and supply fan, and pump energy required to overcome air and fluid pressure drop internal to the unit. The analysis is based on the actual building heating and cooling loads from a Manual J calculation, rather than the installed equipment nameplate capacity. Thus, the analysis uses an adjustment factor to remove the embedded oversizing assumptions in the <u>Appendix G</u> EFLH data. The ISO-13256 efficiency rating procedure addresses the efficiency of the GSHP only, not the entire system. The fan energy required to distribute air through the duct system and the pump energy required to move the heat transfer fluid through the ground loop is accounted for separately in this analysis.

The seasonal average cooling and heating efficiencies are estimated from the manufacturers' catalog EER and COP data at the cooling and heating seasonal average entering fluid temperature and capacity. EER and COP ratings provided in manufacturers' catalogs were developed under conditions specified in ISO 13256, which do not include fan and pump power external to the unit. An adjustment factor is applied to the manufacturers' catalog data to account for fan and pump power:

$$EER_{part \ adj} = (EER_{part} \ at \ GWT_{cooling}) \times F_{cooling}$$

$$COP_{part adj} = (COP_{part} at GWT_{heating}) \times F_{heating}$$

Summary of Variables and Data Sources

Variable	Value	Source
$\mathrm{GWT}_{\mathrm{cooling}}$	60 °F	Heat pump entering water temperature. Data source; monitored ground loop temperature data from geothermal heat pump systems installed in NY (see reference 7). The data was recorded on a daily basis over a 12- month period, including a full cooling season.
GWT _{heating}	40 °F	Heat pump entering water temperature. Data source; monitored ground loop temperature data from geothermal heat pump systems installed in NY (see reference 7). The data was recorded on a daily basis over a 12- month period, including a full heating season.
F _{cooling}		Adjustment factor to the manufacturers' catalog data is applied to account for fan and pump power consumption during cooling mode

Variable	Value	Source
Fheating		Adjustment factor to the manufacturers' catalog data is applied to
		account for fan and pump power consumption during heating mode

Data concerning the external static pressure (ESP) imposed on the unit during ISO testing are not generally available. It is assumed that the ESP during the test is representative of the ESP of a typical duct system. Pump power for a well-designed system from the ASHRAE Geothermal Heating and Cooling System Design Guide is shown below:

Installed Pump Power	Power into Pump Motor	Grade	Available Head with 70% Efficient Pump at 3gpm/ton
<5hp/100 tons	< 45 W/ton	A	< 46 ft. of water

The EER and COP ratings provided in manufacturers' catalogs were developed under conditions specified in ISO 13256, which do not include fan and pump power external to the unit. An adjustment factor to the manufacturers' catalog data as a function of external pumping power are shown below for variable-speed and constant two-speed ground-water pumping systems:

Heat Pump Type	Stage	Pump power (W/ton)	Pump Type	Fcooling	Fheating
Variable	Low	45	Variable flow	0.85	0.93
Two-stage	Low	45	Variable flow	0.84	0.91
Variable	Low	45	Constant flow	0.75	0.86
Two-Stage	Low	45	Constant flow	0.8	0.88

Operating Hours

Operating hours are based on EFLH as presented in <u>Appendix G</u>. Note, the EFLH data in <u>Appendix</u> <u>G</u> are based on system nameplate capacity, while the equations in this section are based on actual building load. The F_{EFLH} factor is introduced to account for the equipment oversizing assumption embedded in the <u>Appendix G</u> data. The oversizing assumption embedded in the <u>Appendix G</u> data. The oversizing assumption embedded in the <u>Appendix G</u> data are appropriate for equipment sized to meet the peak-cooling load, such as central air conditioners and air source heat pumps. However, GSHPs are typically sized to meet the heating load; and the oversizing assumptions embedded in the <u>Appendix G</u> data are not appropriate.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- 1. ECCCNYS, 2016, per IECC 2015; Section R403.7. Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-re-residential-energy-efficiency</u>
- 2. BG&E: Development of Residential Load Profile for Central Air Conditioners and Heat Pumps, via *Mid-Atlantic Technical Reference Manual Version 6.0*, May 2016 (accessed March 21, 2017)

Available from: <u>http://www.neep.org/mid-atlantic-technical-reference-manual-v6</u>

- 3. M. M. Straub, Using Available Information for Efficient Evaluation of Demand-Side Management Programs, Electricity Journal, September 2011 Available from: https://www.sciencedirect.com/science/article/pii/S1040619011001941
- 4. 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>
- Building America House Simulation Protocols, Robert Hendron and Cheryn Engebrecht, National Renewable Energy Laboratory, October 2010 Available from: https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/house_simul

<u>ation_revised.pdf</u>

- 6. Kavanaugh, S and Rafferty, K (2015): *Geothermal Heating and Cooling, Design of Ground-Source Heat Pump Systems* RP-1674, Atlanta, GA. ASHRAE Inc.
- 7. Fairey, P., D. Parker, B Wilcox, M Lombardi. *Climate Impacts on Heating Seasonal Performance Factor (HSPF) and Seasonal Energy Efficiency Ratio (SEER) for Air Source Heat Pumps*, ASHRAE Transactions, 110(2): 178-88.
- 8. Water Source Heat Pumps Testing and Rating for Performance Part 1: Water to Air and Brine to Air Heat Pumps (2012) Arlington, VA. ANSI/ASHRAE/ISO Standard 13256-1:1998 (RA 2012), AHRI, 2012.
- 9. *Manual J Residential Load Calculation*, Arlington, VA. Air Conditioning Contractors Association
- 10. *Guide to Geothermal Heat Pumps* (February 2011) U. S. Department of Energy, Energy Efficiency and Renewable Energy, DOE/EE-0385
- 11. Monitored data from geothermal heat pump systems installed in New York State submitted August 2015 by the New York Geothermal Energy Organization, and reviewed by NYS DPS Staff.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
4-16-1	3/31/2016
6-17-6	6/30/2017
3-18-11	3/29/2018

HEATING, VENTILATION AND AIR CONDITIONING (HVAC) – CONTROL

OUTDOOR RESET CONTROL FOR HYDRONIC BOILER

Measure Description

Reset of hot water set point in single and multi-family residential buildings with zone thermostat control. The measure is assumed to be applied to existing non-condensing boiler systems. One outdoor reset control measure may be applied to each boiler unit.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = N/A$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 $\Delta therms = units \times \left(\frac{kBTUh_{in}}{unit}\right) \times \left(\frac{EFLH_{heating}}{100}\right) \times F_{savings}$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of reset controls installed under the
program	
EFLH	= Equivalent full-load hours
in	= Input capacity
heating	= Heating
CF	= Coincidence factor
KBTUh	= Annual gas input rating per unit in kBTU/hr
Fsavings	= Savings factor
100	= Conversion factor, (kBTUh/therm)

Summary of Variables and Data Sources

Variable	Value	Notes
kBTUh _{in} /unit		From application. Use deemed value of 110 kBTU/hr if data not available. If vintage not known, use vintage weighted values.
EFLH _{heating}		Lookup by vintage and city. If vintage not known, use vintage weighted values.

Variable	Value	Notes
F _{savings}	0.05	Recommended Energy Factor for boiler reset controllers in residential applications

The input capacity (in 1,000 BTU/hr) of the boiler should be taken from the application. If the input capacity is not known, then use the following default values:

- 1. Single-family residential buildings, 110 kBTU/hr
- 2. Multi-family buildings, input capacity can be estimated from the building type (low-rise or high-rise) and the building heated floor area using the data in the table below.

	Boiler Size (BTU/hr-SF)		
City and Vintage	High-rise	Low-rise	
	(more than 3 stories)	(3 stories or less)	
Albany old vintage	20.2	26.0	
Albany average vintage	15.4	17.0	
Albany new vintage	9.9	10.0	
Buffalo old vintage	18.0	23.5	
Buffalo average vintage	13.8	14.9	
Buffalo new vintage	8.8	9.1	
Massena old vintage	22.7	28.8	
Massena average vintage	17.7	18.8	
Massena new vintage	11.3	11.2	
NYC old vintage	13.7	19.2	
NYC average vintage	10.6	11.8	
NYC new vintage	6.8	7.6	
Syracuse old vintage	18.6	24.6	
Syracuse average vintage	14.3	15.8	
Syracuse new vintage	9.1	9.5	
Binghamton old vintage	19.0	24.6	
Binghamton average vintage	14.6	15.9	
Binghamton new vintage	9.3	9.5	
Poughkeepsie old vintage	17.1	22.6	
Poughkeepsie average vintage	13.2	14.4	
Poughkeepsie new vintage	8.4	8.8	

Coincidence Factor (CF)

The recommended value for the coincidence factor is: N/A

Baseline Efficiencies from which Savings are Calculated

Constant hot water set point temperature of 180F°.

Compliance Efficiency from which Incentives are Calculated

Reset hot water temperature to $160F^{\circ}$. Energy Factor ($F_{savings}$) of 0.05 shall be used.

Operating Hours

Heating equivalent full-load hours for residential buildings were calculated from DOE-2.2 simulations of prototypical single-family buildings. See <u>Appendix G</u>.

Effective Useful Life (EUL)

Years: 15 Source: ACEEE

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

Lower set point temperature may cause hot water circulator to run longer cycles. Minor impact not accounted for in this procedure.

References

 Energy savings factor for residential applications taken from an article published by the Energy Solutions Center, a consortium of natural gas utilities, equipment manufacturers and vendors. <u>www.energysolutionscenter.org/BoilerBurner/Eff_Improve/Efficiency/Boiler_Reset_Control.asp</u>

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
6-16-4	6/30/2016

SUB-METERING

Sub-metering of apartments in multi-family buildings, where tenants pay for their own electricity consumption according to their metered usage.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $kWh = units \times kWh/SF \times SF \times ESF$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 Δ therms = N/A

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
CF	= Coincidence factor
kWh/SF	= Annual electricity consumption per SF of conditioned floor area
SF	= Conditioned floor area per apartment subject to sub-metering
ESF	= Energy savings factor from sub-metering

Summary of Variables and Data Sources

Variable	Value	Notes
ESF	0.08	Default value, annual energy consumption per square foot of conditioned floor area should come from utility data specific to the multi-family housing stock in their service territory.

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A

Baseline Efficiencies from which Savings are Calculated

There is a significant research literature substantiating the belief that sub-metering of mastermetered multi-family buildings can result in significant energy savings (see Munley et al, 1990 and Hackett & Lutzenheiser, 1991). However, rigorous estimates of the percentage of savings to be expected are scarce. A rigorous study of water sub-metering commissioned by the EPA (Aquacraft 2004) found savings of approximately 15%. While water is not electricity, arguably the same behavioral impulses can be expected to be at work. Recent NYSERDA program submittals suggested an 8% savings in total energy consumption. 8% seems to be a reasonable, albeit relatively conservative, default assumption. However, given the scarcity of recent, reliable studies, it is particularly important that savings claims from sub-metering be rigorously evaluated through ex-post studies.

Compliance Efficiency from which Incentives are Calculated

Operating Hours

Effective Useful Life (EUL) Years: Source:

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- Electricity Demand in Multi-Family, Renter-Occupied Residences." Munley, Vincent G.; Taylor, Larry W; Formby, John P. Southern Economic Journal. July 1990, pp. 178-194.
- 2. Social Structures and Economic Conduct: Interpreting Variations in Household Energy Consumption." Hackett, Bruce, and Loren Lutzenheiser. *Sociological Forum*, Vol. 6, No.3 (September 1991) pp. 449-470.
- 3. National Multiple Family Sub-metering and Allocation Billing Program Study. Prepared by Aquacraft for the UP EPA. August 2004.

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

LEARNING THERMOSTAT

Measure Description

This measure covers the installation of ENERGY STAR[®] qualified smart thermostats with behavioral learning capabilities applied to single-family and multi-family residential HVAC systems. Utilizing Wi-Fi connections, a smart (learning) thermostat provides and receives feedback from users to enhance energy efficiency without compromising comfort. A learning thermostat controls HVAC equipment to regulate the temperature of the room or space in which it is installed, communicates with sources external to the HVAC system for remote adjustment and has the ability to perform automatic adjustments in response to occupant behavior. Additional learning thermostat capabilities may vary, but at minimum, must meet the following criteria:

- Work as a basic thermostat in absence of connectivity to the service provider.
- Give residents some form of feedback about the energy consequences of their settings.
- Provide information about HVAC energy use, such as monthly run time.
- Provide the ability to set a schedule.
- Provide the ability to work with utility programs to prevent brownouts and blackouts, while preserving consumers' ability to override those grid requests.¹⁸⁵

This measure is applicable to single and multi-family centralized heating and cooling systems. For single family applications with multiple zones, savings are claimed per residence. While incentives may be provided for multiple thermostat units, the algorithms below shall apply a value of "1" to the "units" term. For multifamily applications, "tons/unit", "kBTUh_{out}/unit" and "kBTUh_{in}/unit" terms shall be set equal to the total capacity of the central cooling/heating system divided by the total number of dwelling units served by the system. The "units" term shall be set equal to the total applications the system. The "units" term shall be set equal to the total applications are installed. This measure is not applicable to multifamily central heating systems with additional capacity for domestic hot water.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times \begin{bmatrix} \left(tons/unit \times \frac{12}{Eff_{cooling}} \times EFLH_{cooling} \times ESF_{cooling} \times F_{CEC} \right) \\ + \left(kBTUh_{out}/unit \times \frac{1}{HSPF} \times EFLH_{heating} \times ESF_{heating} \times F_{EH} \right) \end{bmatrix}$$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

¹⁸⁵ ENERGY STAR[®] Program Requirements Product Specification for Connected Thermostat Products, Eligibility Criteria Version 1.0, January 2017

$$\Delta therms = units \times \left(kBTUh_{in}/unit \times \frac{1}{100} \times EFLH_{heating} \times ESF_{heating} \times F_{GH} \right)$$

where:	
ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
Δtherms	= Annual gas savings
units	= Number of residences in which the measure is installed under the program
tons/unit	= Tons of air conditioning per residence, based on nameplate data; for multifamily buildings with centralized HVAC, this term shall be set equal to the total cooling capacity of the system divided by the total number of dwelling units it serves
kBTUh _{out} /unit	= Output electric heating capacity in kBTU/h per residence, based on nameplate data; for multifamily buildings with centralized HVAC, this term shall be set equal to the total heating capacity of the system divided by the total number of dwelling units it serves
kBTUh _{in} /unit	= Input heating capacity in kBTU/h per residence, based on nameplate data; for multifamily buildings with centralized HVAC, this term shall be set equal to the total heating capacity of the system divided by the total number of dwelling units it serves
Eff _{cooling}	= Seasonal average energy efficiency over the cooling season, BTU/watthour, (used for average U.S. location/region), using either SEER (<5.4 tons) or IEER (≥5.4 tons)
HSPF	= Seasonal average energy efficiency over the heating season, Heating seasonal performance factor, BTU/watt-hour, total heating output (supply heat) in BTU (including resistance heat) during the heating season / total electric energy heat pump consumed (in watt-hour); if equipment efficiency is reported in COP, convert to HSPF using the equivalency HSPF = COP x 3.412
EFLH	= Equivalent full-load hours
ESF	= Energy savings factor
F _{CEC}	= Central electric cooling factor; used to account for the presence or absence of a central electric cooling system
F _{EH}	= Electric heating factor; used to account for the presence or absence of an electric heating system
F _{GH}	= Gas heating factor; used to account for the presence or absence of a gas heating system
12	= kBTUh/ton of air conditioning capacity
100	= Conversion factor, one therm equals 100 kBTU

Variable	Value	Notes
tons/unit		From application or use 3 tons as a default. ¹⁸⁶
kBTUh _{out} /unit		From application or use 72 kBTUh as a default. ¹⁸⁷
kBTUh _{in} /unit		From application or use 90 kBTUh as a default. ¹⁸⁸
Effcooling		From application or use 14 SEER, assuming a 3-ton central ASHP system. ¹⁸⁹
HSPF		From application or use 8.2 HSPF, assuming a 3-ton central ASHP system. ¹⁹⁰ For electric resistance heating and electric furnaces, use 3.4 HSPF. If taken from application, COP must be converted to HSPF using the equivalency HSPF = COP x 3.412.
EFLH _{cooling}		Look up based on building type, vintage and city in <u>Appendix G</u> .
EFLH _{heating}		Look up based on building type, vintage and city in <u>Appendix G</u> .
ESF _{cooling}	0.10	Energy savings factor for cooling. ¹⁹¹
ESF _{heating}	0.08	Energy savings factor for heating. ¹⁹²
F _{CEC}	Central Cooling: 1 No Central Cooling: 0 Unknown: 0.39	Based on EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States. ¹⁹³
F_{EH}	Electric Heating: 1 No Electric Heating: 0 Unknown: 0.15	Based on EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States. ¹⁹⁴
F _{GH}	Gas Heating: 1 No Gas Heating: 0 Unknown: 0.60	Based on EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States. ¹⁹⁵

Summary of Variables & Data Sources

¹⁸⁶ Assumes a 1,800 ft² home with 20 BTUh/ft² cooling load: 1,800 ft² x 20 BTUh/ft² x 1/12,000 ton/BTUh = 3 tons

 187 Assumes a 1,800 ft² home with 40 BTUh/ft² heating load: 1,800 ft² x 40 BTUh/ft² x 1/1,000 kBTUh/BTUh = 72 kBTUh

¹⁸⁸ Assumes a 1,800 ft² home with 40 BTUh/ft² heating load and 80% AFUE: 1,800 ft² x 40 BTUh/ft² x 1/0.80 x 1/1,000 kBTUh/BTUh = 90 kBTUh

¹⁸⁹ 10 CFR 430.32 (c)(1)

("Unknown" calculated as the number of homes with central AC divided by the total number of homes)

¹⁹⁴ EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States, Table HC6.7

("Unknown" calculated as the number of homes with electric heat divided by the total number of homes)

¹⁹⁵ EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States, Table HC6.7

¹⁹⁰ Ibid.

¹⁹¹ ENERGY STAR[®] Program Requirements Product Specification for Connected Thermostat Products, Eligibility Criteria Version 1.0, January 2017, pg. 10

¹⁹² Ibid.

¹⁹³ EIA Residential Energy Consumption Survey (RECS) 2015 for Middle Atlantic States, Table HC7.7

^{(&}quot;Unknown" calculated as the number of homes with natural gas heat divided by the total number of homes)

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is an HVAC system controlled by a programmable thermostat without Wi-Fi or behavioral learning capability.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is an HVAC system controlled by an ENERGY STAR[®] qualified Wi-Fi communicating thermostat with behavioral learning capability as defined in the Measure Description section above.

Operating Hours

Cooling and heating equivalent full-load hours were calculated from a DOE-2.2 simulation of prototypical single and multi-family residential buildings. Operating hour assumptions for the prototypical building models are described in <u>Appendix A</u>. The heating EFLH for commercial buildings in NY are shown in <u>Appendix G</u>.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

Reduced operating hours during the heating and cooling season result in distribution blower electric savings. These effects are not quantified in the prescribed savings estimation methodology for this measure at this time.

References

- ENERGY STAR[®] Program Requirements Product Specification for Connected Thermostat Products, Eligibility Criteria Version 1.0, January 2017 Available from: <u>https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20P</u> rogram%20Requirements%20for%20Connected%20Thermostats%20Version%201.0.pdf
- 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>
- 3. EIA Residential Energy Consumption Survey (RECS) 2015 Survey Data for Middle Atlantic States.

Available from: https://www.eia.gov/consumption/residential/data/2015/

Record of Revision

Record of Revision Number	Issue Date
3-18-17	3/29/2018

THERMOSTAT – PROGRAMMABLE SETBACK

Measure Description

Programmable setback thermostats applied to single-family and multi-family residential air conditioners, heat pumps, boilers, furnaces and electric resistance baseboard heating systems.

One programmable thermostat may be applied to each controlled HVAC system.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times \left[\left(tons/unit \times \left(\frac{12}{SEER} \right) \times EFLH_{cooling} \times F_{cooling} \right) + \left(kBTUh_{out}/unit \times \left(\frac{1}{HSPF} \right) \times EFLH_{heating} \times F_{heating} \right) \right]$$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

$$\Delta \text{therms} = \text{units} \times \left[\text{kBTUh}_{\text{in}} / \text{unit} \times \left(\frac{1}{100}\right) \times \text{EFLH}_{\text{heating}} \times \text{F}_{\text{heating}} \right]$$

where:

 ΔkWh = Annual electric energy savings

 ΔkW = Peak coincident demand electric savings

 Δ therms = Annual gas energy savings

units = Number of residences in which measure is installed under the program tons/unit = Tons of air conditioning per residence, based on nameplate data; for multifamily with central HVAC, this includes all residences served by central HVAC system kBTUh_{out}/unit = Output electric heating capacity in kBTU/h per residence, based on nameplate data (heat pumps); for multifamily with central HVAC, this includes all residences served by central HVAC system

 $kBTUh_{in}/unit = Input heating capacity in kBTU/h per residence, based on nameplate data (boilers, furnaces and electric resistance heating); for multifamily with central HVAC, this includes all residences served by central HVAC system$

- SEER = Seasonal energy efficiency ratio in Btu/watt-hour. Total cooling output of an air conditioner during its normal annual usage period for cooling, in BTU, divided by the total electric energy input during the same period, in watt-hours.
- HSPF = Heating seasonal performance factor, total heating output (supply heat) in BTU (including electric strip heat) during the heating season / total electric energy heat pump consumed (in watt/hr)

EFLH _{cooling}	= Cooling equivalent full-load hours
EFLH _{heating}	= Heating equivalent full-load hours
Fheating	= Energy savings factor for heating (percent of total consumption saved)
F _{cooling}	= Energy savings factor for cooling (percent of total consumption saved)
12	= kBTUh/ton of air conditioning capacity
100	= Conversion factor, kBTUh/therm

Variable	Value	Notes
tone		From application or use 3 as default. Use 0 if no
tons		central cooling
		As defined by IECC 2015 and subsequently adopted
SEER	13	by ECCCNYS 2016 and NYCECC; assumes 3-ton,
		split system AC ¹⁹⁶
EFLH _{cooling}		Vintage weighted average by city.
F _{cooling}	0.09	
EFLH _{heating}		Vintage weighted average by city.
E.	0.02	Conservative estimate based on results of NYS RES
Theating	0.02	HEHE evaluation ¹⁹⁷
If heat pump:		
kBTUh out/unit		From application or use 70 kBTU/hr as default
		As defined by IECC 2015 and subsequently adopted
HSPF	8.2	by ECCCNYS 2016 and NYCECC; assumes 3-ton,
		split system HP ¹⁹⁸
If furnace:		
		From application or use 90 kBTU/hr as a default.
kBTUh _{in} /unit		Use weighted average of furnace and boiler if
		system type unknown.
If boiler:		
		From application or use 110 kBTU/hr as default. Use
kBTUh _{in} /unit		weighted average of furnace and boiler if system type
		is unknown.
If resistance heater:		
kBTUb. /unit		From application or use 12 kBTU/hr (3.5 kW) as
		default
HSPF	3.412	Equivalent to $COP = 1$

Summary of Variables and Data Sources

The nominal rating of the cooling capacity of the air conditioner or heat pump should be set equal to the rated capacity of all cooling equipment in the residence. The energy savings should

¹⁹⁶ IECC 2015; Table C403.2.3(1): Minimum Efficiency Requirements: Electrically Operated Unitary Air Conditioners and Condensing Units

¹⁹⁷ Opinion Dynamics: New York Statewide Residential Gas High-Efficiency Heating Equipment Programs Evaluation of 2009-2011 Programs; August 2014

¹⁹⁸ IECC 2015; Table C403.2.3(2): Minimum Efficiency Requirements: Electrically Operated Unitary and Applied Heat Pumps

be calculated based on the capacity of the HVAC system, with one thermostat controlling the system. For multifamily with central HVAC, total cooling capacity of the system should be used.

The nominal rating of the heating capacity of the heat pump should be set equal to the rated capacity of all heating equipment controlled in the residence. The energy savings should be calculated based on the capacity of the HVAC system, with one thermostat controlling the system. For multifamily with central HVAC, total heating capacity of the system should be used.

Coincidence Factor (CF)

The recommended value for the coincidence factor is: N/A

Baseline Efficiencies from which Savings are Calculated

The baseline system is a standard, non-programmable thermostat for a central heating and cooling system when a programmable thermostat is not otherwise required by applicable energy conservation code. If programmable thermostats are required by code, no deemed savings exist.

The baseline efficiency for air conditioners and heat pumps should be set according to the sections on air conditioner and heat pump efficiency above. Electric resistance heating systems should use an HSPF = 3.412, which is equivalent to a coefficient of performance of 1.0.

Studies of residential heating thermostat set point behavior indicate some amount of manual setback adjustment in homes without programmable thermostats. This behavior is accounted for in the prototypical building simulation model used to calculate heating equivalent full-load hours, as described in <u>Appendix A</u>. An assumption of 3°F of night time setback behavior is embedded in the models.

Compliance Efficiency from which Incentives are Calculated

The energy savings factor for heating ($F_{heating}$) is the ratio of the energy savings resulting from installation of a programmable setback thermostat to the annual heating energy. The heating energy savings factor assumption is derived from the results of a New York State specific residential gas program evaluation conducted by Opinion Dynamics. This evaluation indicated a 2-4% reduction in total annual gas consumption resulting from installation of programmable thermostats. A conservative value of 2% of the annual heating energy consumption is assumed as deemed savings for programmable setback thermostats in residential applications.

The cooling energy savings factor ($F_{cooling}$) is the ratio of the energy savings resulting from installation of a programmable setback thermostat to the annual cooling energy. The cooling energy savings factor assumption is taken from the ENERGY STAR[®] website. The ENERGY STAR[®] calculator estimates an energy savings of 6% of the annual cooling energy consumption per degree of setback for programmable setback thermostats in residential applications. This measure assumes an average of 1.5 degrees of setback over the cooling season for an estimated annual cooling energy savings of 9%.

Operating Hours

Cooling and heating equivalent full-load hours calculated from building energy simulation models are described in <u>Appendix A</u> and summarized in <u>Appendix G</u>.

Effective Useful Life (EUL) Years: 11

Source: DEER¹⁹⁹

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts

N/A

References

- 1. For examples of studies on residential thermostat set point behavior, see the literature review conducted for the California Energy Commission project "Residential Thermostats: Comfort Controls in California Homes," CEC-500-03-026, available at http://eta-publications.lbl.gov/sites/default/files/lbnl-938e.pdf
- Baseline thermostat setback assumptions taken from: Conner, C.C. and Lucas, R.L. 1990. Thermostat Related Behavior and Internal Temperatures Based on Measured Data in Residences. PNL-7465, Pacific Northwest Laboratory. Richland, WA. <u>http://elcap.nwcouncil.org/Documents/Thermostat%20Related%20Behavior.PDF</u>
- 3. IECC 2015: International Energy Conservation Code 2015 https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-re-residentialenergy-efficiency
- 4. ECCCNYS 2016: Energy Conservation Construction Code of New York State 2016 https://codes.iccsafe.org/public/document/toc/1057/
- 5. NYCECC 2016: New York City Energy Conservation Code 2016 https://www1.nyc.gov/site/buildings/codes/2016-energy-conservation-code.page
- Opinion Dynamics: New York Statewide Residential Gas High-Efficiency Heating Equipment Programs Evaluation of 2009-2011 Programs; August 2014 <u>http://www.nationalfuelforthought.com/docs/psc-</u> reports/EEPS_Opinion_Dynamics_Corporation_Residential_Rebate_Program_Statewide <u>Impact_Evaluation_Report_Completed_August_2014.pdf</u>
- 7. Programmable thermostat savings for the cooling season taken from the ENERGY STAR[®] website: https://www.energystar.gov/sites/default/files/asset/document/ProgrammableThermostat_ Calculator.xls

¹⁹⁹ California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014; Updated-EULrecords_02-07-2014; EUL ID: HVAC-ProgTStats Available at: http://deeresources.com/files/deerchangelog/deerchangelog.html

Record of Revision Number	Issue Date
0	10/15/2010
1	12/31/2015
1-17-3	12/31/2016
2-17-1	2/10/2017

Record of Revision

THERMOSTAT – WI-FI (COMMUNICATING)

Measure Description

This section covers Wi-Fi communicating thermostats without behavioral learning capability applied to single-family and multi-family residential air conditioners, heat pumps, boilers, furnaces and electric resistance baseboard heating systems. These communicating thermostats allow set point adjustment via a remote application. This measure does not apply to Wi-Fi thermostats installed as part of a Demand Response program.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings (Cooling)

 $\Delta kWh = units \times kWh/unit$

Peak Coincident Demand Savings

 $\Delta kW = units \times kW/unit$

Annual Gas Energy Savings

 Δ therms = units × therms/unit

where:

ΔkWh	= Annual electricity energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
kWh/unit	= Annual electric savings per unit
kW/unit	= Peak coincident demand savings per unit
therms/unit	= Annual gas savings per unit

Summary of Variables and Data Sources

Variable	Value	Notes	
kWh/unit	104	Annual electric savings per installed thermostat, in kWh ²⁰⁰	
kW/unit	0.23	Peak demand savings per installed thermostat, in kW ²⁰¹	
therms/unit	66	Annual gas savings per installed thermostat, in therms ²⁰²	

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

²⁰⁰ Cadmus Group, Wi-Fi Programmable Controllable Thermostat Pilot Program Evaluation, September 2012

²⁰¹ Ibid.

²⁰² Ibid.

Baseline Efficiencies from which Savings are Calculated

The baseline efficiency is an HVAC system using natural gas and electricity to provide space heating and cooling controlled by a non-Wi-Fi communicating programmable thermostat.

Compliance Efficiency from which Incentives are Calculated

The compliance efficiency is an HVAC system using natural gas and electricity to provide space heating and cooling controlled by a Wi-Fi communicating thermostat without behavioral learning capability. The thermostat shall not be installed as part of a Demand Response program.

Operating Hours

HVAC system operating hours are embedded in the deemed savings values associated with Wi-Fi communicating thermostats, which are based on metering results.

Effective Useful Life (EUL)

Years: 11 Source: DEER 2014²⁰³

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- Cadmus Group, Inc. "Wi-Fi Programmable Controllable Thermostat Pilot Program Evaluation", prepared for The Electric and Gas Program Administrators of Massachusetts, September 2012 Available from: <u>http://ma-eeac.org/wordpress/wp-content/uploads/Wi-Fi-Programmable-Controllable-Thermostat-Pilot-Program-Evaluation_Part-of-the-Massachusetts-2011-Residential-Retrofit-Low-Income-Program-Area-Study.pdf
 </u>
- California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-05-2014; EUL ID: HV-ProgTStat. Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

Record of Revision

Record of Revision Number	Issue Date
1-16-19	12/31/2015
9-17-1	9/30/2017

Return to Table of Contents

²⁰³ CA DEER – 2014 Updated EUL Records

THERMOSTATIC RADIATOR VALVE - ONE PIPE STEAM RADIATOR

Measure Description

Thermostatic Radiator Valves (TRV) are self-contained, self-operated valves that do not require ancillary power. They provide local control of room temperature by controlling the venting of air out of the radiator. TRVs are available for a variety of installation conditions utilizing either remote-mounted sensors or integral-mounted sensors by means of remote or integral set point adjustment. This measure is specifically a TRV in combination with an air vent installed at one or more radiators in a one-pipe steam space heating system.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = N/A$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 $\Delta therms = units \times \Delta therms/HDD \times HDD_{ava}$

where:

= Annual electric energy savings
= Peak coincident demand electric savings
= Annual gas energy savings
= Number of TRV's installed
= Annual gas energy savings per Heating Degree Day (HDD), per TRV
= Average Heating Degree Days

Variable	Value	Notes
units		Number of TRV's installed, from application
ΔTherms/HDD	0.004318	Average gas savings per HDD per unit ²⁰⁴
HDD _{avg}	4,871	Heating Degree Days for New York City (Central Park) ²⁰⁵

Summary of Variables and Data Sources

 ²⁰⁴ Thermostatic Radiator Valve (TRV) Demonstration Project. Prepared by NYSERDA, Project Manager Norine Karins and the EME Group Project Manager Michael McNamara. NYSERDA report 95-14. September 1995.
 ²⁰⁵ NYS Plumbing Code 2016, Appendix D, Table D-101

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is an existing space heating system with manual control valves at freestanding radiators, convectors, or baseboard heating units.

Compliance Efficiency from which Incentives are Calculated

The measure is defined as the existing radiator, convector, or baseboard heater unit controlled by the thermostatic radiator valve.

Operating Hours

Evaluation of savings associated with installation of TRVs is dependent upon typical heating degree days as specified in the Summary of Variables and Data Sources above.

Effective Useful Life (EUL) Years: 12 Source: NYS DPS

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts

N/A

References

- Thermostatic Radiator Valve (TRV) Demonstration Project. Prepared by NYSERDA, Project manager Norine Karins and the EME Group project manager Michael McNamara. NYSERDA report 95-14. September 1995. Available from: <u>https://www.osti.gov/servlets/purl/119941</u>
- NYS Plumbing Code 2016, per 2015 International Plumbing Code, Appendix D Degree Day and Design Temperatures Table D-101 Available from: <u>https://codes.iccsafe.org/public/document/IPC2015NY/appendix-ddegree-day-and-design-temperatures</u>

Record of Revision

Record of Revision Number	Issue Date
1-16-12	12/31/2015
6-17-7	6/30/2017

ENERGY MANAGEMENT SYSTEM (EMS)

Measure Description

An Energy Management System (EMS) is a computer system designed specifically for the automated control and monitoring of building systems which optimize the use of energy, as consumed by heating, ventilation, air conditioning, and domestic hot water heating. An EMS operates building functions as efficiently as possible while maintaining a specified level of comfort through the use of electromechanical control mechanisms. In multifamily buildings, an EMS installed with indoor temperature sensors in apartments and other heated spaces can reduce energy consumption by optimizing boiler operation based on seasonal weather variations, use patterns, and self-diagnostic functions. The measure is defined as the installation of a new EMS, consisting of a central boiler control system that allows for staging/control of multiple boilers and monitors indoor temperature, stack temperature, outdoor temperature, and supply or return water temperature.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = N/A$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 $\Delta therms = \frac{BTUin}{100,000} \times EFLH_{heating} \times ESF$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
BTUhin	= Furnace or boiler input rating
EFLHheating	= Equivalent full-load hours
ESF	= Energy Savings Factor for EMS
100,000	= Conversion factor, (BTUh/Therm)

Variable	Value	Notes
BTUhin		From application, furnace or boiler input rating, in Btu/hr.
EFLHheating		Lookup based on building type and location.
ESF	0.22	Energy Savings Factor, from US Energy Group study ²⁰⁶

Summary of Variables and Data Sources

Coincidence Factor (CF)

N/A

Baseline Efficiencies from which Savings are Calculated

The baseline condition is an existing boiler control system based on outdoor temperature reset.

Compliance Efficiency from which Incentives are Calculated

The measure is defined as the new installation of a complete EMS with the capability of controlling an existing boiler system based on indoor and outdoor temperature.

Operating Hours

Heating equivalent full-load hours were calculated from a DOE-2.2 simulation of prototypical small commercial buildings. The EFLH values for commercial buildings are identified in <u>Appendix G</u>.

Effective Useful Life (EUL)

Years: 15 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1. US Energy Group Case Study #241, prepared by Sherri Jean Katz.

Record of Revision

Record of Revision Number	Issue Date
1-16-13	12/31/2015

²⁰⁶ Thermostatic Radiator Valve (TRV) Demonstration Project . Prepared by NYSERDA, Project manager Norine Karins and the EME Group project manager Michael McNamara. NYSERDA report 95-14. September 1995.

LIGHTING

LIGHT EMITTING DIODE (LED), COMPACT FLUORESCENT LAMP (CFL) AND OTHER LIGHTING

Measure Description

This section covers energy-efficient lighting equipment, such as energy-efficient lamps, compact fluorescent lamps, LED lamps, and improved lighting fixtures installed in interior or exterior locations. These technologies, taken separately or combined into an energy-efficient lighting fixture, provide the required illumination at reduced input power.

Beginning January 2014, the Energy Independence and Security Act of 2007 (EISA) regulations stipulated typical 60W and 40W lamp wattages to comply with 43W and 29W lamp wattage standards for rated lumen output ranges of 750-1049 and 310-749 lumens, respectively. Deemed baseline values for this measure will apply wattages based on lamp type and light output (lumens).²⁰⁷

Per EISA 2007, effective beginning January 1, 2020, if more stringent regulations are not put into effect by that date, the sale of general service lamps that do not meet a minimum efficiency standard of 45 lumens per watt will be prohibited.²⁰⁸ As a result of this stipulation, deemed baseline wattages for non-exempt general service lighting will be reduced to reflect this requirement in the January 2020 NY TRM. This will have significant impact on claimable savings associated with replacement of general service lamps (20 - 70% depending on lumen output). This information is provided to inform future ETIP development.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times \frac{(W_{baseline} - W_{ee})}{1,000} \times hrs_{operating} \times (1 + HVAC_c)$$

Peak Coincident Demand Savings

$$\Delta kW = units \times \frac{(W_{baseline} - W_{ee})}{1,000} \times (1 + HVAC_d) \times CF$$

Annual Gas Energy Savings

$$\Delta therms = units \times \frac{(W_{baseline} - W_{ee})}{1,000} \times hrs_{operating} \times HVAC_{g}$$

²⁰⁷ Energy Independence and Security Act of 2007. Pub. L. 110-140. Sec. 321. Efficient Light Bulbs H.R.6 – 86

²⁰⁸ Energy Independence and Security Act of 2007. Pub. L. 110-140. Sec. 321. Efficient Light Bulbs H.R.6 – 89

where:	
ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
W	= Rated wattage of lamp and/or fixture (Watts)
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
1,000	= Conversion factor, one kW equals 1,000 Watts
CF	= Coincidence factor
hrsoperating	= Lighting operating hours
HVAC _c	= HVAC interaction factor for annual electric energy consumption
HVAC _d	= HVAC interaction factor for peak demand at NYISO coincident summer
	peak hour
HVACg	= HVAC interaction factor for annual natural gas consumption (therms/kWh)

Variable	Value	Notes
units		Number of lamps sold/distributed under the
		program, from application
W		Energy efficient measure Watts, from
vv ee		application
		Baseline measure Watts, from application or
W _{baseline}		default values from applicable table in
		"Baseline Efficiencies" section below
	1 168 - Interior Lamos	"Interior" designation extends to any covered area
hra .	913 - Interior Fixtures	not adequately lit during daylight hours by
III Soperating	16/3 - Exterior	sunlight, thus requiring daytime operation of
	1,043 - LACHOI	lighting.
	0 for Exterior and	HVAC interaction factor for annual electric energy
HVAC _c	Unconditioned Spaces	consumption (dimensionless). Vintage and HVAC
	enconditioned Spaces	type weighted average by city. See <u>Appendix D</u> .
		HVAC interaction factor for peak demand at
HVAC	0 for Exterior and	utility summer peak hour (dimensionless). Vintage
II VACa	Unconditioned Space	and HVAC type weighted average by city. See
		Appendix D.
HVACg		HVAC interaction factor for annual natural gas
	0 for Exterior and	energy consumption (therms/kWh). Vintage and
	Unconditioned Space	HVAC type weighted average by city. See
		Appendix D.
CF		"Interior" designation extends to any covered area
	0.082 – Interior	not adequately lit during daylight hours by
	0.0 - Exterior	sunlight, thus requiring daytime operation of
		lighting.

Summary of Variables and Data Sources

HVAC system interaction factors are defined as the ratios of the cooling energy and demand reduction and heating energy increase per unit of lighting energy reduction. Much of the input energy for lighting systems is converted to heat that must be removed by the HVAC system. Reductions in lighting heat gains due to lighting power reduction decrease the need for space cooling and increase the need for space heating.

HVAC interaction factors vary by climate, HVAC system type and building type. Recommended values for HVAC interaction factors for lighting energy and peak demand savings are shown in <u>Appendix D</u>. Lighting systems in unconditioned spaces or on the building exterior will have interaction factors of 0.0.

Coincidence Factor (CF)

The recommended value for the coincidence factor for interior lighting is 0.082. This factor was derived from an examination of studies throughout New England that calculated coincidence factors based on the definition of system peak period at the time, as specified by ISO-New England.²⁰⁹

Because exterior lighting is assumed to operate during off-peak hours only, the recommended coincidence factor for exterior lighting is 0.0.

Baseline Efficiencies from which Savings are Calculated

Rated wattage baseline values should reflect the guidance noted below based on bulb type and lumens in accordance with EISA standards. Note that deemed baseline wattages for non-exempt general service lighting will be reduced to reflect the EISA 2007 "Backstop Requirement" beginning with the January 2020 NY TRM, assuming more stringent requirements are not established.. This requirement, prohibiting the sale of general service lamps that do not meet a minimum efficiency standard of 45 lumens per watt will have significant impact on claimable savings associated with replacement of general service lamps (20 - 70% depending on lumen output). ²¹⁰

General Service Lamps

Baseline wattage for general service lamps are found in the table below. Per EISA 2007 guidelines, a general service lamp is defined as a standard incandescent or halogen type lamp that:

- (1) Is intended for general service applications;
- (2) Has a medium screw base;
- (3) Has a lumen range of not less than 310 lumens and not more than 2,600 lumens
- (4) Is capable of being operated at voltage range at least partially within 110 and 130 volts.

Certain lamp types are exempt from EISA compliance, including reflector lamps (see Reflector/Flood Lamps section below), decorative and globe shape lamps (see Specialty Lamps section below) and three-way lamps. Baseline wattage for any of these exempt lamp types should reflect the values in column (c) of the table below, with the exception of those lamps defined in the Specialty Lamps or Reflector/Flood Lamps sections below. All other general service lamps should use the baseline wattage values in column (b), corresponding to the applicable lumen range

²⁰⁹ Coincidence Factor Study Residential and Commercial & Industrial Lighting Measures, Spring 2007, Table i-1

²¹⁰ Energy Independence and Security Act of 2007. Pub. L. 110-140. Sec. 321. Efficient Light Bulbs H.R.6 – 89

identified in column (a). For standard lamps that fall outside of the prescribed lumen ranges below, the manufacturer recommended baseline wattage should be used. For a complete list and definitions of EISA-exempt lamp types, reference Sec. 321: Efficient Light Bulbs of Public Law 110-140.²¹¹

Lumen Range	Post-EISA 2007	EISA-Exempt Incandescent
	Equivalent	Equivalent
	Wbaseline	Wbaseline
(a)	(b)	(c)
310 - 449	25	25
450 - 799	29	40
800 - 1,099	43	60
1,100 - 1,599	53	75
1,600 - 1,999	72	100
2,000 - 2,600	72	150

Specialty Lamps²¹²

Baseline wattage for specialty lamps are found in the table below. Specialty lamps are defined as medium screw-base lamps that are globe, bullet, candle or decorative shaped. For specialty lamps that fall outside of the prescribed lumen ranges below, the manufacturer recommended baseline wattage should be used.

Lumen Range	Lumen Range	Post-EISA 2007	EISA-Exempt
(decorative)	(globe)	Incandescent	Incandescent
		Equivalent	Equivalent
		Wbaseline	Wbaseline
(a)	(b)	(c)	(d)
70 - 89		10	10
90 - 149		15	15
150 - 299	250 - 349	25	25
300 - 499	350 - 499	29	40
500 - 699	500 - 574	43	60
	575 - 649	53	75
	650 - 1,099	72	100
	1,100 - 1,300	72	150

Reflector/Flood Lamps²¹³

Baseline wattage for reflector and flood type lamps are found in the table below. For reflector and flood lamps that fall outside of the prescribed lumen ranges below, the manufacturer recommended baseline wattage should be used.

 ²¹¹ Energy Independence and Security Act of 2007. Pub. L. 110-140. Sec. 321. Efficient Light Bulbs H.R.6 – 82-86
 ²¹² The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures;
 Chapter 21: Residential Lighting Evaluation Protocol, National Renewable Energy Laboratory, December 2014, p.
 8-11

²¹³ State of Pennsylvania Technical Reference Manual, PA Public Utilities Commission, June 2016, p. 21-22

Bulb Type	Lumen Range	Wbaseline
(a)	(b)	(c)
ER30, BR30, BR40, or ER40	200 - 299	30
	300 - 449	40
	450 - 499	45
	500-1,419	65
R20	200 - 299	30
	300 - 449	40
	400 - 449	40
	450 - 719	45
All other R, PAR, ER, BR, BPAR, or similar bulb shapes, with diameter >2.25", other than those listed above	200 - 299	30
	300 - 599	40
	600 - 849	50
	850 - 999	55
	1000 - 1,300	65

Compliance Efficiency from which Incentives are Calculated

Compliance efficiency and fixture/lamp specifications shall be dictated by program eligibility criteria.

Operating Hours

Lamps

Hours of operation for lamps are estimated to be 3.2 operating hours per day or 1,168 (3.2 x 365) hours per year. The 3.2 operating hours per day is a value derived from an extended (nine month – May through February) logger study conducted during 2003 in Massachusetts, Rhode Island, and Vermont²¹⁴. The Connecticut 2008 Program Savings Documentation uses 2.6 hours per day, based on a 2003 Connecticut-based study. A study of the 2005-2006 residential lighting program for Efficiency Maine reports daily hours of use at 4.8 hours from the markdown program component and 3.2 from the coupon program component²¹⁵. This value represents a trade-off among factors that may affect the extent to which any out-of New York State value is applicable to NY. These include such factors as differences between the study area and NY, related to maturity of the CFL markets, program comparability, consumer knowledge of CFLs, and mix of locations within the house (which affects average hours of use). On balance, in considering the data and reports reviewed to date, 3.2 appears to be the most reasonable prior to New York-specific impact studies. This value is appropriate for interior applications only. For exterior applications, assume a total of 1,643 hours which is based on updated results from the 2003 Nexus Market

²¹⁴ "Extended residential logging results" by Tom Ledyard, RLW Analytics Inc. and Lynn Heofgen, Nexus Market Research Inc., May 2, 2005, p.1

²¹⁵ Process and Impact Evaluation of the Efficiency Maine Lighting Program, RLW Analytics, Inc, and Nexus Market Research Inc., April 10, 2007, Table 1-2, p. 12.

Research²¹⁶.

Fixtures

Hours of operation for fixtures are estimated to be 2.5 operating hours per day or 913 (2.5 x 365) hours per year. The 2.5 operating hours per day is a value derived from an extended (nine month – May through February) logger study conducted during 2003 in Massachusetts, Rhode Island and Vermont²¹⁷. The Connecticut 2008 Program Savings Documentation uses 2.6 hours per day, based on a 2003 Connecticut-based study. A study of the 2005-2006 residential lighting program for Efficiency Maine reports daily hours of use at 2.4 for interior fixtures²¹⁸. The proposed value represents a trade-off among factors that may affect the extent to which any value from outside of New York State is applicable to NY. These include such factors as differences between the study area and NY related to maturity of the CFL markets, program comparability, consumer knowledge of CFLs, and mix of locations within the house (which affects average hours of use). On balance, in considering the data and reports reviewed to date, 2.5 appears to be the most reasonable prior to New York specific impact studies.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

Reduction in lighting power increases space heating requirements in conditioned spaces. Interactive HVAC impacts are addressed in prescribed energy savings calculation methodology.

Ancillary Electric Savings Impacts

Reduction in lighting power decreases cooling requirements in conditioned spaces. Interactive HVAC impacts are addressed in prescribed energy savings calculation methodology.

References

- Energy Independence and Security Act of 2007. Pub. L. 110-140. Sec. 321. Efficient Light Bulbs H.R.6 – 82-86 Available from: <u>https://www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf</u>
- 2. Impact evaluations of residential lighting programs in several New England states reviewed in preparing the proposed hours-of-use values and coincidence factors include:
 - a. Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs, prepared for Cape Light Compact, Vermont Public Service

²¹⁶ Updated results from Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, presented in 2005 memo; http://library.cee1.org/content/impact-evaluation-massachusetts-rhode-island-and-vermont-2003-residentiallighting-programs

²¹⁷ "Extended residential logging results" by Tom Ledyard, RLW Analytics Inc. and Lynn Heofgen, Nexus Market Research Inc., May 2, 2005, p.1

²¹⁸ Process and Impact Evaluation of the Efficiency Maine Lighting Program, RLW Analytics, Inc, and Nexus Market Research Inc., April 10, 2007, Table 1-2, p. 12.

Department, National Grid Massachusetts and Rhode Island, Western Massachusetts Electric Company, NSTAR Electric, Fitchburg G&E by Nexus Market Research Inc., and RLW Analytics Inc., Oct 1, 2004.

Available from: https://library.cee1.org/system/files/library/1308/485.pdf

- Extended Residential Logging Results memo to Angela Li, National Grid, by Tom Ledyard, RLW Analytics Inc., and Lynn Hoefgen, Nexus Market Research Inc., May 2, 2005
- c. Market Progress and Evaluation Report for the 2005 Massachusetts ENERGY STAR Lighting Program, prepared for Cape Light Compact, National Grid – Massachusetts, NSTAR, Western Massachusetts Electric Company by Nexus Market Research Inc, RLW Analytics, Inc., Shel Feldman Management Company, Dorothy Conant. September 29, 2006.

Available from: https://library.cee1.org/system/files/library/1297/474.pdf

d. Process and Impact Evaluation of the Efficiency Maine Lighting Program, prepared for Efficiency Maine by Nexus Market Research Inc. and RLW Analytics Inc., April 10, 2007.

Available from: https://library.cee1.org/system/files/library/1386/564.pdf

3. Coincidence Factor Study Residential and Commercial & Industrial Lighting Measures -For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), prepared for the New England State Program Working Group by RLW Analytics Inc., Spring 2007. Available from:

https://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National %20Grid/116_RLW_CF%20Res%20C&I%20ltg.pdf

- The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures; Chapter 21: Residential Lighting Evaluation Protocol, National Renewable Energy Laboratory, December 2014, p. 8-11. Available from: <u>http://energy.gov/sites/prod/files/2015/02/f19/UMPChapter21-</u> residential-lighting-evaluation-protocol.pdf
- State of Pennsylvania Technical Reference Manual, PA Public Utilities Commission, June 2016, p. 21-22 Available from: <u>http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_129_information/tec_ hnical_reference_manual.aspx</u>

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
7-13-2	7/31/2013
6-15-3	6/1/2015
1-16-3	12/31/2015
1-17-4	12/31/2016
9-17-2	9/30/2017
LIGHTING - CONTROL (place-holder)

MOTORS AND DRIVES (place-holder)

COMMERCIAL AND INDUSTRIAL MEASURES

AGRICULTURAL EQUIPMENT (place-holder)

<u>Return to Table of Contents</u>

AGRICULTURAL EQUIPMENT – CONTROL

ENGINE BLOCK HEATER TIMER

Measure Description

This section covers timers used to control engine block heaters on farm equipment engines such as tractors, skid steers, truck, generators, and so on. The timers are used to control existing engine block heaters.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times unit/application \times W_{heater} / 1,000 \times hrs/day_{baseline} \text{ - } hrs/day_{timer} \times days_{operating} + hrs/day_{timer} + hrs/day_{timer} \times days_{operating} + hrs/day_{timer} + hrs/day_{tim$

Peak Coincident Demand Savings $\Delta kW = N/A$

Annual Gas Energy Savings

 Δ therms = N/A

where:

ΔkWh ΔkW	= Annual electric energy savings= Peak coincident demand electric savings
Δ therms units	= Annual gas energy savings= Number of measures installed under the program
timers/app	= Timers installed per application
1,000 W	= Conversion factor, one kw equals 1,000 watts = Watts
heater	= Heater
hr/day _{baseline}	= Average hours per day heater plugged in
hr/day _{timer}	= Average hours per day timer turns the heater on
daysoperating	= Days per year operating

Summary	of '	Varia	bles a	and	Data	Sources
----------------	------	-------	--------	-----	------	---------

Variable	Value	Notes
units	from application	
W _{heater}	from application	Wattage of engine block heater; is defined as the wattage of the engine block heater under control. This value is recorded by the customer on the application.
hr/day _{baseline}	from application	hr/day _{baseline} , is defined as the average number of hours the engine block heater is plugged in and was active before the installation of the timer. This value is recorded by the customer on the application.
hr/day _{timer}	2.0	Deemed value for timer operation hr/daytimer is defined as the

Variable	Value	Notes
		number of hours the engine block heater is controlled on by
		the timer. The on time and off time are set by the user. The
		number of hours required to sufficiently warm the engine
		depends on the size (mass) of the engine, the heating
		capacity of the heater and the environmental temperature.
		Estimates of 1 to 4 hours of block heater operation are
		common in the literature.
	erating from application	days _{operating} is the number of days per year the engine block
daysoperating		heater is operating. This value is calculated from the
		customer reported heater use start and end date on the
		application.

Coincidence Factor (CF)

The recommended value for the coincidence factor is

Baseline Efficiencies from which Savings are Calculated

The baseline condition is assumed to be the existing engine block heater plugged in and operational during the hours reported by the customer.

Compliance Efficiency from which Incentives are Calculated

The measure is defined as the existing block heater controlled by the timer. Timer on hours are set by the customer. A deemed value of 2.0 hours per day shall be used.

Operating Hours

Deemed value for timer operation is 2.0 hours per day

Effective Useful Life (EUL)

Years: 8 Source: Based on EUL's of similar control technology

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1. Deemed value for timer operation taken from Wisconsin Public Service calculator for tractor heater timers. www.wisconsinpublicservice.com/business/farm_tractor.aspx

Record of Revisions

Record of Revision Number	Issue Date
7-13-28	7/31/2013

APPLIANCE

CLOTHES DRYER

Measure Description

This measure covers residential grade clothes dryers meeting the criteria established under the ENERGY STAR[®] Program, Version 1.1, effective May 5, 2017 installed in small commercial settings.²¹⁹ ENERGY STAR[®] clothes dryers have a higher combined energy factor (CEF), and save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions, improving air circulation, and improved efficiency of motors. Reduced dryer runtime is achieved through automatic termination of the dryer cycles based on temperature and moisture sensors. Clothes dryers originally qualified for the ENERGY STAR[®] label in May 2014. Clothes dryers that have earned this label are approximately 20% more efficient than non-qualified models.²²⁰

The algorithms, inputs, and savings presented below assume a normal replacement scenario.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times Cycles_{annual} \times Load \times \left[\frac{F_{elec,baseline}}{CEF_{baseline}} - \frac{F_{elec,ee}}{CEF_{ee}}\right]$$

Peak Coincident Demand Savings

$$\Delta kW = \frac{\Delta kWh}{hrs} \times CF$$

Annual Gas Energy Savings

$$\Delta therms = units \times Cycles_{annual} \times Load \times \left[\frac{F_{gas,baseline}}{CEF_{baseline}} - \frac{\times F_{gas,ee}}{CEF_{ee}}\right] \times \frac{3,412}{100,000}$$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
Cyclesannual	= Number of dryer cycles per year
Load	= Average total weight (lbs) of clothes per drying cycle
baseline	= Baseline condition or measure

²¹⁹ ENERGY STAR[®] Program Requirements Product Specification for Clothes Dryers, Eligibility Criteria Version 1.1, May 2017

²²⁰ Efficiency of ENERGY STAR[®] products: <u>https://www.energystar.gov/products/appliances/clothes_dryers</u>

ee	= Energy efficient condition or measure
Felec	= Percentage of energy consumed that is derived from electricity
F _{gas}	= Percentage of energy consumed that is derived from gas
CEF	= Combined energy factor (lb/kWh)
hrs	= Annual run hours of clothes dryer
CF	= Coincidence Factor
3,412	= Conversion factor, one kWh equals 3,412 BTU
100,000	= Conversion factor (BTU/therm), one therm equals 100,000 BTU

Variable	Value	Notes
Cycles _{annual}		From application, or lookup based on proposed dryer type in table below. ²²¹
Load		Lookup based on proposed dryer type in table below. ²²²
Felec, baseline		Lookup based on proposed dryer type in table below. ²²³
F _{elec,ee}		Lookup based on proposed dryer type in table below. ²²⁴
Fgas, baseline		Lookup based on proposed dryer type in table below. ²²⁵
F _{gas,ee}		Lookup based on proposed dryer type in table below. ²²⁶
CEF _{baseline}		Lookup based on proposed dryer type in table below. ²²⁷
CEF _{ee}		Lookup based on proposed dryer type in table below. ²²⁸
hrs		From application, or lookup based on proposed dryer type in table below ²²⁹
CF	0.042	

Summary of Variables and Data Sources

²²² Ibid.

²²³ ENERGY STAR[®] Program Requirements Product Specification for Clothes Dryers, Eligibility Criteria Version 1.1, May 2017 ²²⁴ Ibid.

²²¹ Savings calculator for ENERGY STAR[®] Qualified Appliances (accessed 10/18/2017)

²²⁵ Ibid.

²²⁶ Ibid.

²²⁷ 10 CFR 430.32 (h)(3)

²²⁸ ENERGY STAR[®] Program Requirements Product Specification for Clothes Dryers, Eligibility Criteria Version 1.1, May 2017

²²⁹ Savings calculator for ENERGY STAR[®] Qualified Appliances (accessed 10/18/2017)

			Dryer Type		
Variable	Vented Gas Dryer	Ventless or Vented Electric, Standard ≥ 4.4 ft^3	Ventless or Vented Electric, Compact (120V) < 4.4 ft ³	Vented Electric, Compact (240V) < 4.4 ft ³	Ventless Electric, Compact (240V) < 4.4 ft ³
Cycles _{annual}	283	283	283	283	283
Load	8.45	8.45	3.00	3.00	3.00
Felec, baseline	0.05	1.00	1.00	1.00	1.00
F _{elec,ee}	0.05	1.00	1.00	1.00	1.00
Fgas, baseline	0.95	0.00	0.00	0.00	0.00
F _{gas,ee}	0.95	0.00	0.00	0.00	0.00
CEF _{baseline}	3.30	3.73	3.61	3.27	2.55
CEF _{ee}	3.48	3.93	3.80	3.45	2.68
hrs	290	290	290	290	290

Key Variables Lookup Table

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.042.²³⁰

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a standard efficiency, residential grade clothes dryer with operating specifications as defined in the Key Variables Lookup Table above.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a residential grade clothes dryer appearing on the ENERGY STAR[®] qualified products list.

Operating Hours

Operating hours for residential clothes dryers are provided in the Key Variables Lookup Table above. In the absence of justifiable default operating characteristics for residential grade clothes dryers installed in small commercial facilities, residential values are assumed.

Effective Useful Life (EUL)

See Appendix P.

Ancillary Fossil Fuel Savings Impacts

A clothes dryer releases heat to the surrounding environment. Conventional vented dryers also vent air outside the building. The associated HVAC impact of dryers depends upon a number of

²³⁰ Based on Central Maine Power Company "Residential End-Use Metering Project", 1988. Using 8,760 data for electric clothes dryers, calculating the CF according to the PJM peak definition. This study is not publicly available, but is referenced by the Pennsylvania Technical Reference Manual, State of Pennsylvania, 2016. http://www.puc.state.pa.us/filing_resources/issues_laws_regulations/act_129_information/technical_reference_man_ual.aspx

variables including climate and placement of a dryer (i.e., in a conditioned or unconditioned space). It is an area of ongoing research.²³¹ These impacts are excluded from the methodology prescribed herein until they can be quantified and substantiated through independent research.

Ancillary Electric Savings Impacts

See Ancillary Fossil Fuel Savings Impacts section above.

References

- ENERGY STAR[®] Program Requirements Product Specification for Clothes Dryers, Eligibility Criteria Version 1.1, May 2017 Available from: <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Final%20Version</u> <u>%201.1%20Clothes%20Dryers%20Specification%20-</u> %20Program%20Commitment%20Criteria%20and%20Eligibility%20Criteria.pdf
- Savings calculator for ENERGY STAR[®] Qualified Appliances Available from: https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx
- 10 CFR 430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=a9921a66f2b4f66a32ec851916b7b9d9&mc=true&node=se10.3.430_132&rgn= <u>div8</u>
- 4. Pennsylvania Technical Reference Manual, State of Pennsylvania, 2016. Available from: <u>http://www.puc.pa.gov/pcdocs/1370278.docx</u>
- ENERGY STAR[®] Market & Industry Scoping Report: Residential Clothes Dryers, November 2011 Available from: https://www.energystar.gov/sites/default/files/asset/document/ENERGY_STAR_Sco

https://www.energystar.gov/sites/default/files/asset/document/ENERGY_STAR_Scoping Report_Residential_Clothes_Dryers.pdf

Record of Revision

Record of Revision Number	Issue Date
12-17-15	12/31/2017

²³¹ ENERGY STAR[®] Market & Industry Scoping Report: Residential Clothes Dryers, November 2011

COMBINATION OVENS

Measure Description

This measure covers the installation of ENERGY STAR[®] qualified gas or electric commercial combination ovens.²³² Though not eligible for ENERGY STAR[®] qualifications, electric combination ovens with capacities of 21 pans or greater aligning with Food Service Technology Center (FSTC) assumptions for energy efficient products per the compliance efficiencies section below are also included in the measure.²³³ A combination oven combines the function of hot air convection, saturated and superheating steam heating, and combination convection/steam mode for moist heating. The oven is used for steaming, baking, roasting, re-thermalizing, and proofing of various food products. High efficiency boiler-less combination ovens use nearly half as much water as typical boiler-based combination ovens.²³⁴

A combination oven can also be referred to as a combi, combo, or combination oven/steamer. Combination ovens come in a range of sizes based on their capacity to accommodate $12 \times 20 \times 2$ 1/2 inch hotel pans. This measure includes half size and full size combination ovens. Measure calculations are based on oven pan capacity of full size, 2 1/2 inch hotel pans.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings (Electric Equipment Only)

$$\Delta kWh = units \times days \times \frac{\left(\Delta BTU_{preheat} + \Delta BTU_{idle,c} + \Delta BTU_{idle,s} + \Delta BTU_{cooking,c} + \Delta BTU_{cooking,s}\right)}{3,412}$$

Peak Coincident Demand Savings (Electric Equipment Only)

$$\Delta kW = \frac{\Delta kWh}{(days \ \times \ hrs)} \ \times CF$$

Annual Gas Energy Savings (Gas Equipment Only)

 $\Delta therms = units \times days \times \frac{\left(\Delta BTU_{preheat} + \Delta BTU_{idle,c} + \Delta BTU_{idle,s} + \Delta BTU_{cooking,c} + \Delta BTU_{cooking,s}\right)}{100,000}$

²³² ENERGY STAR[®] Program Requirements Product Specification for Commercial Ovens, Eligibility Criteria Version 2.2, March 2015

²³³ Food Service Technology Center, Qualified Combination Ovens, February 2018

²³⁴ Food Service Technology Center, Combination Ovens, Save Water (accessed 3/15/2018)

where:

 $\Delta BTU_{preheat} = N_{preheat} \times \left(BTU_{preheat, baseline} - BTU_{preheat, ee}\right)$

$$\Delta BTU_{idle,c} = \begin{bmatrix} BTUh_{idle,c,baseline} \times \left(hrs - N_{preheat} \times hrs_{preheat} - \frac{lbs}{(lbs/hr)_{c,baseline}} \right) \\ -BTUh_{idle,c,ee} \times \left[hrs - N_{preheat} \times hrs_{preheat} - \frac{lbs}{(lbs/hr)_{c,ee}} \right] \end{bmatrix} \times (1 - F_s)$$

$$\Delta BTU_{idle,s} = \begin{bmatrix} BTUh_{idle,s,baseline} \times \left(hrs - N_{preheat} \times hrs_{preheat} - \frac{lbs}{(lbs/hr)_{s,baseline}} \right) \\ -BTUh_{idle,s,ee} \times \left[hrs - N_{preheat} \times hrs_{preheat} - \frac{lbs}{(lbs/hr)_{s,ee}} \right] \end{bmatrix} \times F_{s}$$

$$\Delta BTU_{cooking,c} = lbs \times Q_{food,c} \times \left(\frac{1}{Eff_{c,baseline}} - \frac{1}{Eff_{c,ee}}\right) \times (1 - F_s)$$

$$\Delta BTU_{cooking,s} = lbs \times Q_{food,s} \times \left(\frac{1}{Eff_{s,baseline}} - \frac{1}{Eff_{s,ee}}\right) \times F_s$$

NOTE: $\Delta BTU_{preheat}$, ΔBTU_{idle} and $\Delta BTU_{cooking}$ terms can be calculated per the equations above using any combination of actual qualifying equipment specifications and assumed values as defined in the Baseline Efficiencies, Compliance Efficiency and Operating Hours sections below, or looked up from the Default Values table below.

where:

= Annual electric energy savings
= Peak coincident demand electric savings
= Annual gas energy savings
= Daily preheat energy savings
= Daily idle energy savings
= Daily cooking energy savings
= Number of measures installed under the program
= Operating days per year
= Daily operating hours
= Baseline condition or measure
= Energy efficient condition or measure
= Convection mode
= Steam mode
= Equipment preheat energy (BTU)
= Number of preheats per day
= Preheat duration (hours)
= Equipment idle energy rate (BTU/h)
= Equipment production capacity (lbs/hr)
= Total daily food production
= Heat to food (BTU/lb)
= Equipment convection/steam mode cooking efficiency

- CF = Coincidence factor
- 3,412 = Conversion factor, one kW equals 3,412.14 BTU/h

Variable	Value	Notes
ADTU		Calculate based on calculations above or look up in
$\Delta B I O preheat$		Default Values table below.
		Calculate based on calculations above or look up in
$\Delta B I U_{idle,c}$		Default Values table below.
		Calculate based on calculations above or look up in
$\Delta \mathbf{D} \mathbf{I} \mathbf{U}_{\text{idle,s}}$		Default Values table below.
		Calculate based on calculations above or look up in
Δ D I Ucooking,c		Default Values table below.
		Calculate based on calculations above or look up in
Δ D I Ucooking,s		Default Values table below.
dave		From application or look up based on facility type in
uays		Operating Hours section below.
hrs		From application or look up based on facility type in
111.5		Operating Hours section below.
Npreheat	1^{235}	
BTIL		Look up based on qualifying equipment type in
DI Opreheat, baseline		Baseline Efficiencies section below.
		From application or look up based on qualifying
BTU _{preheat,ee}		equipment type in Compliance Efficiency section
		below.
BTL hidle a baseline		Look up based on qualifying equipment type in
D i Onidie,c, baseline		Baseline Efficiencies section below.
BTL hidle a baseline		Look up based on qualifying equipment type in
Di Chidie, s, basenne		Baseline Efficiencies section below.
		From application or look up based on qualifying
BTUh _{idle,c,ee}		equipment type in Compliance Efficiency section
		below.
		From application or look up based on qualifying
BTUh _{idle,s,ee}		equipment type in Compliance Efficiency section
1	0.0-736	below.
hrspreheat	0.25250	
(lbs/hr)c.baseline		Look up based on qualitying equipment type in
(10.5/ III)C, Baselille		Baseline Efficiencies section below.

Summary of Variables and Data Sources

 ²³⁵ PG&E Work Paper PGECOFST100 Revision 6, Table 8, pg. 13
 ²³⁶ Ibid.

Variable	Value	Notes
(lha/ha)		Look up based on qualifying equipment type in
(IDS/III)s,baseline		Baseline Efficiencies section below.
(lles/les)		From application or look up based on qualifying
(IDS/III)c,ee		equipment type in Compliance Efficiency section below
(11 a /1 a)		From application or look up based on qualifying
(IDS/III) _{s,ee}		equipment type in Compliance Efficiency section below
	<15 Pans: 200	
lbs	15 - 28 Pans: 250	From application or use values provided ²³⁷
	> 28 Pans: 400	
Q _{food,c}	250	Convection mode heat to food (BTU/lb) ²³⁸
Q _{food,s}	105	Steam mode heat to food (BTU/lb) ²³⁹
Eff		Look up based on qualifying equipment type in
EIIc,baseline		Baseline Efficiencies section below.
Eff		Look up based on qualifying equipment type in
EIIs, baseline		Baseline Efficiencies section below.
		From application or look up based on qualifying
Eff _{c,ee}		equipment type in Compliance Efficiency section
		below.
		From application or look up based on qualifying
Eff _{s,ee}		equipment type in Compliance Efficiency section
		below.
Fs	50% ²⁴⁰	
CF	0.9	

Default Values

The table below contains values and simplified calculations for $\Delta BTU_{preheat}$, ΔBTU_{idle} and $\Delta BTU_{cooking}$ terms that may be used in the formulation of estimated savings in lieu of utilizing the calculations prescribed above for these terms. These values were established by performing those calculations using assumed values from the Common Variables, Baseline Efficiencies and Compliance Efficiency sections below.

Equipment	$\Delta BTU_{preheat}$	$\Delta BTUh_{idle,c}$	ABTUh idle,s	$\Delta BTU_{cooking,c}$	$\Delta BTU_{cooking,s}$
Combi Electric Oven, < 15 Pans ²⁴¹	5,118	36 x hrs -1,986	5,612 x hrs - 15,647	1,827	2,338
Combi Electric Oven, 15 - 20 Pans ²⁴²	5,971	309 x hrs -1,481	9,227 x hrs - 14,899	2,284	2,922
Combi Electric Oven, 21 - 28 Pans	5,971	2,133 x hrs - 7,997	11,089 x hrs - 38,314	3,434	6,563

²³⁷ ENERGY STAR[®] Commercial Food Service Equipment Calculator (accessed 2/26/2018)

²⁴² Assumes 20 pans

²³⁸ Ibid.

²³⁹ Ibid.

²⁴⁰ ENERGY STAR[®] Commercial Food Service Equipment Calculator (accessed 2/26/2018)

²⁴¹ Assumes 10 pans

Equipment	$\Delta BTU_{preheat}$	$\Delta BTUh_{idle,c}$	ABTUh idle,s	$\Delta BTU_{cooking,c}$	$\Delta BTU_{cooking,s}$
Combi Electric Oven,	8 074	2,133 x hrs -	15,354 x hrs -	5 405	10 500
> 28 Pans	0,974	5,162	38,933	5,495	10,300
Combi Gas Oven,	5 000	0.11 w hrs = 1.6/11	5,073 x hrs -	3 131	1 212
< 15 Pans ²⁴³	5,000	911 X IIIS -1,041	10,835	5,454	1,515
Combi Gas Oven,	6.000	1,182 x hrs -	7,026 x hrs -	4 203	1.642
15 - 28 Pans ²⁴⁴	0,000	2,942	16,307	4,293	1,042
Combi Gas Oven,	8 000	122 x hrs 1 862	6,026 x hrs -	4 202	1.642
29 - 30 Pans ²⁴⁵	8,000	452 X IIIS -1,602	16,057	4,295	1,042
Combi Gas Oven,	8 000	788 y hrs = 1.030	14,395 x hrs -	6 8 6 8	2 627
$> 30 \text{ Pans}^{246}$	8,000	/00 x IIIS -1,050	18,555	0,000	2,027

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.9.²⁴⁷

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a combination oven as defined in the Measure Description section above with operating characteristics per the table below. Values are as reported from referenced ENERGY STAR[®] Commercial Food Service Calculator²⁴⁸ unless otherwise noted. Preheat energy rates and all values for electric combi-ovens with capacities greater than 21 pans are reported from referenced FSTC calculators.

Equipment	BTU _{preheat} , baseline (BTU)	BTUh _{idle,} c,baseline (BTU/h)	BTUh _{idle,} s,baseline (BTU/h)	(lbs/hr) c,baseline	(lbs/hr) s,baseline	Eff c,baseline (%)	Eff s,baseline (%)
Combi Electric Oven, < 15 Pans	10,236 ²⁴⁹	4,504	17,947	79	126	72%	49%
Combi Electric Oven, 15 - 20 Pans	12,795 ²⁵⁰	7,779	29,719	166	295	72%	49%
Combi Electric Oven, 21 - 28 Pans ²⁵¹	12,795	12,795	42,650	100	150	65%	40%
Combi Electric Oven, > 28 Pans ²⁵²	19,210	17,913	61,416	275	350	65%	40%
Combi Gas Oven, < 15 Pans	18,000 ²⁵³	8,747	18,656	125	195	52%	39%
Combi Gas Oven, 15 - 28 Pans	22,000 ²⁵⁴	10,788	24,562	176	211	52%	39%

²⁴³ Assumes 10 pans

²⁴⁶ Assumes 40 pans

²⁵⁴ Ibid.

²⁴⁴ Assumes 20 pans

²⁴⁵ Assumes 30 pans

²⁴⁷ PG&E Work Paper PGECOFST100 Revision 6, Table 8, pg. 13

²⁴⁸ ENERGY STAR[®] Commercial Food Service Equipment Calculator (accessed 2/26/2018)

²⁴⁹ Food Service Technology Center, Electric Combination Oven Life-Cycle Cost Calculator

²⁵⁰ Ibid.

²⁵¹ Ibid.

²⁵² Ibid.

²⁵³ Food Service Technology Center, Gas Combination Oven Life-Cycle Cost Calculator

Equipment	BTUpreheat, baseline (BTU)	BTUhidle, c,baseline (BTU/h)	BTUhidle, s,baseline (BTU/h)	(lbs/hr) c,baseline	(lbs/hr) s,baseline	Eff c,baseline (%)	Eff s,baseline (%)
Combi Gas Oven, 29 - 30 Pans	32,000 ²⁵⁵	10,788	24,562	176	211	52%	39%
Combi Gas Oven, > 30 Pans	32,000 ²⁵⁶	13,000	43,300	392	579	52%	39%

Compliance Efficiency from which Incentives are Calculated

The compliance condition is ENERGY STAR[®] food service equipment as defined in the Measure Description section above. Operating characteristics shall be taken from application. When unavailable, default characteristics shall be taken from the table below. Values are as reported from the referenced ENERGY STAR[®] Commercial Food Service Calculator²⁵⁷, unless otherwise noted. Preheat energy rates and all values for electric combi ovens with capacity greater than 21 pans are reported from referenced FSTC calculators.

	BTUpreheat,	BTUhidle,	BTUhidle,	(lbs/br)	(lbs/br)	Eff	Eff
Equipment	(BTU)	c,ee (BTU/h)	s,ee (BTU/h)	c,ee	s,ee	c,ee (%)	s,ee (%)
Combi Electric Oven, < 15 Pans	5,118 ²⁵⁸	273 x no. pans + 1,702	454 x no. pans + 2,184	119	177	76%	55%
Combi Electric Oven, 15 - 20 Pans	6,824 ²⁵⁹	273 x no. pans + 1,702	454 x no. pans + 2,184	201	349	76%	55%
Combi Electric Oven, 21 - 28 Pans ²⁶⁰	6,824	8,530	20,472	125	200	70%	50%
Combi Electric Oven, > 28 Pans ²⁶¹	10,236	13,648	30,708	325	400	70%	50%
Combi Gas Oven, < 15 Pans	13,000 ²⁶²	150 x no. pans + 5,425	200 x no. pans + 6,511	124	172	56%	41%
Combi Gas Oven, 15 - 28 Pans	16,000 ²⁶³	150 x no. pans + 5,425	200 x no. pans + 6,511	210	277	56%	41%
Combi Gas Oven, 29 - 30 Pans	24,000 ²⁶⁴	150 x no. pans + 5,425	200 x no. pans + 6,511	210	277	56%	41%
Combi Gas Oven, > 30 Pans	24,000 ²⁶⁵	150 x no. pans + 5,425	200 x no. pans + 6,511	394	640	56%	41%

Operating Hours

Equipment operating hours per day and days per year shall be taken from the application if known. Default operating hours per day and days per year are provided below, established based

²⁵⁵ Ibid.

²⁵⁶ Ibid.

²⁵⁷ ENERGY STAR[®] Commercial Food Service Equipment Calculator (accessed 2/26/2018)

²⁵⁸ Food Service Technology Center, Electric Combination Oven Life-Cycle Cost Calculator

²⁵⁹ Ibid.

²⁶⁰ Ibid.

²⁶¹ Ibid.

²⁶² Food Service Technology Center, Gas Combination Oven Life-Cycle Cost Calculator

²⁶³ Ibid.

²⁶⁴ Ibid.

²⁶⁵ Ibid.

on a weighted average of values associated with similar facility types, as reported by the California Energy Commission.²⁶⁶

Facility Type	Hours/Day	Days/Year
Community College	11	283
Fast Food	14	363
Full Service Restaurant	12	321
Grocery	12	365
Hospital	11	365
Hotel	20	365
Miscellaneous	9	325
Motel	20	365
Primary School	5	180
Secondary School	8	180
Small Office	12	250
University	11	283

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

More efficient food service equipment rejects less heat into the condition space than standard equipment, increasing space heating requirements while decreasing cooling load. However, no relevant studies have been performed to date that would allow quantification of these impacts. Until additional information is available, these impacts are excluded from the prescribed formulation of savings.

Ancillary Electric Savings Impacts

More efficient food service equipment rejects less heat into the condition space than standard equipment, increasing space heating requirements while decreasing cooling load. However, no relevant studies have been performed to date that would allow quantification of these impacts. Until additional information is available, these impacts are excluded from the prescribed formulation of savings.

References

1. ENERGY STAR[®] Program Requirements Product Specification for Commercial Ovens, Eligibility Criteria, Version 2.2, March 2015. Available from:

https://www.energystar.gov/sites/default/files/Commercial%20Ovens%20Final%20Versi on%202.2%20Specification.pdf

- 2. Food Service Technology Center, Qualified Combination Ovens, February 2018 Available from: <u>https://fishnick.com/saveenergy/rebates/combis.pdf</u>
- 3. Food Service Technology Center, Combination Ovens, Save Water (accessed 3/15/2018)

²⁶⁶ California Energy Commission, Characterizing the Energy Efficiency Potential of Gas-Fired Commercial Foodservice Equipment, Appendix E

Available from: https://fishnick.com/savewater/appliances/combinationovens/

- 4. Pacific Gas & Electric Company, Work Paper PGECOFST100 Commercial Combination Oven, Revision 6, August 2016.
- 5. ENERGY STAR[®] Commercial Food Service Calculator (accessed 2/26/2018) Available from: <u>https://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equip</u> ment_calculator_0.xlsx
- 6. Food Service Technology Center: Electric Combination Oven Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/ecombicalc.php</u>
- 7. Food Service Technology Center: Gas Combination Oven Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/gcombicalc.php</u>
- California Energy Commission, Energy Research and Development Division, Characterizing the Energy Efficiency Potential of Gas-Fired Commercial Foodservice Equipment, October 2014. Available from: http://www.energy.ca.gov/2014publications/CEC-500-2014-095/CEC-

Record of Revision

Record of Revision Number	Issue Date
3-18-19	3/29/2018

INSULATED HOLDING CABINETS

Measure Description

This measure covers the installation of ENERGY STAR[®] qualified electric commercial hot food holding cabinets.²⁶⁷ A food holding cabinet is a fully enclosed compartment designed to maintain the temperature of hot food that has been cooked in a separate appliance. Half-size, full-size and large-size holding cabinets are included in this measure. Half-size holding cabinets are defined as any holding cabinet with an internal measured volume of less than 15ft³. Full-size holding cabinets are defined as any holding cabinet with an internal measured volume of greater than or equal to 15ft³ and less than or equal to 28ft³. Large-size holding cabinets are defined as any holding cabinet with an internal measure defined as any holding cabinet with an internal measured volume of greater than or equal to 15ft³ and less than or equal to 28ft³. Large-size holding cabinets are defined as any holding cabinet with an internal measure does not include cook-and-hold or re-therm equipment.²⁶⁸

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times hrs \times days \times \frac{\Delta W_{idle}}{1,000}$$

Peak Coincident Demand Savings

$$\Delta kW = \frac{\Delta kWh}{(hrs \times days)} \times CF$$

Annual Gas Energy Savings

$$\Delta therms = N/A$$

where:

 $\Delta W_{idle} = W_{idle,baseline} - W_{idle,ee}$

NOTE: ΔW_{idle} term can be calculated per the equation above using actual qualifying equipment specifications or looked up from the Default Values table below.

where:	
ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
ΔW_{idle}	= Daily idle energy savings
units	= Number of measures installed under the program
hrs	= Daily operating hours
days	= Operating days per year

²⁶⁷ ENERGY STAR® Program Requirements for Commercial Hot Food Holding Cabinets, Eligibility Criteria Version 2.0, July 2011

²⁶⁸ PG&E Work Paper PGECOFST105 Revision 5, pg. 1

V	= Volume of holding cabinet (ft^3)
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
Widle	= Equipment idle energy rate by volume (W)
CF	= Coincidence factor
1,000	= Conversion factor, one kW equals 1,000 watts

Summary of Variables and Data Sources

Variable	Value	Notes
ΔW_{idle}		Calculate based on calculations above or look up in Default Values table below.
days		From application or look up based on facility type in Operating Hours section below.
hrs		From application or look up based on facility type in Operating Hours section below.
v	Large-Size: 35 Full-Size: 25 Half-Size: 10	From application or use default values provided. ²⁶⁹
W _{idle,baseline}	40v	Equipment idle energy rate by volume (W). ²⁷⁰
Widle,ee	Large-Size: 3.8v + 203.5 Full-Size: 2v + 254 Half-Size: 21.5v	From application or use default value provided. ²⁷¹
CF	0.9	

Default Values

The table below contains ΔW_{idle} values that may be used in the formulation of estimated savings in lieu of utilizing the calculation prescribed above for this term. These values were established by performing that calculation using default values from the Summary of Variables and Data Sources above.

Equipment	$\Delta \mathbf{W}$ idle
Insulated Holding Cabinet,	1.064
Large-Size	1,004
Insulated Holding Cabinet,	606
Full-Size	090
Insulated Holding Cabinet,	195
Half-Size	165

²⁶⁹ PG&E Work Paper PGECOFST105 Revision 5, Table 6, pg. 5

²⁷⁰ ENERGY STAR® Program Requirements for Commercial Hot Food Holding Cabinets, Eligibility Criteria Version 2.0, July 2011, where v is holding cabinet volume (ft³) ²⁷¹ Ibid, where v is holding cabinet volume (ft³)

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.9.²⁷²

Baseline Efficiencies from which Savings are Calculated

The baseline condition is an insulated holding cabinet as defined in the Measure Description above with operating characteristics per the Summary of Variables and Data Sources table above.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is ENERGY STAR[®] food service equipment as defined in the Measure Description section above. Operating characteristics shall be taken from application. When unavailable, default characteristics shall be taken from the Summary of Variables and Data Sources table above.

Operating Hours

Equipment operating hours per day and days per year shall be taken from the application if known. Default operating hours per day and days per year are provided below, established based on a weighted average of values associated with similar facility types, as reported by the California Energy Commission.²⁷³

Facility Type	hours/day	days/year
Community College	11	283
Fast Food Restaurant	14	363
Full Service Restaurant	12	321
Grocery	12	365
Hospital	11	365
Hotel	20	365
Miscellaneous	9	325
Motel	20	365
Primary School	5	180
Secondary School	8	180
Office	12	250
University	11	283

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

More efficient food service equipment rejects less heat into the conditioned space than standard equipment, increasing space heating requirements while decreasing cooling load. However, no relevant studies have been found to date that would allow quantification of these impacts. Until additional information is available, these impacts are excluded from the prescribed formulation of savings.

²⁷² PG&E Work Paper PGECOFST105 Revision 5, pg. 7

²⁷³ California Energy Commission, Characterizing the Energy Efficiency Potential of Gas-Fired Commercial Foodservice Equipment, Appendix E

Ancillary Electric Savings Impacts

More efficient food service equipment rejects less heat into the conditioned space than standard equipment, increasing space heating requirements while decreasing cooling load. However, no relevant studies have been found to date that would allow quantification of these impacts. Until additional information is available, these impacts are excluded from the prescribed formulation of savings.

References

- ENERGY STAR® Program Requirements for Commercial Hot Food Holding Cabinets, Eligibility Criteria Version 2.0, July 2011. Available from: <u>https://www.energystar.gov/sites/default/files/specs/private/Commercial_HFHC_Program_Requirements_2.0.pdf</u>
- 2. Pacific Gas & Electric Company, Work Paper PGECOFST105 Insulated Holding Cabinet-Electric, Revision 5, July 2016.
- California Energy Commission, Energy Research and Development Division, Characterizing the Energy Efficiency Potential of Gas-Fired Commercial Foodservice Equipment, October 2014. Available from: <u>http://www.energy.ca.gov/2014publications/CEC-500-2014-095/CEC-500-2014-095/CEC-500-2014-095.pdf</u>

Record of Revision

Record of Revision Number	Issue Date
3-18-20	3/29/2018

OVENS, STEAMERS, FRYERS AND GRIDDLES

Measure Description

This measure covers the installation of ENERGY STAR[®] qualified commercial kitchen equipment that meet the descriptions below. Unless otherwise noted, presented baseline, compliance, and default values are determined from ENERGY STAR[®] Commercial Food Service Equipment Calculator.²⁷⁴

- <u>Convection Ovens</u>²⁷⁵ This measure includes gas and electric commercial convection ovens. A convection oven forces hot dry air over the surface of a food product. A full size convection oven can accommodate standard full size sheet pans measuring 18 x 26 x 1 inch. A half size convection oven can accommodate half size sheet pans measuring 18 x 13 x 1 inch. Though not eligible for ENERGY STAR[®] qualification, this measure includes half size gas convection ovens. Half size gas convection ovens must have an idle rate of 8,000 BTUh or less, per assumed efficiency of qualified equipment by the Food Service Technology Center (FSTC).²⁷⁶
- <u>Rack Ovens</u>²⁷⁷ This measure includes gas commercial rack ovens. A rack oven is a high capacity oven in which a rack is wheeled into the oven and can be rotated during the baking process. Rack ovens range in capacity from mini rack ovens to quadruple rack ovens. Single and double rack ovens are included in this measure.
- <u>Steamers</u>²⁷⁸ This measure includes gas and electric commercial steamers, also known as compartment steamers. A steamer is a device that contains one or more food steaming compartments in which the energy in the steam is transferred to the food by direct contact. To calculate the savings for this measure, the number of pans must be known. Countertop, wall-mounted, and floor models mounted on a stand, pedestal, or cabinet-style base are included. Commercial steamer microwave ovens are not included in this measure.
- <u>Fryers</u>²⁷⁹ This measure includes gas and electric commercial deep-fat fryers. A deep-fat fryer is an appliance in which oils are placed to such a depth that the cooking food is essentially supported by displacement of the cooking fluid rather than by the bottom of the vessel. Depending on the fryer type, heat is delivered to the cooking fluid by means of an immersed electric element or band-wrapped vessel (electric fryers), or by heat transfer from gas burners through either the walls of the fryer or through tubes passing through the cooking fluid (gas fryers). Standard fryers and large vat fryers are included in this measure.
- <u>Griddles²⁸⁰</u> This measure includes single-sided gas and electric commercial griddles. A single-sided commercial griddle is a commercial appliance designed for cooking food in oil or its own juices by direct contact with either a flat, smooth, hot surface or a hot

²⁷⁴ ENERGY STAR[®] Commercial Food Service Equipment Calculator (accessed 2/26/2018)

²⁷⁵ ENERGY STAR[®] Program Requirements Product Specification for Commercial Ovens, Eligibility Criteria, Version 2.2., March 2015

²⁷⁶ Food Service Technology Center, Qualified Convection Ovens, February 2018

²⁷⁷ ENERGY STAR[®] Program Requirements Product Specification for Commercial Ovens, Eligibility Criteria, Version 2.2., March 2015

²⁷⁸ ENREGY STAR[®] Program Requirements for Commercial Steam Cookers, Eligibility Criteria Version 1.2, August 2003

²⁷⁹ ENERGY STAR[®] Program Requirements Product Specification for Commercial Fryers, Eligibility Criteria Final Draft Version 3.0. October 2016

²⁸⁰ ENERGY STAR[®] Program Requirements for Commercial Griddles, Eligibility Criteria Version 1.2, January 2011

channeled cooking surface where plate temperature is thermostatically controlled. To calculate the energy savings in this measure, the griddle dimensions must be known. This measure does not include double-sided gas or electric commercial griddles.

• <u>Gas Conveyor Ovens</u> - Though not eligible for ENERGY STAR[®] qualification, this measure additionally covers the installation of energy efficient gas conveyor ovens. Conveyor ovens cook food by carrying it on a moving belt through a heated chamber. Qualifying conveyor ovens have baking efficiencies greater than or equal to 42% and idle energy rates less than or equal to 57,000 BTUh, per assumed efficiency of qualified equipment by the Food Service Technology Center (FSTC).²⁸¹

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings (Electric Equipment Only)

 $\Delta kWh = units \times days \times \frac{\left(\Delta BTU_{preheat} + \Delta BTU_{idle} + \Delta BTU_{cooking}\right)}{3,412}$

Peak Coincident Demand Savings (Electric Equipment Only)

$$\Delta kW = \frac{\Delta kWh}{(days \times hrs)} \times CF$$

Annual Gas Energy Savings (Gas Equipment Only)

$$\Delta therms = units \times days \times \frac{\left(\Delta BTU_{preheat} + \Delta BTU_{idle} + \Delta BTU_{cooking}\right)}{100,000}$$

where:

$$\begin{split} \Delta BTU_{preheat} &= N_{preheat} \times \left(BTU_{preheat, baseline} - BTU_{preheat, ee}\right) \\ \Delta BTU_{idle} &= BTUh_{idle, baseline} \times \left[hrs - N_{preheat} \times hrs_{preheat} - \left(\frac{lbs}{(lbs/hr)_{baseline}}\right)\right] \\ &- BTUh_{idle, ee} \times \left[hrs - N_{preheat} \times hrs_{preheat} - \left(\frac{lbs}{(lbs/hr)_{ee}}\right)\right] \\ \Delta BTU_{cooking} &= lbs \times Q_{food} \times \left(\frac{1}{Eff_{baseline}} - \frac{1}{Eff_{ee}}\right) \end{split}$$

NOTE: $\Delta BTU_{preheat}$, ΔBTU_{idle} and $\Delta BTU_{cooking}$ terms can be calculated per the equations above using either actual qualifying equipment specs or default values as defined in the Common Variables, Baseline Efficiencies, Compliance Efficiency and Operating Hours sections below, or looked up from the Default Values table below.

²⁸¹ Food Service Technology Center, Qualified Conveyor Ovens, February 2018

where:	
ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
$\Delta BTU_{preheat}$	= Daily preheat energy savings
ΔBTU_{idle}	= Daily idle energy savings
$\Delta BTU_{cooking}$	= Daily cooking energy savings
units	= Number of measures installed under the program
days	= Operating days per year
hrs	= Daily operating hours
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
BTU _{preheat}	= Equipment preheat energy (BTU)
Npreheat	= Number of preheats per day
hrspreheat	= Preheat duration (hours)
BTUh _{idle}	= Equipment idle energy rate (BTU/h)
(lbs/hr)	= Equipment production capacity (lbs/hr)
lbs	= Total daily food production
Q_{food}	= Heat to food (BTU/lb)
Eff	= Equipment convection/steam mode cooking efficiency
CF	= Coincidence factor
3,412	= Conversion factor, one kW equals 3,412.14 BTU/h

Summary of Variables and Data Sources

Variable	Value	Notes
		Calculate based on calculations above or look up in Default
$\Delta \mathbf{D} \mathbf{I} \mathbf{U}$ preheat		Values table below.
		Calculate based on calculations above or look up in Default
DI Uidle		Values table below.
		Calculate based on calculations above or look up in Default
ΔDI U _{cooking}		Values table below.
dava		From application or look up based on facility type in Operating
uays		Hours section below.
hra		From application or look up based on facility type in Operating
111.5		Hours section below.
Npreheat	1^{282}	
		Look up based on qualifying equipment type in Baseline
D I Upreheat, baseline		Efficiencies section below.
DTU		From application or look up based on qualifying equipment type
D I Upreheat,ee		in Compliance Efficiency section below.
		Look up based on qualifying equipment type in Baseline
BIUn _{idle,baseline}		Efficiencies section below.

²⁸² Shared assumption from all PG&E Work Papers referenced in this measure

Variable	Value	Notes
DTUb		From application or look up based on qualifying equipment type
DI Ullidle,ee		in Compliance Efficiency section below.
hra		Look up based on qualifying equipment type in Common
III Spreheat		Variables table below.
(lbg/br)		Look up based on qualifying equipment type in Baseline
(IDS/III)baseline		Efficiencies section below.
(lbs/br)		From application or look up based on qualifying equipment type
(108/111)ee		in Compliance Efficiency section below
The		From application or look up based on qualifying equipment type
LDS		in Common Variables table below.
Look up based on qualifying equipme		Look up based on qualifying equipment type in Common
Qfood		Variables table below.
Eff.		Look up based on qualifying equipment type in Baseline
Ellbaseline		Efficiencies section below.
Eff		From application or look up based on qualifying equipment type
Lillee		in Compliance Efficiency section below.
CF	0.9	

Default Values

The table below contains values and simplified calculations for $\Delta BTU_{preheat}$, ΔBTU_{idle} and $\Delta BTU_{cooking}$ terms that may be used in the formulation of estimated savings in lieu of utilizing the calculations prescribed above for these terms. These values were established by performing those calculations using assumed values from the Common Variables, Baseline Efficiencies and Compliance Efficiency sections below.

Equipment	ABTU preheat	ΔBTU _{idle}	$\Delta BTU_{cooking}$
Convection Oven, Electric, Full Size	1,706	1,365 x hrs - 1,858	3,250
Convection Oven, Electric, Half Size	341	102 x hrs - 1,011	1,553
Convection Oven, Gas, Full Size	8,000	3,100 x hrs - 5,014	2,470
Convection Oven, Gas, Half Size	5,500	3,500 x hrs - 12,087	27,778
Conveyor Oven, Gas	17,000	13,000 x hrs - 55,144	124,405
Rack Oven, Gas, Double Rack	15,000	35,000 x hrs - 179,550	397,692
Rack Oven, Gas, Single Rack	6,000	18,000 x hrs - 89,017	176,250
Steamer, Electric ²⁸³	0	14,581 x hrs – 11,229	19,385
Steamer, Gas ²⁸⁴	11,000	27,378 x hrs – 24,643	42,368
Fryer, Electric, Standard	2,047	1,365 x hrs - 3,941	10,988
Fryer, Electric, Large Vat	1,194	853 x hrs - 2,005	15,268
Fryer, Gas, Standard	4,500	5,000 x hrs - 15,481	73,286
Fryer, Gas, Large Vat	5,000	4,000 x hrs - 8,636	73,286
Griddle, Electric ²⁸⁵	6,834	1,638 x hrs - 7,451	5,220

²⁸³ Assumes 6 pans

²⁸⁴ Assumes 6 pans

²⁸⁵ Assumes 3-foot griddle width, 2-foot griddle depth

Equipment ΔBTU _{preheat}		ΔBTUidle	ABTUcooking	
Griddle, Gas ²⁸⁶	6,000	5,100 x hrs - 49,875	23,438	

Common Variables²⁸⁷

Equipment	Value			
Equipment	hrspreheat	lbs	Qfood (BTU/lb)	
Convection Oven, Electric, Full Size	0.25^{288}	100	250	
Convection Oven, Electric, Half Size	0.25^{289}	100	250	
Convection Oven, Gas, Full Size	0.25^{290}	100	250	
Convection Oven, Gas, Half Size	0.25^{291}	100	250	
Conveyor Oven, Gas	0.25^{292}	190	250	
Rack Oven, Gas, Double Rack	0.33 ²⁹³	1,200294	235	
Rack Oven, Gas, Single Rack	0.33^{295}	600	235	
Steamer, Electric	0.25^{296}	100	105	
Steamer, Gas	0.25^{297}	100	105	
Fryer, Electric, Standard	0.25^{298}	150	570	
Fryer, Electric, Large Vat	0.25^{299}	150	570	
Fryer, Gas, Standard	0.25^{300}	150	570	
Fryer, Gas, Large Vat	0.25^{301}	150	570	
Griddle, Electric	0.25^{302}	100	475	
Griddle, Gas	0.25^{303}	100	475	

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.9.³⁰⁴

Baseline Efficiencies from which Savings are Calculated

The baseline condition is food service equipment as defined in the Measure Description above with operating characteristics per the table below. Values are as reported from referenced

²⁸⁶ Assumes 3-foot griddle width, 2-foot griddle depth

²⁸⁷ ENERGY STAR[®] Commercial Food Service Equipment Calculator (accessed 2/26/2018), unless otherwise noted

²⁸⁸ PG&E Work Paper PGECOFST101 Revision 6, Table 10, pg. 15

²⁸⁹ PG&E Work Paper PGECOFST101 Revision 6, Table 9, pg. 14

²⁹⁰ PG&E Work Paper PGECOFST101 Revision 6, Table 13, pg. 18

²⁹¹ PG&E Work Paper PGECOFST101 Revision 6, Table 12, pg. 18

²⁹² PG&E Work Paper PGECOFST117 Revision 5, Table 9, pg. 11-12, where 1 pizza equals 0.76 lbs

²⁹³ PG&E Work Paper PGECOFST109 Revision 6, Table 7, pg. 12

²⁹⁴ Food Service Technology Center: Gas Rack Oven Life-Cycle Cost Calculator

²⁹⁵ PG&E Work Paper PGECOFST109 Revision 6, Table 7, pg. 12

²⁹⁶ PG&E Work Paper PGECOFST104 Revision 6, Table 11, pg. 13

²⁹⁷ PG&E Work Paper PGECOFST104 Revision 6, Table 12, pg. 15

²⁹⁸ PG&E Work Paper PGECOFST102 Revision 6, Table 10, pg. 7

²⁹⁹ PG&E Work Paper PGECOFST102 Revision 6, Table 10, pg. 7

³⁰⁰ PG&E Work Paper PGECOFST102 Revision 6, Table 11, pg. 10

³⁰¹ PG&E Work Paper PGECOFST102 Revision 6, Table 11, pg. 10

³⁰² PG&E Work Paper PGECOFST103 Revision 7, Table 8, pg. 6

³⁰³ PG&E Work Paper PGECOFST103 Revision 7, Table 9, pg. 9

³⁰⁴ Shared assumption from all PG&E Work Papers referenced in this measure

ENERGY STAR[®] Commercial Food Service Equipment Calculator unless otherwise noted.³⁰⁵ Preheat energy and all values for half size gas convection ovens and conveyor ovens are reported from referenced FSTC sources.

Equipment	BTUpreheat,baseline (BTU)	BTUhidle,baseline (BTU/h)	(lbs/hr)baseline	Eff _{baseline} (%)
Convection Oven, Electric, Full Size	5,118 ³⁰⁶	6,824	90	65%
Convection Oven, Electric, Half Size	3,412 ³⁰⁷	3,514	45	68%
Convection Oven, Gas, Full Size	19,000 ³⁰⁸	15,100	83	44%
Convection Oven, Gas, Half Size ³⁰⁹	13,000	12,000	45	30%
Conveyor Oven, Gas ³¹⁰	35,000	70,000	114	20%
Rack Oven, Gas, Double Rack	100,000 ³¹¹	65,000	250	30%
Rack Oven, Gas, Single Rack	50,000 ³¹²	43,000	130	30%
Steamer, Electric	5,118 ³¹³	$2,047 + 3,767 \text{ x no. pans}^{314}$	23.3 x no. pans	26%
Steamer, Gas	$20,000^{315}$	9,000 + 6,524 x no. pans ³¹⁶	23.3 x no. pans	15%
Fryer, Electric, Standard	8,189317	4,094	65	75%
Fryer, Electric, Large Vat	10,577 ³¹⁸	4,606	100	70%
Fryer, Gas, Standard	$18,500^{319}$	14,000	60	35%
Fryer, Gas, Large Vat	$27,000^{320}$	16,000	100	35%
Griddle, Electric	2,275 x griddle area ³²¹	1,365 x griddle area	5.83 x griddle area	65%
Griddle, Gas	3,500 x griddle area ³²²	3,500 x griddle area	4.17 x griddle area	32%

Compliance Efficiency from which Incentives are Calculated

³⁰⁵ ENERGY STAR[®] Commercial Food Service Equipment Calculator (accessed 2/26/2018)

³⁰⁶ Food Service Technology Center: Electric Convection Oven Life-Cycle Cost Calculator

³⁰⁷ Food Service Technology Center: Electric Convection Oven Life-Cycle Cost Calculator

³⁰⁸ Food Service Technology Center: Gas Convection Oven Life-Cycle Cost Calculator

³⁰⁹ Food Service Technology Center: Gas Convection Oven Life-Cycle Cost Calculator

³¹⁰ Food Service Technology Center: Gas Conveyor Oven Life-Cycle Cost Calculator, where 1 pizza equals 0.76 lbs

³¹¹ Food Service Technology Center: Gas Rack Oven Life-Cycle Cost Calculator

³¹² Food Service Technology Center: Gas Rack Oven Life-Cycle Cost Calculator

³¹³ Food Service Technology Center: Electric Steamer Life-Cycle Cost Calculator

 $^{^{314}}$ Represents energy rate when steamers are in idle mode and in constant steam mode: $(1 - Ts)*BTUh_{idle, baseline}+$

 $Ts^{*}(Ib/hr)_{baseline} *Q_{food}/Eff_{baseline}$, where Ts (time in constant steam mode) = 40% of non-cook time and BTUh_{idle,baseline} = 3,412 BTUh for baseline electric steamers

³¹⁵ Food Service Technology Center: Gas Steamer Life-Cycle Cost Calculator

³¹⁶ Represents energy rate when steams are in idle mode and in constant steam mode: (1 - Ts)*BTUh_{idle,baseline}+

 $Ts*(lb/hr)_{baseline}*Q_{food}/Eff_{baseline}$, where Ts (time in constant steam mode) = 40% of non-cook time and BTUh_{idle,baseline} to 0.00 pTH h for the state of the sta

^{= 15,000} BTUh for baseline gas steamers

³¹⁷ Food Service Technology Center: Electric Fryer Life-Cycle Cost Calculator

³¹⁸ Food Service Technology Center: Electric Fryer Life-Cycle Cost Calculator

³¹⁹ Food Service Technology Center: Gas Fryer Life-Cycle Cost Calculator

³²⁰ Food Service Technology Center: Gas Fryer Life-Cycle Cost Calculator

³²¹ Food Service Technology Center: Electric Griddle Life-Cycle Cost Calculator

³²² Food Service Technology Center: Gas Griddle Life-Cycle Cost Calculator

The compliance condition is ENERGY STAR[®] food service equipment or, in the case of conveyor ovens and half size gas convection ovens, equipment aligning with FSTC assumptions for energy efficient products meeting the minimum performance specifications listed in the table below. Operating characteristics shall be taken from application. When unavailable, default characteristics shall be taken from the table below. Values are as reported from the ENERGY STAR[®] Commercial Food Service Equipment Calculator, unless otherwise noted.³²³ Preheat energy and all values for half size gas convection ovens and conveyor ovens are reported from referenced FSTC sources.

Equipment	BTU _{preheat,ee} (BTU)	BTUh _{idle,ee} (BTU/h)	(lbs/hr) _{ee}	Eff _{ee} (%)
Convection Oven, Electric, Full Size	3,412 ³²⁴	5,459	90	71%
Convection Oven, Electric, Half Size	3,071 ³²⁵	3,412	50	71%
Convection Oven, Gas, Full Size	11,000 ³²⁶	12,000	86	46%
Convection Oven, Gas, Half Size ³²⁷	7,500	8,500	55	45%
Conveyor Oven, Gas ³²⁸	18,000	57,000	167	42%
Rack Oven, Gas, Double Rack	85,000 ³²⁹	30,000	250	52%
Rack Oven, Gas, Single Rack	$44,000^{330}$	25,000	130	48%
Steamer, Electric	5,118 ³³¹	1,678 x no. pans* ³³²	16.7 x no. pans	50%
Steamer, Gas	9,000 ³³³	3,463 x no. pans* ³³⁴	20.8 x no. pans	38%
Fryer, Electric, Standard	6,483 ³³⁵	2,730	70	83%
Fryer, Electric, Large Vat	9,383 ³³⁶	3,753	110	80%
Fryer, Gas, Standard	16,000 ³³⁷	9,000	65	50%
Fryer, Gas, Large Vat	$22,000^{338}$	12,000	110	50%

³²³ ENERGY STAR[®] Commercial Food Service Equipment Calculator (accessed 2/26/2018)

³²⁴ Food Service Technology Center: Electric Convection Oven Life-Cycle Cost Calculator

³²⁵ Food Service Technology Center: Electric Convection Oven Life-Cycle Cost Calculator

³²⁶ Food Service Technology Center: Gas Convection Oven Life-Cycle Cost Calculator

³²⁷ Food Service Technology Center: Gas Convection Oven Life-Cycle Cost Calculator

³²⁸ Food Service Technology Center: Gas Conveyor Oven Life-Cycle Cost Calculator, where 1 pizza equals 0.76 lbs

³²⁹ Food Service Technology Center: Gas Rack Oven Life-Cycle Cost Calculator

³³⁰ Food Service Technology Center: Gas Rack Oven Life-Cycle Cost Calculator

³³¹ Food Service Technology Center: Electric Steamer Life-Cycle Cost Calculator

³³² Represents energy rate when steamer are in idle mode and in constant steam mode: $(1 - T_s)$ *BTUh_{idle,ee} +

 $Ts*(lb/hr/pan)*Q_{food}/Eff_{ee}$, where Ts (time in constant steam mode) = 40% of non-cook time and BTUh_{idle,ee} = 455 BTUh x no. of pans for compliance electric steamers

³³³ Food Service Technology Center: Gas Steamer Life-Cycle Cost Calculator

 $^{^{334}}$ Represents energy rate when steamers are in idle mode and in constant steam mode: (1 - Ts)*BTUh_{idle,ee}+

 $Ts*(lb/hr/pan)*Q_{food}/Eff_{ee}$, where Ts (time in constant steam mode) = 40% of non-cook time and BTUh_{idle,ee} = 2,088 BTUh x no. of pans for compliance gas steamers

³³⁵ Food Service Technology Center: Electric Fryer Life-Cycle Cost Calculator, preheat energy assumes 15in

³³⁶ Food Service Technology Center: Electric Fryer Life-Cycle Cost Calculator, preheat energy assumes 20in

³³⁷ Food Service Technology Center: Gas Fryer Life-Cycle Cost Calculator, preheat energy assumes 15in

³³⁸ Food Service Technology Center: Gas Fryer Life-Cycle Cost Calculator, preheat energy assumes 20in

Equipment	BTUpreheat,ee (BTU)	BTUh _{idle,ee} (BTU/h)	(lbs/hr) _{ee}	Eff _{ee} (%)
Griddle, Electric	1,136 x griddle area ³³⁹	1,092 x griddle area	6.67 x griddle area	70%
Griddle, Gas	2,500 x griddle area ³⁴⁰	2,650 x griddle area	7.5 x griddle area	38%

* For steamers with greater than 6 pans, assume no. pans equals 6 for steamer idle energy rate

Operating Hours

Equipment operating hours per day and days per year shall be taken from the application if known. Default operating hours per day and days per year are provided below, established based on a weighted average of values associated with similar facility types, as reported by the California Energy Commission.³⁴¹

Facility Type	hours/day	days/year
Community College	11	283
Fast Food Restaurant	14	363
Full Service Restaurant	12	321
Grocery	12	365
Hospital	11	365
Hotel	20	365
Miscellaneous	9	325
Motel	20	365
Primary School	5	180
Secondary School	8	180
Office	12	250
University	11	283

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

More efficient food service equipment rejects less heat into the condition space than standard equipment, increasing space heating requirements while decreasing cooling load. However, no relevant studies have been performed to date that would allow quantification of these impacts. Until additional information is available, these impacts are excluded from the prescribed formulation of savings.

Ancillary Electric Savings Impacts

More efficient food service equipment rejects less heat into the condition space than standard equipment, increasing space heating requirements while decreasing cooling load. However, no relevant studies have been performed to date that would allow quantification of these impacts.

³³⁹ Food Service Technology Center: Electric Griddle Life-Cycle Cost Calculator

³⁴⁰ Food Service Technology Center: Gas Griddle Life-Cycle Cost Calculator

³⁴¹ California Energy Commission, Characterizing the Energy Efficiency Potential of Gas-Fired Commercial Foodservice Equipment, Appendix E

Until additional information is available, these impacts are excluded from the prescribed formulation of savings.

References

- ENERGY STAR[®] Program Requirements Product Specification for Commercial Ovens, Eligibility Criteria Version 2.2, October 2015 Available from: <u>https://www.energystar.gov/sites/default/files/Commercial%20Ovens%20Final%20Version%202.2%20Specification.pdf</u>
- 2. Food Service Technology Center, Qualified Convection Ovens, February 2018 Available from: <u>https://fishnick.com/saveenergy/rebates/ovens.pdf</u>
- ENERGY STAR[®] Program Requirements Product Specification for Commercial Steam Cookers, Eligibility Criteria Version 1.2, August 2003 Available from: <u>https://www.energystar.gov/sites/default/files/specs/private/Commercial_Steam_Cookers</u> <u>Program_Requirements%20v1_2.pdf</u>
- 4. ENERGY STAR[®] Program Requirements Product Specification for Commercial Fryers Eligibility Criteria Final Draft Version 3.0, October 2016 Available from: <u>https://www.energystar.gov/sites/default/files/Commercial%20Fryers%20Final%20Draft</u> %20V3.0%20Specification.pdf
- <u>%20V3.0%20Specification.pdf</u>
 ENERGY STAR[®] Program Requirements Product Specification for Commercial Griddles, Eligibility Criteria Version 1.2, January 2011 Available from: <u>https://www.energystar.gov/ia/partners/product_specs/program_reqs/Commercial_Griddl</u> <u>es_Program_Requirements.pdf</u>
- 6. Food Service Technology Center, Qualified Conveyor Ovens, February 2018 Available from: <u>https://fishnick.com/saveenergy/rebates/conveyorovens.pdf</u>
- 7. ENERGY STAR[®] Commercial Food Service Calculator (accessed 2/26/2018) Available from: <u>https://www.energystar.gov/sites/default/files/asset/document/commercial_kitchen_equip_ment_calculator_0.xlsx</u>
- 8. Pacific Gas & Electric Company, Work Paper PGECOFST101 Commercial Convection Oven-Electric and Gas, Revision 6, August 2016
- 9. Pacific Gas & Electric Company, Work Paper PGECOFST117 Commercial Conveyor Oven-Gas, Revision 5, May 2014
- 10. Pacific Gas & Electric Company, Work Paper PGECOFST109 Commercial Rack Oven-Gas, Revision 5, May 2014
- 11. Pacific Gas & Electric Company, Work Paper PGECOFST104 Commercial Steam Cooker-Electric and Gas, Revision 6, June 2016
- 12. Pacific Gas & Electric Company, Work Paper PGECOFST102 Commercial Fryer-Electric and Gas, Revision 6, June 2016
- 13. Pacific Gas & Electric Company, Work Paper PGECOFST103 Commercial Griddle-Electric and Gas, Revision 7, August 2016
- 14. Food Service Technology Center: Electric Convection Oven Life-Cycle Cost Calculator Available From: <u>https://fishnick.com/saveenergy/tools/calculators/eovencalc.php</u>

- 15. Food Service Technology Center: Gas Convection Oven Life-Cycle Cost Calculator Available From: <u>https://fishnick.com/saveenergy/tools/calculators/govencalc.php</u>
- 16. Food Service Technology Center: Rack Oven Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/grackovencalc.php</u>
- 17. Food Service Technology Center: Gas Conveyor Oven Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/gconvovencalc.php</u>
- 18. Food Service Technology Center: Gas Rack Oven Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/grackovencalc.php</u>
- 19. Food Service Technology Center: Electric Steamer Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/esteamercalc.php</u>
- 20. Food Service Technology Center: Gas Steamer Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/gsteamercalc.php</u>
- 21. Food Service Technology Center: Electric Fryer Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/efryercalc.php</u>
- 22. Food Service Technology Center: Gas Fryer Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/gfryercalc.php</u>
- 23. Food Service Technology Center: Electric Griddle Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/egridcalc.php</u>
- 24. Food Service Technology Center: Gas Griddle Life-Cycle Cost Calculator Available from: <u>https://fishnick.com/saveenergy/tools/calculators/ggridcalc.php</u>
- 25. California Energy Commission, Energy Research and Development Division, Characterizing the Energy Efficiency Potential of Gas-Fired Commercial Foodservice Equipment, October 2014

Available from: <u>http://www.energy.ca.gov/2014publications/CEC-500-2014-095/CEC-500-2014-095.pdf</u>

Record of Revision

Record of Revision Number	Issue Date
3-18-18	3/29/2018

REFRIGERATOR REPLACEMENT

Measure Description

Energy Star rated (or qualified) commercial, reach-in refrigerators used in commercial foodservice applications, with an integral compressor and condenser.

Method for Calculating Annual Energy and Peak Coincident Demand Savings Annual Electric Energy Savings

 $\Delta kWh = units \times (kWh_{baseline} - kWh_{ee}) \times (1 + HVAC_c) \times F_{occ} \times F_{market}$

Peak Coincident Demand Savings

 $\Delta kW = units \times \left[\frac{kWh_{baseline}}{8,760} - \frac{kWh_{ee}}{8,760}\right] \quad \times CF \times (1 + HVAC_{d}) \times F_{market}$

Annual Gas Energy Savings

 Δ therms = Δ kWh × HVAC_g

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
Focc	= Occupant factor
Fmarket	= Market factor
CF	= Coincidence factor
baseline	= Baseline condition or measure
consumption	= Consumption
d	= Demand
g	= Gas
8,760	= Hours in one year
HVAC _c	= HVAC interaction factor for annual electric energy consumption
HVAC _d	= HVAC interaction factor at utility summer peak hour
HVACg	= HVAC interaction factor for annual natural gas consumption

Variable	Value	Notes
v		Volume from application
		Annual energy consumption for the baseline appliance,
kWh _{baseline}		calculated from volume and type using equations above
		Annual energy consumption for the energy efficient
		appliance, calculated from volume and type using
kWhee		equations above
		HVAC interaction factor for annual electric energy
		consumption, lookup by building type with weighted
HVAC _c		average across HVAC types. Average upstate values or

Summary of Variables and Data Sources

Variable	Value	Notes
		NYC.
		HVAC interaction factor at utility summer peak hour,
		lookup by building type with weighted average across
HVAC _d		HVAC types. Average upstate values or NYC.
		HVAC interaction factor for annual natural gas
		consumption, lookup by building type with weighted
		average across HVAC types. Average upstate values or
HVAC _g		NYC.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 1.0

The *HVAC system interaction factor* is defined as the ratio of the cooling energy reduction per unit of lighting energy reduction. Most of the input energy for standalone refrigeration systems is converted to heat which must be removed by the HVAC system. Reductions in refrigerator heat gains due to efficient refrigerators decrease the need for space cooling and increase the need for space heating. HVAC interaction factors vary by climate, HVAC system type and building type. Recommended values for HVAC interaction factors for refrigerator energy and peak demand savings are shown in <u>Appendix D</u>.

Baseline Efficiencies from which Savings are Calculated

The Foodservice Technology Center has estimated the energy consumption of baseline commercial refrigerators based on data compiled by the California Energy Commission. Baseline daily kWh for solid door and glass door commercial reach-in refrigerators are calculated as shown in the Table below. Multiply by 365 to get annual kWh.

Туре	Refrigerator	Freezer
Solid Door	0.10 V + 2.04	0.40 V + 1.38
Glass Door	0.12 V + 3.34	0.75 V + 4.10

V= AHAM volume

Compliance Efficiency from which Incentives are Calculated

Commercial refrigerator and freezer energy consumption. Energy Star rated refrigerators must meet the specifications in the table below for maximum daily energy consumption (kWh/day). Multiply by 365 to get annual energy consumption.

Table 1: Maximum Daily Energy Consumption (MDEC) Requirements (kWh/day) for ENERGY STAR Qualified Commercial Food-grade Refrigerators and Freezers		
Product Volume (in cubic feet)	Refrigerator	Freezer
_Vertical Configuration		
Solid Door Cabinets		
0 < V < 15	≤ 0.089V + 1.411	≤ 0.250V + 1.250
15 ≤ V < 30	≤ 0.037V + 2.200	≤ 0.400V - 1.000
30 ≤ V < 50	≤ 0.056V + 1.635	≤ 0.163V + 6.125
50 ≤ V	≤ 0.060V + 1.416	≤ 0.158V + 6.333
Glass Door Cabinets		
0 < V < 15	≤ 0.118V + 1.382	≤ 0.607V + 0.893
15 ≤ V < 30	≤ 0.140V + 1.050	≤ 0.733V – 1.000
30 ≤ V < 50	≤ 0.088V + 2.625	≤ 0.250V + 13.500
50 ≤ V	≤ 0.110V + 1.500	≤ 0.450V + 3.500
Chest Configuration		·
Solid or Glass Door Cabinets	≤ 0.125V + 0.475	≤ 0.270V + 0.130

Note: V = AHAM volume, as defined in Section 1, in cubic feet (ft^3).

Operating Hours

The measure is assumed to operate 24hrs/7days per week, (8,760 hours annual operating hours)

Effective Useful Life (EUL)

Years: 12 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Efficient refrigerators reject less heat into the conditioned space, which must be made up by the space heating system. Calculations must include space heating interactions with efficient refrigerators.

Ancillary Electric Savings Impacts

References

1. US EPA energy consumption for Energy Star commercial refrigerators obtained from the Energy Star website:

www.energystar.gov/index.cfm?c=commer_refrig.pr_commercial_refrigerators

2. Energy consumption for baseline refrigerators taken from the life cycle cost calculators for commercial refrigerators on the Foodservice Technology Center website: www.fishnick.com/saveenergy/tools/calculators/

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010

APPLIANCE – CONTROL

TIER 1 ADVANCED POWER STRIP

Measure Description

This measure covers the installation of Tier 1 Advanced Power Strips (APS) in office workstations. The Tier 1 APS makes use of a control outlet to disconnect the controlled plugs when the load on the control outlet (usually a computer) is reduced below a threshold. In this case, the reduction below threshold of the control plug happens when the computer shuts down or enters standby mode. Therefore, the overall load of a centralized group of equipment (e.g. monitors and other peripherals for the computer) can be reduced.

Method for Calculating Annual Energy and Peak Coincident Demand Savings³⁴²

Annual Electric Energy Savings

 $\Delta kWh = units \times \begin{bmatrix} \Delta kW_{wkday} \times (hrs_{wkday} - hrs_{wkday-open}) \\ + \\ \Delta kW_{wkend} \times (hrs_{wkend} - hrs_{wkend-open}) \end{bmatrix} \times \frac{8,760}{168}$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
$\Delta k W_{wkday}$	= Average power reduction during weekday off hours
$\Delta k W_{wkend}$	= Average power reduction during weekend off hours
hrs _{wkday}	= Total hours during the work week (Monday 7:30 AM to Friday 5:30 PM)
hrswkend	= Total hours during the weekend (Friday 5:30 PM to Monday 7:30 AM)
hrswkday,open	= Hours the office is open during the work week
hrs _{wkend,open}	= Hours the office is open during the weekend
8,760	= Hours in one year
168	= Hours in one week

³⁴² Savings algorithm reconstructed from weekday and weekend savings information in Sheppy *et. al*, and verified against savings in Acker *et. al* and savings in: BPA, "Smart Power Strip Energy Savings Evaluation: Ross Complex," (2011). Office stations are assumed to have zero or minimal standby losses during normal operating hours.

Variable	Value	Notes
		Deemed value from IDL and NREL/NAVFAC study,
$\Delta k W_{wkday}$	0.0315	determined by reduction in off-hours demand. See Deemed
		Savings Background section below for additional detail.
		Deemed value from IDL and NREL/NAVFAC study,
$\Delta k W_{wkend}$	0.0067	determined by reduction in off-hours demand. See Deemed
		Savings Background section below for additional detail.
hrs _{wkday}	106	
hrswkday,open		From application. If unknown, use 50 hours. ³⁴³
hrswkend	62	
hrswkend,open		From application. If unknown, use 0 hours. ³⁴⁴

Summary of Variables and Data Sources

Deemed Savings Background

Since the introduction of the Tier 1 APS for commercial applications, three studies of its performance in commercial office settings have been conducted. Their ex-post estimates for savings are in relative agreement, between 134 and 149 kWh. The three studies are:

- 1. A University of Idaho Integrated Design Lab (IDL) project studying 49 load-sensing power strips in a large, private office building. Baseline data was gathered for one year and post-period data was gathered for 3 months. The study broke out findings into weekday, weekend, and holiday categories.³⁴⁵
- 2. A National Renewable Energy Laboratory (NREL) and Naval Facilities Engineering Command (NAVFAC) joint APS evaluation, with 100 load-sensing power strips. Whole building load shapes were monitored pre and post. This study had five weeks of baseline data and six weeks of treatment data.³⁴⁶
- 3. A Bonneville Power Administration APS evaluation at the Ross Complex, in which 48 strips were installed for a pre- and post-treatment period of three weeks each. Data for this study was measured at the individual power strip level.³⁴⁷

The calculation for energy savings uses the detailed breakdowns of energy savings from the IDL study and the assumption that savings only occur outside of normal business hours. The value of 31.5 watts reduced during off-hours on weekdays was calculated with data from the IDL study and aligns with the graphically shown load reduction in the NREL/NAVFAC study. The same method was performed for the weekends to obtain the wattage reduced. The number from the IDL study of 6.7 watts reduced on weekends is more conservative than the NREL/NAVFAC results and is used for this calculation.

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A. The majority of kWh savings are assumed to occur during off-hours, so no peak coincident demand savings are deemed.

³⁴³ Assumes an office operating schedule of M - F, 7:30AM - 5:30PM

 $^{^{344}}$ Assumes an office operating schedule of M - F, 7:30AM – 5:30PM

³⁴⁵ Acker *et al*

³⁴⁶ Sheppy *et al*

³⁴⁷ BPA, "Smart Power Strip Energy Savings Evaluation," Ross Complex, Vancouver, WA (2011)
Baseline Efficiencies from which Savings are Calculated

The baseline condition is an office workstation with no plug load control system.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is an office workstation with a tier 1 plug load control advanced power strip.

Operating Hours

The annual operating hours of the measure, assuming that the APS is operating when it is reducing load, can be calculated by:

$$hours = \begin{bmatrix} (hrs_{wkday} - hrs_{wkday-open}) \\ + \\ (hrs_{wkend} - hrs_{wkend-open}) \end{bmatrix} \times \frac{8,760}{168}$$

Which is equal to 6,153 hours, assuming that the office is open for 50 hours on weekdays and 0 hours on weekends. Alternatively, the operating hours of the workstation standby loads are reduced by this amount, to 2,607 hours from 8,760 hours.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts

N/A

References

- Acker, Brad et. al, "Office Space Plug Load Profiles and Energy Saving Interventions," IDL, 2012 ACEEE Summer Study on Energy Efficiency in Buildings (2012) Available from: <u>https://fortress.wa.gov/ga/apps/SBCC/File.ashx?cid=5572</u>
- Sheppy, M. et al, "Reducing Plug Loads in Office Spaces" Hawaii and Guam Energy Improvement Technology Demonstration Project, NREL/NAVFAC (January 2014) Available from: <u>https://www.nrel.gov/docs/fy14osti/60382.pdf</u>
- Bonneville Power Administration, "Smart Power Strip Energy Savings Evaluation," Ross Complex, Vancouver, WA (2011) Available from: <u>http://studylib.net/doc/8460015/smart-strip-energy-savings-evaluation-%E2%80%93-ross-complex--van...</u>

Record of Revision

Record of Revision Number	Issue Date
12-17-16	12/31/2017

VENDING MACHINE AND NOVELTY COOLER TIME CLOCK

Measure Description

This measure is essentially an approach for controlling the operations of novelty coolers so that they are only operating when needed. The controls are a time-control system that allows the machines to be turned on and reach desired temperatures during the hours of business operations, but turned off during other times.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times kW_{vending} \times [(0.45 \times hrs_{off} \times 91) + (0.50 \times hrs_{off} \times 274)]$

Peak Coincident Demand savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 Δ therms = N/A

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
Units	= Number of measures installed under the program
kW	= Based on nameplate Volts and Amps, Phase, and Power Factor.
vending	= Vending machine
0.45	= Duty cycle during winter month nights
0.50	= Duty cycle during non-winter month nights
hrsoff	= Potential off hours per night
91	= Days in winter months
274	= Days in non-winter months.

Variable	Value	Notes
0.45		Duty cycle during winter month nights, based on vendor
0.45		estimates
0.50		Duty cycle during non-winter month nights, based on
0.50		vendor estimates
		Potential off hours per night. Calculated as, number of
hrsoff		hours store closed per day minus one (controller turns
		unit back on one hour before store opens).

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A

Baseline Efficiencies from which Incentives are Calculated

Compliance Efficiency from which Incentives are Calculated

Operating Hours

Effective Useful Life (EUL) Years: 5 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010

APPLIANCE RECYCLING

AIR CONDITIONER – ROOM (WINDOW)

Measure Description

Room (Window) Air Conditioners, a consumer (appliance) product, other than a "packaged terminal air conditioner," which is powered by a single-phase electric current and is an encased assembly designed as a unit for mounting in a window or through the wall for the purpose of providing delivery of conditioned air to an enclosed space. It includes a prime source of refrigeration and may include a means for ventilating and heating ³⁴⁸. Minimum energy conservation standards for these appliances have been established by the Code for Federal Regulations 10 CFR 430.32(b). As this standard continues to be revised, and by association ENERGY STAR[®] standards continue to increase, operational savings attributable to new RAC may justify early retirement before the full useful life has been exhausted. In order to realize the anticipated savings, a currently functioning appliance of equivalent cooling capacity and type having been manufactured before June 2014 must be properly disposed of when a new appliance is supplied to the customer.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings, Method using EER

$$\Delta kWh = \frac{Capacity}{1,000} \times \left(\frac{1}{EER_{baseline}} - \frac{1}{EER_{ee}}\right) \times EFLH_{cooling}$$

Annual Electric Energy Savings, Alternate Method using CEER³⁴⁹

$$\Delta kWh = \frac{Capacity}{1,000} \times \left(\frac{1}{CEER_{baseline}} - \frac{1}{CEER_{ee}}\right) \times EFLH_{cooling}$$

Peak Coincident Demand Savings, Method using EER

$$\Delta kW = \frac{Capacity}{1,000} \times \left(\frac{1}{EER_{baseline}} - \frac{1}{EER_{ee}}\right) \times CF$$

Peak Coincident Demand Savings, Alternate Method using CEER

$$\Delta kW = \frac{Capacity}{1,000} \times \left(\frac{1}{CEER_{baseline}} - \frac{1}{CEER_{ee}}\right) \times CF$$

³⁴⁸ ENERGY STAR[®] Program Requirements, Product Specification for Room Air Conditioners, Eligibility Criteria Version 4.0, February 2015

³⁴⁹ When available the Combined Energy Efficiency Ratio should be used for the purpose of calculating annual electric energy savings.

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
Capacity	= Cooling output rating, in BTU/hr
EFLH _{cooling}	= Cooling Equivalent Full-Load Hours
CF	= Coincidence Factor
CEER	= Combined Energy Efficiency Ratio
EER	= Energy Efficiency Ratio
ee	= Energy efficient condition or measure
baseline	= Baseline condition or measure
1,000	= Conversion factor (1,000 Watts / Kilowatt)

Packaged Terminal Air Conditioner (PTAC) is defined as a wall sleeve and a separate unencased combination of heating and cooling assemblies specified by the builder and intended for mounting through the wall.

RAC with louvered sides have exterior side vents to facilitate airflow over the outdoor coil.

RAC with reverse cycle are appliances that may reverse the refrigeration cycle so as to serve as heating equipment, also known as a heat pump.

Variable	Value	Notes
Capacity		From application.
EFLH _{cooling}		Cooling equivalent full-load hours by building type, <u>Appendix G</u> .
CEER _{baseline}		From application, or lookup from table below based on unit capacity when unknown.
CEER _{ee}		From application.
EER _{baseline}		From application, or lookup from table below based on unit capacity when unknown.
EER _{ee}		From application.

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended coincidence factor for this measure is 0.703 for NYC and 0.305 elsewhere.³⁵⁰

³⁵⁰ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011, Table 0-6: NY - Inland and NY - Urban/Coastal

Baseline Efficiencies from which Savings are Calculated³⁵¹

Baseline efficiency assumptions for normal replacement of units manufactured between the years 2000 - 2014 are shown below. Baseline efficiency of air conditioners manufactured after June 2014 will be the compliance efficiency.

Capacity	with Louvered Sides	Capacity	without Louvered
(BTU/hr)	(EER _{base})	(BTU/hr)	Sides (EER _{base})
< 6,000	≥9.7	< 6,000	≥ 9.0
6,000 - 7,999	≥9.7	6,000 - 7,999	≥ 9.0
8,000 - 13,999	≥9.8	8,000 - 10,999	≥ 8.5
14,000 - 19,999	≥ 9.7	11,000 - 13,999	≥ 8.5
20,000-27,999	≥ 8.5	14,000–19,999	≥ 8.5
≥ 28,000	≥ 8.5	≥20,000	≥ 8.5

Room Air Conditioners

Room Air Conditioners - Casement

Capacity		
(BTU/hr)	Casement Only (EER _{base})	Casement - Slider (EER _{base})
All	≥ 8.7	\geq 9.5

Room (Air Conditioners with Reverse Cycle) Heat Pumps

Capacity (BTU/hr)	with Louvered Sides (EER _{base})	Capacity (BTU/hr)	without Louvered Sides (EER _{base})
≤ 19,999	≥ 9.0	≤ 13,999	≥ 8.5
\geq 20,000	≥ 8.5	≥ 14,000	≥ 8.0

Compliance Efficiency from which Incentives are Calculated³⁵²

Units will be treated as early retirement and total lifetime energy savings will be calculated based on remaining years of useful life (RUL) of the existing baseline unit. Units greater than 9 years old will be considered normal replacements and will be given incremental savings. Incremental savings are defined as the difference between the annual kWh consumption of minimally compliant with Federal appliance standards and the annual kWh consumption of the new unit.

Room Air Conditioners

Capacity	with Louvered Sides	Capacity	without Louvered
(BTU/hr)	(EER _{ee})	(BTU/hr)	Sides (EER _{ee})
< 6,000	≥11.0	< 6,000	≥ 10.0
6,000 - 7,999	≥11.0	6,000 - 7,999	≥ 10.0
8,000 - 13,999	≥ 10.9	8,000 - 10,999	≥ 9.6
14,000 - 19,999	≥ 10.7	11,000 - 13,999	≥ 9.5
20,000-27,999	≥9.4	14,000-19,999	≥ 9.3

³⁵¹ 10 CFR 430.32(b) Baseline EER based on manufactured dates between 10/1/2000 and 5/31/2014.

³⁵² 10 CFR 430.32(b) Compliance EER based on manufactured dates after 6/1/2014.

Capacity	with Louvered Sides	Capacity	without Louvered
(BTU/hr)	(EER _{ee})	(BTU/hr)	Sides (EERee)
\geq 28,000	≥ 9.0	≥ 20,000	≥9.4

Room Air Conditioners - Casement

Capacity (BTU/hr)	Casement Only (EERee)	Casement - Slider (EER _{ee})
All	≥9.5	≥ 10.4

Room (Air Conditioners with Reverse Cycle) Heat Pumps

Capacity	with Louvered Sides	Capacity	without Louvered
(BTU/hr)	(EER _{ee})	(BTU/hr)	Sides (EER _{ee})
≤ 19,999	≥ 9.8	≤ 13,999	≥ 9.3
≥ 20,000	≥ 9.3	≥14,000	≥ 8.7

Operating Hours

Reference <u>Appendix G</u> for applicable EFLH value for specific building use type and geographic location.

Effective Useful Life (EUL)

For equipment 9 years old or older: Years: 9 Source: DEER 2014³⁵³

Remaining Useful Life (RUL)

For equipment less than 9 years old:

Years: 9 – (Current Year – Year Manufactured)

- 1. Subtract the year of manufacture from the current year
- 2. Subtract the result of step (1) from 9

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

 CFR 10-430.32 Energy and water conservation standards and their compliance dates. Available from: <u>http://www.ecfr.gov/cgi-bin/text-</u> idx?SID=4044895882a37a32c525095b1ad5ad69&mc=true&node=se10.3.430_132&rgn <u>=div8</u>

³⁵³CA DEER – 2014 Updated EUL Records

- C&I Unitary HVAC Load Shape Project Final Report, KEMA, August 2, 2011, Table 0-6; (accessed on 3/21/2017) Available from: <u>http://www.neep.org/sites/default/files/resources/NEEP_HVAC_Load_Shape_Report_Final_August2.pdf</u>
- 3. ENERGY STAR® Program Requirements, Product Specification for Room Air Conditioners, Eligibility Criteria, Version 4.0, February 2015 Available from: <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Final%20Version</u> %204.0%20Room%20Air%20Conditioners%20Specification.pdf
- 4. California Public Utilities Commission: Database for Energy Efficient Resources (DEER) 2014, Updated-EULrecords_02-05-2014; EUL ID: HV-RAC-ES Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

Record of Revision

Record of Revision Number	Issue Date
1-16-15	12/31/2015
4-16-2	3/31/2015
6-17-8	6/30/2017

BUILDING SHELL

COOL ROOF

Measure Description

Roofing material with reduced solar absorptance. The cool roof is assumed to have a solar absorptance of 0.3 compared to a standard roof with solar absorptance of 0.8. Due to negative impacts on space heating, this measure is applicable to buildings with air conditioning and gas heat only.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times k(SF_{cool roof}) \times \left(\frac{\Delta kWh}{kSF}\right)$$

Peak Coincident Demand Savings

$$\Delta kW = units \times k(SF_{cool \ roof}) \times \left(\frac{\Delta kW}{kSF}\right) \times CF$$

Annual Gas Energy Savings

$$\Delta \text{therms} = \text{units} \times \text{k}(\text{SF}_{\text{cool roof}}) \times \left(\frac{\Delta \text{therm}}{\text{kSF}}\right)$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	=Annual gas energy savings
units	= Number of measures installed under the program
k	= Thermal conductivity
SF	= Square feet
cool roof	= Cool roof
CF	= Coincidence factor

Summary of Variables and Data Sources

Variable	Value	Notes
area	sq ft of roof	From application
		Calculated from thousand square feet of cool roof installed
kSF		over a cooled space.
$\Delta kW/kSF$		Lookup by building type and city, see <u>Appendix I</u> .
Building type		From application
ΔkW/kSF		Electricity demand savings per thousand square foot of cool

Variable	Value	Notes
		roof
ΔkWh/kSF		Electricity consumption savings per square foot of cool roof
		Natural gas consumption impact per thousand square foot of
∆therm/kSF		cool roof installed over a heated space.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8.

Baseline Efficiencies from which Savings are Calculated

Unit energy and demand savings were calculated from a DOE-2.2 simulation of a series of prototypical small commercial buildings. The prototype building characteristics are described in <u>Appendix A</u>. The unit energy and demand savings for eight building types across seven different cities in NY are shown in <u>Appendix I</u>.

The baseline condition for roofing material is assumed to have a solar absorptance of 0.8.

Compliance Efficiency from which Incentives are Calculated

The cool roof is assumed to have a solar absorptance of 0.3

Operating Hours

The HVAC system operating hours vary by building type. See <u>Appendix A</u>.

Effective Useful Life (EUL):

Years: 15 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Reducing roofing material solar absorptance increases space-heating requirements. The therm impacts are detailed above.

Ancillary Electric Savings Impacts

References

1. Roof absorptivity assumptions taken from California Title 24 Standards for conventional and cool roofs.

Record of Revisions

Record of Revision Number	Issue Date
1	10/15/2010

WINDOW - FILM

Measure Description

Window films with reduced solar heat gain coefficient applied to single pane clear glass in commercial buildings. Due to negative impacts on space heating, this measure is applicable to buildings with electric AC and gas heat only.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times Glazing area (100 SF) \times (\Delta kWh/100 SF)$

Peak Coincident Demand Savings

 $\Delta kW = units \times Glazing area (100 SF) \times (\Delta kW/100 SF) \times CF$

Annual Gas Energy Savings

 Δ therms = units × Glazing area (100SF) × (Δ therm/ 100 SF)

where:

Glazing area = Aperture area of windows treated by window films in 100 SF

Variable	Value	Notes
Area		From application
		Electricity consumption savings per 100 SF of glazing area,
$\Delta kWh/100SF$		lookup by building type and city
		Electricity demand savings per 100 SF of glazing area,
$\Delta kW/100SF$		lookup by building type and city
		Gas consumption impact per 100 square foot of glazing,
∆therm/100SF		lookup by building type and city
Building type		From application; use cross reference table as needed
HVAC type		Weighted average for built up systems as applicable

Summary of Variables and Data Sources

Unit energy and demand savings were calculated from a DOE-2.2 simulation of a series of prototypical small commercial buildings. The prototype building characteristics are described in <u>Appendix A</u>. The unit energy and demand savings for commercial and industrial building types across seven different cities in NY are shown in <u>Appendix F</u>.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is assumed to be single pane clear glass with a solar heat gain coefficient of 0.87 and U-value of 1.2 BTU/hr-SF- °F.

Compliance Efficiency from which Incentives are Calculated

The window film is assumed to provide a solar heat gain coefficient of 0.40 or less.

Operating Hours

The HVAC system operating hours vary by building type. See <u>Appendix A</u>.

Effective Useful Life (EUL) Years: 10 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1. Window film properties taken from ASHRAE Handbook of Fundamentals.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010

WINDOW – GLAZING Measure Description

ENERGY STAR® windows with reduced thermal conductance and solar heat gain coefficient.354

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times \frac{area_g}{100} \times \frac{\Delta kWh}{100 ft^2} \times \frac{SEER_{baseline}}{SEER_{part}} \times \left[\frac{\bar{\eta}_{dist, baseline}}{\bar{\eta}_{dist, part}}\right]_{cooling}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times \frac{area_g}{100} \times \frac{\Delta kW}{100 ft^2} \times \frac{EER_{baseline}}{EER_{part}} \times \left[\frac{\eta_{dist,pk,baseline}}{\eta_{dist,pk,part}}\right]_{cooling} \times CF$$

Annual Gas Energy Savings

$$\Delta therms = units \times \frac{area_g}{100} \times \frac{\Delta therm}{100 ft^2} \times \frac{AFUE_{baseline}}{AFUE_{part}} \times \left[\frac{\bar{\eta}_{dist, baseline}}{\bar{\eta}_{dist, part}}\right]_{heating}$$

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
CF	= Coincidence factor
EER	= Energy efficiency ratio under peak conditions
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt-hour,
	(used for average U.S. location/region)
AFUE	= Annual fuel utilization efficiency, seasonal energy efficiency for fuel heating
	equipment
baseline	= Baseline condition or measure
part	= Participant
dist	= Distribution
heating	= Heating
cooling	= Cooling
pk	= Peak
$\overline{\eta}$	= Average energy efficiency (0 -100%)
η	= Energy efficiency (0 -100%)

³⁵⁴ ENERGY STAR[®] Product Specification Residential Windows, Doors, and Skylights, Eligibility Criteria, V6.0, January 2014

area_g = Glazing area (in ft^2)

Variable	Value	Notes
areag		Glazing area rom application
		Electricity consumption savings per 100 square feet of
$\Delta kWh/100 ft^2$		glazing area, lookup by building type and city, use existing
		window type or vintage default for baseline.
		Electricity demand savings per 100 square feet of glazing
$\Delta kW/100 \text{ ft}^2$		area, lookup by building type and city, use existing window
		type or vintage default for baseline.
		Gas consumption impact per 100 square foot of glazing,
Δ therm/100 ft ²		lookup by building type and city, use existing window type or
		vintage default for baseline.
EER _{baseline}	11.2	EER used in the simulations ³⁵⁶
EED		EER of cooling systems within participant population,
EEKpart		defaults to EER _{baseline} (no adjustment)
SEER _{baseline}	14	SEER used in the simulations ³⁵⁷
SEED		SEER of cooling system within participant population,
SEEKpart		defaults to SEER _{baseline} (no adjustment)
AFUE _{baseline}	80%	AFUE used in the simulations ³⁵⁸
		AFUE of heating system within participant population,
AFUEpart		defaults to AFUE _{baseline} (no adjustment)
$ar{\eta}_{dist,baseline}$	0.956	Distribution system seasonal efficiency used in simulations
27		Distribution system seasonal efficiency within participant
$\eta_{dist,part}$		population, defaults to $\bar{\eta}_{dist,baseline}$ (no adjustment)
$\eta_{dist,pk,baseline}$	0.056	Distribution system efficiency under peak conditions used in
	0.956	simulation
$\eta_{dist,pk,part}$		Distribution system efficiency under peak conditions within
		participant population defaults to $\eta_{dist.pk,baseline}$ (no
		adjustment)

Summary of Variables and Data Sources³⁵⁵

Unit energy and demand savings calculated from the building prototype simulation models are shown in <u>Appendix F</u>. The savings are tabulated by location, building type, and HVAC system type for a variety of combinations of existing window and improved window types.

Coincidence Factor (CF)

The suggested coincidence factor for this measure is 0.822 for NYC and 0.477 elsewhere.³⁵⁹.

³⁵⁵ Due to schedule of revisions, values specified here may not align with those presented throughout appendices.

³⁵⁶ ECCCNYS 2016, Table C403.2.3(1) – Assumes a 5-ton packaged AC.

³⁵⁷ Ibid.

³⁵⁸ ECCCNYS 2016, Table C403.2.3(5) – Assumes a 150 MBh gas boiler.

³⁵⁹ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011, Table 0-5: NY - Inland and NY - Urban/Coastal

Baseline Efficiencies from which Savings are Calculated

A variety of existing window combinations are shown in the unit savings tables, including single pane clear glass, double pane clear glass and a minimally code compliant window. Energy savings are estimated based on the characteristics of the existing window. Single pane clear glass is the default for the old vintage, while double pane clear glass is the default for the average vintage. The minimally code compliant window as assumed to be the base case for new construction or window replacement projects.

Compliance Efficiency from which Incentives are Calculated

A typical window meeting the current ENERGY STAR[®] specifications is assumed to be the installed measure. The specifications assumed are listed below³⁶⁰:

U-Factor	Solar Heat Gain
$(Btu/h ft^2-{}^{o}F)$	Coefficient (SHGC)
≤0.27	Any
0.28	≥0.32
0.29	≥0.37
0.30	≥0.42

Operating Hours

The energy savings for windows are dependent on the HVAC system operating hours and thermostat set points. See <u>Appendix A</u> for the modeling assumptions for each building prototype.

Effective Useful Life (EUL)

Years: 20 Source: DEER 2014³⁶¹

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts

N/A

References

 ENERGY STAR[®] Product Specification Residential Windows, Doors, and Skylights, Eligibility Criteria, Version 6.0, January 2014 Available from:

https://www.energystar.gov/sites/default/files/ES_Final_V6_Residential_WDS_Spec.pdf

 ECCCNYS 2016, per IECC 2015; Table C403.2.3(1): Minimum Efficiency Requirements: Electrically Operated Unitary Air Conditioners And Condensing Units & Table C403.2.3(5): Minimum Efficiency Requirements: Gas- And Oil-Fired Boilers. Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-ce-</u>

³⁶¹ CA DEER – 2014 Updated EUL Records

³⁶⁰ ENERGY STAR[®] Product Specification Residential Windows, Doors, and Skylights, Eligibility Criteria, V6.0, January 2014

commercial-energy-efficiency

- 3. Window properties for baseline windows taken from 2013 ASHRAE Handbook of Fundamentals Chapter 15.
- C&I Unitary HVAC Load Shape Project Final Report, KEMA, August 2, 2011, Table 0-5; (accessed on 3/21/2017). Available from: <u>http://www.neep.org/sites/default/files/resources/NEEP_HVAC_Load_Shape_Report_Final_August2.pdf</u>
- 5. California Public Utilities Commission: Database for Energy Efficient Resources (DEER) 2014, Updated-EULrecords_02-05-2014; EUL ID: BS-Win. Available at: http://deeresources.com/files/deerchangelog/deerchangelog.html

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
6-17-9	6/30/2017

COMPRESSED AIR

AIR COMPRESSOR

Measure Description

This measure covers the installation of oil-flooded, rotary screw air compressors with variable frequency drives or variable displacement controls and properly sized air receivers in commercial and industrial compressed air systems (single compressor systems only). Inlet valve modulation, which modulates the compressor by throttling the air inlet and load/unload control, which switches the compressor to unload when the cut-out pressure set point is reached, are inefficient means of compressed air system control under part load conditions. Variable frequency drives vary capacity by controlling the frequency of the electrical signal to and speed of the motor while variable displacement controls change compressor capacity by varying the amount of the compressor used to compress air. Both represent a significant improvement in part load operating efficiency and savings over the baseline condition.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times hp_{comp} \times (\Delta kW/hp) \times hrs$

Peak Coincident Demand Savings

 $\Delta kW = units \times hp_{comp} \times (\Delta kW/hp) \times CF$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

Variable	Value	Notes
hp _{comp}		From application
(ΔkW/hp)		Lookup in table below based on compressor size and control strategy. ³⁶²
hrs		From application
CF	0.8	

Summary of Variables and Data Sources

Air Compressor Deemed Savings ($\Delta kW/hp$)

Control type	Compressor hp	ΔkW/hp
Variable Frequency Drive	≥ 15 and < 25	0.207
Variable Frequency Drive	≥ 25 and < 75	0.206
Variable Displacement	\geq 50 and < 75	0.116

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8^{363}

Baseline Efficiencies from which Savings are Calculated

The baseline condition is an oil-flooded, rotary screw compressor utilized in a single compressor system meeting the requirements of ISO Standard 8573.1 with inlet modulating or load/unload control and blow down capability.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is an oil-flooded, rotary screw compressor utilized in a single compressor system meeting the requirements of ISO Standard 8573.1 with variable speed drive or variable displacement capacity control and a properly sized air receiver. Flow controller must be used to maintain 5-10 psi pressure difference between receiver and distribution system.

Operating Hours

The operating hours of compressed air systems vary widely and shall be defined by the application.

Effective Useful Life (EUL) See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts N/A

References N/A

³⁶² No source specified – update pending availability and review of applicable references.

³⁶³ No source specified – update pending availability and review of applicable references.

Record of Revisions

Record of Revision Number	Issue Date
1	10/15/2010
12-17-9	12/31/2017

AIR DRYER - REFRIGERATED

Measure Description

High efficiency air dryers utilizing a refrigeration system to condense and remove moisture from a compressed air system.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = CFM_{dryer} \times (\Delta kW/CFM) \times hr$

Peak Coincident Demand Savings

 $\Delta kW = CFM_{dryer} \times (\Delta kW/CFM) \times CF$

Annual Gas Energy Savings

 Δ therms = N/A

where:

Summary of Variables and Data Sources

Variable	Value	Notes
CFM _{dryer}		From application
ΔkW/cfm		Lookup based on dryer size From MA TRM
hours		From application
	0.005	Dryer capacity (CFM _{dryer}) <100
	0.004	Dryer capacity (CFM _{dryer}) \geq 100 and $<$ 200
ΔkW/CFM	0.003	Dryer capacity (CFM _{dryer}) ≥ 200 and < 300
	0.003	Dryer capacity (CFM _{dryer}) \geq 300 and $<$ 400
	0.003	Dryer capacity (CFM _{dryer}) ≥ 400

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8.

Baseline Efficiencies from which Savings are Calculated

Non-cycling refrigerated air dryer.

Compliance Efficiency from which Incentives are Calculated

High efficiency refrigerated dryer.

Operating Hours Varies by application.

Effective Useful Life (EUL): Years: 15 Source: Ohio TRM

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1. Unit savings values taken from the Massachusetts Statewide Technical Reference Manual. Prepared by VEIC for the Mass Department of Energy Resources, 2009.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010

ENGINEERED AIR NOZZLE

Measure Description

This section covers engineered compressed air nozzles. Engineered nozzles entrain building air with compressed air to provide effective air nozzle action while reducing compressed air system air flow.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\varDelta kWh = (FLOW_{baseline} - FLOW_{eng}) \times kW_{scfm} \times \%_{use} \times hr$

Peak Coincident Demand Savings

 $\Delta kW = \Delta kWh / hr \times CF$

Annual Gas Energy Savings

 Δ therms = units $\times \Delta$ therm _{wh} + Δ therm _{dryer}

where:

4 1 33 71	
$\Delta \mathbf{K} \mathbf{W} \mathbf{h}$	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
FLOW _{baseline}	= Open nozzle flow
FLOW _{eng}	= Engineered nozzle flow
kW/scfm	= Air compressor kW per cfm air delivery at 100 psi
% _{use}	= Percent of compressor operating hours where nozzle is in use
hr	= Annual operating hours
CF	= Coincidence factor

Summary of Variables and Data Sources

Variable	Value	Notes
	Lookup based on	
FLOW _{baseline}	nozzle size	Nozzle size from application
	Lookup based on	
FLOW _{eng}	nozzle size	Nozzle size from application
kW/scfm	0.29	Value taken from Ohio TRM
% _{use}	0.05	
		Annual operating hours of air compressor, from
hr		application

	Standard Nozzle (SCFM) at 100 psi	Engineered Nozzle (SCFM) at 100 psi
1/8 in. nozzle	21	6
¹ / ₄ in. nozzle	58	11

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.75.

Baseline Efficiencies from which Savings are Calculated

Typical modulating compressor with blow down system assumed, with baseline nozzle as defined above.

Compliance Efficiency from which Incentives are Calculated

Typical modulating compressor with blow down system assumed, with efficient nozzle as defined above.

Operating Hours

Nozzles assumed to be in use 5% of the time the compressor system is available.

Effective Useful Life (EUL):

Years: 15 Source: PA Consulting for Wisconsin PSC

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- 1. Flow data for baseline nozzles taken from Machinery's Handbook, 25th Edition.
- 2. Efficient nozzle data taken from a survey of Manufacturers' data. See the Ohio Technical Reference Manual, VEIC. 2010.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010

NO AIR LOSS WATER DRAIN

Measure Description

This section covers a no-loss compressed air system water drain. No-loss drains allow water to drain from the compressed air system without compressed air loss.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times (\Delta kW/drain) \times hrs$

Peak Coincident Demand Energy Savings

 $\Delta kW = units \times (\Delta kW/drain) \times CF$

Annual Gas Energy Savings

 Δ therms = N/A

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
hr	= Annual operating hours
CF	= Coincidence factor

Summary of Variables and Data Sources

Variable	Value	Notes
units		Number of drains, from application
∆kW/drain	0.3kW	National Grid recommended value
		Annual operating hours of air compressor, from
hrs		application

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8.

Baseline Efficiencies from which Savings are Calculated

Electronic solenoid / timed drains.

Compliance Efficiency from which Incentives are Calculated

No loss drain with a Load/No-load with appropriately sized storage, VSD or variable displacement compressor.

Operating Hours

Varies by application.

Effective Useful Life (EUL): Years: 15 Source: Ohio TRM

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

 Unit demand savings value suggested by National Grid. This value is considered to be conservative relative to other values. For example, Xcel Energy of Colorado uses a deemed value of 0.53. See Xcel Energy Technical Reference Manual for the 2011 DSM programs, Xcel Energy, Denver CO. 2010.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010

Domestic Hot Water

INDIRECT WATER HEATER

Measure Description

This measure covers the installation of a gas-fired indirect water heater in which the stored water is heated via hot water or steam produced by a gas boiler rather than direct input from electric elements or gas burners. In such a system, a heat exchanger separates the potable water in the water heater from the boiler water. This measure applies to small commercial indirect systems comprising a boiler with input heating capacity less than 300,000 BTU/hr and greater than or equal to 4,000 BTU/hr per gallon of stored water.³⁶⁴

This measure estimates savings associated with the delivery of potable hot water only and assumes the installation of zone priority controls to interrupt demand for space heating until domestic hot water demand is met. Larger equipment as well as equipment where zone priority control is not feasible shall be treated under a custom application.

The baseline assumption for indirect water heaters is a minimally code compliant tank type water heater or an indirect system with a minimally code compliant boiler, based on actual existing conditions. For new construction, a tank type baseline shall be assumed.

Method for Calculating Annual Energy and Peak Coincidence Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = N/A$

Peak Coincident Demand Savings

$$\Delta kW = N/A$$

Annual Gas Energy Savings

$$\begin{split} \Delta therms &= units \times \left[\frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{100,000} \times \left[\frac{1}{Eff_{baseline}} - \frac{1}{Eff_{ee}} \right] \\ &+ \left[\frac{UA_{baseline}}{Eff_{baseline}} - \frac{UA_{ee}}{Eff_{ee}} \right] \times \frac{\Delta T_{amb}}{100,000} \times 8,760 \right] \end{split}$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
GPD	= Gallons per day
ΔT_{main}	= Average temperature difference between water heater set point temperature and

364 10 CFR 431.102

	the supply water temperature in water main (°F)
ΔT_{amb}	= Average temperature difference between water heater set point temperature and
	the surrounding ambient air temperature (°F)
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
Eff	= Efficiency
UA	= Overall heat loss coefficient (BTU/hr- $^{\circ}$ F)
365	= Days in one year
8.33	= Energy required (BTU) to heat one gallon of water by one degree Fahrenheit
100,000	= Conversion factor (BTU/therm), one therm equals 100,000 BTU
8,760	= Hours in one year

Summary of Variables and Data Sources

Variable	Value	Notes
GPD		From application, or lookup/calculate based on building type, square footage and occupancy from GPD table below.
ΔT_{main}	$T_{\text{set}} - T_{\text{main}}$	Average temperature difference between water heater set point temperature and the supply water temperature in water main (°F).
ΔT_{amb}	$(T_{set} - T_{amb})$	Average temperature difference between water heater set point temperature and the surrounding ambient air temperature (°F).
T _{set}		Water heater set point temperature (°F), per application or use 140°F as a default. ³⁶⁵
T _{main}		Supply water temperature in water main (°F). Lookup in Cold Water Inlet Temperature table below based on nearest city. (°F).
T _{amb}	70	Surrounding ambient air temperature (°F). ³⁶⁶
Eff _{baseline}		Efficiency of baseline condition. Lookup in Baseline Efficiencies section below.
Eff _{ee}		Efficiency of energy efficient indirect-system boiler (AFUE) from application.
UA _{baseline}		Overall heat loss coefficient of the baseline condition (BTU/hr-°F). Calculate based on baseline standby loss per the Baseline Heat Loss Coefficient section below.
UA _{ee}		Overall heat loss coefficient of the energy efficient measure (BTU/hr-°F). Calculate based on energy efficient standby loss per the Qualifying Heat Loss Coefficient section below.

³⁶⁵ Per OSHA recommendations for prevention of Legionella bacterial growth (<u>https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html</u>)

³⁶⁶ Water heaters are generally located in conditioned or partially conditioned spaces with a typical average temperature of 65°F to 70°F to avoid freezing. A value of 70°F is used for the purposes of estimating tank/ambient air temperature differential, which aligns with standby loss specification testing standards.

Gallons per Day (GPD)

The average daily hot water usage, expressed in gallons per day, for several commercial facility types is tabulated below. Daily hot water usage can be calculated based on the GPD and site-specific metric in the Rate column, or default values can be referenced directly from the GPD column.

Building Type	GPD	Rate	Notes/Assumptions	Source
Assembly	239	7.02 GPD per 1,000 SF	Assumes 10% hot water, 34,000 SF	EIA ³⁶⁷ : Public Assembly
Auto Repair	25	4.89 GPD per 1,000 SF	Assumes 10% hot water, 5,150 SF	EIA: Other
Big Box Retail	448	3.43 GPD per 1,000 SF	Assumes 10% hot water, 130,500 SF	EIA: Mercantile
Community College	1,520	1.9 GPD per person	Assumes 800 students	NREL ³⁶⁸ : School with Showers
Dormitory	8,600	17.2 GPD per resident	Assumes 500 residents	Water Research Foundation ³⁶⁹
Elementary School	250	0.5 GPD per student	Assumes 500 students	NREL: School
Fast Food Restaurant	500	500 GPD per restaurant		FSTC ³⁷⁰ : Quick Service
Full-Service Restaurant	2,500	2,500 GPD per restaurant		FSTC: Full Service
Grocery	172	3.43 GPD per 1,000 SF	Assumes 10% hot water, 50,000 SF	EIA: Mercantile
High School	1,520	1.9 GPD per person	Assumes 800 students	NREL: School with Showers
Hospital	16,938	54.42 GPD per 1,000 SF	Assumes 40% hot water, 250,000 SF	EIA: Health Care, Inpatient
Hotel	9,104	45.52 GPD per 1,000 SF	Assumes 40% hot water, 200,000 SF	EIA: Lodging
Large Office	550	1.1 GPD per person	Assumes 500 people	NREL: Office
Large Retail	446	3.43 GPD per 1,000 SF	Assumes 10% hot water, 130,000 SF	EIA: Mercantile
Light Industrial	489	4.89 GPD per 1,000 SF	Assumes 10% hot water, 100,000 SF	EIA: Other
Motel	1,366	45.52 GPD per 1,000 SF	Assumes 40% hot water, 30,000 SF	EIA: Lodging
Multifamily High-Rise	4,600	46 GPD per unit	Assumes 100 units	Water Research Foundation
Multifamily Low-Rise	552	46 GPD per unit	Assumes 12 units	Water Research Foundation
Refrigerated Warehouse	86	0.93 GPD per 1,000 SF	Assumes 10% hot water, 92,000 SF	EIA: Warehouse and Storage
Religious	77	7.02 GPD per 1,000 SF	Assumes 10% hot water, 11,000 SF	EIA: Public Assembly
Small Office	110	1.1 GPD per person	Assumes 100 people	NREL: Office
Small Retail	27	3.43 GPD per 1,000 SF	Assumes 10% hot water, 8,000 SF	EIA: Mercantile
University	1,000	0.5 GPD per student	Assumes 2,000 students	NREL: School
Warehouse	465	0.93 GPD per 1,000 SF	Assumes 10% hot water, 500,000 SF	EIA: Warehouse and Storage
Other	Calculate	4.89 GPD per 1,000 SF	Assumes 10% hot water	EIA: Other

Cold Water Inlet Temperature (T_{main})

Supply water main temperatures vary according to climate and are approximately equal to the annual average outdoor temperature plus 6°F.³⁷¹ Supply main temperatures based on the annual outdoor temperature are shown below.

City	Annual average outdoor temperature ³⁷² (°F)	T _{main} (°F)
Albany	48.3	54.3
Binghamton	46.3	52.3
Buffalo	48.3	54.3

 ³⁶⁷ U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey: Water Consumption in Large Buildings, Table WD1. Daily water consumption in large commercial buildings, 2012
³⁶⁸ National Renewable Energy Laboratory, Saving Energy in Commercial Buildings: Domestic Hot Water Assessment Guidelines, Table 1. Hot Water Use By Building Type, June 2011

³⁶⁹ Water Research Foundation: Residential End Uses of Water, Version 2, April 2016

³⁷⁰ Food Service Technology Center, Design Guide – Energy Efficient Heating, Delivery and Use, Table 1. Typical hot water system cost for restaurants, March 2010

³⁷¹ Burch, Jay and Christensen, Craig, "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory

³⁷² Average annual outdoor temperatures taken from NCDC 1981-2010 climate normals

City	Annual average outdoor temperature ³⁷² (°F)	T _{main} (°F)
Massena	43.5	49.5
NYC	55.4	61.4
Poughkeepsie	49.8	55.8
Syracuse	48.3	54.3

Baseline Heat Loss Coefficient (UAbaseline)

UA_{baseline} is calculated from the assumed equipment standby loss specification (SL_{baseline}), which is determined per minimum effective federal standards for commercial gas storage type water heaters (see Baseline Standby Losses section below).³⁷³

$$UA_{baseline} = \frac{SL_{baseline}}{70}$$

where:

SL_{baseline} = Standby heat loss (BTU/hr) specification. For the baseline condition (SL_{baseline}), use the intermediate standby loss equation from the Baseline Standby Losses section below.

70 = Temperature difference associated with standby loss specification $(^{\circ}F)^{374}$

Baseline Standby Losses (SL_{baseline})

Standby losses (SL_{baseline}) for commercial gas storage type water heaters:³⁷⁵

$$SL_{baseline} = \frac{Q_{baseline}}{800} + 110\sqrt{v_{baseline}}$$

where:

v_{baseline} = Baseline tank volume (gal), equal to the storage capacity of the proposed equipment

Q_{baseline} = Baseline input capacity (BTU/hr), equal to the input capacity of the proposed equipment

 ³⁷³ 10 CFR 429, 430, and 431 Docket No. EERE-2015-BT-TP-0007, Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters
³⁷⁴ Ibid.

³⁷⁵ Ibid.

Qualifying Heat Loss Coefficient (UAee)

Indirect water heater storage tanks are tested and rated for standby losses (in °F/hr or BTU/hr) at standard testing conditions in accordance with testing standards.³⁷⁶

For equipment with standby losses rated in $^{\circ}F/hr$, the qualifying equipment standby loss specification (SL_{ee}) shall be used in the formula below, along with tank volume (v_{ee}) to establish the qualifying equipment heat loss coefficient (UA_{ee}).

$$UA_{ee} = \frac{SL_{ee}}{70} \times v_{ee} \times 8.33$$

where:

UAee	= Overall heat loss coefficient (BTU/hr- $^{\circ}$ F) of the energy efficient condition or
	measure
SLee	= Standby loss specification ($^{\circ}F/hr$) of the energy efficient condition or measure
Vee	= Rated storage capacity (gallons) of the energy efficient condition or measure
70	= Temperature difference associated with standby loss specification $(^{\circ}F)^{377}$
8.33	= Energy required (BTU) to heat one gallon of water by one degree Fahrenheit

For equipment with standby losses rated in BTU/hr, the qualifying equipment standby loss specification (SL_{ee}) shall be used in the formula below to establish the qualifying equipment heat loss coefficient (UA_{ee})

$$UA_{ee} = \frac{SL_{ee}}{70}$$

where:

UAee	= Overall heat loss coefficient (BTU/hr- $^{\circ}$ F) of the energy efficient condition or
	measure
SLee	= Standby loss specification (BTU/hr) of the energy efficient condition or
	measure
70	= Temperature difference associated with standby loss specification $(^{\circ}F)^{378}$

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a minimally code compliant gas storage type or indirect water heater (based on actual existing conditions) with efficiency per the Energy Conservation Construction

³⁷⁸ Ibid.

³⁷⁶ GAMA Testing Standard: Performance of Indirect-Fired Water Heaters, March 2003

³⁷⁷ 10 CFR 429, 430, and 431 Docket No. EERE-2015-BT-TP-0007, Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

Code of New York State³⁷⁹ and the New York City Energy Conservation Code³⁸⁰ as shown in the table below. Heat loss coefficient of the baseline condition shall be established as indicated in the Baseline Heat Loss Coefficient section above. Measure is only applicable to small commercial (<300,000 BTU/hr) equipment in applications with zone priority control. Baseline tank volume and input capacity shall be set equal to the energy efficient condition. For new construction, a tank type baseline shall be assumed.

Equipment Type/Size	Efficiency
Tank Type: All Sizes	0.80 Et
Gas Boiler: < 300,000 BTU/hr	0.80 AFUE
Steam Boiler, All Except Natural Draft: < 300,000 BTU/hr	0.75 AFUE
Steam Boiler, Natural Draft: < 300,000 BTU/hr	0.75 AFUE

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a small commercial (<300,000 BTU/hr) gas-fired indirect water heater meeting minimum performance requirements as dictated by program eligibility criteria in applications with zone priority control.

Operating Hours

Water heater run hours are not utilized in the estimation of energy or demand savings, but water heater is assumed to be available for operation 8,760 hours per year. Additionally, it is assumed standby losses are incurred 8,760 hours per year.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

Reduction in standby heat losses will have a negligible impact on space heating when the water heater is located in a conditioned space. Consideration of these effects is not included in this methodology.

Ancillary Electric Savings Impacts

Reduction in standby heat losses will have a negligible impact on space heating when the water heater is located in a conditioned space. Consideration of these effects is not included in this methodology.

References

- 10 CFR 431.102 Definitions concerning commercial water heaters, hot water supply boilers, unfired hot water storage tanks, and commercial heat pump water heaters. Available from: <u>https://www.ecfr.gov/cgibin/retrieveECFR?gp=&SID=863517ec5f69fb78dad68864aa84c128&mc=true&n=sp10.3</u> .431.g&r=SUBPART&ty=HTML#se10.3.431_1102
- 2. OSHA Legionnaire's Disease eTool: Section II: C-1. Domestic Hot-Water Systems Available from: https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html

³⁷⁹ ECCCNYS 2016, Table C403.2.3(5) and Table C404.2

³⁸⁰ NYCECC 2016, Table C403.2.3(5) and Table C404.2

- 3. U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey: Water Consumption in Large Buildings, Table WD1. Daily water consumption in large commercial buildings, 2012 Available from: https://www.eia.gov/consumption/commercial/reports/2012/water/
- National Renewable Energy Laboratory, Saving Energy in Commercial Buildings: Domestic Hot Water Assessment Guidelines, Table 1. Hot Water Use By Building Type, June 2011

Available from: <u>https://www.nrel.gov/docs/fy11osti/50118.pdf</u>

5. Water Research Foundation: "Residential End Uses of Water, Version 2: Executive Report", April 2016

Available from: http://www.waterrf.org/PublicReportLibrary/4309A.pdf

- Food Service Technology Center, Design Guide Energy Efficient Heating, Delivery and Use, Table 1. Typical hot water system cost for restaurants, March 2010 Available from: <u>https://fishnick.com/design/waterheating/Water_Heating_Design_Guide_Final_FNi_discl</u> aimer.pdf
- 7. Burch, Jay and Craig Christensen; "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory. Available from: <u>http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=05D73BA6EF5ECCF71969D0</u> 83FB317991?doi=10.1.1.515.6885&rep=rep1&type=pdf
- 8. NOAA National Centers for Environmental Information NCDC 1981-2010 Climate Normals

Available from: https://www.ncdc.noaa.gov/cdo-web/datatools/normals

9. 10 CFR 429, 430, and 431 Docket No. EERE-2015-BT-TP-0007, Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters Available from:

https://energy.gov/sites/prod/files/2016/08/f33/Water%20Heaters%20Test%20Procedure %20SNOPR.pdf

10. GAMA Testing Standard: Performance of Indirect-Fired Water Heaters, March 2003 Available from: http://www.abrinet.org/App_Content/abri/files/standards%20pdfs/Indirect-

http://www.ahrinet.org/App_Content/ahri/files/standards%20pdfs/Indirect-Fired%20Water%20Heater%20Testing%20Standard03.pdf

- 11. ECCCNYS 2016, per IECC 2015; Table C403.2.3(5): Minimum Efficiency Requirements: Gas- And Oil-Fired Boilers & Table C404.2: Minimum Performance of Water Heating Equipment Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-cecommercial-energy-efficiency</u>
- 12. NYCECC 2016; Table C403.2.3(5): Minimum Efficiency Requirements: Gas- And Oil-Fired Boilers & Table C404.2: Minimum Performance of Water Heating Equipment Available from:

https://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2016ECC_CH C4.pdf§ion=energy_code_2016

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
3-18-14	3/29/2018

STORAGE TANK WATER HEATER

Measure Description

This measure covers the installation of gas and electric storage tank water heaters designed to heat and store water at a thermostatically controlled temperature. This measure applies to potable hot water delivery only; it is not applicable to hot water heaters used for process loads or space heating.

Storage type units include commercial gas storage water heaters with a nominal input of greater than 75,000 BTU per hour and less than 4,000 BTU per hour per gallon of stored water and commercial electric storage water heaters with a nominal input of greater than 12 kilowatts and less than 4,000 Btu per hour per gallon of stored water.³⁸¹

This measure applies to replacement of existing storage type water heaters using the same heating fuel (gas or electric) as the proposed case. For new construction, this measure assumes baseline to be a standard efficiency water heater using the same heating fuel (gas or electric) as the proposed case.

This measure applies to commercial grade water heaters only. For residential-duty water heaters installed in commercial settings, the Residential Storage Tank and Instantaneous Domestic Water Heater methodology detailed in this document shall be employed utilizing typical GPD values as defined in the "Gallons per Day (GPD)" section below.

Method for Calculating Annual Energy and Peak Coincidence Demand Savings

Annual Electric Energy Savings (Electric Equipment Only)

$$\Delta kWh = units \times \frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{3,412} \times \left[\frac{1}{E_{t,baseline}} - \frac{1}{E_{t,ee}}\right]$$

Peak Coincident Demand Savings (Electric Equipment Only)

$$\Delta kW = units \times \frac{(UA_{baseline} - UA_{ee}) \times \Delta T_{amb}}{3,412} \times CF$$

Annual Gas Energy Savings (Gas Equipment Only)

$$\Delta therm = units \times \frac{GPD \times 365 \times 8.33 \times \Delta T_{main}}{100,000} \times \left[\frac{1}{E_{t,baseline}} - \frac{1}{E_{t,ee}}\right]$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
GPD	= Gallons per day

³⁸¹ 10 CFR 431.102

ΔT_{main}	= Average temperature difference between water heater set point temperature and	
	the supply water temperature in water main (°F)	
ΔT_{amb}	= Average temperature difference between water heater set point temperature and	
	the surrounding ambient air temperature (°F)	
baseline	= Baseline condition or measure	
ee	= Energy efficient condition or measure	
Et	= Thermal efficiency	
UA	= Overall heat loss coefficient (BTU/hr- $^{\circ}$ F)	
CF	= Coincidence factor	
365	= Days in one year	
8.33	= Energy required (BTU) to heat one gallon of water by one degree Fahrenheit	
3,412	= Conversion factor, one kWh equals 3,412 BTU	
100,000	= Conversion factor (BTU/therm), one therm equals 100,000 BTU	

Variable	Value	Notes
GPD		From application, or lookup/calculate based on
		building type, square footage and occupancy from
		GPD table below.
ΔT_{main}		Average temperature difference between water
	T _{set} - T _{main}	heater set point temperature and the supply water
		temperature in water main (°F)
ΔT_{amb}		Average temperature difference between water
	$(T_{set} - T_{amb})$	heater set point temperature and the surrounding
		ambient air temperature (°F)
T _{set}		Water heater set point temperature (°F), per
		application or use 140°F as a default. ³⁸²
		Supply water temperature in water main (°F).
T _{main}		Lookup in Cold Water Inlet Temperature table
		below based on nearest city.
Tamb	70	Surrounding ambient air temperature (°F). ³⁸³
E _{t,baseline}	Electric – 0.98	Thermal affiniancy of the baseline condition ^{384,385}
	Gas – 0.80	Thermal efficiency of the baseline condition
E _{t,ee}		Thermal efficiency for energy efficient measure,
		from application

Summary of Variables and Data Sources

 ³⁸² Per OSHA recommendations for prevention of Legionella bacterial growth (<u>https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html</u>)
³⁸³ Water heaters are generally located in conditioned or partially conditioned spaces with a typical average

³⁸³ Water heaters are generally located in conditioned or partially conditioned spaces with a typical average temperature of 65°F to 70°F to avoid freezing. A value of 70°F is used for the purposes of estimating tank/ambient air temperature differential, which aligns with standby loss specification testing standards. ³⁸⁴ Gas: 10 CFR 431.110 (a)

³⁸⁵ Electric: Per 10 CFR 430 Subpart B Appendix E – Uniform Test Method for Measuring the Energy Consumption of Water Heaters: 6.3.2 Recovery Efficiency
Variable	Value	Notes
UA _{baseline}		Overall heat loss coefficient of the baseline
		condition (BTU/hr-°F). Calculate based on
		baseline standby loss per the Overall Heat Loss
		Coefficient section below.
UA _{ee}		Overall heat loss coefficient of the energy
		efficient measure (BTU/hr-°F). Calculate based
		on energy efficient standby loss per the Overall
		Heat Loss Coefficient section below.

Gallons per Day (GPD)

The average daily hot water usage, expressed in gallons per day, for several commercial facility types is tabulated below. Daily hot water usage can be calculated based on the GPD and site-specific metric in the Rate column, or default values can be referenced directly from the GPD column.

Building Type	GPD	Rate	Notes/Assumptions	Source
Assembly	239	7.02 GPD per 1,000 SF	Assumes 10% hot water, 34,000 SF	EIA ³⁸⁶ : Public Assembly
Auto Repair	25	4.89 GPD per 1,000 SF	Assumes 10% hot water, 5,150 SF	EIA: Other
Big Box Retail	448	3.43 GPD per 1,000 SF	Assumes 10% hot water, 130,500 SF	EIA: Mercantile
Community College	1,520	1.9 GPD per person	Assumes 800 students	NREL ³⁸⁷ : School with Showers
Dormitory	8,600	17.2 GPD per resident	Assumes 500 residents	Water Research Foundation ³⁸⁸
Elementary School	250	0.5 GPD per student	Assumes 500 students	NREL: School
Fast Food Restaurant	500	500 GPD per restaurant		FSTC ³⁸⁹ : Quick Service
Full-Service Restaurant	2,500	2,500 GPD per restaurant		FSTC: Full Service
Grocery	172	3.43 GPD per 1,000 SF	Assumes 10% hot water, 50,000 SF	EIA: Mercantile
High School	1,520	1.9 GPD per person	Assumes 800 students	NREL: School with Showers
Hospital	16,938	54.42 GPD per 1,000 SF	Assumes 40% hot water, 250,000 SF	EIA: Health Care, Inpatient
Hotel	9,104	45.52 GPD per 1,000 SF	Assumes 40% hot water, 200,000 SF	EIA: Lodging
Large Office	550	1.1 GPD per person	Assumes 500 people	NREL: Office
Large Retail	446	3.43 GPD per 1,000 SF	Assumes 10% hot water, 130,000 SF	EIA: Mercantile
Light Industrial	489	4.89 GPD per 1,000 SF	Assumes 10% hot water, 100,000 SF	EIA: Other
Motel	1,366	45.52 GPD per 1,000 SF	Assumes 40% hot water, 30,000 SF	EIA: Lodging
Multifamily High-Rise	4,600	46 GPD per unit	Assumes 100 units	Water Research Foundation
Multifamily Low-Rise	552	46 GPD per unit	Assumes 12 units	Water Research Foundation
Refrigerated Warehouse	86	0.93 GPD per 1,000 SF	Assumes 10% hot water, 92,000 SF	EIA: Warehouse and Storage
Religious	77	7.02 GPD per 1,000 SF	Assumes 10% hot water, 11,000 SF	EIA: Public Assembly
Small Office	110	1.1 GPD per person	Assumes 100 people	NREL: Office
Small Retail	27	3.43 GPD per 1,000 SF	Assumes 10% hot water, 8,000 SF	EIA: Mercantile
University	1,000	0.5 GPD per student	Assumes 2,000 students	NREL: School
Warehouse	465	0.93 GPD per 1,000 SF	Assumes 10% hot water, 500,000 SF	EIA: Warehouse and Storage
Other	Calculate	4.89 GPD per 1,000 SF	Assumes 10% hot water	EIA: Other

Assessment Guidelines, Table 1. Hot Water Use By Building Type, June 2011

 ³⁸⁶ U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey: Water Consumption in Large Buildings, Table WD1. Daily water consumption in large commercial buildings, 2012
³⁸⁷ National Renewable Energy Laboratory, Saving Energy in Commercial Buildings: Domestic Hot Water

³⁸⁸ Water Research Foundation: Residential End Uses of Water, Version 2, April 2016

³⁸⁹ Food Service Technology Center, Design Guide – Energy Efficient Heating, Delivery and Use, Table 1. Typical hot water system cost for restaurants, March 2010

Cold Water Inlet Temperature (Tmain)

Supply water main temperatures vary according to climate, and are approximately equal to the annual average outdoor temperature plus 6°F.³⁹⁰ Supply main temperatures based on the annual outdoor temperature are shown below.

City	Annual average outdoor temperature ³⁹¹ (°F)	T _{main} (°F)
Albany	48.3	54.3
Binghamton	46.3	52.3
Buffalo	48.3	54.3
Massena	43.5	49.5
NYC	55.4	61.4
Poughkeepsie	49.8	55.8
Syracuse	48.3	54.3

Overall Heat Loss Coefficient (UA_{baseline} and UA_{ee})

Tank overall heat loss coefficient is calculated from the equipment standby loss specification. For UA_{ee}, the manufacturer specified standby loss shall be applied directly to the UA formula below. To calculate UA_{baseline}, use the appropriate intermediate standby loss equation from the Baseline Standby Losses section below.

$$UA = \frac{SL}{70}$$

where:

 $SL = Standby heat loss (BTU/hr), from application for the energy efficient measure (SL_{ee}). For the baseline condition (SL_{baseline}), use the appropriate intermediate standby loss equation from the Baseline Standby Losses section below.$

70 = Temperature difference associated with standby loss specification $(^{\circ}F)^{392}$

Baseline Standby Losses (SL_{baseline})

Standby losses (SL_{baseline}) for commercial electric storage type water heaters:³⁹³

 $SL_{baseline} = 20 + 35\sqrt{v_{baseline}}$

393 Ibid.

³⁹⁰ Burch, Jay and Christensen, Craig, "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory

³⁹¹ Average annual outdoor temperatures taken from NCDC 1981-2010 climate normals

³⁹² 10 CFR 429, 430, and 431 Docket No. EERE-2015-BT-TP-0007, Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

where:

v_{baseline} = Baseline tank volume (gal), equal to the storage capacity of the proposed equipment

Standby losses (SL_{baseline}) for commercial gas storage type water heaters:³⁹⁴

$$SL_{baseline} = \frac{Q_{baseline}}{800} + 110\sqrt{v_{baseline}}$$

where:

 $v_{\text{baseline}} = \text{Baseline tank volume (gal), equal to the storage capacity of the proposed equipment}$ $Q_{\text{baseline}} = \text{Baseline input capacity (BTU/hr), equal to the input capacity of the proposed equipment}$

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8^{395}

Baseline Efficiencies from which Savings are Calculated

The baseline condition for replacement measures is a standard efficiency gas or electric storage type water heater (based on proposed conditions) with tank volume and input capacity equivalent to the proposed case, UA value calculated as prescribed above and a thermal efficiency of 0.80 (gas) or 0.98 (electric).

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a gas or electric storage type water heater as defined in the Measure Description section above meeting minimum performance requirements dictated by program eligibility criteria.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Operating Hours

Water heater run hours are not utilized in the estimation of energy or demand savings, but water heater is assumed to be available for operation 8,760 hours per year. Additionally, it is assumed standby losses are incurred 8,760 hours per year.

Ancillary Fossil Fuel Savings Impacts

Reduction in standby heat losses will have a negligible impact on space heating when the water heater is located in conditioned space. Consideration of these effects is not included in this methodology.

Ancillary Electric Savings Impacts

High-efficiency water heaters may incorporate a draft fan, which increases electricity

³⁹⁴ 10 CFR 429, 430, and 431 Docket No. EERE-2015-BT-TP-0007, Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

³⁹⁵ *No source specified – update pending availability and review of applicable references.*

consumption. Additionally, reduction in standby heat losses will have a negligible impact on space heating and cooling when the water heater is located in conditioned space. Consideration of these effects is not included in this methodology.

References

- 10 CFR 431.102 Definitions concerning commercial water heaters, hot water supply boilers, unfired hot water storage tanks, and commercial heat pump water heaters. Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=863517ec5f69fb78dad68864aa84c128&mc=true&n=sp10.3</u> .431.g&r=SUBPART&ty=HTML#se10.3.431_1102
- 2. OSHA Legionnaire's Disease eTool: Section II: C-1. Domestic Hot-Water Systems Available from: <u>https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html</u>
- 10 CFR 430 Subpart B Test Procedures, Appendix E Uniform Test Method for Measuring the Energy Consumption of Water Heaters Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=9624a8ba0987aaae248454c49194a661&mc=true&n=pt10.</u> 3.430&r=PART&ty=HTML#ap10.3.430_127.e
- 4. 10 CFR 431.110 Energy conservation standards and their effective dates Available from: <u>https://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=64f994924a5f31b841cab23a6d543f85&mc=true&node=pt10.3.431&rgn=div5#</u> <u>se10.3.431_1110</u>
- 5. U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey: Water Consumption in Large Buildings, Table WD1. Daily water consumption in large commercial buildings, 2012 Available from: https://www.eia.gov/consumption/commercial/reports/2012/water/
- National Renewable Energy Laboratory, Saving Energy in Commercial Buildings: Domestic Hot Water Assessment Guidelines, Table 1. Hot Water Use By Building Type, June 2011

Available from: https://www.nrel.gov/docs/fy11osti/50118.pdf

- Water Research Foundation: "Residential End Uses of Water, Version 2: Executive Report", April 2016
 - Available from: <u>http://www.waterrf.org/PublicReportLibrary/4309A.pdf</u>
- Food Service Technology Center, Design Guide Energy Efficient Heating, Delivery and Use, Table 1. Typical hot water system cost for restaurants, March 2010 Available from:

https://fishnick.com/design/waterheating/Water_Heating_Design_Guide_Final_FNi_discl aimer.pdf

- Burch, Jay and Craig Christensen; "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.515.6885
- 10. NOAA National Centers for Environmental Information NCDC 1981-2010 Climate Normals
- 11. 10 CFR 429, 430, and 431 Docket No. EERE-2015-BT-TP-0007, Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

Available from:

https://energy.gov/sites/prod/files/2016/08/f33/Water%20Heaters%20Test%20Procedure %20SNOPR.pdf

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
12-17-10	12/31/2017

DOMESTIC HOT WATER (DHW) - CONTROL

FAUCET - LOW FLOW AERATOR

Measure Description

A faucet aerator is a water saving device that, by federal guidelines that went into effect in 1994, enables no more than 2.2 gallons per minute (gpm) to pass through the faucet. A low flow faucet aerator can reduce water flow to 1.5 gpm while maintaining appropriate water pressure and flow.

Method for Calculating Annual Energy and Peak Coincident Demand Savings³⁹⁶

Annual Energy Savings Method

The savings estimations were derived through the following steps:

Water Savings = $((Standard - low flow aerator GPM) \times (duration/use) \times (\#uses/day) \times (days/year))$

Develop estimate of annual gallons of water saved from the measure

 $H_2O_{Sav} = (GPM_{baseline}-GPM_{ee}) \times Dur \times Use \times Days$

where:

 $\begin{array}{ll} H_2O_{Sav} = Water \ savings\\ GPM &= Gallons \ per \ minute\\ {}_{baseline} &= Baseline \ condition \ or \ measure\\ {}_{ee} &= Energy \ efficient \ condition \ or \ measure\\ Dur &= Duration \ of \ water \ flow \ per \ usage\\ Use &= Uses \ of \ water \ per \ day\\ Days &= Days \ per \ year \end{array}$

Annual Electric Energy Savings

 $\Delta kWh = ((H2^{0}_{Sav} \times (T_{faucet} - T_{heater}) \times 8.33/3,412)) / EF_{electric}$

where:

∆kWh	= Electric energy savings
H ₂ O _{Sav}	= Water savings (calculated from above)
T _{faucet}	= Temperature of faucet water
Theater	= Temperature to heater
8.33	= Energy required (BTU's), to heat one gallon of water by one degree Fahrenheit
3,412	= Conversion factor, one kW equals 3,412.14 BTU/h
EFelectric	= Energy factor for electric water heater

³⁹⁶ This methodology is derived from <u>CL&P and UI Program Savings Documentation for 2008 Program Year</u>, pp. 157-158.

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 $\Delta therms = H20_{Sav} \times (T_{faucet} - T_{heater}) \times (8.33/100,000)) / EF_{gas}$

where:

H ₂ O _{Sav}	= Water savings (calculated from above)
T faucet	= Temperature of faucet water
Theater	= Temperature to heater
8.33	= Energy required (BTU's), to heat one gallon of water by one degree Fahrenheit
100,000	= Conversion factor (BTU/therm), one therm equals 100,000 BTU's
EFgas	= Energy factor for natural gas water heater

Variable	Value	Notes
		Gallons per minute for energy
GPM _{ee}	1.5	efficient measure
		Gallons per minute for
GPM _{baseline}	2.2	baseline measure
Duration of use (minutes)	0.5	
Uses per day	30	
		Average days of operation for
Days per year	260	businesses
		Temperature of water at
T _{faucet}	80	faucet
		Average T _{main} based on
T _{main}		upstate or downstate
Water heater efficiency		Standard assumptions for
		electric water heater
	0.97	efficiency
		Standard assumptions for
		natural gas water heater
	0.67	efficiency

Summary of Variables and Data Sources

The table below provides the baseline (standard) and low flow aerator water flows, related input assumptions, and the resulting water savings. Assumptions regarding average duration of use and number of uses per day are also presented. This is based on the CL&P and UI savings document, which itself relied on FEMP assumptions.³⁹⁷

³⁹⁷ Federal Energy Management Program "<u>Domestic Water Conservation Technologies</u>" at www1.eere.energy.gov/femp/pdfs/22799.pdf and other sources.

Variable	Value	Notes
Standard aerator	2.2 GPM	
Replacement low flow aerator	1.5 GPM	
Savings in GPM	0.7 GPM	
Duration of use (minutes)	0.5	
No. of uses/day	30	
Days/year	260	
Gallons of water saved/year	2,730	

Typical value for water temperature leaving the faucet is 80 °F, by location:

City	Annual average outdoor	
	temperature (°F)	T main (°F)
Albany	48.2	54.2
Binghamton	46.9	52.9
Buffalo	48.3	54.3
Massena	44.7	50.7
Syracuse	48.6	54.6
Upstate average	47.3	53.3
Long Island	56.5	62.5
NYC	56.5	55.0

Coincidence Factor

The recommended value for the coincidence factor is 0.8

Baseline Efficiency from Which Savings are Calculated

Compliance Efficiency from which Incentives are Calculated

Operating Hours: N/A

Effective Useful Life Years: 10 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- 1. Methodology derived from CL&P and UI Program Savings Documentation for 2008 Program Year, pp. 157-158.
- 2. See Federal Energy Management Program "Domestic Water Conservation Technologies" for water savings data. www1.eere.energy.gov/femp/pdfs/22799.pdf

- 3. Average annual outdoor temperature taken from the National Renewable Energy Laboratory TMY 3 long-term average weather data sets, processed with the DOE-2.2 weather data statistics package. <u>www.nrel.gov</u>
- 4. Water main temperatures estimated from annual average temperature taken from: Burch, Jay and Craig Christensen; "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010

SHOWERHEAD – LOW FLOW

Measure Description

A low flow showerhead is a water saving showerhead with rated gallons per minute (gpm) less than maximum allowable flowrate as mandated by federal, state and regional code. New York City plumbing code and New York State construction code dictate a maximum flowrate of 2.0 gpm for showerheads. This is a retrofit direct install measure or a new installation.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times H_2O_{savings} \times (T_{shower} - T_{main}) \times \frac{8.33}{3,412} \times \frac{1}{RE_{elec}}$$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

$$\Delta therms = units \times H_2 O_{savings} \times (T_{shower} - T_{main}) \times \frac{8.33}{100,000} \times \frac{1}{RE_{gas}}$$

Note: to estimate the annual gallons of water saved from installation of measure

$$H_2O_{savings} = (GPM_{baseline} - GPM_{ee}) \times Throttle_{fac} \times \frac{minutes}{use} \times \frac{uses}{day} \times 365 \frac{days}{yr}$$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
H ₂ O _{savings}	= Reduction of hot water usage per facility per year
units	= Number of measures installed under the program
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
GPM	= Gallons per minute
RE	= Recovery efficiency of water heater
Throttle _{fac}	= Throttle factor
8.33	= Specific weight of water (lbs/gallon)
T _{shower}	= Temperature (°F) at showerhead
T _{main}	= Temperature (°F) of supply water from main
100,000	= Conversion factor, (BTU/therm), one therm equals 100,000 BTU's
3,412	= Conversion factor, one kW equals 3,412.14 BTU/h

Variable	Value	Notes
∆kWh savings		
Δ therms savings		
GPMee		Gallons per minute for energy efficient measure, from application.
GPM _{baseline}	2.0	Gallons per minute for baseline ^{398,399}
Throttle _{fac}	0.9	Used in LBNL study to adjust for occupant reduction in flow rate ⁴⁰⁰
minutes/use	8.2	Average shower duration per LBNL study. ⁴⁰¹
uses/day		From application.
DE	0.80	Assumed typical gas hot water heater recovery efficiency (standard efficiency)
K E _{gas}	0.94	Assumed typical gas hot water heater recovery efficiency (ENERGY STAR [®] qualified)
RE _{electric}	0.98	Assumed typical electric hot water heater recovery efficiency.
T _{main}		Average inlet water temperature (°F) by location is shown below.
T _{shower}	105°F	Average temperature at showerhead; conservative assumption based on NYS plumbing code, EPA MFHR program and ASSE 1070-2014

Summary of Variables and Data Sources

Inlet water temperature from main, by location is shown below.

City	Annual average outdoor temperature	T mains (°F)
Albany	48.2	54.2
Binghamton	46.9	52.9
Buffalo	48.3	54.3
Massena	44.7	50.7
Syracuse	48.6	54.6
Upstate Average	47.3	53.3
Long Island	56.5	62.5
NYC	56.5	55.0

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

³⁹⁸ 2017 NYS Uniform Code Supplement, Table P2903.2

 ³⁹⁹ 2014 NYC Plumbing Code, Table 604.4
⁴⁰⁰ LBNL: Potential Water and Energy Savings from Showerheads, March 2006 ⁴⁰¹ Ibid.

Baseline Efficiencies from which Savings are Calculated

The Summary of Variables and Data Sources provides the baseline (standard) water flow, water heating efficiency and related input assumptions. Assumptions regarding average duration of use and number of uses per day are also presented.

Compliance Efficiency from which Incentives are Calculated

Compliance flow rate is less than the specified baseline value (<2.0 gpm) or less than the more restrictive codes or guidelines of local governments, municipalities or entities which, for example, participate in the US EPA Water Sense[®] Partnership Program.

Operating Hours

Assumed duration of shower and assumed number of showers per day as listed above in Summary of Variables and Data Sources.

Effective Useful Life (EUL)

Years: 10 Source: DEER 2014⁴⁰²

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts

N/A

References

- 1. Water mains temperatures estimated from annual average temperature taken from: Burch, Jay and Craig Christensen; "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory.
- NYS 2017 Uniform Code Supplement, March 2017: Section 2.39 2015 IRC Table P2903.2 (Maximum Flow Rates and Consumption for Plumbing Fixtures and Fixture Fittings)

Available from: <u>https://www.dos.ny.gov/dcea/pdf/2017-Uniform-Code-Supplement-3-17-2017.pdf</u>

- NYC Plumbing Code, 2014; Table 604.4: Maximum Flow Rates and Consumption for Plumbing Fixtures and Fixture Fittings Available from: <u>http://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2014CC_PC_Chapter6_Water_Supply_and_Distribution.pdf§ion=conscode_2014</u>
- 4. Lawrence Berkeley National Laboratory (LBNL): "Potential Water and Energy Savings from Showerheads", March 2006 Available from: <u>http://www.map-testing.com/assets/files/Biermayer,%20P.%20(2006)%20Potential%20Water%20and%20Energy%20Savings%20from%20Showerheads.pdf</u>
- 5. California Public Utilities Commission: Database for Energy Efficient Resources

⁴⁰² CA DEER – 2014 Updated EUL Records

(DEER) – 2014, Updated-EULrecords_02-07-2014; EUL ID: WtrHt-WH-Shrhd; Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

Record of Revision

Record of Revision Number	Issue Date	
1	10/15/2010	
6-13-8	6/30/2013	
6-15-1	6/1/2015	
6-17-10	6/30/2017	

LOW-FLOW PRE-RINSE SPRAY VALVE

Measure Description

This measure covers the retrofit of pre-rinse spray valves, often used in commercial and institutional kitchens. Pre-rinse spray valves (PRSV) are handheld devices that are designed to remove food waste from dishes prior to dishwashing. Retrofitting existing standard flow PRSVs in locations where service water is supplied by electric or natural gas fired hot water heaters with new low-flow PRSVs reduces hot water consumption resulting in corresponding energy savings.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings (Electric Water Heating Equipment Only)

$$\Delta kWh = units \times \frac{(GPM_{baseline} - GPM_{ee}) \times 60 \times hrs \times \Delta T_{main} \times 8.33}{3,412} \times \frac{1}{Eff_{elec}}$$

Peak Coincident Electrical Demand Savings (Electric Water Heating Equipment Only)

 $\Delta kW = N/A$

Annual Gas Energy Savings (Gas Water Heating Equipment Only)

$$\Delta therms = units \times \frac{(GPM_{baseline} - GPM_{ee}) \times 60 \times hrs \times \Delta T_{main} \times 8.33}{100,000} \times \frac{1}{Eff_{aas}}$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
GPM	= Gallons per minute
hrs	= Annual operating hours of PRSV
ΔT_{main}	= Average temperature difference between PRSV operating temperature and the
	supply water temperature in water main (°F)
Eff	= Water heating process efficiency
8.33	= Energy required (BTU) to heat one gallon of water by one degree Fahrenheit
3,412	= Conversion factor, one kWh equals 3,412 BTU
100,000	= Conversion factor (BTU/therm), one therm equals 100,000 BTU
60	= Minutes in one hour

Variable	Value	Notes
	< 5.0 ozf: 1.00	Current federal standard based on spray force product class in ounce-force, ofz. ⁴⁰³
GPM _{baseline}	$> 5.0 \text{ and } \le 8.0 \text{ ozf: } 1.20$	For municipalities subject to EPA WaterSense (i.e.,
	> 8.0 ozf: 1.28	WaterSense Partners), maximum standard flowrate under that program supersede federal standard
CDM		Values.
GPMee		From application.
hrs		facility type. If unknown, use 365 as default
		Average temperature difference between PRSV
ΔT_{main}	$T_{PRSV} - T_{main}$	operating temperature and the supply water
		temperature in water main (°F).
Trace		PRSV operating temperature (°F), from application.
1 PRSV		If unknown, assume 120°F. ⁴⁰⁴
		Supply water temperature in water main (°F).
T _{main}		Lookup in Cold Water Inlet Temperature table
		below based on nearest city.
		Process efficiency of electric water heater. ⁴⁰⁵ The
		temperature differential is derived from the average
Effelec	0.90	main temperature and the operating temperature at
2110100		the PRSV. Therefore, process efficiency of delivery
		of hot water to the PRSV, rather than rated water
		heater efficiency, is used.
		Process efficiency of gas water heater. ⁴⁰⁰ The
		temperature differential is derived from the average
Eff _{gas}	0.60	main temperature and the operating temperature at
G		the PKSV. Therefore, process efficiency of delivery
		of not water to the PRSV, rather than rated water
		heater efficiency, is used.

Summary of	Variables	and Data	Sources
------------	-----------	----------	---------

 ⁴⁰³ 10 CFR 431.266(b)
⁴⁰⁴ CEE Commercial Kitchens Initiative Program Guidance on Pre-Rinse Spray Valves, 2005, pg. 3
⁴⁰⁵ EPA Water Sense Pre-Rinse Spray Valves Field Study Report, February 2011, pg. 30
⁴⁰⁶ EPA Water Sense Pre-Rinse Spray Valves Field Study Report, February 2011, pg. 30

Cold Water Inlet Temperature (T_{main})

Supply water main temperatures vary according to climate and are approximately equal to the annual average outdoor temperature plus 6°F.⁴⁰⁷ Supply main temperatures based on the annual outdoor temperature are shown below.

City	Annual average outdoor temperature ⁴⁰⁸ (°F)	Average Main Temperature T _{main} (°F)
Albany	48.3	54.3
Binghamton	46.3	52.3
Buffalo	48.3	54.3
Massena	43.5	49.5
NYC	55.4	61.4
Poughkeepsie	49.8	55.8
Syracuse	48.3	54.3

Coincidence Factor (CF)

The recommended coincidence factor for this measure is N/A.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a PRSV as defined in the Measure Description section above with flow rate equivalent to current federal standard. For municipalities subject to EPA WaterSense (i.e., WaterSense Partners), maximum standard flowrate under that program supersede federal standard values.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a PRSV as defined in the Measure Description section above meeting minimum performance requirements dictated by program eligibility criteria.

Operating Hours

Annual operating hours of pre-rinse spray valves based on facility type are listed in the table below.⁴⁰⁹

Type of Facility	hrs (Hours/Year)	
Quick-Service Restaurant	365	
Casual Dining Restaurant	730	
Cafeteria	1460	

⁴⁰⁷ Burch, Jay and Christensen, Craig, "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory

⁴⁰⁸ Average annual outdoor temperatures taken from NCDC 1981-2010 climate normals

⁴⁰⁹ CEE Commercial Kitchens Initiative Program Guidance on Pre-Rinse Spray Valves, 2005, pg. 3

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- 10 CFR 431.266 Energy conservation standards and their effective dates Available from: <u>https://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=fa5acd7c1276f26b10eb66f5c415baae&mc=true&node=pt10.3.431&rgn=div5#s</u> <u>e10.3.431_1266</u>
- US EPA, WaterSense[®] Pre-Rinse Spray Valves Field Study Report, February 1, 2011 Available from: http://www.allianceforwaterefficiency.org/WorkArea/linkit.aspx?ItemID=5534
- Burch, Jay and Christensen, Craig, "Towards Development of an Algorithm for Mains Water Temperature." National Renewable Energy Laboratory Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.515.6885&rep=rep1&type=pdf
- 4. NOAA National Centers for Environmental Information NCDC 1981-2010 Climate Normals

Available from: https://www.ncdc.noaa.gov/cdo-web/datatools/normals

5. CEE Commercial Kitchens Initiative Program Guidance on Pre-Rinse Spray Valves Available from:

https://library.cee1.org/system/files/library/4252/PRSV%20Program%20Guidance.pdf

Record of Revision

Record of Revision Number	Issue Date
1-16-18	12/31/2015
3-18-10	3/29/2018

HEATING, VENTILATION AND AIR CONDITIONING (HVAC)

AIR CONDITIONER AND HEAT PUMP - REFRIGERANT CHARGE CORRECTION Measure Description

Correcting refrigerant charge on air conditioners and heat pumps in small commercial applications.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Energy Savings

 $\Delta kWh = units \times (tons/units) \times [(12 / SEER_{uncorr}) - 12 / SEER_{corr})] \times EFLH_{cooling}$

Peak Coincident Demand Savings

 $\Delta kW = units \times (tons/units) \times [(12 / EER_{uncorr.pk}) - (12 / EER_{corr.pk})] \times CF$

Annual Gas Energy Savings

 Δ therms = N/A

where:

Δ kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
SEER	= Seasonal energy efficiency ratio in BTU/watt-hour. Total cooling output of an air conditioner during its normal annual usage period for cooling, in BTU/h, divided by the total electric energy input during the same period, in watt-hours
EER	= Energy efficiency ratio, measurement of cooling capacity for a unit (in BTU/hour) / electrical energy used (watts) at a specific temperature of (95°F)
EFLH _{cooling}	= Cooling equivalent full-load hours
CF	= Coincidence factor
12	= kBTUh/ton of air conditioning capacity
tons/unit	= Tons of air conditioning per unit, based on nameplate data
pk	= Peak
corr	= Corrected
uncorr	= Uncorrected

Summary of Variables and Data Sources

Variable	Value	Notes
EER _{pk, uncorr}	$0.9 \times \text{EER}_{\text{pk, corr}}$	Recommended value
SEERuncorr	$0.9 \times SEER_{corr}$	Recommended value

Coincidence Factor (CF)

Recommended value for the coincidence factor is 0.8

Baseline Efficiencies from which Savings are Calculated

The baseline (uncorrected) efficiency is adjusted relative to the nominal (corrected) unit efficiency based on the recorded charge adjustment and the graph above. Use a 0.9 adjustment factor if charge adjustment amount not known.

Efficiency assumptions for properly charged air conditioners and heat pumps in several size classes are shown below.

Equipment Category	Capacity Range	Baseline Efficiency	
Category		Average	
Unitary A/C (1) phase	<65,000 1 phase	13.0 SEER	Unitary A/C (1) phase
Unitary A/C (3) phase	<65,000 3 phase	13.0 SEER	Unitary A/C (3) phase
Unitary A/C (3) phase	65,000 - 135,000	11.2 IEER	Unitary A/C (3) phase
Unitary A/C (3) phase	135,000 - 240,000	11.0 IEER	Unitary A/C (3) phase
Unitary A/C (3) phase	240,000 - 760,000	9.9 IEER	Unitary A/C (3) phase
Unitary A/C (3) phase	>760,000	9.6 IEER	Unitary A/C (3) phase
Unitary HP (1) phase	<65,000 1 phase	13.0 IEER	Unitary HP (1) phase
Unitary HP (3) phase	<65,000 3 phase	13.0 IEER	Unitary HP (3) phase
Unitary HP (3) phase	65,000 - 135,000	11.0 IEER	Unitary HP (3) phase
Unitary HP (3) phase	135,000 - 240,000	10.5 IEER	Unitary HP (3) phase
Unitary HP (3) phase	240,000 - 760,000	9.4 IEER	Unitary HP (3) phase

Efficiency impacts are proportional to the magnitude of the charge adjustment. When data are collected in the field that records the charge adjustment amount as a percentage of the factory charge, use the graph below to determine the efficiency impact. Note the efficiency change depends on the type of expansion valve. Use the curve labeled TXV for units with thermal expansion valves, otherwise use the curve labeled short orifice.

If the magnitude of the charge adjustment is not known, a default value of 10% improvement in unit efficiency is recommended. That is, the efficiency of an uncorrected unit is 10% below that of a corrected unit.

Compliance Efficiency from which Incentives are Calculated

Charge corrected to manufacturers' specifications, restoring unit to nameplate efficiency. **Operating Hours**

The operating hours by climate zone and building type are shown in <u>Appendix G</u>.

Effective Useful Life (EUL) Years: 10 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- 1. Unit seasonal and peak efficiency data taken from ASHRAE 90.1-2007.
- 2. Efficiency change as a function of charge adjustment curve taken from *Small HVAC System Design Guide*, New Buildings Institute, White Salmon, WA for the California Energy Commission.

Record of Revision

Record of Revision Number	Issue Date	
1	10/15/2010	

UNITARY AIR CONDITIONER AND UNITARY & APPLIED HEAT PUMP

Measure Description

This measure covers installation of high-efficiency unitary air conditioners and unitary and applied heat pumps in commercial applications. The baseline case shall be minimally code compliant equipment of the same type and capacity as in the proposed case, which shall be sized in accordance with federal, state and local energy conservation code.

Unitary Air Conditioner

One or more factory-made assemblies, which normally include a cooling coil, an air moving device, a compressor(s) and condenser combination, and may include a heating function as well. The functions of commercial and industrial Unitary Air Conditioners, either alone or in combination with a heating plant, are to provide air circulation, cooling, and dehumidification, and may include the functions of heating, humidifying, outdoor air ventilation, and air cleaning.⁴¹⁰

Unitary and Applied Heat Pump

One or more factory-made assemblies, which normally include an indoor conditioning coil, an air moving device, compressor(s), and an outdoor coil(s), including means to provide a heating function and may or may not include a cooling function. Such equipment may be provided in one assembly by a single manufacturer (unitary) or separate assemblies designed to be used together (applied). Commercial and industrial unitary and applied heat pumps shall provide the function of heating and may include the function of air circulation, air cooling, dehumidifying or humidifying, outdoor air ventilation, and air cleaning.⁴¹¹

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

For Units with Cooling Capacity <65,000 Btu/h

$$\Delta kWh = units \times \begin{bmatrix} \left(\frac{tons}{unit} \times \left(\frac{12}{SEER_{baseline}} - \frac{12}{SEER_{ee}}\right) \times EFLH_{cooling} \right) \\ + \\ \left(\frac{kBTUh}{unit} \times \left(\frac{1}{HSPF_{baseline}} - \frac{1}{HSPF_{ee}}\right) \times EFLH_{heating} \end{bmatrix}$$

For Units with Cooling Capacity \geq 65,000 Btu/h

$$\Delta kWh = units \times \begin{bmatrix} \left(\frac{tons}{unit} \times \left(\frac{12}{IEER_{baseline}} - \frac{12}{IEER_{ee}}\right) \times EFLH_{cooling}\right) \\ + \\ \left(\frac{kBTUh/unit}{3.412} \times \left(\frac{1}{COP_{baseline}} - \frac{1}{COP_{ee}}\right) \times EFLH_{heating}\right) \end{bmatrix}$$

 $^{^{410}}$ AHRI Standard 340/360 - 2015 & AHRI Standard 210/240 with Addenda 1 and 2 - 2012 411 Ibid.

Peak Coincident Demand Savings

$$\Delta kW = units \times \left[\left(\frac{tons}{unit} \times \left(\frac{12}{EER_{baseline}} - \frac{12}{EER_{ee}} \right) \times CF_{cooling} \right) \right]$$

Annual Gas Energy Savings

$$\Delta therms = N/A$$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
tons	= Output cooling capacity in tons (at AHRI standard rating conditions)
kBtuh	= Output heating capacity in kBTU/h (at AHRI standard high-temperature rating
	conditions)
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
SEER	= Seasonal energy efficiency ratio in BTU/watt-hour. Total cooling output of an
	air conditioner during its normal annual usage period for cooling in BTU, divided
	by the total electric energy input during the same period in watt-hours (used only
	for units with cooling capacity <65,000 BTU/h).
IEER	= Integrated energy efficiency ratio in BTU/watt-hour. A weighted calculation of
	mechanical cooling efficiencies at full load and part load AHRI standard rating
	conditions (used only for units with cooling capacity $\geq 65,000 \text{ BTU/h})^{412}$
EER	= Energy efficiency ratio under peak conditions in BTU/watt-hour. Measurement
	of the cooling capacity for a unit in BTU/hr divided by the connected electric
HODE	power of the unit in watts (at AHRI standard rating conditions)
HSPF	= Heating seasonal performance factor, total heating output (supply heat) in BTU
	(including electric strip heat) during the heating season divided by the total
	electric energy heat pump consumed in wait-hours (used only for units with
COD	= Coefficient of performance, ratio of output energy/input energy (at A HDI
COP	- Coefficient of performance, ratio of output energy/input energy (at AHKI standard high temperature rating conditions) (used only for units with cooling
	standard high-temperature rating conditions) (used only for units with coording conditions) (used only for units with
EELT "	= Cooling acuivalent full load hours
EFI LI Cooling	- Heating equivalent full load hours
CE	- Coincidence factor
12	$= k \mathbf{P} \mathbf{T} \mathbf{I} \mathbf{h} / ton of air conditioning conscitu$
12	- Conversion factor, one wett/h equals 2 412142 PTU
3.412	- Conversion racion, one waitin equals 5.412142 DTO

 $^{^{412}}$ AHRI Standard 340/360 - 2015 & AHRI Standard 210/240 with Addenda 1 and 2 - 2012

Variable	Value	Notes
tons		From application
kBTUh		From application
SEER _{baseline}		Lookup from Baseline Efficiencies table below based on equipment type, size category and applicable code.
SEER _{ee}		From application
HSPF _{baseline}		Lookup from Baseline Efficiencies table below based on equipment type, size category and applicable code.
HSPF _{ee}		From application
IEED.		Lookup from Baseline Efficiencies table below based on
ILLIKbaseline		equipment type, size category and applicable code.
IEER _{ee}		From application
COP _{baseline}		Lookup from Baseline Efficiencies table below based on
COPee		From application
EER _{baseline}		Lookup from Baseline Efficiencies table below based on equipment type, size category and applicable code.
EER _{ee}		From application
EFLH _{heating}		From application. If unknown, lookup based on building type and location from <u>Appendix G.</u>
EFLH _{cooling}		From application. If unknown, lookup based on building type and location from <u>Appendix G.</u>
CF	0.8	

Summary of Variables and Data Sources

The **SEER** is an estimate of the seasonal energy efficiency for an average US city for small units <65,000 BTUh cooling output.

The **EER** is the rated full-load efficiency of the unit. It is used to estimate the efficiency of the unit under peak summer conditions.

The **IEER** is a weighted calculation of mechanical cooling efficiencies at full load and part load AHRI Standard Rating Conditions. Larger units are rated in IEER.

The **COP** is a ratio of the heating capacity in watts to the power input value in watts at any given set of AHRI Standard Rating Conditions.

The **HSPF** is the average space heating system efficiency during the space heating season in BTU/watt-hr for small units <65,000 BTUh cooling output.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8.⁴¹³

Baseline Efficiencies from which Savings are Calculated

⁴¹³ No source specified – update pending availability and review of applicable references.

The baseline condition is defined as minimally code compliant equipment of type and cooling and heating capacities equivalent to the proposed case. The baseline efficiencies for unitary air conditioning and unitary and applied heat pump equipment are specified in the table below, as defined by International Energy Conservation Code and subsequently adopted by the Energy Conservation Code of New York State⁴¹⁴ (ECCCNYS), and the New York City Energy Conservation Code⁴¹⁵ (NYCECC). EER requirements are not specified by state or city code for equipment with <65,000 Btu/h cooling capacity. For this equipment, baseline EER are established as follows⁴¹⁶:

$$EER = (1.12 \times SEER) - (0.02 \times SEER^2)$$

Resultant values from application of this equation to equipment with <65,000 Btu/h cooling capacity are tabulated in the baseline efficiencies table below.

Federal energy conservation standards⁴¹⁷ effective January 1, 2018 for small, large and very large package air conditioning and heating equipment supersede NYS and NYC code as indicated in the table below.

Unitary Air Conditioners						
Equipment Type	Size Category (Cooling Capacity)	Heating Section Type	Subcategory or Rating Condition	Baseline Efficiency (NYS)	Baseline Efficiency (NYC)	
Air	< 65,000 Btu/h	A 11	Split System	11.2 EER 13.0 SEER	11.2 EER 13.0 SEER	
(air cooled)	(single phase)	All	Single Package	11.8 EER 14.0 SEER	11.8 EER 14.0 SEER	
Through-the-	≤ 30,000 Btu/h	All	Split System	10.6 EER 12.0 SEER	10.6 EER 12.0 SEER	
(air cooled)	(single phase)		Single Package	10.6 EER 12.0 SEER	10.6 EER 12.0 SEER	
Small-duct high-velocity (air cooled)	< 65,000 Btu/h (single phase)	All	Split System	9.9 EER 11.0 SEER	9.9 EER 11.0 SEER	

⁴¹⁴ ECCCNYS 2016, Table C403.2.3(1) & Table C403.2.3(2)

⁴¹⁵ NYCECC 2016; Table C403.2.3(1) & Table C403.2.3(2)

⁴¹⁶ DOE, Building America House Simulation Protocols, October 2010

⁴¹⁷ 10 CFR 431.97 (Table 3)

Unitary Air Conditioners						
Equipment Type	Size Category (Cooling Capacity)	Heating Section Type	Subcategory or Rating Condition	Baseline Efficiency (NYS)	Baseline Efficiency (NYC)	
	≥ 65,000 Btu/h and < 135,000 Btu/h ⁴¹⁸	Electric Resistance (or None)	Split System and Single Package	11.2 EER 12.9 IEER	11.2 EER 12.9 IEER	
		All Other	Split System and Single Package	11.0 EER 12.7 IEER	11.0 EER 12.7 IEER	
	≥ 135,000 Btu/h and < 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	11.0 EER 12.4 IEER	11.0 EER 12.4 IEER	
Air		All Other	Split System and Single Package	10.8 EER 12.2 IEER	10.8 EER 12.2 IEER	
(air cooled)	≥ 240,000 Btu/h and < 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.0 EER 11.6 IEER	10.0 EER 11.6 IEER	
		All Other	Split System and Single Package	9.8 EER 11.4 IEER	9.8 EER 11.4 IEER	
	≥ 760,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	9.7 EER 11.2 IEER	9.7 EER 11.2 IEER	
		All Other	Split System and Single Package	9.5 EER 11.0 IEER	9.5 EER 11.0 IEER	

⁴¹⁸ For equipment with \geq 65,000 Btu/h and <135,000 Btu/h cooling capacity, IEER values are taken from 10 CFR 431.97 (Table 3)

Unitary and Applied Heat Pumps						
Equipment Type	Size Category (Cooling Capacity)	Heating Section Type	Subcategory or Rating Condition	Baseline Efficiency NYS	Baseline Efficiency NYC	
		C	ooling			
Air cooled	< 65,000 Btu/h	A 11	Split System	11.8 EER 14.0 SEER	11.8 EER 14.0 SEER	
mode)	(single phase)	All	Single Package	11.8 EER 14.0 SEER	11.8 EER 14.0 SEER	
Through-the-	≥ 30,000 Btu/h	A 11	Split System	10.6 EER 12.0 SEER	10.6 EER 12.0 SEER	
(air cooled)	(single phase)	All	Single Package	10.6 EER 12.0 SEER	10.6 EER 12.0 SEER	
Single-duct high-velocity (air cooled)	< 65,000 Btu/h (single phase)	All	Split System	9.9 EER 11.0 SEER	9.9 EER 11.0 SEER	
	≥ 65,000 Btu/h and < 135,000 Btu/h ⁴¹⁹	Electric Resistance (or None)	Split System and Single Package	11.0 EER 12.2 IEER	11.0 EER 12.2 IEER	
		All other	Split System and Single Package	10.8 EER 12.0 IEER	10.8 EER 12.0 IEER	
Air cooled	≥ 135,000 Btu/h and < 240,000 Btu/h	Electric Resistance (or None)	Split System and Single Package	10.6 EER 11.6 IEER	10.6 EER 11.6 IEER	
mode)		All other	Split System and Single Package	10.4 EER 11.4 IEER	10.4 EER 11.4 IEER	
	≥ 240,000	Electric Resistance (or None)	Split System and Single Package	9.5 EER 10.6 IEER	9.5 EER 10.6 IEER	
	Btu/h ⁴²⁰	All other	Split System and Single Package	9.3 EER 10.4 IEER	9.3 EER 10.4 IEER	

⁴¹⁹ For equipment with \geq 65,000 Btu/h and <135,000 Btu/h cooling capacity, IEER values are taken from 10 CFR 431.97 (Table 3) ⁴²⁰ For equipment with \geq 240,000 Btu/h cooling capacity, IEER values are taken from 10 CFR 431.97 (Table 3)

Unitary and Applied Heat Pumps						
Equipment Type	Size Category (Cooling Capacity)	Heating Section Type	Subcategory or Rating Condition	Baseline Efficiency NYS	Baseline Efficiency NYC	
		H	eating			
Air cooled	< 65,000 Btu/h		Split System	8.2 HSPF	8.2 HSPF	
(neating mode)	(single phase)		Single Package	8.0 HSPF	8.0 HSPF	
Through-the- wall (air cooled, heating mode)	≥ 30,000 Btu/h (single phase)		Split System	7.4 HSPF	7.4 HSPF	
			Single Package	7.4 HSPF	7.4 HSPF	
Small-duct high velocity (air cooled, heating mode)	< 65,000 Btu/h (single phase)		Split System	6.8 HSPF	6.8 HSPF	
Air cooled (heating mode)	\geq 65,000 Btu/h and		47°F db/43°F wb Outdoor Air	3.3 COP	3.3 COP	
	< 135,000 Btu/h	_	17°F db/15°F wb Outdoor Air	2.25 COP	2.25 COP	
	≥ 135,000 Btu/h		47°F db/43°F wb Outdoor Air	3.2 COP	3.2 COP	
			17°F db/15°F wb Outdoor Air	2.05 COP	2.05 COP	

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a high efficiency unitary air conditioning or unitary/applied heat pump system as defined in the Measure Description section above meeting minimum performance requirements dictated by program eligibility criteria.

Operating Hours

Equipment heating and cooling equivalent full load hours shall be taken from the application. If unknown, default EFLH by facility type and location can be found in <u>Appendix G</u>.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts

N/A

References

- AHRI Standard 340/360, 2015 Standard for Performance Rating of Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment Available from: <u>http://ahrinet.org/App_Content/ahri/files/STANDARDS/AHRI/AHRI_Standard_340-</u> 360 2015.pdf
- 2. AHRI Standard 210/240 with Addenda 1 and 2, 2008 Standard for Performance Rating of Unitary Air-Conditioning & Air Source Heat Pump Equipment, December 2012 Available from:

http://www.ahrinet.org/App_Content/ahri/files/standards%20pdfs/ANSI%20standards%2 0pdfs/ANSI.AHRI%20Standard%20210.240%20with%20Addenda%201%20and%202.p df

 C&I Unitary HVAC Load Shape Project Final Report, KEMA, August 2, 2011, Table 0-6 & Table 0-7

Available from:

http://www.neep.org/sites/default/files/resources/NEEP_HVAC_Load_Shape_Report_Final_August2.pdf

 ECCCNYS 2016, per IECC 2015; Table C403.2.3(1): Minimum Efficiency Requirements: Electrically Operated Unitary Air Conditioners and Condensing Units & Table C403.2.3(2): Minimum Efficiency Requirements: Electrically Operated Unitary and Applied Heat Pumps

Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-ce-</u> <u>commercial-energy-efficiency</u>

5. NYCECC 2016; Table C403.2.3(1): Minimum Efficiency Requirements: Electrically Operated Unitary Air Conditioners and Condensing Units & Table C403.2.3(2): Minimum Efficiency Requirements: Electrically Operated Unitary and Applied Heat Pumps.

Available from:

https://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2016ECC_CH C4.pdf§ion=energy_code_2016

 Building America House Simulation Protocols, Robert Hendron and Cheryn Engebrecht, National Renewable Energy Laboratory, October 2010 Available from:

https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/house_simul ation_revised.pdf

 10 CFR 431.97: Energy Efficiency Standards and Their Compliance Dates, Table 3: Updates to the Minimum Cooling Efficiency Standards for Air Conditioning and Heating Equipment

Available from: <u>https://www.ecfr.gov/cgi-bin/text-</u> idx?SID=69945fdbe7327d148adc5e11b79bda36&node=se10.3.431_197&rgn=div8

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
1-17-5	12/31/2016
12-17-11	12/31/2017

CHILLER – AIR AND WATER COOLED

Measure Description

This measure applies to constant and variable speed electric air-cooled and water-cooled chillers in commercial buildings with built-up HVAC systems.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times tons/unit \times (IPLV_{baseline} - IPLV_{ee}) \times EFLH_{cooling}$

Peak Coincident Demand Savings

 $\Delta kW = units \times tons/unit \times (FL_{baseline} - FL_{ee}) \times CF$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
tons/unit	= Tons of air conditioning per unit, based on nameplate data
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
IPLV	= Integrated part-load value (in kW/Ton)
FL	= Full-load chiller efficiency under peak conditions
EFLH	= Equivalent full-load hours
CF	= Coincidence factor

Summary of Variables and Data Sources

Variable	Value	Notes
tons		From application
FL _{baseline}		Full-load efficiency of baseline chiller under peak conditions, lookup based on chiller type and size from Baseline Efficiencies tables below. Use Path A values for constant speed chillers and Path B values for variable speed chillers (based on proposed case).
FLee		Full-load efficiency of energy efficiency chiller, from application.
IPLV _{baseline}		Integrated part-load value (kW/ton) of baseline chiller, lookup based on chiller type and size from Baseline Efficiencies tables below. Use Path A values for constant speed chillers and Path B values for variable speed chillers (based on proposed case).

Variable	Value	Notes				
IPLV _{ee}		Integrated part-load value (kW/ton) for energy efficient measure, from application.				
3.517		Conversion factor, one ton equals 3.516853 kilowatts.				
EFLH _{cooling}		Cooling equivalent full-load hours, lookup by city, building type and HVAC type from <u>Appendix G</u> .				
CF	0.8					

The rated full-load kW/ton (*FL*) at AHRI rating conditions is used to define the efficiency under peak conditions. The *IPLV* as defined by AHRI is used to define the annual average efficiency. Note, chiller full-load efficiency or IPLV may also be expressed as coefficient of performance (COP). To convert chiller efficiency from COP to kW/ton, use the following equation: kW/ton = 3.517 / COP.

Coincidence Factor (CF)

Recommended value for the coincidence factor is 0.8. ⁴²¹

Baseline Efficiencies from which Savings are Calculated

The baseline full load and IPLV kW/Ton values listed in the tables below, per the 2016 Energy Conservation Construction Code of New York State⁴²² and 2016 New York City Energy Conservation Code⁴²³, shall be used. Path A values shall be used for proposed constant speed chillers and Path B values for proposed variable speed chillers.

⁴²¹ No source specified – update pending availability and review of applicable references.

⁴²² ECCCNYS 2016, Table C403.2.3(7)

⁴²³ NYCECC 2016; Table C403.2.3(7)

Equipment Type	Size Category	ECCCNYS Maximum Full Load (kW/Ton)	ECCCNYS Maximum IPLV (kW/Ton)	NYCECC Maximum Full Load (kW/Ton)	NYCECC Maximum IPLV (kW/Ton)
Air-Cooled	< 150 Tons	1.188	0.876	1.188	0.876
Chillers	≥ 130 Tons <75 Tons	0.750	0.837	0.750	0.837
Water-	\geq 75 Tons and $<$ 150 Tons	0.720	0.560	0.720	0.560
Cooled, Positive Displacement	\geq 150 Tons and < 300 Tons	0.660	0.540	0.660	0.540
	\geq 300 Tons and < 600 Tons	0.610	0.520	0.610	0.520
	\geq 600 Tons	0.560	0.500	0.560	0.500
	< 150 Tons	0.610	0.550	0.610	0.550
Water Cooled, Centrifugal	\geq 150 Tons and < 300 Tons	0.610	0.550	0.610	0.550
	\geq 300 Tons and < 400 Tons	0.560	0.520	0.560	0.520
	\geq 400 Tons and < 600 Tons	0.560	0.500	0.560	0.500
	\geq 600 Tons	0.560	0.500	0.560	0.500

Path A – Constant Speed Chillers

Path B – Variable Speed Chillers

Equipment Type	Size Category	ECCCNYS Maximum Full Load (kW/Ton)	ECCCNYS Maximum IPLV (kW/Ton)	NYCECC Maximum Full Load (kW/Ton)	NYCECC Maximum IPLV (kW/Ton)
Air-Cooled	< 150 Tons	1.237	0.759	1.237	0.759
Chillers	\geq 150 Tons	1.237	0.745	1.237	0.745
	< 75 Tons	0.780	0.500	0.780	0.500
Water-	\geq 75 Tons and $<$ 150 Tons	0.750	0.490	0.750	0.490
Cooled, Positive Displacement	\geq 150 Tons and $<$ 300 Tons	0.680	0.440	0.680	0.440
	\geq 300 Tons and $<$ 600 Tons	0.625	0.410	0.625	0.410
	\geq 600 Tons	0.585	0.380	0.585	0.380

Equipment Type	Size Category	ECCCNYS Maximum Full Load (kW/Ton)	ECCCNYS Maximum IPLV (kW/Ton)	NYCECC Maximum Full Load (kW/Ton)	NYCECC Maximum IPLV (kW/Ton)
Water Cooled, Centrifugal	< 150 Tons	0.695	0.440	0.695	0.440
	\geq 150 Tons and $<$ 300 Tons	0.635	0.400	0.635	0.400
	\geq 300 Tons and < 400 Tons	0.595	0.390	0.595	0.390
	\geq 400 Tons and < 600 Tons	0.585	0.380	0.585	0.380
	\geq 600 Tons	0.585	0.380	0.585	0.380

Compliance Efficiency from which Incentives are Calculated

Compliance efficiency requirements shall be dictated by program eligibility criteria.

Operating Hours

Cooling equivalent full-load hours (EFLH) were calculated from a DOE-2.2 simulation of prototypical large office building. The prototype building characteristics are described in Appendix A. The EFLH_{cooling} for built-up HVAC systems in commercial buildings by climate zone and building type are shown in Appendix G.

Effective Useful Life (EUL)

Years: 20 Source: DEER 2014⁴²⁴

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

- ECCCNYS 2016, per IECC 2015; Table C403.2.3(7): Water Chilling Packages Efficiency Requirements Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-ce-</u> commercial-energy-efficiency
- NYCECC 2016; Table C403.2.3(7): Water Chilling Packages Efficiency Requirements Available from: <u>https://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2016ECC_CH</u> C4.pdf§ion=energy_code_2016

⁴²⁴ CA DEER – 2014 Updated EUL Records

3. California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-05-2014; EUL ID: HVAC-Chlr. Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
9-17-3	9/30/2017

CHILLER - COOLING TOWER

Measure Description

This measure covers the installation of close approach cooling towers applied to water-cooled chillers used for space cooling. Consumption and peak coincident demand savings are achieved through the installation of an over-sized cooling tower designed to provide an approach of $\leq 6^{\circ}F$ at standard rating conditions. This measure addresses approach temperature only, which is defined as the difference between the cold water temperature (cooling tower outlet) and ambient wet bulb temperature. Changes in condenser water set point control strategies are not included.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times tons \times (\Delta kWh/ton)$

Peak Coincident Demand Savings

 $\Delta kW = units \times tons \times (\Delta kW/ton) \times CF$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
units	= Number of measures installed under the program
tons	= Size of cooling system (in tons) being retrofitted with a close approach tower
$(\Delta kWh/ton)$	= Annual electric energy savings per ton of cooling
$(\Delta kW/ton)$	= Electric demand savings per ton of cooling
CF	= Coincidence factor

Summary	of V	ariables	s and	Data	Sources
---------	------	----------	-------	------	---------

Variable	Value	Notes
tons		From application
		Annual electric energy savings per ton of cooling system
$(\Delta kWh/ton)$		retrofitted with close approach tower. Look up in Appendix J
		based on building type, HVAC type and location.
		Electric demand savings per ton of cooling system retrofitted with
$(\Delta kW/ton)$		close approach tower. Look up in <u>Appendix J</u> based on building
		type, HVAC type and location
CF	0.8	

Unit energy savings were calculated from a DOE-2.2 simulation of commercial buildings with built-up HVAC systems. The prototype building characteristics are described in <u>Appendix A</u>. The unit energy savings by building type across different cities in NY are shown in <u>Appendix J</u>.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8.⁴²⁵

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a standard cooling tower with a 10°F approach temperature under standard rating conditions.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a close approach cooling tower with a $6^{\circ}F$ approach temperature under standard rating conditions.

Operating Hours

The HVAC system operating hours vary by building type. Operating hour assumptions for the prototypical building models are described in <u>Appendix A</u>.

Effective Useful Life (EUL) See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts N/A

References N/A

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
12-17-12	12/31/2017

⁴²⁵ No source specified – update pending availability and review of applicable references.
CHILLER SYSTEM TUNE-UPS

Measure Description

Chiller system tune-ups are conducted to ensure equipment is operating at optimal performance and are performed as preventative maintenance, extending the life of the equipment. The tune-ups improve the efficiency and performance of the chillers and are useful system checks to ensure maintenance is performed to keep the equipment operating. Testing and maintenance conducted as part of a typical chiller tune-up include: checking and cleaning evaporator and condenser coils/tubes, checking and replacing filters, belts, and contactors, checking cooling towers for buildup/scale, checking control operation and setpoints, checking crankcase heater operation and checking economizer function.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times \frac{tons}{unit} \times (IPLV_{baseline} \times ESF) \times EFLH_{cooling}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times \frac{tons}{unit} \times (kW/ton_{baseline} \times DSF) \times CF$$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of chillers addressed under the program
tons/unit	= Tons of air conditioning per chiller, based on nameplate data
EFLH _{cooling}	= Equivalent full-load cooling hours
CF	= Coincidence factor
IPLV _{baseline}	= Integrated part-load value (kW/ton)
kW/ton _{baseline}	= Full load chiller efficiency under peak conditions
ESF	= Energy savings factor
DSF	= Demand savings factor

Variable	Value	Notes
IPLV _{baseline}	Variable	Based on nameplate data, if available. Otherwise, use values from Baseline Efficiency table below.
kW/ton _{baseline}	Variable	Based on nameplate data, if available. Otherwise, use values from Baseline Efficiency table below.
ESF	5% ⁴²⁶	Energy Savings Factor (efficiency recovered from tune-up)
DSF	2.5% ⁴²⁷	Demand Savings Factor (efficiency recovered from tune-up)
EFLH _{cooling}	Lookup	Cooling equivalent full-load hours by building type, <u>Appendix G</u> .
CF	0.8	Coincidence Factor

Summary of Variables and Data Sources

Coincidence Factor (CF)

Recommended value for the coincidence factor is 0.8.

Baseline Efficiencies from which Savings are Calculated

The baseline full load and IPLV kW/Ton values shall be based on actual manufacturers' catalog for the existing chiller, where available. If this information is unavailable, the efficiencies listed in the table below, per the 2016 Energy Conservation Construction Code of New York State⁴²⁸ and 2016 New York City Energy Conservation Code⁴²⁹, shall be used.

Equipment Type	Size Category	ECCCNYS Maximum Full Load (kW/Ton)	ECCCNYS Maximum IPLV (kW/Ton)	NYCECC Maximum Full Load (kW/Ton)	NYCECC Maximum IPLV (kW/Ton)
Air-Cooled	< 150 Tons	1.188	0.876	1.188	0.876
Chillers	\geq 150 Tons	1.188	0.857	1.188	0.857
	< 75 Tons	0.750	0.600	0.750	0.600
Water- Cooled, Positive Displacement	\geq 75 Tons and $<$ 150 Tons	0.720	0.560	0.720	0.560
	\geq 150 Tons and $<$ 300 Tons	0.660	0.540	0.660	0.540
	\geq 300 Tons and $<$ 600 Tons	0.610	0.520	0.610	0.520
	\geq 600 Tons	0.560	0.500	0.560	0.500

⁴²⁶ US DOE: Hospitals Benefit by Improving Inefficient Chiller Systems, August 2011

⁴²⁷ Conservative estimate based on engineering judgement, estimated at half of the established 5% energy savings factor

⁴²⁸ ECCCNYS 2016, Table C403.2.3(7)

⁴²⁹ NYCECC 2016; Table C403.2.3(7)

Equipment Type	Size Category	ECCCNYS Maximum Full Load (kW/Ton)	ECCCNYS Maximum IPLV (kW/Ton)	NYCECC Maximum Full Load (kW/Ton)	NYCECC Maximum IPLV (kW/Ton)
Water Cooled, Centrifugal	< 150 Tons	0.610	0.550	0.610	0.550
	\geq 150 Tons and < 300 Tons	0.610	0.550	0.610	0.550
	\geq 300 Tons and < 400 Tons	0.560	0.520	0.560	0.520
	\geq 400 Tons and < 600 Tons	0.560	0.500	0.560	0.500
	\geq 600 Tons	0.560	0.500	0.560	0.500

Compliance Efficiency from which Incentives are Calculated

Compliance for incentive eligibility will be dictated by minimum tune-up standards of the applicable program.

Operating Hours

Reference <u>Appendix G</u> for applicable value for specific building use type and geographic location.

Effective Useful Life (EUL)

Years: 5 Source: 2013 Wisconsin PSC EUL Database

References

- 1. United States Department of Energy, Building Technologies Program: Hospitals Benefit by Improving Inefficient Chiller Systems, August 2011. The paper found that dirty coils can cause a 7% reduction in cooling capacity. Therefore, coil cleaning, the primary savings mechanism associated with this tune-up measure, is conservatively assumed to save 5% of total consumption. Demand savings are conservatively assumed to be half of this, or 2.5%.
- ECCCNYS 2016, per IECC 2015; Table C403.2.3(7): Water Chilling Packages Efficiency Requirements Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-cecommercial-energy-efficiency</u>
- NYCECC 2016; Table C403.2.3(7): Water Chilling Packages Efficiency Requirements Available from: <u>https://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2016ECC_CH</u> <u>C4.pdf§ion=energy_code_2016</u>
- 4. Wisconsin Public Service Commission: Equipment Useful Life Database, 2013 Excerpt available from: <u>https://focusonenergy.com/sites/default/files/bpmeasurelifestudyfinal_evaluationreport.pd</u> f

Record of Revision

Record of Revision Number	Issue Date
6-17-12	6/30/2017

DUCT - SEALING AND INSULATION

Measure Description

Improvements to duct systems made separately or in conjunction with high efficiency rooftop AC or heat pump and/or furnace installation. Duct systems are assumed to be located in an unconditioned plenum space between insulated finished ceiling and roof surface. Method for Calculating Annual Energy and Peak Coincident Demand Savings *Annual Electric Energy Savings*

$$\Delta kWh = units \times \left[\frac{ton}{unit} \times \frac{12}{SEER} \times EFLH_{cooling} \times \left[1 - \frac{\overline{\eta}_{dist, baseline}}{\overline{\eta}_{dist, ee}}\right]_{cooling} + \frac{12}{\overline{\eta}_{dist, ee}} + \frac{12}{\overline{\eta}_{dist,$$

$$\frac{\text{kBTUh}_{\text{out}}}{\text{unit}} \times \frac{\text{EFLH}_{\text{heating}}}{\text{HSPF}} \times \left[1 - \frac{\overline{\eta}_{\text{dist,baseline}}}{\overline{\eta}_{\text{dist,ee}}}\right]_{\text{heating}}$$

Peak Coincident Demand savings

$$\Delta kW = units \times tons/unit \times \frac{12}{EER_{pk}} \times \left[1 - \frac{\eta_{dist, pk, base}}{\eta_{dist, pk, ee}}\right] \times CF$$

Annual Gas Energy Savings

$$\Delta \text{therms} = \text{units} \times \frac{\text{kBTUh}_{\text{in}}}{\text{unit}} \times \frac{\text{EFLH}_{\text{heating}}}{100} \times \left[1 - \frac{\bar{\eta}_{\text{dist,baseline}}}{\bar{\eta}_{\text{dist,ee}}}\right]_{\text{heating}}$$

where:

Δ kWh	= Annual electric energy savings
$\Delta \mathrm{kW}$	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
kBTUh	= Annual gas input rating
kBTUh	= Annual Gas output rating
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
in	= Input
out	= Output
pk	= Peak
dist	= Distribution
cooling	= Cooling system
heating	= Heating system

tons/unit	= Tons of air conditioning per unit, based on nameplate data
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt-
	hour, (used for average U.S. location/region)
EER_{pk}	= Energy efficiency ratio under peak conditions
HSPF	= Heating seasonal performance factor, total heating output (supply heat) in BTU
	(including electric heat) during the heating season / total electric energy heat pump consumed (in watt/hr)
$\overline{\eta}$	= Average energy efficiency $(0 - 100\%)$
η	= Energy efficiency $(0 - 100\%)$
EFLH	= Equivalent full-load hours
CF	= Coincidence factor
100	= Conversion factor, (kBTUh/therm)

Variable	Value	Notes
tons		From application
SEED	10	Existing unit
SEEK	13	New construction
$\stackrel{-}{\eta}$ dist, baseline		Value for 30% leakage by building type and location. Use measured leakage if available
$\overline{\eta}$ dist, ee		Measured leakage OK if available; otherwise assume 15% in existing systems and 6% in new construction. Use appropriate R-value if duct insulation is also included.
EFLH _{cooling}		Vintage weighted average by city.
EED.	9.2	existing unit
EEKbaseline	11.1	new unit
η dist, baseline	$\bar{\eta}$ dist, baseline	
η dist, ee	$\bar{\eta}$ dist, ee	
If heat pump:		
kBTUh/unit _{out}		From application
UCDE	6.8	existing unit
11511	8.1	new unit
If furnace		
kBTUh _{in} /unit		From application
$\overline{\eta}$ dist, baseline		Value for 30% leakage by building type and location. Use measured leakage if available
$\overline{\eta}$ dist, ee		Measured leakage OK if available; otherwise assume 15% in existing systems and 6% in new construction. Use appropriate R-value if duct insulation is also included.
EFLH _{heating}		Vintage weighted average by city.

Summary of Variables and Data Sources

The SEER is an estimate of the seasonal energy efficiency for an average US city. The \mathbf{EER}_{pk} is an estimate of the efficiency of the unit under peak summer conditions. See the section on packaged air conditioners for more information.

The HSPF is an estimate of the seasonal heating energy efficiency for an average US city. See section on air source heat pumps above for more information.

The *average seasonal efficiency* of the furnace is the ratio of the heating output to the fuel input (in consistent units) over a heating season. See section on furnaces for more information.

The *duct system efficiency* accounts for losses from duct systems due to leakage and inadequate insulation. Duct system efficiencies were calculated for duct systems located in unconditioned plenum space between an insulated finished ceiling and roof surface in commercial building with packaged rooftop HVAC systems are shown in <u>Appendix H</u>.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8

Baseline Efficiencies from which Savings are Calculated

The baseline efficiency for air conditioners, heat pumps and/or furnaces should be set to according to the sections on this equipment above. Distribution system efficiency ($\overline{\eta}_{\text{dist, baseline}}$) should be set as follows:

Overall baseline duct leakage is assumed to be 30%, based on work done by Modera and Proctor on small commercial buildings in California. The baseline duct system is assumed to be uninsulated.

Compliance Efficiency from which Incentives are Calculated

The measure efficiency $(\overline{\eta}_{ee})$ for air conditioners, heat pumps and/or furnaces should be set according to the sections on this equipment above. The improved duct system efficiency $(\overline{\eta}_{dist, ee})$ should be set assuming 15% total leakage in existing construction and 8% total leakage in new construction, with R-6 duct insulation.

Operating Hours

Heating equivalent full-load hours calculated from building energy simulation models described in <u>Appendix A</u> and summarized in <u>Appendix G</u>.

Effective Useful Life (EUL) Years: 18 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- 1. For the purposes of this Tech Manual, duct efficiency calculations should only be done on buildings with duct systems located in unconditioned plenum spaces.
- 2. Typical duct leakage values in small commercial buildings can be found in Modera, M. and J. Proctor, 2002. *Combining Duct Sealing and Refrigerant Charge Testing to Reduce Peak Electricity Demand in Southern California*, Final Project Report for Southern California Edison.
- The fraction of the duct leakage assumed to be made up with outside air is 0.50. See: Cummings, J.B., C.R. Withers, N. Moyer, P. Fairey, and B. McKendry. 1996.
 "Uncontrolled Air Flow in Non–Residential Buildings; Final Report" FSEC-CR-878-96 Florida Solar Energy Center, Cocoa, FL, April, 1996.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010

ECONOMIZER – AIR SIDE, WITH DUAL ENTHALPY CONTROL

Measure Description

This measure covers the installation of dual enthalpy control air-side economizers integrated into a central air handling system on packaged rooftop units. Air-side economizers reduce mechanical cooling requirements by supplying outside air to the space when the outside air meets conditions deemed suitable for cooling. Dual enthalpy control, often called differential enthalpy control, augments this functionality by measuring sensible and latent heat of both the outside air and return air, using dampers to supply the conditioning section of the air handler with the lowest enthalpy air supply. This measure applies to retrofit scenarios for small commercial applications only. This measure also only applies in cases where economizers are not required by state, federal, or local code.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times tons/unit \times (\Delta kWh/ton)$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
tons/unit	= Tons of air conditioning per unit, based on nameplate data
$(\Delta kWh/ton)$	= Annual electric energy savings per ton of cooling

Variable	Value	Notes
tons/unit		From application
(ΔkWh/ton)		Lookup based on building type and location in the Air Side Economizer table in <u>Appendix J</u> .

Summary of Variables and Data Sources

Unit energy savings were calculated from a DOE-2.2 simulation of a series of prototypical small commercial buildings. The prototype building characteristics are described in <u>Appendix A</u>. The unit energy savings by building type and city are shown in <u>Appendix J</u>.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a packaged rooftop unit with no economizer installed.

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a packaged rooftop unit with dual enthalpy economizer installed and commissioned to ensure proper operation.

Operating Hours

HVAC system operating hours are embedded into the deemed savings shown in <u>Appendix J</u> and vary by building type. See <u>Appendix A</u> for details on prototype building simulation parameters.

Effective Useful Life (EUL) See Appendix P.

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts N/A

References

N/A

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
3-18-3	3/29/2018

FURNACE AND BOILER

Measure Description

This measure covers high-efficiency gas-fired furnaces, boilers and unit heaters used for space heating installed in all buildings except low-rise residential (single and multifamily) applications. The baseline case shall be minimally code compliant equipment of the same type and capacity as in the proposed case, which shall be sized in accordance with federal, state and local energy conservation code.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = N/A$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

$$\Delta therms = units \times \left(\frac{kBTUh_{in}}{unit}\right) \times \left(\frac{\eta_{ee}}{\eta_{baseline}} - 1\right) \times \left(\frac{EFLH_{heating}}{100}\right)$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
kBTUh _{in}	= Fuel input rating of the proposed equipment
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
η	= Energy efficiency (0-100%)
EFLH _{heating}	= Heating equivalent full-load hours
100	= Conversion factor, one therm equals 100 kBTU

Variable	Value	Notes
kBTUh _{in} /unit		Nameplate input rating of the proposed unit, from application.
		Baseline established by applicable energy conservation
nbaseline		code, climatic zone, equipment type and size, fuel source, and
		system configuration. See Baseline Efficiency section below.
η _{ee}		From application.
		From application. If unknown, lookup based on building type
EFLEnheating		and location from <u>Appendix G.</u>

Summary of Variables and Data Sources

Efficiency is expressed as the ratio of the fuel input relative to the output heating capacity. The efficiency of furnaces, boilers and unit heaters is customarily evaluated on the basis of one or more of three standards, namely Thermal Efficiency (E_t), Combustion Efficiency, (E_c) and Annual Fuel Utilization Efficiency (AFUE).

Presently, the AFUE value is only applicable to smaller units (<300 kBTUh for boilers and <225 kBTUh for furnaces). For larger units, use thermal and combustion efficiencies referenced on manufacturer's nameplate data in accordance with nationally recognized standards and testing agencies.

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies From Which Savings are Calculated

The baseline condition is a minimally code compliant system of type and capacity equivalent to the proposed condition. The baseline efficiency for commercial furnaces, boilers, and unit heaters ($\eta_{baseline}$) is defined by the Code of Federal Regulations (CFR) and subsequently adopted by the Energy Conservation Construction Code of New York State⁴³⁰ and the New York City Energy Conservation Code⁴³¹ as shown below.

Equipment Type	Size Range	ECCCNYS Minimum Efficiency for Climate Zones 4, 5 and 6	NYCECC Minimum Efficiency for NYC Boroughs in Climate Zone 4
Warm Air Furnace,	< 225 kBTU/h	78% AFUE or	78% AFUE or
Gas Fired	> 225 kBTU/h	80% Et	80% Et
Warm Air Unit Heaters, Gas Fired	All Capacities	80% E _c	80% E _c
Poilar Hot Water	< 300 kBTU/h	80% AFUE	80% AFUE
Gas Fired	\geq 300 kBTU/h and \leq 2,500 kBTU/h	80% E _t	80% E _t
	> 2,500 kBTU/h	82% E _c	82% E _c
Boiler, Steam, Gas	< 300 kBTU/h	75% AFUE	75% AFUE
Fired, All Except	\geq 300 kBTU/h and \leq 2,500 kBTU/h	79% E _t	79% E _t
Natural Draft	> 2,500 kBTU/h	79% E _t	79% E _t
Boiler, Steam, Gas	< 300 kBTU/h	75% AFUE	75% AFUE
Fired, Natural	\geq 300 kBTU/h and \leq 2,500 kBTU/h	77% E _t	77% E _t
Draft	> 2,500 kBTU/h	77% E _t	77% E _t

⁴³⁰ ECCCNYS 2016, Table C403.2.3(4) and Table C403.2.3(5)

⁴³¹ NYCECC 2016; Table C403.2.3(4) and Table C403.2.3(5)

Compliance Efficiencies From Which Incentives are Calculated

The compliance condition is a gas-fired furnace, boiler or unit heater used for space heating as defined in the Measure Description section above meeting minimum performance requirements dictated by program eligibility criteria.

Operating Hours

Heating equivalent full-load hours were calculated from a DOE-2.2 simulation of prototypical commercial buildings. Operating hour assumptions for the prototypical building models are described in <u>Appendix A</u>. The heating EFLH for commercial buildings in NY are shown in <u>Appendix G</u>.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

High efficiency furnaces may be packaged with high efficiency cooling equipment and/or electronically commutated blower motors, which may provide electricity savings. Draft fans, when present, will increase electricity consumption. These ancillary impacts are not included in the savings estimation approach detailed above.

References

- ECCCNYS 2016, per IECC 2015; Table C403.2.3(4): Warm-Air Furnaces And Combination Warm-Air Furnaces/Air-Conditioning Units, Warm-Air Duct Furnaces And Unit Heaters, Minimum Efficiency Requirements & Table C403.2.3(5): Minimum Efficiency Requirements: Gas- And Oil-Fired Boilers. Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-cecommercial-energy-efficiency</u>
- NYCECC 2016; Table C403.2.3(4): Warm-Air Furnaces And Combination Warm-Air Furnaces/Air-Conditioning Units, Warm-Air Duct Furnaces And Unit Heaters, Minimum Efficiency Requirements & Table C403.2.3(5): Minimum Efficiency Requirements: Gas-And Oil-Fired Boilers

Available from:

https://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2016ECC_CH C4.pdf§ion=energy_code_2016

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
6-15-7	6/1/2015
1-16-4	12/31/2015
12-17-13	12/31/2017

BOILER TUNE-UP Measure Description

This measure applies to gas-fired hot water and steam boilers used for process loads or space heating not covered under 40 CFR Part 63 Subpart 6J⁴³². Tune-up will improve boiler efficiency by cleaning burners, combustion chamber and burner nozzles, adjusting air flow and reducing excessive stack temperatures, adjusting burner and gas input and checking venting, safety controls, and adequacy of combustion air intake. Combustion efficiency must be measured before and after tune-up using a flue gas analyzer.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = N/A$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

$$\Delta Therms = units \times \frac{kBTUh_{in}/unit}{100 \times LF} \times \left(1 - \frac{E_{c,baseline}}{E_{c,ee}}\right) \times EFLH_{heating}$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of boilers addressed under the program
kBTU _{in} /unit	= Fuel input rating per boiler, based on nameplate data
EFLH _{heating}	= Equivalent full-load heating hours
LF	= Load Factor
100	= Conversion factor, (kBTU/Therm)
Ec, baseline	= Baseline combustion efficiency as determined via flue gas analysis
E _{c,ee}	= Post-implementation combustion efficiency as determined via flue gas analysis

⁴³² 40 CFR 63 Subpart JJJJJJ: <u>https://www.ecfr.gov/cgi-bin/text-idx?node=sp40.15.63.jjjjjj</u>

Variable	Value	Notes
kBTLib. /unit	Namonlata	Nominal heating input capacity is the nameplate input
KDI Ullin/ullit	Namepiate	rating of the unit in kBTU/ hr, from application.
LF	1.3	Assumes 30% boiler oversizing ⁴³³
Ec, baseline	Measured	Efficiency as measured in pre-tune-up inspection
E _{c,ee}	Measured	Post-tune-up efficiency as measured post-tune-up
		For space heat; lookup based on building type and
EFLH _{heating}	Lookup	location, <u>Appendix G</u> .
		For process heat use hours of operation from application

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies from which Savings are Calculated

The baseline efficiency is the combustion efficiency of the boiler measured during pre-tune-up inspection via flue gas analysis.

Compliance Efficiency from which Incentives are Calculated

The compliance efficiency is the combustion efficiency of the boiler measured after tune-up via flue gas analysis.

Operating Hours

Heating equivalent full-load hours were calculated from a DOE-2.2 simulation of prototypical small commercial buildings. Operating hour assumptions for the prototypical building models are described in <u>Appendix A</u>. The heating EFLH for commercial buildings in NY are shown in <u>Appendix G</u>.

Effective Useful Life (EUL)

Years: 5 Source: DEER 2014⁴³⁴

References

1. PA Consulting, KEMA, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, March 22, 2010. This factor implies that boilers are 30% oversized on average.

Available from:

https://focusonenergy.com/sites/default/files/bpdeemedsavingsmanuav10_evaluationrepo rt.pdf

2. California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-05-2014; EUL ID: BlrTuneup Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

⁴³³ PA Consulting, KEMA, Focus on Energy Evaluation, Match 22, 2010

⁴³⁴ CA DEER – 2014 Updated EUL Records

Record of Revision

Record of Revision Number	Issue Date
6-17-13	6/30/2017

STEAM TRAP REPAIR OR REPLACEMENT – LOW PRESSURE SPACE HEATING Measure Description

Steam systems distribute heat from boilers to satisfy space heating, process, and commercial enduse requirements. Steam distribution systems contain steam traps, which are automatic valves that remove condensate, air, and other non-condensable gases, while preventing or minimizing steam loss. Steam traps that fail may allow excess steam to escape, thus increasing the amount of steam that must be generated to meet end-use requirements. This measure and calculations are applicable to steam traps served by gas fired boilers, for low-pressure (<15 psig) space heating. This measure does not apply to municipal steam systems.

All traps are susceptible to wear and dirt contamination and require periodic inspection and maintenance to insure correct operation. Faulty steam traps (leaking or blow-through) can be diagnosed with ultrasonic, temperature, or conductivity monitoring techniques. Regular steam trap maintenance and faulty steam trap replacement are steps that minimize steam production. There are three major types of steam traps that are applicable: 1) thermostatic (including float and thermostatic), 2) mechanical and 3) thermodynamic.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = N/A$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

$$\Delta therms = Loss_{steam} \times \frac{H_{v}}{E_{t}} \times \frac{EFLH_{heating}}{100,000}$$

 $Loss_{steam} = 24.24 \times Dia^2 \times P_a \times 50\%$

$$P_a = psig + psia$$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
Loss _{steam}	= Hourly steam loss per failed trap (lb/hr)
24.24	= Steam loss constant per Napier's equation (lb/hr-psia-in ²)
Dia	= Internal Diameter (I.D.) of steam trap orifice
Pa	= Absolute steam pressure (psi)

50%	= Percent of orifice open 435	
•		

- psig = Steam gage pressure (psi)
- psia = Atmospheric pressure (psi)

 H_v = Heat of vaporization (latent heat), in Btu/lb

 E_t = Thermal efficiency of boiler

EFLH_{heating} = Equivalent full-load heating hours

100,000 = Conversion from Btu to therms (100,000 Btu/therm)

Variable	Value	Notes
Loga	Calculated	Dependent upon system operating pressure (psig) and steam
LOSSsteam		trap orifice diameter (D)
D	Variable	Steam trap orifice diameter (in), from application
Pa	Calculated	Dependent upon system operating pressure (psig)
psig	Variable	Steam boiler operating pressure (psi), from application
psia	14.7	Atmospheric pressure (psi)
и	Lookun	Lookup from table below based on system operating pressure
11 _V	LOOKup	(psig)
Et	Variable	Boiler thermal efficiency, from application
EFLH _{heating}	Lookup	Lookup based on building type and location in <u>Appendix G</u> .

Summary of Variables and Data Sources

Heat of Vaporization (Btu/lb)⁴³⁶

Pressure	Heat of Vaporization
(psig)	(Btu/lb)
0	970
1	968
2	966
3	964
4	962
5	961
6	959
7	957
8	956
9	954
10	953
11	951
12	950
13	948
14	947
15	946

⁴³⁵ Conservative estimate typically used by steam trap manufacturers/vendors to estimate savings; Enbridge adjustment factor used as referenced in CLEAResult "Work Paper Steam Traps Revision #2" Revision 3 dated March 2, 2012 and DOE Federal Energy Management Program Steam Trap Performance Assessment.
⁴³⁶ Thermodynamic Properties of Steam Including Data for the Liquid and Solid Phases (1936)

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies from which Savings are Calculated

The baseline is assumed to be a steam trap failed open on a low-pressure steam space heating system.

Compliance Efficiency from which Incentives are Calculated

Replaced or repaired traps will no longer leak or blow-through after installation.

Operating Hours

Heating equivalent full-load hours were calculated from a DOE-2.2 simulation of prototypical small commercial buildings. Operating hour assumptions for the prototypical building models are described in <u>Appendix A</u>. The heating EFLH for commercial buildings in NY are shown in <u>Appendix G</u>.

Effective Useful Life (EUL)

Years: 6 Source: DEER 2014⁴³⁷

References

- 1. Joseph Henry Keenan and Frederick G. Keyes, Thermodynamic Properties of Steam Including Data for the Liquid and Solid Phases, John Wiley and Sons, New York (1936)
- California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-05-2014; EUL ID: HVAC-StmTrp Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

Record of Revision

Record of Revision Number	Issue Date
6-17-14	6/30/2017

⁴³⁷ CA DEER – 2014 Updated EUL Records

AIR CONDITIONER AND HEAT PUMP – PACKAGED TERMINAL

Measure Description

This measure covers installation of high efficiency unitary air conditioners and unitary and applied heat pumps in commercial applications. The baseline case shall be minimally code compliant equipment of the same type and capacity as in the proposed case, which shall be sized in accordance with federal, state and local energy conservation code.

Packaged Terminal Air Conditioner (PTAC)

A wall sleeve and a separate un-encased combination of heating and cooling assemblies specified by the manufacturer and intended for mounting through the wall. It includes refrigeration components, separable outdoor louvres, forced ventilation, and heating availability by purchaser's choice of, at least, hot water, steam, or electrical resistance heat.

Note: Models designated as "cooling only" units need not include heating elements if the physical characteristics and arrangement of the refrigeration system are identical to those of models with heating availability.⁴³⁸

Packaged Terminal Heat Pump (PTHP)

A separate un-encased refrigeration system installed in a cabinet having a function and configuration similar to that of a packaged terminal air-conditioner. It uses reverse cycle refrigeration as its prime heat source and should have other supplementary heat source(s) available to purchasers with the choice of, at least, hot water, steam, or electric resistance heat.^{439,440}

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times \begin{bmatrix} \left(\frac{kBTUh_{cooling}}{unit} \times \left(\frac{1}{EER_{baseline}} - \frac{1}{EER_{ee}}\right) \times EFLH_{cooling} \right) \\ + \\ \left(\frac{kBTUh_{heating}}{unit \times 3.412} \times \left(\frac{1}{COP_{baseline}} - \frac{1}{COP_{ee}}\right) \times EFLH_{heating} \end{pmatrix} \end{bmatrix}$$

Peak Coincident Demand Savings

$$\Delta kW = units \times \left[\left(\frac{kBTUh_{cooling}}{unit} \times \left(\frac{1}{EER_{baseline}} - \frac{1}{EER_{ee}} \right) \times CF \right) \right]$$

⁴³⁸ AHRI Standard 310/380 – 2014

⁴³⁹ Ibid.

⁴⁴⁰ Replacement unit shall be factory labeled as follows: "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY: NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS." Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406 mm) in height and less than 42 inches (1067 mm) in width.

Annual Gas Energy Savings

$\Delta therm = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
kBTUh _{cooling}	= Output cooling capacity in kBTU/h (at AHRI standard rating conditions)
kBTUh _{heating}	= Output heating capacity in kBTU/h (at AHRI standard high-temperature rating
conditions)	
EER	= Energy efficiency ratio, measurement of cooling capacity for a unit (in
BTU/hour) / e	lectrical energy used (watts) (at AHRI standard rating conditions)
COP	= Coefficient of performance, ratio of output energy/input energy (at AHRI
standard high-	temperature rating conditions)
EFLH _{cooling}	= Cooling equivalent full-load hours
EFLH _{heating}	= Heating equivalent full-load hours
3.412	= Conversion factor, one watt/h equals 3.412142 BTU
CF	= Coincidence factor

Summary of Variables and Data Sources

Variable	Value	Notes
kBTUhcooling		From application
kBTUhheating		From application
		Calculate from Baseline Efficiencies table below based on
COP _{baseline}		equipment type, size category and capacity.
COPee		From application
		Calculate from Baseline Efficiencies table below based on
EER _{baseline}		equipment type, size category and capacity.
EER _{ee}		From application
		From application. If unknown, lookup based on building type
EFLH _{heating}		and location from <u>Appendix G.</u>
		From application. If unknown, lookup based on building type
EFLH _{cooling}		and location from <u>Appendix G.</u>
CF	0.8	

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8.⁴⁴¹

Baseline Efficiencies from which Savings are Calculated

The baseline condition is defined as minimally code compliant equipment of type and cooling

⁴⁴¹ No source specified – update pending availability and review of applicable references.

and heating capacities equivalent to the proposed case. The baseline efficiencies are calculated based on rated equipment input capacity in BTU/h and are defined by International Energy Conservation Code⁴⁴² and subsequently adopted by the Energy Conservation Construction Code of New York State (ECCCNYS) and the New York City Energy Conservation Code⁴⁴³ (NYCECC) as shown below. The formulas in the rightmost column shall be used to establish the baseline efficiency in the units specified (EER or COP).

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Minimum Efficiency ECCCNYS and NYCECC ⁴⁴⁴
PTAC (Cooling Mode) Standard Size	All Capacities	95°F db Outdoor Air	EER = 14.0 - (0.300 × Cap/1000)
PTAC (Cooling Mode) Replacements/ Nonstandard Size ⁴⁴⁵	All Capacities	95°F db Outdoor Air	EER = 10.9 - (0.213 × Cap/1000)
PTHP (Cooling Mode) Standard Size	All Capacities	95°F db Outdoor Air	$\text{EER} = 14.0 - (0.300 \times \text{Cap}/1000)$
PTHP (Cooling Mode) Replacements/ Nonstandard Size	All Capacities	95°F db Outdoor Air	EER = 10.8 - (0.213 × Cap/1000)
PTHP (Heating Mode) Standard Size	All Capacities		NY State: $COP = 3.2 - (0.026 \times Cap/1000)$ NYC: $COP = 3.7 - (0.052 \times Cap/1000)$
PTHP (Heating Mode) Replacements/ Nonstandard Size	All Capacities		$COP = 2.9 - (0.026 \times Cap/1000)$

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a high efficiency packaged terminal air conditioner or heat pump system as defined in the Measure Description section above meeting minimum performance requirements dictated by program eligibility criteria.

⁴⁴² ECCCNYS 2016, Table C403.2.3(3)

⁴⁴³ NYCECC 2016, Table C403.2.3(3)

⁴⁴⁴ "Cap" = The rated cooling capacity of the project in BTU/h. If the unit's capacity is less than 7,000 BTU/h, use 7,000 BTU/h in the calculation. If the unit's capacity is greater than 15,000 BTU/h, use 15,000 BTU/h in the calculations."

⁴⁴⁵ Replacement/^{Nonstandard size units must be factory labeled as follows: "MANUFACTURED FOR REPLACEMENT APPLICATIONS}

ONLY; NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS." Replacement/Nonstandard size efficiencies apply only to units being installed in existing sleeves having an external wall opening of less than 16 in. high or less than 42 in. wide and having a cross-sectional area less than 670 in.

Operating Hours

Equipment heating and cooling equivalent full load hours shall be taken from the application. If unknown, default EFLH by facility type and location can be found in <u>Appendix G</u>.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

 AHRI Standard 310/380 – 2014: Standard for Packaged Terminal Air-Conditioners and Heat Pumps Available from: http://www.ahrinet.org/App_Content/ahri/files/STANDARDS/AHRI/AHRI_Standard_31

http://www.ahrinet.org/App_Content/ahri/files/STANDARDS/AHRI/AHRI_Standard_31 0_380-2014_CSA_C744-14.pdf

- C&I Unitary HVAC Load Shape Project Final Report, KEMA, August 2, 2011, Table 0-6 Available from: <u>http://www.neep.org/sites/default/files/resources/NEEP_HVAC_Load_Shape_Report_Final_August2.pdf</u>
- ECCCNYS 2016, per IECC 2015; Table C403.2.3(3): Minimum Efficiency Requirements: Electrically Operated Unitary Packaged Terminal Air Conditioners, Packaged Terminal Heat Pumps, Single-Package Vertical Air Conditioners, Single Vertical Heat Pumps, Room Air Conditioners and Room Air Conditioner Heat Pumps Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-cecommercial-energy-efficiency</u>
- 4. NYCECC 2016; Table C403.2.3(3): Minimum Efficiency Requirements: Electrically Operated Unitary Packaged Terminal Air Conditioners, Packaged Terminal Heat Pumps, Single-Package Vertical Air Conditioners, Single Vertical Heat Pumps, Room Air Conditioners and Room Air Conditioner Heat Pumps Available from:

https://www1.nyc.gov/assets/buildings/apps/pdf_viewer/viewer.html?file=2016ECC_CH C4.pdf§ion=energy_code_2016

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
1-17-6	12/31/2016
12-17-14	12/31/2017

HEATING, VENTILATION AND AIR CONDITIONING (HVAC) – CONTROL

THERMOSTAT - PROGRAMMABLE SETBACK (NON-COMMUNICATING)

Measure Description

This section covers programmable setback thermostats (non-communicating) applied to air conditioners, heat pumps and/or furnaces and boilers in small commercial buildings.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times (tons/unit \times \left(\frac{12}{SEER}\right) \times EFLH_{cooling} \times ESF_{cooling}) + \left(\frac{kBTUh_{out}}{unit}\right) \times \left(\frac{EFLH_{heating}}{HSPF}\right) \times ESF_{heating}$$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 $\Delta therms = units \times \left(\frac{kBTUh_{in}}{unit}\right) \times \frac{EFLH_{heating}}{100} \times ESF_{heating}$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
CF	= Coincidence factor
tons/unit	= Tons of air conditioning per unit, based on nameplate data
heating	= Heating system
cooling	= Cooling system
out	= Output capacity
in	= Input capacity
12	= kBTUh/ton of air conditioning capacity
ESF	= Energy savings factor
SEER	= Seasonal average energy efficiency ratio over the cooling season, BTU/watt- hour, (used for average U.S. location/region)
HSPF	= Heating seasonal performance factor (BTU/watt-hr), a measure of the seasonal average efficiency of the heat pump in the heating mode
EFLH	= Equivalent full-load hours

Variable	Value	Notes
tons		From application, or use 5 ton as default. Use 0 if no central cooling
SEERbaseline	10	
EFLHcooling		Vintage weighted average by city.
ESFcooling	0.09	
If heat pump:		
kBTUh/unitout		The nominal rating of the heating output capacity of the heat pump in KBTU/hr (including supplemental heaters), from application
HSPFbaseline	6.8	
If furnace:		
kBTUhin/unit		The nominal rating of the heating input capacity of furnace or boiler kBTUh, from application.
If boiler:		
kBTUhin/unit		From application
EFLHheating		Vintage weighted average by city.
ESFheating	0.068	

Summary of Variables and Data Sources

The SEER is an estimate of the seasonal energy efficiency for an average US city. The \mathbf{EER}_{pk} is an estimate of the efficiency of the unit under peak summer conditions. See the section on packaged air conditioners above for more information.

The HSPF is an estimate of the seasonal heating energy efficiency for an average US city. See section on air source heat pumps above for more information.

The *average seasonal efficiency* of the furnace is the ratio of the heating output to the fuel input (in consistent units) over a heating season. See section on high efficiency furnaces above for more information.

The *nominal rating of the cooling capacity of the air conditioner or heat pump* should set equal to the rated capacity of all cooling equipment controlled by a setback thermostat in the building.

The *nominal rating of the heating capacity* of the furnace should set equal to the rated input capacity of all heating equipment controlled by a setback thermostat in the commercial facility. Nameplate capacity for heat pumps should include the full output heating capacity of the heat pump system, including backup electric resistance heaters.

The *Energy Savings Factor* (ESF) is the ratio of the energy savings resulting from installation of a programmable setback thermostat to the annual cooling energy.

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A

Baseline Efficiencies from which Savings are Calculated

The baseline efficiency for air conditioners and heat pumps should be set to according to the sections on air conditioner and heat pump efficiency above.

Studies of residential heating thermostat set point behavior indicate some amount of manual setback adjustment in homes without programmable thermostats. This behavior is assumed to be present in the small commercial buildings addressed in this Tech Manual.

Compliance Efficiency from which Incentives are Calculated

The energy savings factor (ESF) assumption is taken from a study of programmable thermostat savings in Massachusetts conducted by GDS Associates for KeySpan Energy Delivery. The study estimated an energy savings of 3.6% of the annual heating energy consumption for programmable setback thermostats in residential applications. This assumption is also applied to the small commercial buildings addressed in this Tech Manual.

Operating Hours

Heating equivalent full-load hours calculated from building energy simulation models described in <u>Appendix A</u> and summarized in <u>Appendix G</u>.

Effective Useful Life (EUL)

Years: 11 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1. Energy Saving Factor for setback thermostats taken from "Programmable Thermostats. Report to KeySpan Energy Delivery on Energy Savings and Cost Effectiveness," GDS Associates, Marietta, GA. 2002.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
1-16-5	12/31/2015

<u>THERMOSTAT – WI-FI (COMMUNICATING)</u>

Measure Description

This section covers Wi-Fi communicating thermostats without behavioral learning capability applied to small commercial buildings with natural gas heat boilers or furnaces, electric heat pumps, electric resistance heating or central air conditioners. These communicating thermostats allow set point adjustment via a remote application. This measure does not apply to Wi-Fi thermostats installed as part of a Demand Response program.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings (Cooling)

 $\Delta kWh = units \times kWh/unit$

Peak Coincident Demand Savings

 $\Delta kW = units \times kW/unit$

Annual Gas Energy Savings

 Δ therms = units × therms/unit

where:

ΔkWh	= Annual electricity energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
kWh/unit	= Annual electric savings per unit
kW/unit	= Peak coincident demand savings per unit
therms/unit	= Annual gas savings per unit

Summary of Variables and Data Sources

Variable	Value	Notes
kWh/unit	104	Annual electric savings per installed thermostat, in kWh ⁴⁴⁶
kW/unit	0.23	Peak demand savings per installed thermostat, in kW ⁴⁴⁷
therms/unit	66	Annual gas savings per installed thermostat, in therms ⁴⁴⁸

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

⁴⁴⁶ Cadmus Group, Wi-Fi Programmable Controllable Thermostat Pilot Program Evaluation, September 2012

⁴⁴⁷ Ibid.

⁴⁴⁸ Ibid.

Baseline Efficiencies from which Savings are Calculated

The baseline efficiency is an HVAC system using natural gas and electricity to provide space heating and cooling controlled by a non-Wi-Fi communicating programmable thermostat.

Compliance Efficiency from which Incentives are Calculated

The compliance efficiency is an HVAC system using natural gas and electricity to provide space heating and cooling controlled by a Wi-Fi communicating thermostat without behavioral learning capability. The thermostat shall not be installed as part of a Demand Response program.

Operating Hours

HVAC system operating hours are embedded in the deemed savings values associated with Wi-Fi communicating thermostats, which are based on metering results.

Effective Useful Life (EUL)

Years: 11 Source: DEER 2014⁴⁴⁹

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

N/A

References

 Cadmus Group, Inc. (September 2012), "Wi-Fi Programmable Controllable Thermostat Pilot Program Evaluation", prepared for The Electric and Gas Program Administrators of Massachusetts.
 Available from: http://ma.come.org/wordpress/wp.content/uploads/Wi. Ei Programmable

Available from: <u>http://ma-eeac.org/wordpress/wp-content/uploads/Wi-Fi-Programmable-Controllable-Thermostat-Pilot-Program-Evaluation_Part-of-the-Massachusetts-2011-Residential-Retrofit-Low-Income-Program-Area-Study.pdf</u>

 California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-05-2014; EUL ID: HV-ProgTStat. Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

⁴⁴⁹ CA DEER – 2014 Updated EUL Records

Record of Revision

Record of Revision Number	Issue Date
1-16-5	12/31/2015
9-17-4	9/30/2017

DEMAND CONTROL VENTILATION (DCV)

Measure Description

Demand control ventilation systems have the capability to automatically reduce the outdoor air intake below design rates when occupancy of spaces served by the system is less than design occupancy. Typically, this is controlled by a carbon dioxide sensor, occupancy sensor or turnstile counter. Demand control ventilation systems save energy by reducing the amount of outside air which requires heating or cooling.

This measure assumes a demand control ventilation system with CO₂ sensors will be added to an HVAC system with natural gas heating which previously had no DCV installed.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = \frac{SF}{1,000} \times ESF_{Cooling}$$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 $\Delta therms = \frac{SF}{1,000} \times ESF_{heating}$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
SF	= Total square footage of the conditioned space impacted by the measure
ESF _{cooling}	= Energy savings factor for cooling (kWh/1,000 ft^2)
ESF _{heating}	= Energy savings factor for heating (therms/1,000 ft^2)
1,000	= Conversion to 1,000 ft^2

Summary of Variables and Data Sources

Variable	Value	Notes
SF	Variable	From application.
ESF _{cooling}	Lookup	Lookup from $\text{ESF}_{\text{cooling}}$ table below based on location and building type.
ESF _{heating}	Lookup	Lookup from ESF _{heating} table below based on location and building type.

kWh/1,000 ft ²						
Building Type	Albany	Binghamton	Buffalo	Massena	Poughkeepsie	Syracuse
Office - Low-rise (1 to 3 Stories)	273	176	248	181	292	262
Office - Mid-rise (4 to 11 Stories)	258	166	235	171	276	248
Office - High-rise (12+ Stories)	269	174	245	178	288	259
Religious Building	305	196	277	202	326	292
Restaurant	308	199	280	204	330	296
Retail - Department Store	374	241	340	248	400	359
Retail - Strip Mall	225	145	205	149	241	216
Convenience Store	361	233	328	239	386	346
Elementary School	196	126	178	130	209	188
High School	189	122	172	125	202	182
College/ University	245	158	223	163	262	236
Healthcare Clinic	214	138	195	142	229	206
Lodging (Hotel/Motel)	346	223	315	229	370	332
Manufacturing	289	186	262	191	309	277
Special Assembly Auditorium	256	165	232	169	273	245
Other	274	177	249	182	293	263

ESF_{cooling}

ESFheating

Therms/1,000 ft ²						
Building Type	Albany	Binghamton	Buffalo	Massena	Poughkeepsie	Syracuse
Office - Low-rise (1 to 3 Stories)	29	31	29	22	19	29
Office - Mid-rise (4 to 11 Stories)	19	21	19	14	12	19
Office - High-rise (12+ Stories)	26	28	25	20	17	26
Religious Building	189	204	187	144	123	189
Restaurant	136	147	135	104	89	137
Retail - Department Store	47	51	47	36	30	47
Retail - Strip Mall	30	33	30	23	20	30
Convenience Store	23	25	23	18	15	24
Elementary School	82	88	81	62	53	82
High School	79	86	79	61	52	80
College/ University	158	170	156	120	102	158
Healthcare Clinic	56	60	55	43	36	56
Lodging (Hotel/Motel)	26	28	25	20	17	26
Manufacturing	21	23	21	16	14	21
Special Assembly Auditorium	221	239	219	169	144	222
Other	76	82	75	58	49	76

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A.

Baseline Efficiencies from which Savings are Calculated

The baseline system is a natural gas heated return air system with no demand control ventilation **installed.**

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a DCV system added to the return air system to supply air based on occupancy demands.

Operating Hours

N/A

Effective Useful Life (EUL)

Years: 15 Source: DEER 2014⁴⁵⁰

References

- ESF_{cooling} and ESF_{heating} factors were calculated from the IL TRM values of Chicago by creating a ratio of Cooling/Heating Degree Days between the NY weather cities and Chicago CDD/HDD and multiplying by the Chicago SF_{cooling}/SF_{heating} respectively. IL TRM Available from:
 <u>http://ilsagfiles.org/SAG_files/Technical_Reference_Manual/Version_6/Final/IL-TRM_Version_6.0_dated_February_8_2017_Final_Volumes_1-4_Compiled.pdf</u>
- California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-05-2014; EUL ID: HVAC-VSD-DCV Available from: http://deeresources.com/files/deerchangelog/deerchangelog.html

Record of Revision

Record of Revision Number	Issue Date	
6-17-15	6/30/2017	

⁴⁵⁰CA DEER – 2014 Updated EUL Records

LIGHTING

INTERIOR AND EXTERIOR LAMPS AND FIXTURES

Measure Description

This section covers energy-efficient lighting equipment, such as energy-efficient lamps, energyefficient ballasts, compact fluorescent lamps, LED lamps, and improved lighting fixtures. Improved lighting fixtures may include reflectors and other optical improvements to lighting fixtures. These technologies, taken separately or combined into an energy-efficient lighting fixture, provide the required illumination at reduced input power.

Per EISA 2007, effective beginning January 1, 2020, if more stringent regulations are not put into effect by that date, the sale of general service lamps that do not meet a minimum efficiency standard of 45 lumens per watt will be prohibited.⁴⁵¹ Although baseline conditions for this measure are assumed to be the existing lighting wattage, this stipulation may still have a significant impact on claimable savings associated with replacement of general service lamps (20% - 70% depending on lumen output) beginning in 2020, particularly in cases where building code is triggered (new construction or renovations). This information is provided to inform future ETIP development.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = \left[\frac{(W \times units)_{baseline} - (W \times units)_{ee}}{1,000}\right] \times hrs_{operating} \times (1 + HVAC_c)$$

Peak Coincident Demand Savings

$$\Delta kW = \left[\frac{(W \times units)_{baseline} - (W \times units)_{ee}}{1,000}\right] \times (1 + HVAC_d) \times CF$$

Annual Gas Energy Savings

$$\Delta therms = \left[\frac{(W \times units)_{baseline} - (W \times units)_{ee}}{1,000}\right] \times hrs_{operating} \times HVAC_{g}$$

New construction, space renovations or remodels may require a building permit that includes compliance with local or state energy codes. In these instances, the applicable energy code defines the baseline. The energy consumption of the efficient and baseline lighting systems are defined in terms of the lighting power density (LPD) in watts per square foot. An alternate form of the lighting equations based on LDP is as follows:

⁴⁵¹ Energy Independence and Security Act of 2007. Pub. L. 110-140. Sec. 321. Efficient Light Bulbs H.R.6 – 89

Annual Electric Energy Savings

$$\Delta kWh = area \times \left[\frac{LPD_{baseline} - LPD_{ee}}{1,000}\right] \times hrs_{operating} \times (1 + HVAC_{c})$$

Peak Coincident Demand Savings

$$\Delta kW = area \times \left[\frac{LPD_{baseline} - LPD_{ee}}{1,000}\right] \times (1 + HVAC_d) \times CF$$

Annual Gas Energy Savings

$$\Delta therms = area \times \left[\frac{LPD_{baseline} - LPD_{ee}}{1,000}\right] \times hrs_{operating} \times HVAC_{g}$$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
Δtherms	= Annual gas energy savings
units	= Number of measures installed under the program
CF	= Coincidence factor
ee	= Energy efficient condition or measure
baseline	= Baseline condition or measure
area	= Extent of space or surface
1,000	= Conversion factor, one kW equals 1,000 watts
LPD	= Lighting power density
W	= Watts
hrsoperating	= Lighting operating hours
HVAC _c	= HVAC interaction factor for annual electric energy consumption
HVAC _d	= HVAC interaction factor for peak demand at NYISO coincident summer peak
	hour
HVAC _g	= HVAC interaction factor for annual natural gas consumption (therms/kWh)

Variable	Value	Notes
Unitsbaseline		Number of baseline measures, from application. Set
		equal to Unitsee if unknown.
Unitsee		Number of energy efficient measures installed under
		the program, from application.
W _{baseline}		Connected load of the baseline unit(s) displaced,
		from application (in Watts).
W _{ee}		Connected load of the energy-efficient unit, from
		application (in Watts).
hrsoperating		Lighting operating hours. From application or
		default, as listed below in the Operating Hours table.
LPD _{baseline}		Lighting power density (in W/SF) for baseline

Summary of Variables and Data Sources

Variable	Value	Notes
		measure, from application, based on NYS/NYC
		Energy Conservation code. New construction or
		major renovation (as defined by applicable
		code/permits) only.
		Lighting power density (in W/SF) for energy
		efficient measure, from application, based on
LPD _{ee}		installed system design. New construction or major
		renovation (as defined by applicable code/permits)
		only.
area		Floor area illuminated by lighting system (in SF)
HVAC _c	0 for Exterior and	HVAC interaction factor for annual electric energy
		consumption (dimensionless). Vintage and HVAC
	Unconditioned Space	type weighted average by city. See <u>Appendix D</u> .
		HVAC interaction factor for peak demand at utility
HVACd	0 for Exterior and	summer peak hour (dimensionless). Vintage and
	Unconditioned Space	HVAC type weighted average by city. See
		Appendix D.
HVACg		HVAC interaction factor for annual natural gas
	0 for Exterior and Unconditioned Space	energy consumption (therms/kWh). Vintage and
		HVAC type weighted average by city. See
		<u>Appendix D</u> .
CF	1.0 for Interior	"Interior" designation extends to any covered area
	0.0 for Exterior	not adequately lit during daylight hours by sunlight,
	0.0 101 Exterior	thus requiring daytime operation of lighting.

HVAC system interaction factors are defined as the ratios of the cooling energy and demand reduction and heating energy increase per unit of lighting energy reduction. Much of the input energy for lighting systems is converted to heat that must be removed by the HVAC system. Reductions in lighting heat gains due to lighting power reduction decrease the need for space cooling and increase the need for space heating.

HVAC interaction factors vary by climate, HVAC system type and building type. Recommended values for HVAC interaction factors for lighting energy and peak demand savings are shown in <u>Appendix D</u>. Lighting systems in unconditioned spaces or on the building exterior will have interaction factors of 0.0. The building types for the HVAC interactive effect factors by facility type are shown in the lighting Operating Hours table below.

Coincidence Factor (CF)

The recommended coincidence factor for commercial indoor lighting measures is $1.0.^{452}$ Since exterior lighting is generally off during daylight hours, the coincidence factor for exterior lighting is 0.0.

⁴⁵² No source specified – update pending availability and review of applicable references.
Baseline Efficiencies from which Savings are Calculated

The baseline condition is assumed to be the existing and operational lighting fixture in all applications other than new construction or extensive renovations that trigger the building code. See table of standard fixture wattages in <u>Appendix C</u>. Note, depending on local codes, new construction, space renovations or remodels may require a building permit that includes compliance with local or state energy codes. In these instances, the applicable energy code defines the baseline.

Code LPD shall be taken from chapter C405.4: Interior Lighting Power Requirements (Prescriptive) and chapter 405.5: Exterior Lighting (Mandatory) of the Energy Conservation Construction Code of New York State ⁴⁵³ (ECCCNYS) and the New York City Energy Conservation Code ⁴⁵⁴ (NYCECC) that are based on IECC 2015. Alternatively, ASHRAE Standard 90.1-2013 may be referenced for compliance. In both cases, either the Building Area or Space-By-Space compliance path may be used.

Compliance Efficiency from which Incentives are Calculated

Compliance efficiency and fixture/lamp specifications shall be dictated by program eligibility criteria. See table of standard fixture wattages in <u>Appendix C</u>. Manufacturers' cut sheets may substitute for the standard fixture watts in <u>Appendix C</u> if available. In new construction or major renovation projects, the new lighting system power consumption should be expressed as a lighting power density (LPD) in watts per square foot.

Operating Hours

The average lighting operating hours are defined by building type, as shown in the table below. These are typical average values for the building types shown. Use building specific operating hours where available. For exterior lighting, the default annual operating hours are 4,380 hrs/yr (12 hours per day).

Facility Type	Lighting Hours (hrs/yr)	HVAC Int	Facility Type	Lighting Hours (hrs/yr)	HVAC Int
Auto Related ¹	2,810	AR	Manufacturing Facility	2,857	Ind
Automotive / Transportation Service or Repair Facility (24/7)	8,760	AR	Medical Offices	3,748	SOfc
Bakery	2,854	FS	Motion Picture Theatre	1,954	Asy
Banks	3,748	SOfc	Multi-Family (Common Areas)	7,665	MFL
Church	1,955	Rel	Museum	3,748	Asy
College– Cafeteria ²	2,713	FS	Nursing Homes	5,840	MFL
College – Classes	2,586	CC	Office (General Office Types) ²	3,013	SOfc/ LOfc
College - Dormitory	3,066	Dorm	Parking Garages	4,368	None

⁴⁵³ ECCCNYS 2016; C405.4: Interior Lighting Power Requirements (Prescriptive) & C405.5: Exterior Lighting Power (Mandatory)

⁴⁵⁴ NYCECC 2016; C405.4: Interior Lighting Power Requirements (Prescriptive) & C405.5: Exterior Lighting Power (Mandatory)

Facility Type	Lighting Hours (hrs/yr)	HVAC Int	Facility Type	Lighting Hours (hrs/yr)	HVAC Int
Commercial Condos ³	3,100	SOfc	Parking Garages (24/7)	7,717	None
Convenience Stores	6,376	SRet	Parking Lots	4,100	None
Convention Center	1,954	Asy	Penitentiary	5,477	MFL
Court House	3,748	LOfc	Performing Arts Theatre	2,586	Asy
Dining: Bar Lounge/Leisure	4,182	FS	Police / Fire Stations (24 Hr)	7,665	Asy
Dining: Cafeteria / Fast Food	6,456	FF	Post Office	3,748	SRet
Dining: Family	4,182	FS	Pump Stations	1,949	Ind
Entertainment	1,952	Asy	Refrigerated Warehouse	2,602	RWH
Exercise Center	5,836	SRet	Religious Building	1,955	Rel
Fast Food Restaurants	6,376	FF	Restaurants	4,182	FS
Fire Station (Unmanned)	1,953	Asy	Retail	3,463	SRet/ LRet
Food Stores	4,055	Gro	School / University	2,187	Univ
Gymnasium	2,586	Asy	Schools (Jr./Sr. High)	2,187	HS
Hospitals	7,674	Hosp	Schools (Preschool/Elementary)	2,187	Sch
Hospitals / Health Care	7,666	Hosp	Schools (Technical/Vocational)	2,187	CC
Industrial - 1 Shift	2,857	Ind	Small Services	3,750	SOfc
Industrial - 2 Shift	4,730	Ind	Sports Arena	1,954	Asy
Industrial - 3 Shift	6,631	Ind	Town Hall	3,748	Asy
Laundromats	4,056	SRet	Transportation	6,456	Asy
Library	3,748	LOfc	Warehouse (Not Refrigerated)	2,602	WH
Light Manufacturers ²	2,613	Ind	Waste Water Treatment Plant	6,631	Ind
Lodging (Hotels/Motels)	3,064	Hotel/ Motel	Workshop	3,750	Ind
Mall Concourse	1 833	I Ret			

Mall Concourse 4,833 LRet ¹ New car showrooms and Big Box retail stores with evening and/or weekend hours should use the Facility Type "Retail" for lighting operating hours.
² Lighting operating hours data from the 2008 California DEER Update study

³ Lighting operating hours data for offices used

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

Reduction in lighting power increases space heating requirements in conditioned spaces. Interactive HVAC impacts are addressed in prescribed energy savings calculation methodology.

Ancillary Electric Savings Impacts

Reduction in lighting power decreases cooling requirements in conditioned spaces. Interactive HVAC impacts are addressed in prescribed energy savings calculation methodology.

References

- ECCCNYS 2016, per IECC 2015; Chapter C404.4: Interior Lighting Power Requirements (Prescriptive) & C405.5: Exterior Lighting Power (Mandatory) Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-cecommercial-energy-efficiency</u>
- NYCECC 2016: Chapter C404.4: Interior Lighting Power Requirements (Prescriptive) & C405.5: Exterior Lighting Power (Mandatory) Available from: <u>https://www1.nyc.gov/site/buildings/codes/2016-energy-conservationcode.page</u>
- Lighting operating hour data taken from the CL&P and UI Program Savings Documentation for 2008 Program Year, with exceptions as noted. Available from: <u>https://library.cee1.org/system/files/library/8821/CEE_Eval_2008ProgramSavingsDocum</u> entPSD_1Jan2008.pdf
- Additional lighting operating hour data taken from 2008 DEER Update Summary of Measure Energy Analysis Revisions, August, 2008 Available from: www.deeresources.com
- Small Business Direct Install Program Evaluation Review, Prepared for the New York State Department of Public Service-E² Working Group, by the Small Commercial EM&V Review subcommittee, April 3, 2015 Available from: https://www3.dps.pv.gov/W/PSCWeb.psf/96f0fec0b45a3c6485257688006a701a/960068

https://www3.dps.ny.gov/W/PSCWeb.nsf/96f0fec0b45a3c6485257688006a701a/960068 76d01739b785257c85005a58e3/\$FILE/ATTGYZRG.pdf/SBDI%20EMV%20studies%2 0-%20Final%20Report%20-%202015-01-30.pdf

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
6-15-4	6/1/2015
1-16-6	12/31/2015
9-17-5	9/30/2017

Refrigerated Case LED

Measure Description

This measure pertains to installation of horizontally or vertically-mounted LED fixtures in commercial display refrigerators, coolers or freezers. Refrigerated case lighting increases the cooling load of the refrigeration system by adding heat to the unit that must be overcome through additional cooling. Replacing fluorescent lamps with low-heat generating LEDs reduces the energy consumption associated with the lighting components and reduces the amount of waste heat generated from the lamps that must be overcome by the refrigeration system.

Method for Calculating Annual Energy and Peak Coincident Demand Savings Annual Electric Energy Savings

$$\Delta kWh = \left(\frac{(W \times units)_{baseline} - (W \times units)_{ee}}{1,000}\right) \times hrs_{operating} \times (1 + (Comp_{eff} \times 0.284))$$

Peak Coincident Demand Savings

$$\Delta kW = \left(\frac{(W \times units)_{baseline} - (W \times units)_{ee}}{1,000}\right) \times CF \times (1 + (Comp_{Eff} \times 0.284))$$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electricity energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
W	= Rated wattage of lamp or fixture (Watts)
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
1,000	= Conversion factor, one kW equals 1,000 Watts
hrsoperating	= Lighting operating hours
CF	= Coincidence factor
Comp _{Eff}	= Efficiency of the cooler/freezer compressor (kW/Ton)
0.284	= Conversion factor from kW to Tons of refrigeration (Tons/kW)

Variable	Value	Notes	
W _{baseline}		From application, or 2 times the proposed LED wattage ⁴⁵⁵	
W _{ee}		From application	
hrsoperating		From application	
Comp _{Eff}	Refrigerated Case – 1.00 Freezer Case - 1.92	Typical refrigeration system efficiency (kW/Ton) ⁴⁵⁶	
CF	0.948	Taken from RLW Analytics, Inc. Coincidence Factor study, "Grocery" facility type	

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.948.457

Baseline Efficiencies from which Savings are Calculated

The baseline lighting wattage is the rated or deemed wattage of the existing fixture/lamp. See table of standard fixture wattages in <u>Appendix C</u>. If this data is not available, the baseline wattage shall be the proposed wattage multiplied by 2.

Compliance Efficiency from which Incentives are Calculated

The compliance case is a refrigerated display case with horizontally or vertically-mounted LED lighting. Compliance efficiency and fixture/lamp specifications shall be dictated by program eligibility criteria.

Operating Hours

Operating hours for refrigerated case lighting will be site-specific and taken from the application. If unavailable, refer to the "Operating Hours" section of the Commercial and Industrial Interior and Exterior Lamps and Fixtures measure for default hours of operation.

Effective Useful Life (EUL)

Years: 16 Source: DEER 2014⁴⁵⁸

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts

⁴⁵⁵ *REVIEW OF UNDERLYING REFERENCE PENDING:* Based on Pacific Gas & Electric. May 2007. LED Refrigeration Case Lighting Workpaper 053007 rev1. This workpaper is not publicly available, but is referenced by Mid-Atlantic TRM Version 7.0 published May 2017. Assumes LED case lighting (7.6W per linear foot) replacing T8 fluorescent baseline (15.2W per linear foot).

⁴⁵⁶ Based on CDH Energy evaluation of actual refrigeration system performance for several commercially available compressors, dated 09/06/2017. Values presented reflect average efficiencies of R22 systems.

⁴⁵⁷ Coincidence Factor Study Residential and Commercial & Industrial Lighting Measures, RLW Analytics, Inc. Spring 2007, Table i-7 (Grocery)

⁴⁵⁸ CA DEER – 2014 Updated EUL Records

Reduction in refrigerated case lighting power reduces waste heat that must be displaced by the system. Interactive effects are addressed in the prescribed energy savings calculation methodology.

References

- Coincidence Factor Study Residential and Commercial & Industrial Lighting Measures -For use as an Energy Efficiency Measures/Programs Reference Document for the ISO Forward Capacity Market (FCM), prepared for the New England State Program Working Group by RLW Analytics Inc., Spring 2007. Available from: <u>https://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National</u> %20Grid/116_RLW_CF%20Res%20C&I%20ltg.pdf
- 2. California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-05-2014; EUL ID: GrocDisp-FixtLtg-LED. Available from: http://deeresources.com/files/deerchangelog/deerchangelog.html

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
6-15-4	6/1/2015
9-17-6	9/30/2017

LIGHTING – CONTROL

INTERIOR LIGHTING CONTROL

Measure Description

This section covers lighting control measures, including occupancy sensors, stepped and dimming daylighting controls and programmable control systems, installed on lighting in interior spaces where these controls are not mandated by federal, state or local code. Interior spaces are defined as any covered area not adequately lit during daylight hours by sunlight, thus requiring daytime operation of lighting. These systems save energy and peak demand by shutting off power to lighting fixtures when the space is unoccupied or illumination is not required. They also save energy and demand by reducing power to lighting systems to correct for over-illumination due to excessive lamp output or the presence of daylight.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = \left(\frac{W_{ctrl}}{1,000}\right) \times hrs_{operating, baseline} \times ESF \times (1 + HVAC_c)$$

Peak Coincident Demand Savings

$$\Delta kW = \left(\frac{W_{ctrl}}{1,000}\right) \times ESF \times (1 + HVAC_d) \times CF$$

Annual Gas Energy Savings

$$\Delta therms = \left(\frac{W_{ctrl}}{1,000}\right) \times hrs_{operating, baseline} \times ESF \times HVAC_{g}$$

where:

ΔkWh	= Annual electricity energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
W _{ctrl}	= Total wattage of controlled lighting (Watts)
1,000	= Conversion factor, one kW equals 1,000 Watts
hrsoperating	= Lighting operating hours
baseline	= Baseline condition or measure
HVAC _c	= HVAC interaction factor for annual electric energy consumption
HVAC _d	= HVAC interaction factor for peak demand at NYISO coincident summer peak
	hour
HVAC _g	= HVAC interaction factor for annual natural gas consumption (therms/kWh)
ESF	= Energy savings factor
CF	= Coincidence factor

Variable	Value	Notes		
W/		Connected load of controlled lighting fixtures (in		
vv ctrl		Watts), from application		
hro		Lighting operating hours. From application or see		
III Soperating, baseline		Operating Hours section below.		
	0 for Unconditioned	HVAC interaction factor for annual electric energy		
HVAC _c	Space	consumption (dimensionless). Vintage and HVAC		
	Spuce	type weighted average by city. See <u>Appendix D</u> .		
		HVAC interaction factor for peak demand at utility		
HVAC	0 for Unconditioned	summer peak hour (dimensionless). Vintage and		
IIVACd	Space	HVAC type weighted average by city. See		
		Appendix D.		
		HVAC interaction factor for annual natural gas		
HVAC	0 for Unconditioned	energy consumption (therms/kWh). Vintage and		
HVACg	Space	HVAC type weighted average by city. See		
		<u>Appendix D</u> .		
ESF		See Energy Savings Factors table below		
CF		"Interior" designation extends to any covered area		
	1.0	not adequately lit during daylight hours by sunlight,		
		thus requiring daytime operation of lighting.		

Summary of Variables and Data Sources

Energy Savings Factor⁴⁵⁹

The *energy savings factor* (ESF) is the average annual reduction in electric consumption achieved by a particular control measure type. Energy savings factors for various automated lighting control types are specified in the table below.

Control Type	ESF
Occupancy Sensor	0.30
Daylight Dimming Control	0.30
Daylight Stepped Control	0.20
Programmable Control	0.15

- *Occupancy Sensor* Reduces lighting operating hours by switching off lighting in unoccupied spaces.
- **Daylight Dimming Control** Reduces lighting output to a set level in response to natural daylighting using continuous dimming capability.
- **Daylight Stepped Control** Reduces lighting output to a set level in response to natural daylighting using stepped dimming capability.

⁴⁵⁹ *REVIEW OF UNDERLYING REFERENCE PENDING:* ESF values derived from lighting control power adjustment factors prescribed in the California Title 24 Nonresidential Lighting Standards.

• **Programmable Control** – Sophisticated lighting controllers that combine many of the above functions into a single unit and may also be coupled to the building security system.

Coincidence Factor (CF)

The recommended coincidence factor for commercial indoor lighting measures is 1.0. 460

Baseline Efficiencies from which Savings are Calculated

The baseline case for this measure is a lighting system with manual or time-switch controls. This measure is not applicable in spaces for which occupancy or daylight-responsive controls are required by federal, state or local code. Refer to chapter C405.2 Lighting Controls (Mandatory) of the Energy Conservation Construction Code of New York State⁴⁶¹ (ECCCNYS) and the New York City Energy Conservation Code⁴⁶² (NYCECC) for details.

Compliance Efficiency from which Incentives are Calculated

The compliance case is a lighting system with occupancy or daylight-responsive controls designed and installed in accordance with manufacturers' and/or designer recommendations. Compliance specifications shall be dictated by program eligibility criteria.

Operating Hours

The baseline lighting operating hours are the average operating hours for all fixtures subject to lighting control measures before the lighting controls are installed. This information shall be taken from the application. If unavailable, refer to the "Operating Hours" section of the Commercial and Industrial Interior and Exterior Lamps and Fixtures measure for default hours of operation.

Effective Useful Life (EUL)

Years: 8 Source: DEER 2014⁴⁶³

Ancillary Fossil Fuel Savings Impacts

Reduction in lighting power increases space heating requirements in conditioned spaces. Interactive HVAC impacts are addressed in the prescribed energy savings calculation methodology.

Ancillary Electric Savings Impacts

Reduction in lighting power decreases cooling requirements in conditioned spaces. Interactive HVAC impacts are addressed in the prescribed energy savings calculation methodology.

 ⁴⁶⁰ No source specified – update pending availability and review of applicable references.
⁴⁶¹ ECCCNYS 2016; C405.2: Lighting Controls (Mandatory)

⁴⁶² NYCECC 2016; C405.2: Lighting Controls (Mandatory)

⁴⁶³ CA DEER – 2014 Updated EUL Records.

References

- 1. ECCCNYS 2016, per IECC 2015; Chapter C405.2: Lighting Controls (Mandatory) Available from: <u>https://codes.iccsafe.org/public/document/IECC2015NY-1/chapter-4-ce-</u> <u>commercial-energy-efficiency</u>
- NYCECC 2016: Chapter C405.2: Lighting Controls (Mandatory) Available from: <u>https://www1.nyc.gov/site/buildings/codes/2016-energy-conservationcode.page</u>
- 3. Energy Savings Factors derived from lighting control power adjustment factors prescribed in the California Title 24 Nonresidential Lighting Standards.
- California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-07-2014; EUL IDs: GlazDayIT-Dayltg, ILtg-OccSens.

Available from: http://deeresources.com/files/deerchangelog/deerchangelog.html

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
6-15-4	6/1/2015
1-16-7	12/31/2015
9-17-7	9/30/2017

BI-LEVEL LIGHTING

Measure Description

Stairwell Bi-Level lighting fixtures provide lighting to spaces that are infrequently used, such as stairwells, where a minimum level of illumination is desired when unoccupied and a higher level when occupied. These fixtures are controlled by an integral occupancy sensor and are customarily available as replacements for existing fixtures. These fixtures are available with both fluorescent and LED lamps. Light levels are adjustable from 10% to 100% of nominal light output and are also available with battery back up to provide minimally code compliant illumination for a period of ninety minutes. These fixtures, when installed as a replacement fixture, provide electrical savings without compromising safety.

Method for Calculating Annual Energy Savings and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times \left[\left(\frac{W_{exist}}{1000} \times 8760 \right) - \left(\left(\frac{W_{oc}}{1000} \times FLH_{oc} \right) + \left(\frac{W_{un}}{1000} \right) \times FLH_{un} \right) \right]$$

Peak Coincident Demand Savings

$$\Delta kW = units \times \left[\left(\frac{W_{exist}}{1000} - \frac{W_{oc}}{1000} \right) + \left(\frac{W_{oc} - W_{un}}{1000} \right) \times \left(\frac{FLH_{un}}{8760} \right) \right] \times CF$$

Annual Gas Energy Savings

 Δ therms = N/A

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed
Wexist	= Wattage of the baseline unit
Woc	= Wattage of the energy efficient fixture when occupied
Wun	= Wattage of the energy efficient fixture when unoccupied
FLH	= Full Load Hours of the baseline unit
FLHoc	= Full Load Hours of energy efficient fixture when occupied
FLHun	= Full Load Hours of energy efficient fixture when unoccupied (standby)
CF	= Coincidence Factor
8760	= Conversion Factor, Hours to Year

Variables	Value	Notes
		From application, invoices or other documentation.
units		Equal to number of lamps installed and operating.
Wexist		From application, connected load of existing unit.
		From application, connected load of the energy
Woc		efficient unit when occupied.
		From application, connected load of the energy
Wun		efficient unit when unoccupied (standby).
		Full Load Hours of energy efficient fixture when
FLHoc	438 hours	occupied.
		Full Load Hours of energy efficient fixture when
FLHun	8,322 hours	unoccupied (standby).

Summary of Variables and Data Source

Coincidence Factor (CF)

As stairwell lighting is required for life safety at all times in accordance with regulations the coincidence factor is assumed to be 1.0.

Operating Hours

Based on market research the stairwells are occupied only 5% of the time. Therefore 95% of the time the new fixture will be in the reduced wattage mode.

Reduced Wattage

Bi-level fixture from the leading lighting manufactures produce lights that will reduce the capacity to 33% or below during the unoccupied mode, when actual fixture data is not available assume that during the unoccupied mode the rated wattage will be reduced by 50%.

Effective Useful Life (EUL)

See <u>Appendix P</u>: Effective Useful Life (EUL)

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- 1. Field Test DELTA Snapshots with Staff and NYSERDA inputs. Staircase Lighting Sponsored by LaMar Lighting and NYSERDA. March 2004.
- 2. The 33% unoccupied mode capacity is based on actual lighting specifications of installed fixtures with Staff and NYSERDA inputs. The 50% unoccupied mode capacity is based on the common bi-level application where one of two bulbs in the fixture is turned off during the unoccupied mode.

Record of Revision

Record of Revision Number	Issue Date	
1-16-11	12/31/2015	

MOTORS AND DRIVES

MOTOR REPLACEMENT

Measure Description

NEMA premium efficiency motors replacing standard efficiency motors in commercial and industrial applications.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

$$\Delta kWh = units \times 0.746 \times \left[\left(\frac{hp_{baseline} \times RLF_{baseline}}{\eta_{baseline}} \right) - \left(\frac{hp_{ee} \times RLF_{ee}}{\eta_{ee}} \right) \right] \times FLH$$

Peak Coincident Demand Savings

$$\Delta kW = units \times 0.746 \times \left[\left(\frac{hp_{\text{baseline}} \times RLF_{\text{baseline}}}{\eta_{\text{baseline}}} \right) - \left(\frac{hp_{\text{ee}} \times RLF_{\text{ee}}}{\eta_{\text{ee}}} \right) \right] \times CF$$

Annual Gas Energy Savings

 Δ therms = N/A

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
η	= Energy efficiency (0 -100%)
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
hp	= Horsepower
FLH	= Full-load hours
RLF	= Rated load factor
CF	= Coincidence factor
0746	- Conversion factor (1/W/hp) 7/16 wette aquale one electri

0.746 = Conversion factor (kW/hp), 746 watts equals one electric horsepower

Summary of Variables and Data Sources

Variable	Value	Notes		
η_{baseline}		Efficiency of baseline measure		
η_{ee}		Efficiency of energy efficient measure		
hpbaseline		Horsepower rating of baseline motor		
hpee		Horsepower rating of energy efficient measure		

Variable	Value	Notes
RLF _{baseline}		Rated load factor of baseline motor
RLF _{ee}		Rated load factor of energy efficient motor

The *motor horsepower* refers to the nameplate or rated power output of the motor. Motors are commonly over-sized for the loads served. An energy efficient motor with a lower nameplate horsepower rating may be installed to correct for over-sizing.

The *rated load factor* is the ratio of peak running load to nameplate rating of the motor. The rated load factor for the energy-efficient motor will be greater than the rated load factor of the base case motor if a smaller energy-efficient motor is used to correct for over-sizing. If a smaller motor is installed, but the shaft power requirements stay the same, the product of the rated horsepower and the rated load factor should be constant. Lower torque from efficient motors may prevent downsizing of the motor.

 $(RLF \times hp)_{baseline} = (RLF \times hp)_{ee}$

Motor *full-load hours* are defined as the total annual energy consumption divided by the peak hourly demand.

$$FLH = \frac{kWh}{kW_{max}}$$

For loads that do not vary with time (i.e., a motor driving a constant load), full-load hours are simply equal to the operating hours. Efficient motors generally run at slightly higher RPM than standard motors. Unless the motor drive system is modified to correct for higher RPM operation, the power delivered by the motor may increase. The increase in power delivery may negate the effects of improved efficiency.

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8

Baseline Efficiencies from which Savings are Calculated

Former NEMA premium efficiency motors now standard efficiency due to changes in Federal standards. See <u>Appendix L</u> for a list of baseline motor efficiency requirements.

Compliance Efficiency from which Incentives are Calculated

Must exceed new Federal standards.

Operating Hours

Effective Useful Life (EUL) Years: 15 Source: DEER

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- 1. Motor operating hour data taken from the <u>CL&P and UI Program Savings Documentation</u> for 2008 Program Year.
- 2. The Energy Independence and Security Act (EISA) of 2007 established NEMA Premium as the new standard for all motors.

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010

VARIABLE FREQUENCY DRIVE – FAN AND PUMP

Measure Description

This measure addresses variable frequency drives applied to fans and pumps in commercial and industrial buildings. Applications covered in this section are; AHU supply and return fans, CHW pumps, cooling tower fans, condenser water pumps and heating hot water pumps.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times hp \times (\Delta kWh/hp)$

Peak Coincident Demand Savings

 $\Delta kW = units \times hp \times (\Delta kW/hp) \times CF$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
hp	= Horsepower
$(\Delta kWh/hp)$	= Annual electric energy savings (in kWh) per controlled motor horsepower
$(\Delta kW/hp)$	= Electric demand savings (in kW) per controlled motor horsepower
CF	= Coincidence factor

Summary of Variables and Data Sources

Variable	Value	Notes
hp		Horsepower rating of motor controlled by VFD, from application
		Electric demand savings from VFD per horsepower of motor
(\Delta kW/hp)		controlled. Lookup in <u>Appendix K</u> by building type and VFD
		application. If no deemed savings are specified, $(\Delta kW/hp) = 0$.
		Annual energy savings from VFD per horsepower of motor
(\Delta kWh/hp)		controlled. Lookup in <u>Appendix K</u> by building type, city and VFD
		application.
CF	0.8	

Coincidence Factor (CF)

The recommended value for the coincidence factor is 0.8. ⁴⁶⁴

⁴⁶⁴ *No source specified – update pending availability and review of applicable references.*

Baseline Efficiencies from which Savings are Calculated

The baseline system characteristics by application are as follows:

- Chilled water and hot water pumps:
 - Variable volume, constant speed secondary pumping system
 - Existing pump rides pump curve as flow varies
- Supply fans:
 - VAV system with inlet vane control
- Return fans:
 - VAV system with discharge damper control
- Cooling tower fans:
 - One speed constant volume fan
- Condenser water pumps:
 - Constant speed, constant flow condenser water pumps

Compliance Efficiency from which Incentives are Calculated

The compliance system characteristics by application are as follows:

- Chilled water and hot water pumps:
 - Variable volume, variable speed secondary pumping system
- Supply fans:
 - VAV system with VFD control
- Return fans:
 - VAV system with VFD control
- Cooling tower fans:
 - Variable speed fans controlling condenser water temperature to 85°F
- Condenser water pumps:
 - Variable speed, variable flow condenser water loop

Operating Hours

The annual energy savings from VFD per horsepower of motor controlled ($\Delta kWh/hp$) defined in <u>Appendix K</u> incorporate operating hours consideration.

Effective Useful Life (EUL)

Years: 15 Source: DEER 2014⁴⁶⁵

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts N/A

⁴⁶⁵ CA DEER – 2014 Updated EUL Records.

References

1. California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-07-2014; EUL IDs: HVAC-VSD-fan and HVAC-VSDSupFan.

Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
7-13-12	7/31/2013
9-17-8	9/30/2017

ELECTRONICALLY CONTROLLED BRUSHLESS PERMANENT MAGNET (BPM) MOTORS FOR HVAC CIRCULATION (BLOWER) FAN

Measure Description

Electronically Controlled Brushless Permanent Magnet Motors, also commonly referred to as electronically commutated motors provide increased efficiency by using a micro-processor to obtain variable speed response and improve both efficiency and reliability by means of eliminating friction attributable to brushes. While such technology has been available for some time and available to a wide variety of applications such motors are now being widely adopted by HVAC equipment manufacturers and contractors as a substitute for existing permanent-split capacitor motors. This measure addresses the specific application of BPM motors on a retro-fit basis for circulating fans of one Horsepower (HP) or less in HVAC air distribution equipment employing heating and/or cooling.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = \Delta kWh_{heat} + \Delta kWh_{cool}$

Electric Energy Savings during Cooling Season

 $kWh_{cool} = \frac{(W_{psc} \times \Delta W_{cool})}{1000} \times LF \times EFLH_{cool} \times (1 + HVAC_{c})$

Electric Energy Savings during Heating Season

 $\Delta kWh_{heat} = \frac{(W_{psc} \times \Delta W_{heat})}{1000} \times LF \times EFLH_{heat} \times (1 + HVAC_{c})$

Peak Coincident Demand Savings

$$\Delta kW_{cool} = \frac{(W_{psc} \times \Delta W_{cool})}{1000} \times LF \times CF \times (1 + HVAC_d)$$

where:

∆kWh	= Annual electric energy savings
ΔkWh cool	= Electric energy savings during cooling season
ΔkWh heat	= Electric energy savings during heating season
ΔkW cool	= Peak coincident demand savings
Wpsc	= Baseline PSC motor wattage

ΔW heat	= Energy efficient BPM motor wattage percentage savings, heating season ¹
ΔW cool	= Energy efficient BPM motor wattage percentage savings, cooling season ¹
LF	= Motor load factor
CF	= Coincidence factor
EFLHheat	= Equivalent full load hours during heating season
EFLHcool	= Equivalent full load hours during cooling season
HVACc	= HVAC interactive effects multipliers for annual electric energy
consumption	
HVACd	= HVAC interactive effects multipliers at summer utility peak hour

Variable	Value	Notes		
Wpsc	# Watts	Baseline PSC Motor Wattage Nameplate Data or Default Motor Wattage Value Table		
ΔW heat	23%	Energy Efficient BPM Motor Wattage Percentage Savings During Heating Season		
ΔWcool	38%	Energy Efficient BPM Motor Wattage Percentage Savings During Cooling Season		
LF	0.9	Default Value		
CF	0.8	Default Value		
EFLHheat	# Hours	Appendix G: Equivalent Full Load Hours		
EFLHcool	# Hours	Appendix G: Equivalent Full Load Hours		
HVACc	#	Appendix D: HVAC Interactive Effects		
HVACd	#	Appendix D: HVAC Interactive Effects Multipliers at Summer Utility Peak Hour		
HP	#	Motor Rated Horsepower		

Summary of Variables and Data Sources

Circulation Fan Default Motor Wattage Value Table

Motor Type	Motor Category (Default Output Watts)				
	1/6 HP	1/4 HP	1/3 HP	½ HP	3/4 HP
PSC Motor	311	403	460	713	1150

Coincidence Factor (CF)

The recommended coincidence factor for this measure is 0.8 consistent with all commercial air conditioning applications.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a standard efficiency PSC motor.

Compliance Efficiency from which Incentives are Calculated

The measure is defined as a BPM motor of equivalent HP.

Operating Hours

See <u>Appendix G</u>: Equivalent Full Load Hours for both Heating and Cooling Season Operating Hours.

Effective Useful Life (EUL) Years: 15 Source: <u>Appendix P</u>: Effective Useful Life

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

- Evaluation of Retrofit Variable-Speed Furnace Fan Motors, R. Aldrich and J. Williamson, Consortium for Advanced Residential Buildings, U.S. Department of Energy Building Technologies Office, January 2014
- 2. NIDEC Motor Corporation, Residential and Commercial HVACR Standard Motor Catalog, 2015

Record of Revision

Record of Revision Number	Issue Date
1-16-14	12/31/2015

Refrigeration

AIR-COOLED REFRIGERATION CONDENSER

Measure Description

This measure covers the installation of efficient, close approach remote air-cooled refrigeration system condensers typically found in supermarkets. An approach temperature of 8°F or less for low temperature systems and 13°F for medium temperature systems is required. Additionally, condenser efficiency must be greater than or equal to 85 BTU/hr of heat rejection capacity per watt of fan power. Savings are derived from the reduction in condensing temperatures and improved efficiency of the condenser fan system.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times tons/unit \times (\Delta kWh/ton)$

Peak Coincident Demand Savings

 $\Delta kW = units \times tons/unit \times (\Delta kW/ton) \times CF$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
tons/unit	= Tons of refrigeration per unit, based on compressor nameplate
$(\Delta kWh/ton)$	= Annual electric energy savings per ton of compressor capacity
$(\Delta kW/ton)$	= Electric demand savings per ton of compressor capacity
CF	= Coincidence factor

Summary of Variables and Data Sources

Variable	Value	Notes
tons/unit		From application.
(ΔkWh/ton)		Look up based on city from Energy and Demand Savings table below.
(ΔkW/ton)		Look up based on city from Energy and Demand Savings table below.

Energy and Demand Savings

Unit energy and demand savings were calculated from a DOE-2.2 simulation of a prototypical grocery store. The prototype building characteristics are described in <u>Appendix A</u>. The unit energy and demand savings for seven different cities in NY are shown below.

City	(AkWh/ton)	(AkW/ton)
Albany	1,296	0.136
Binghamton	1,290	0.143
Buffalo	1,297	0.103
Massena	1,301	0.123
NYC	1,220	0.152
Poughkeepsie	1,258	0.144
Syracuse	1,283	0.149

Coincidence Factor (CF)

The recommended value for the coincidence factor is 1.0.466

Baseline Efficiencies from which Savings are Calculated

The baseline condition is assumed to be a standard efficiency air-cooled refrigeration system condenser, with a 15°F approach temperature on low temperature applications and a 20°F approach temperature on medium temperature applications. The baseline condition assumes a standard efficiency of 45 BTU/hr of heat rejection capacity per watt of fan power.⁴⁶⁷

Compliance Efficiency from which Incentives are Calculated

The compliance condition is an efficient air-cooled refrigeration system condenser, with an approach temperature of 8°F or less on low temperature applications and an approach temperature of 13°F or less on medium temperature applications. Condenser efficiency must be greater than or equal to 85 BTU/hr of heat rejection capacity per watt of fan power.⁴⁶⁸

Operating Hours

Refrigeration equipment is assumed to be available for operation 8,760 hours per year.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts N/A

References

 California DEER, 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study, Final Report, Itron, Inc. Vancouver, WA. December, 2005 Available from: <u>www.calmac.org/publications/2004-05_DEER_Update_Final_Report-Wo.pdf</u>

⁴⁶⁶ No source specified – update pending availability and review of applicable references.

⁴⁶⁷ DEER Update Study, Final Report, December 2005. p. 7-69

⁴⁶⁸ DEER Update Study, Final Report, December 2005. p. 7-69

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
3-18-15	3/29/2018

FAN MOTOR – WITH ELECTRONICALLY COMMUTATED (EC) MOTOR, FOR REFRIGERATED CASE OR WALK-IN COOLER

Measure Description

This measure covers replacement of shaded pole or permanent split evaporator fan motors with electronically commutated (EC) motors in walk-in and reach-in refrigerated cases. These high-efficiency motors achieve savings by reducing evaporator fan power and through interactive effects with the system's compressor. EC motors introduce less waste heat into the refrigerated case, reducing the total cooling load.

Method for Calculating Annual Energy and Peak Coincident Demand Savings for Walk-In Coolers/Freezers

Annual Electric Energy Savings

 $\Delta kWh = \Delta kWh_{EFan} + \Delta kWh_{RH}$

 $\Delta kWh_{EFan} = units \times \left(\frac{A_{EFan} \times V_{EFan} \times \sqrt{Phase_{EFan}}}{1,000}\right) \times F_{PA} \times F_{EFan} \times hrs_{EFan}$

 $\Delta kWh_{RH} = \Delta kWh_{EFan} \times Comp_{Eff} \times 0.284$

Peak Coincident Demand Savings

 $\Delta kW = \Delta kW_{EFan} + \Delta kW_{RH}$

$$\Delta k W_{EFan} = units \times \left(\frac{A_{EFan} \times V_{EFan} \times \sqrt{Phase_{EFan}}}{1,000}\right) \times F_{PA} \times F_{EFan} \times CF$$

 $\Delta k W_{RH} = \Delta k W_{EFan} \times Comp_{Eff} \times 0.284$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

∆kWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
ΔkWh_{EFan}	= Annual electric savings due to evaporator fan motor replacement
ΔkWh_{RH}	= Annual electric savings due to reduced heat from evaporator fan motor
	replacement
$\Delta k W_{EFan}$	= Peak coincident demand savings due to evaporator fan motor replacement
$\Delta k W_{RH}$	= Peak coincident demand savings due to reduced heat from evaporator fan motor
	replacement
units	= Number of measures installed under the program
A _{EFan}	= Nameplate amperage of existing evaporator fan motor

V _{EFan}	= Nameplate voltage of existing evaporator fan motor
Phase _{EFan}	= Phase of existing evaporator fan
1,000	= Conversion factor, one kW equals 1,000 W
F _{PA}	= Power adjustment factor
F _{EFan}	= Reduction of load by replacing evaporator fan motor
hrs _{EFan}	= Evaporator fan annual operating hours
Comp _{Eff}	= Efficiency of the cooler/freezer compressor (kW/Ton)
0.284	= Conversion factor from kW to Tons of refrigeration (Tons/kW)
CF	= Coincidence factor

Method for Calculating Annual Energy and Peak Coincident Demand Savings for Refrigerated Cases

Annual Electric Energy Savings

 $\Delta kWh = \Delta kWh_{CM} + \Delta kWh_{RH}$

 $\Delta kWh_{CM} = units \times kVA_{CM} \times F_{CM} \times hrs_{CM}$

 $\Delta kWh_{RH} = \Delta kWh_{CM} \times Comp_{Eff} \times 0.284$

Peak Coincident Demand Savings

 $\Delta kW = \Delta kW_{CM} + \Delta kW_{RH}$

 $\Delta kW_{CM} = units \times kVA_{CM} \times F_{CM} \times CF$

 $\Delta k W_{RH} = \Delta k W_{CM} \times Comp_{Eff} \times 0.284$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

0.284 = Conversion factor from kW to Tons of refrigeration (Tons/kW)

CF = Coincidence factor

Variable	Value	Notes
A _{EFan}		From application
V _{EFan}		From application
PhaseEFan		From application
F_{PA}	0.55	Based on experience of National Resource Management (NRM) ⁴⁶⁹
hrs _{EF}	Cooler Control – 5,600 No Cooler Control - 8,760	Based on experience of NRM ⁴⁷⁰
hrs _{CM}	8,500	Based on experience of NRM ⁴⁷¹
F _{EFan}	0.65	Based on numerous pre and post meter readings conducted by NRM and supported by RLW Analytics evaluation. ⁴⁷²
F _{CM}	Shaded Pole – 0.53 PSC – 0.29	If a shaded pole motor is being replaced, use 0.53. If a PSC motor is being replaced, use 0.29. Based on numerous pre and post meter readings conducted by NRM. ⁴⁷³
Comp _{Eff}	Refrigerated Case – 1.00 Freezer Case - 1.92	Typical refrigeration system efficiency (kW/Ton) ⁴⁷⁴
CF	1.0	

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is 1.0. 475

Baseline Efficiencies from which Savings are Calculated

The baseline case is a walk-in cooler/freezer or refrigerated display case with shaded pole or permanent split capacitor (PSC) evaporator fan motors.

Compliance Efficiency from which Incentives are Calculated

The compliance case is a walk-in cooler/freezer or refrigerated display case with electronically commutated (EC) evaporator fan motors.

⁴⁶⁹ *REVIEW OF UNDERLYING REFERENCE PENDING:* Cooler Control Measure Impact Spreadsheet User's Manual, Select Energy Services, Inc., March 2004

⁴⁷⁰ Ibid.

⁴⁷¹ Ibid.

⁴⁷² Small Business Services, Custom Measure Impact Evaluation, RLW Analytics, Inc., March 2007

⁴⁷³ *REVIEW OF UNDERLYING REFERENCE PENDING:* Cooler Control Measure Impact Spreadsheet User's Manual, Select Energy Services, Inc., March 2004

⁴⁷⁴ Based on CDH Energy evaluation of actual refrigeration system performance for several commercially available compressors, dated 09/06/2017. Values presented reflect average efficiencies of R22 systems.

⁴⁷⁵ No source specified – update pending availability and review of applicable references.

Operating Hours

The annual operating hours of a walk-in cooler or freezer evaporator fan motor is 8,760 when a cooler control system is not a component of the proposed system and 5,600 otherwise. The annual operating hours for a refrigerated display case motor are 8,500.

Effective Useful Life (EUL)

Years: 15 Source: DEER 2014⁴⁷⁶

Ancillary Fossil Fuel Savings Impacts

N/A

Ancillary Electric Savings Impacts

Reduction in evaporator fan power reduces waste heat that must be displaced by the compressor. Interactive effects are addressed in the prescribed energy savings calculation methodology.

References

- 1. *Cooler Control Measure Impact Spreadsheet Users' Manual*, Select Energy Services, Inc. for NSTAR, March 9, 2004
- Small Business Services, Custom Measure Impact Evaluation, RLW Analytics, Inc. for National Grid, March 23, 2007 Available from: <u>https://library.cee1.org/system/files/library/8713/CEE_Eval_2007CustomMeasureImpact_ Evaluation_23Mar2007.pdf</u>
- 3. Power Factor/Adjustment of 0.55, estimate by National Resource Management, based on their experience over the past 15 years.
- 4. Percent reduction (0.65) of load by replacing motors, estimate by National Resource Management based on several pre and post meter readings of installations. This is supported by RLW report for National Grid.
- California Public Utilities Commission: Database for Energy Efficient Resources (DEER) – 2014, Updated-EULrecords_02-05-2014; EUL ID: GrocDisp-FEvapFanMtr. Available from: <u>http://deeresources.com/files/deerchangelog/deerchangelog.html</u>

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
7-13-17	7/31/2013
9-17-9	9/30/2017

Return to Table of Contents

⁴⁷⁶ CA DEER – 2014 Updated EUL Records

Refrigerated Case Night Cover

Measure Description

This measure covers the installation of retractable curtains on open horizontal or multi-deck refrigerated display cases in grocery stores. These covers serve as a barrier between the contents of the refrigerated case and the ambient air during off-business hours. They conserve energy by reducing the infiltration of ambient air into the refrigerated space, thereby reducing the load on the refrigeration system. Grocery stores operating 24 hours per day are not eligible for savings claims.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times TDEC \times ESF \times 365$

Peak Coincident Demand Savings

 $\Delta kW = N/A$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

= Annual electric energy savings
= Peak coincident demand electric savings
= Annual gas energy savings
= Number of display cases addressed by the program
= Total Daily Energy Consumption (kWh/day)
= Energy savings factor
= Days in one year

Variable	Value	Notes
TDEC		Total Daily Energy Consumption (kWh/day), calculate based on Total Display Area (TDA) from table below
ESF	0.09	Energy savings factor associated with installation of refrigerated case night covers ⁴⁷⁷

Coincidence Factor (CF)

Energy savings associated with installation of refrigerated case night covers occur during offpeak hours, so no coincident peak demand savings are deemed for this measure.

⁴⁷⁷ Southern California Edison, Effects of the Low Emissivity Shields on Performance and Power Use of a Refrigerated Display Case, August 1997

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a vertical or horizontal open refrigerated display case left uncovered during off-business hours and meeting the minimum federal energy standards presented in the tables below.⁴⁷⁸ Equipment with an operating temperature above $32^{\circ}F$ is classified as Medium with a rating temperature of $38^{\circ}F$, while equipment with an operating temperature of $32^{\circ}F$ or below is classified as Low with a rating temperature of $0^{\circ}F$. Ice Cream freezers have a rating temperature of $-15^{\circ}F$ and operate at temperatures below $-5^{\circ}F$.

Total Daily Energy Consumption (TDEC) shall be calculated per the table below for the appropriate display case type, configuration and rating temperature. For refrigeration equipment with two or more compartments (i.e. hybrid refrigerators, freezers, refrigerator-freezers and non-hybrid refrigerator freezers), the TDEC shall be established as the sum of the TDEC values associated with each component compartment. Total Display Area (TDA), if unspecified by the manufacturer, should be calculated as:

 $TDA = L \times H$

where:

TDA = Total display area of the open case (ft^2)

L = Length of the display case opening (ft)

H = Height (vertical) or Depth (horizontal) of the display case opening (ft)

<u>xjier Maren 27, 2017</u>			
Equipment Family	Condensing Unit Configuration	Rating Temperature	TDEC (kWh/day)
Vertical Open	Remote Condensing	Medium (38°F)	0.64 x TDA + 4.07
Vertical Open	Remote Condensing	Low $(0^{\circ}F)$	2.20 x TDA + 6.85
Vertical Open	Remote Condensing	Ice Cream (-15°F)	2.79 x TDA + 8.70
Vertical Open	Self-Contained	Medium (38°F)	1.69 x TDA + 4.71
Vertical Open	Self-Contained	Low (0°F)	4.25 x TDA + 11.82
Vertical Open	Self-Contained	Ice Cream (-15°F)	5.40 x TDA + 15.02
Horizontal Open	Remote Condensing	Medium (38°F)	0.35 x TDA + 2.88
Horizontal Open	Remote Condensing	Low $(0^{\circ}F)$	0.55 x TDA + 6.88
Horizontal Open	Remote Condensing	Ice Cream (-15°F)	0.70 x TDA + 8.74
Horizontal Open	Self-Contained	Medium (38°F)	0.72 x TDA + 5.55
Horizontal Open	Self-Contained	Low (0°F)	1.90 x TDA + 7.08
Horizontal Open	Self-Contained	Ice Cream (-15°F)	2.42 x TDA + 9.00

<u>Baseline Efficiencies for Refrigerators, Freezers, or Refrigerator-freezers manufactured on or</u> after March 27, 2017

⁴⁷⁸ 10 CFR 431.66(e)(1)

March 27, 2017			
Equipment Family	Condensing Unit Configuration	Rating Temperature	TDEC (kWh/day)
Vertical Open	Remote Condensing	Medium (38°F)	$0.82 \times TDA + 4.07$
Vertical Open	Remote Condensing	Low $(0^{\circ}F)$	$2.27 \times TDA + 6.85$
Vertical Open	Remote Condensing	Ice Cream (-15°F)	$2.89 \times TDA + 8.7$
Vertical Open	Self-Contained	Medium (38°F)	$1.74 \times TDA + 4.71$
Vertical Open	Self-Contained	Low $(0^{\circ}F)$	$4.37 \times TDA + 11.82$
Vertical Open	Self-Contained	Ice Cream (-15°F)	$5.55 \times TDA + 15.02$
Horizontal Open	Remote Condensing	Medium (38°F)	$0.35 \times TDA + 2.88$
Horizontal Open	Remote Condensing	Low $(0^{\circ}F)$	$0.57 \times TDA + 6.88$
Horizontal Open	Remote Condensing	Ice Cream (-15°F)	$2.44 \times TDA + 9.00$
Horizontal Open	Self-Contained	Medium (38°F)	$0.77 \times TDA + 5.55$
Horizontal Open	Self-Contained	Low $(0^{\circ}F)$	$1.92 \times TDA + 7.08$
Horizontal Open	Self-Contained	Ice Cream (-15°F)	$2.44 \times TDA + 9.00$

Baseline Efficiencies for Refrigerators, Freezers, and Refrigerator-freezers manufactured before March 27, 2017

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a vertical or horizontal open refrigerated display case with retractable night covers installed.

Operating Hours

Energy savings are based on installation of refrigerated case night covers in an 18-hour⁴⁷⁹ supermarket assumed to operate 365 days per year. Therefore, the annual hours that night covers are assumed to be in use are $(24 - 18) \times 365 = 2,190$ hours.

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

Reduction in heat transfer between the refrigerated case and the ambient air will result in a small reduction in space heating requirements. This impact is negligible and occurs only during unoccupied hours, so is not considered in this methodology.

Ancillary Electric Savings Impacts

Reduction in heat transfer between the refrigerated case and the ambient air will result in a small reduction in space heating requirements and a small increase in cooling requirements. This impact is negligible and occurs only during unoccupied hours, so is not considered in this methodology.

References

1. Southern California Edison, Effects of the Low Emissivity Shields on Performance and Power Use of a Refrigerated Display Case, August 1997 Available from: http://www.econofrost.com/acrobat/sce_report_long.pdf

⁴⁷⁹ Southern California Edison, Effects of the Low Emissivity Shields on Performance and Power Use of a Refrigerated Display Case, August 1997

2. 10 CFR 431.66 Energy conservation standards and their effective dates. Available from: <u>https://www.ecfr.gov/cgi-bin/text-</u>idx?SID=991ee62d32fb598ccb945f43a316ff32&mc=true&node=pt10.3.431&rgn=div5#s e10.3.431_166

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
3-18-4	3/29/2018

FREEZER AND COOLER DOOR STRIP

Measure Description

This measure covers the repair or replacement of existing damaged or missing strip curtains on walk-in freezers and coolers with a chilled storage area of less than 3000ft^{2.480} Strip curtains on both walk-in freezers ($\leq 32^{\circ}$ F) and walk-in coolers ($> 32^{\circ}$ F and $\leq 55^{\circ}$ F) serve to prevent air infiltration during periods when the main door is open for routine stocking activity. When damaged or missing, the warmer, more humid air present in the store will infiltrate the unit, increasing the load of the refrigeration system and often reducing the efficiency of the evaporator unit as frost accumulates, impairing its effectiveness. This measure applies to strip curtains on the main door of walk-in units typical of supermarkets, convenience stores and restaurants.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times SF_{door} \times (\Delta kWh/SF)$

Peak Coincident Demand Savings

$$\Delta kW = SF_{door} \times \frac{(\Delta kWh/SF)}{hrs} \times CF$$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
SF _{door}	= Area of cooler or freezer door opening, in square feet
$(\Delta kWh/SF)$	= Annual electric energy savings per square foot of door opening
hrs	= Annual cooler or freezer operating hours per year
CF	= Coincidence Factor

Variable	Value	Notes
SF _{door}		From application.
ALW/b/SE		Look up in Deemed Savings table below based on case
		type and application.
hra		Lookup from table in Operating Hours section below
111.5		based on case type and application.
CF	1.0	

480 10 CFR 431.302

Case Type	Application	ΔkWh/SF
Cooler ($> 32^{\circ}$ F)	Supermarket	159
	Restaurant	18
	Convenience Store	14
Freezer (\leq 32 °F)	Supermarket	409
	Restaurant	77
	Convenience Store	16

Deemed Savings $(\Delta kWh/SF)^{481}$

Coincidence Factor (CF)

The recommended coincidence factor for this measure is 1.0^{482}

Baseline Efficiencies from which Savings are Calculated

The baseline condition efficiency is a walk-in cooler or freezer door with damaged or missing strip curtains in excess of 15% of the door area.⁴⁸³

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a walk-in cooler or freezer with repaired or replaced strip curtains covering the entire open door area.

Operating Hours

Annual hours during which the door is open and strip curtains are therefore preventing heat exchange between the refrigerated case and ambient air is used to determine an estimate of associated demand savings. Prescribed annual hours for formulation of demand savings are provided in the table below.⁴⁸⁴

Case Type	Application	hrs
	Supermarket	803
Cooler ($> 32^{\circ}$ F)	Restaurant	620
	Convenience Store	230
	Supermarket	55
Freezer (\leq 32 °F)	Restaurant	270
	Convenience Store	230

⁴⁸¹ ADM Associates, Inc. Commercial Facilities Contract Group 2006-2008 Direct Impact Evaluation, Table 6-3, p. 6-6.

⁴⁸² *No source specified – update pending availability and review of applicable references.*

⁴⁸³ ADM Associates, Inc. Commercial Facilities Contract Group 2006-2008 Direct Impact Evaluation, p. 6-10

⁴⁸⁴ ADM Associates, Inc. Commercial Facilities Contract Group 2006-2008 Direct Impact Evaluation, Table 6-5, p.6-10

Effective Useful Life (EUL)

See <u>Appendix P</u>.

Ancillary Fossil Fuel Savings Impacts

Reduction in heat transfer between the refrigerated case and ambient air during periods when the main door is open will result in a small reduction in space heating requirements and a small increase in cooling requirements. This impact is negligible and is not considered in this methodology.

Ancillary Electric Savings Impacts

Reduction in heat transfer between the refrigerated case and ambient air during periods when the main door is open will result in a small reduction in space heating requirements and a small increase in cooling requirements. This impact is negligible and is not considered in this methodology.

References

- 10 CFR 431.302 Definitions concerning walk-in coolers and walk-in freezers. Available from: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=863517ec5f69fb78dad68864aa84c128&mc=true&n=pt10.3</u>.431&r=PART&ty=HTML#se10.3.431_1302
- ADM Associates, Inc. "Commercial Facilities Contract Group 2006-2008 Direct Impact Evaluation," California Public Utilities Commission Energy Division, February 18, 2010. Available from: <u>http://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02-18-</u>

2010.pdf

Record of Revision

Record of Revision Number	Issue Date
1-16-16	12/31/2015
3-18-16	3/29/2018
FREEZER AND COOLER DOOR GASKETS

Measure Description

Door Gaskets on both freezers (AKA low temperature) or coolers (AKA medium temperature) refrigerated reach-in display cases are subject to damage due to normal use and/or the failure of anti-condensate heater elements. When damaged and/or missing the warmer, more humid air, present in the store will infiltrate the case increasing the demands on the electrical energy consumed by the refrigeration system and often reducing the efficiency of the evaporator unit as frost accumulates impairing its effectiveness. This measure applies to gaskets on both reach-in doors and the main door of walk-in units typical of supermarkets, convenience stores, and restaurants.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh_{cooler} = LF_{door} \times \Delta kWh_{cooler,per LF}$

 $\Delta kWh_{freezer} = LF_{door} \times \Delta kWh_{freezer,per\,LF}$

Peak Coincident Electric Demand Savings

 $\Delta kW_{cooler} = LF_{door} \times \frac{\Delta kWh_{cooler,per\,LF}}{8760} \times CF$

 $\Delta kW_{freezer} = LF_{door} \times \frac{\Delta kWh_{freezer,per LF}}{8760} \times CF$

Annual Gas Energy Savings N/A

where:

ΔkWh cooler	= Annual electric energy savings for cooler
ΔkWh freezer	= Annual electric energy savings for freezer
ΔkWh cooler, per LF	= Annual electric energy savings for cooler door gasket per foot
ΔkWh freezer, per LF	= Annual electric energy savings for freezer door gasket per foot
ΔkW cooler	= Peak coincident electrical demand savings for cooler
ΔkW freezer	= Peak coincident electrical demand savings for freezer
CF	= Coincidence Factor
LFdoor	= Linear Feet Damaged / Missing Door Gasket

Variable	Value	Notes
		Annual Energy Savings Attributable to
Al-W/b	20 kWh/Linear	Replacement
ΔK vv IIcooler	Foot	Door Gasket at a Cooler (> 32° F), Missing /
		Damaged Weighted Average ¹
		Annual Energy Savings Attributable to
∆kWhfreezer	152 kWh/Linear	Replacement
	Foot	Door Gasket at a Freezer (< 32° F), Missing /
		Damaged Weighted Average ¹
CF	0.8	Default Value
LFdoor	# I E	Length of Damaged or Missing Gaskets expressed
	# LF	as Linear Feet

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended coincidence factor for this measure is 0.8 consistent with all commercial air conditioning applications.

Baseline Efficiencies from which Savings are Calculated

The baseline efficiency is premised on a door with damaged and or missing gaskets. A weighted average is used to proportion energy savings between both these conditions premised on the survey results conducted by the referenced study, Table 5-4.

Compliance Efficiency from which Incentives are Calculated

The compliance efficiency is premised on the replacement of the entire door gasket so as to achieve a minimum 1.5% or less infiltration rate.

Operating Hours

N/A

Effective Useful Life (EUL)

Years: 4 Source: ADM Evaluation

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1. ADM Associates, Inc. "Commercial Facilities Contract Group 2006-2008 Direct Impact Evaluation" February 18, 2010, California Public Utilities Commission Energy Division <u>http://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02-18-</u> 2010.pdf

Record of Revision

Record of Revision Number	Issue Date
1-16-17	12/31/2015

Return to Table of Contents

Refrigeration - Control

ANTI-CONDENSATION HEATER CONTROL

Measure Description

This measure covers the installation of anti-condensation heater controls on glass door reach-in refrigerated cases. These controls save energy by reducing door heater run times based on feedback from door moisture sensors or dew point calculated via indoor air temperature and humidity sensors. Additional savings are achieved through interactive effects with the system's compressor. By running less often, door heaters emit less heat that must be overcome by the compressor. There are two primary categories of anti-condensation heater controls – (1) on/off controls and (2) pulse modulating controls. On/off controls cycle door heaters for several minutes at a time whereas pulse modulating controls pulse the door heaters at varying frequencies to satisfy calls for heating.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = (kW_{DH} \times hrs_{baseline}) - (kW_{DH} \times F_{PA} \times hrs_{ee})$

Peak Coincident Demand Savings

 $\Delta kW = kW_{DH} \times F_{hrs} \times DF$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
kW _{DH}	= Total power of door heaters (in kW)
hrs	= Operating hours
baseline	= Baseline condition or measure
ee	= Energy efficient condition or measure
FPA	= Power adjustment factor
Fhrs	= Operating hours reduction factor
DF	= Demand diversity factor

Variable	Value	Notes
kW _{DH}		From application, calculated based on door heater nameplate voltage and amperage.
hrs _{baseline}	8,760	Pre-installation operating hours; assumes 24/7, year-round operation of door heaters
hrs _{ee}	Coolers - 3,760 Freezers – 8,760	Post-installation operating hours. Freezer hours assume 24/7, year round operation of door heaters and varying power factors. Cooler hours estimated by National Resource Management (NRM) based on monitoring data collected of cooler door heater controls. ⁴⁸⁵
FPA	Coolers – 0.60 Freezers – 0.54	Average operating percentage of total door heater power after installation. Estimated by NRM based on monitoring data collected of cooler and freezer door heater controls. F _{PA} for freezers is calculated based on 4,000 hours of operation at 40% power and 4,760 hours at 65%. ⁴⁸⁶
F _{hrs}	Coolers - 0.74 Freezers – 0.46	Annual operating hour reduction factor. Estimated by National Resource Management (NRM) based on monitoring data collected of cooler and freezer door heater controls. ⁴⁸⁷
DF	0.75	Estimated adjustment to account for diversity and peak coincidence. ⁴⁸⁸

Summary of Variables and Data Sources

Coincidence Factor (CF)

The recommended value for the coincidence factor is N/A. Adjustments to account for peak coincidence are embedded in the demand diversity factor defined above.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a glass door reach-in refrigerated case anti-condensation heaters without temperature/humidity sensing controls.

Compliance Efficiency from which Incentives are Calculated

The compliance case is a glass door reach-in refrigerated case with on/off or pulse modulating anti-condensation heater controls installed.

Operating Hours

Anti-condensation door heaters without automated controls operate 24/7 year-round (8,760 hours annually). Operating hours for the compliance case are as specified above.

⁴⁸⁵ *REVIEW OF UNDERLYING REFERENCE PENDING:* Cooler Control Measure Impact Spreadsheet User's Manual, Select Energy Services, Inc., March 2004

⁴⁸⁶ Ibid.

⁴⁸⁷ Ibid.

⁴⁸⁸ Ibid.

Effective Useful Life (EUL) Years: 12 Source: DEER 2014⁴⁸⁹

Ancillary Fossil Fuel Savings Impacts

Reduction of door heater operation will slightly increase space heating load. However, these impacts are negligible and not considered at this time.

Ancillary Electric Savings Impacts

Reduction in door heater operation reduces heat that must be displaced by the compressor. Interactive effects are addressed in the prescribed energy savings calculation methodology.

References

- 1. National Resource Management monitoring data pending review.
- 2. Cooler Control Measure Impact Spreadsheet Users' Manual, Select Energy Services, Inc. for NSTAR, March 9, 2004
- 3. California Public Utilities Commission: Database for Energy Efficient Resources (DEER) 2014, Updated-EULrecords_02-07-2014; EUL ID: GrocDisp-ASH. Available from: http://deeresources.com/files/deerchangelog/deerchangelog.html

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
9-17-10	9/30/2017

Return to Table of Contents

⁴⁸⁹ CA DEER – 2014 Updated EUL Records

EVAPORATOR FAN CONTROL

Measure Description

This measure covers the installation of on/off or multispeed controls on electronically commutated or shaded pole evaporator fan motors in walk-in refrigerated cases. Evaporator fans in walk-in coolers and freezers that are not equipped with controls operate at constant speed continuously, even when there is no call for refrigeration and the compressor is idle. Installation of controls allows for modulation of evaporator fans, reducing fan speed or turning them off when the compressor is not running. Reduction in energy consumption results from reduced run time of the evaporator fans as well as reduction in waste heat due to fan operation that must be rejected by the system.

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times hp \times (\Delta kWh/hp)$

Peak Coincident Demand Savings

 $\Delta kW = units \times hp \times (\Delta kW/hp)$

Annual Gas Energy Savings

 $\Delta therms = N/A$

where:

= Annual electric energy savings
= Peak coincident demand electric savings
= Annual gas energy savings
= Number of evaporator fans controlled
= Horsepower per evaporator fan
= Annual electric savings per evaporator fan horsepower
= Peak coincident demand electric savings per evaporator fan horsepower

Variable	Value	Notes
hp		From application. If unknown, assume 1/15 hp. ⁴⁹⁰
(\Delta kWh/hp)		Lookup from Deemed Savings table below based on case
		type, evaporator fan motor type and proposed control type.
(\Delta kW/hp)		Lookup from Deemed Savings table below based on case
		type, evaporator fan motor type and proposed control type.

Summary of Variables and Data Sources

⁴⁹⁰ Cadmus, Commercial Refrigeration Loadshape Project, October 2015, pg. 6

Case Type	Motor Type	Control Type	ΔkWh/hp	ΔkW/hp
Cooler	Shaded Pole	On/Off	8,650	0.776
		Multispeed	7,224	0.741
	ECM	On/Off	3,142	0.282
		Multispeed	2,624	0.269
Freezer	Shaded Pole	On/Off	10,991	0.990
		Multispeed	9,178	0.945
	ECM	On/Off	3,992	0.360
		Multispeed	3,334	0.343

Deemed Savings $(\Delta kWh/hp \text{ and } \Delta kW/hp)^{491}$

Coincident Factor (CF)

Demand savings provided in the table above represent peak coincident summer demand savings. Coincidence factor is embedded in deemed savings values; therefore, no coincidence factor is independently prescribed.

Baseline Efficiencies from which Savings are Calculated

The baseline condition is a walk-in cooler or freezer with shaded pole or electronically commutated evaporator fan motors that operate continuously at constant speed (i.e. with no controls installed).

Compliance Efficiency from which Incentives are Calculated

The compliance condition is a walk-in cooler or freezer with shaded pole or electronically commutated evaporator fan motors equipped with on/off or multispeed evaporator fan controls.

Operating Hours

Annual evaporator fan operating hours for the baseline and proposed case are embedded in the deemed savings values provided above. It is assumed that evaporator fans without controls have an effective full load annual run time of 97.8% x 8,760 = 8,567 hours. The effective full load annual run time of evaporator fans with on/off control are assumed to be $63.6\% \times 8,760 = 5,571$ hours, while the effective full load annual run time of evaporator fans with multispeed control are assumed to be $69.2\% \times 8,760 = 6,062$ hours.

Effective Useful Life (EUL) See Appendix P.

Ancillary Fossil Fuel Savings Impacts N/A

Ancillary Electric Savings Impacts N/A

 $^{^{491}}$ Δ kW/hp savings are calculated by dividing Summer Peak Savings (W/hp) by 1000W/kW to convert it to the appropriate units. Cadmus, Commercial Refrigeration Loadshape Project, October 2015, pg. 10.

References

1. Cadmus, Commercial Refrigeration Loadshape Project, October 2015 Available from: <u>www.neep.org/file/3530/download?token=NnVjANtf</u>

Record of Revision

Record of Revision Number	Issue Date
1	10/15/2010
7-13-16	7/31/2013
1-16-8	12/31/2015
3-18-5	3/29/2018

Return to Table of Contents

CUSTOM MEASURES

This section is designed to provide New York's program administrators (PAs) with additional clarification of the DPS review and oversight procedures for custom measures and applications. The overriding DPS goal is to conduct its oversight responsibilities in a manner that protects ratepayer dollars without unduly limiting the ability of PAs to meet their energy savings goals and administer their programs effectively.

The PAs have the responsibility to develop accurate and unbiased estimates of energy savings of custom projects including addressing quality control, project application review, and energy savings calculations. The processes used by PAs to meet these responsibilities will be reviewed by DPS to ensure accountability and transparency. To minimize the impact on the delivery of services through currently operating programs, PAs may continue to operate their programs while the DPS review process is ongoing.

DEFINITIONS

Quality Control (QC) – Policies and procedures established by the PA to ensure the quality of the energy efficiency measures and services delivered to customers. Quality control activities may include factors such as the minimum requirements for energy calculations, model calibration to billing data, application review criteria, reporting requirements, pre and/or post inspections, measurement and verification (M&V) of energy savings, and qualifications of service providers.

Quality Assurance (QA) – Third party verification activities that ensure QC policies and procedures established by the PAs are working as intended, and provide recommendations for modification of QC policies and procedures as necessary.

Prescriptive Measure – Measure which is offered within specific efficiency programs with a prescribed incentive amount or level for all customers participating in the applicable programs. Not all prescriptive measures are necessarily prequalified (i.e., approved by the DPS for offering within a program).

Prequalified Measure – Measure reviewed for cost-effectiveness by the DPS and approved for offering within a program. All prequalified measures are prescriptive measures, but it is the responsibility of the PAs to ensure that all prequalified measures are cost effective within their programs.

Custom Measure – The traditional definition of a custom measure involves unique, and often complex, technologies and processes installed in large facilities. A detailed engineering analysis is usually required and incentives are offered based on the site-specific expected energy savings and costs. Energy savings are estimated using a site-specific engineering analysis. The engineering analysis technique is chosen based on the measure and facility type with the calculations driven by site and measure-specific data. For our purposes, this category also covers infrequently implemented measures or applications that are not listed in an existing prescriptive program.

EEPS/SBC CUSTOM MEASURES

(Four Categories)

For the EEPS and SBC energy efficiency programs custom measures includes the following four categories:

Measures that are not included in the Tech Manual and are unique to a specific nonstandard process or application, as application conditions can substantially change from project to project. For example, this category might include custom industrial processes, snowmaking, and computer chip fabrication facilities.

Measures that are not in category 1, including prescriptive measures that are promoted by the programs, but are not included in the Tech Manual. Examples in this category include EC motors on HVAC system fans and indirect water heaters.

Measures that are in the Tech Manual, but that are installed in a different environment or have a different use conditions than those assumed in the Tech Manual. Examples in this category include certain comprehensive chiller and cooling tower upgrades.

Measures that are in the Tech Manual, but that require simulation modeling or other advanced approaches in order to estimate interactive effects within a facility (if different from category 3). Examples in this category include whole-building performance programs addressing single and multi-family projects and commercial new construction.

CATEGORY 1 – UNIQUE MEASURES/PROJECTS

This section outlines the DPS's policy for reviewing quality control and quality assurance policies and procedures for programs offering measures unique to a specific non-standard process or application.

Critical review of the project energy savings projections and costs is essential to ensure projects are cost-effective and deliver the expected savings. This is especially important for one-of-a-kind projects, where the savings are large, and the expertise needed to understand and verify energy savings projections is specialized. DPS expects that the PAs will utilize an internal process for reviewing and approving large custom projects including screening for cost-effectiveness. DPS will review this process for completeness and transparency. PAs offering large custom incentive programs must also submit their QC and QA processes to the DPS for review. Any issues resulting from these reviews will be reported to the PAs, along with a list of requirements and a schedule for resolving these issues. The QC and QA functions may be staffed internally or provided by outside contractors. Contractors must possess appropriate certification and demonstrated expertise in the technology or processes proposed for the project. As a component of the QC and QA process review, the qualifications of contractors will be reviewed by the DPS.

If the PA has an existing impact evaluation study capable of informing the energy savings of a custom measure(s), this study may serve as the basis for reporting energy savings, provided the study is reviewed by DPS and meets current EEPS evaluation guidelines and standards.

In order to keep the DPS informed of projects and to assist in its review, the PAs will submit monthly reports showing the progress of all "unique" custom projects in the review and approval pipeline. The report must include a description of customer type and the proposed project, the stage of development, energy and demand savings estimates including baseline assumptions, and the expected approval and construction schedule. The DPS, at its discretion, will review selected projects. The DPS will inform the PAs of its intent to review selected projects and provide the PAs with a review schedule.

As part of the PAs evaluation plan, PAs must conduct impact evaluation on a sample of these custom projects to verify the energy savings claims. Staff may require a project specific impact evaluation for very large projects. Realization rates will be reviewed and possibly revised as evaluation studies provide more data.

<u>Category 2 – Measures Including Prescriptive Measures Not in the Tech</u> <u>Manual</u>

The DPS understands that PAs are offering, or will be offering, incentives for measures not included in the Tech Manual. It is the responsibility of the PAs to ensure that all measures are cost effective. The DPS will review the calculation procedures used by the PAs to estimate energy savings, set incentive levels, and show cost-effectiveness. The calculation reviews will be used to verify savings claims and cost-effectiveness, reconcile differences between PAs offering similar measures, and along with results from impact evaluations, inform updates of the Tech Manuals.

PAs must submit calculations for review in a timely manner. The DPS will establish a priority for reviewing these calculations based on the expected number of program applications and the expected uncertainty in the energy savings estimates. PAs can report energy savings using their internal estimates prior to the completion of the calculation reviews. Once the reviews are completed and the energy savings adjustments are identified, the DPS will establish a schedule for incorporating the revised energy savings estimates into the reporting process.

<u>Category 3 – Measures in Tech Manual but Used in a Different</u> <u>Application/Environment</u>

The DPS will review the PAs processes for reviewing and approving these custom installations, along with the associated QC and QA policies and procedures. Project review and approval must include a cost-effectiveness screening for each custom project. The QC and QA functions may be staffed internally or provided by outside contractors. Contractors must possess appropriate certification and demonstrated expertise in the technology or processes proposed for the project. As a component of the QC and QA process review, the qualifications of contractors will be reviewed by the DPS.

If the PA has an existing impact evaluation study capable of informing the energy savings of a custom measure(s), this study may serve as the basis for reporting energy saving provided that the study is reviewed by the DPS and the meets current EEPS evaluation guidelines and standards.

The DPS will review procedures used to verify energy savings and approve projects for incentives. Processes used to establish project baselines and energy savings, including engineering analysis tools and simulation software, will be reviewed by the DPS. The DPS may review a sample of project energy savings and cost-effectiveness calculations to check compliance with the approved internal QC processes. Any issues resulting from DPS reviews will be reported to the PAs, along with a list of requirements and a schedule for resolving these issues.

As part of the evaluation plan, PAs must conduct impact evaluations on at least a sample of custom measures to verify the savings claims. Staff may require a project specific impact evaluation for very large projects. Realization rates will be reviewed by the DPS and possibly revised as evaluation studies provide more data.

CATEGORY 4 – WHOLE-BUILDING ANALYSIS

The whole-building approach is commonly applied to new construction projects (both residential and commercial) and specialized retrofit programs such as the Home Performance with Energy Star. These programs use a building energy simulation model to calculate energy savings for a combination or "package" of measures. The building energy simulation models are informed by detailed building audits and may include building diagnostic testing to identify energy savings opportunities.

Many of the PAs have developed internal processes for reviewing and verifying savings estimates developed under the whole-building analysis approach. PAs offering programs utilizing the whole-building approach must submit their QC and QA processes to the DPS for review. Any issues resulting from DPS reviews will be reported to the PAs along with a list of requirements and a schedule for resolving these issues. The QC and QA functions may be staffed internally or provided by outside contractors. Contractors must possess appropriate certification and demonstrated expertise in whole-building performance analysis. As a component of the QC and QA process review, the qualifications of contractors will be reviewed by the DPS.

The DPS will review the processes used to establish project baselines and energy savings estimates, including requirements for calibrating models to measured data or benchmarking results to established energy metrics. This effort will include a review of analysis tools and simulation software including the administrator's expertise in their application. Evidence of certifications by a third party organization such as the Building Performance Institute or RESNET would be helpful and should be provided by the PA, if available. At the discretion of the DPS, a sample of project energy savings and cost-effectiveness calculations will be reviewed to check compliance with the approved internal QC processes.

Since the measures contained within the package can influence and interact with each other, the whole building analysis gives a good representation of the savings of the overall package of measures, but does not necessarily provide the information needed to understand the contributions of individual measures to the total savings estimate. It is also difficult to isolate the costs of each energy savings measure from the total project cost (especially in new construction projects). As a result, individual measure costeffectiveness screening is difficult to conduct within a whole-building analysis framework. Although the overall project may be cost effective, there may be "cross subsidies", where highly cost effective measures are compensating for the lack of costeffectiveness of other measures. Each measure should be cost effective on its own.

As part of the PAs evaluation plan, PAs must conduct impact evaluation on at least a sample of custom projects to verify the savings claims. Staff may require a project specific impact evaluation for very large projects. Realization rates will be reviewed and possibly revised as evaluation studies provide more data.

Recommended Application Review and QC Procedures for Custom Programs As stated above, the DPS will conduct reviews of the application review and QC procedures in place for custom programs. The following tables provide a list of issues the application review QC procedures for custom programs should address.

Issue	Criteria
Baseline definition	List the criteria used to define the project baseline. The
	DPS will issue further clarification on baseline
	requirements in a separate document.
Energy savings calculation	List acceptable calculation methods, including approved
methods	building energy simulation models and other software
Calibration	Define when calculations must be calibrated with
	measured data. The acceptable sources of measured data
	should be defined. The calibration statistics in terms of
	allowable deviation between calculations and measured
	data should be defined along with allowable adjustment
	ranges on important input parameters.
Calculations outside of	When approved tools are required, list restrictions on
approved tools	calculations that can be performed outside of the tools.
Simulation guidelines	Provide general guidance on acceptable modeling
	practices for building energy simulation models.
Field measurement	List requirements for field measurements that must be
requirements	taken and included in the measure savings calculation
	process.

Energy Savings Calculations

Application Review Process

Issue	Criteria
Program applicability	Check that the application meets each of the program
	applicability requirements.
Measure cost requirements	Provide guidance on acceptable sources and processes
	for estimating measure costs. Clarify the need for full
	measure costs and incremental costs, and breakdowns by
	labor and materials as required.

Issue	Criteria	
Cost-effectiveness	Provide guidance on how cost-effectiveness calculations	
calculation method	should be done, including the required formulas and data	
	sources. Spreadsheets and other software tools	
	conforming to approved cost-effectiveness calculation	
	procedures may be used to meet this requirement.	
Consideration of non-	Describe requirements for identifying and quantifying	
energy benefits (NEBs)	expected non-energy benefits as applicable.	
Application approval	Describe the application review procedures, including	
procedures	the affiliations and qualifications of reviewers.	

Project	OC Pro	cedures
1 10/001	$\mathcal{Q}\mathcal{C}$ I \mathcal{D}	<i>ccuncs</i>

Issue	Criteria		
Sampling requirements	Describe sampling procedures used to review projects,		
	including numbers of projects reviewed and the		
	distribution of the sample across contractors and		
	consultants. Describe sampling procedures for		
	measures within a particular project as required.		
Pre Inspections	Describe requirements for pre-installation inspections,		
	including data collection requirements and the role of		
	pre-installation inspections in the energy savings		
	calculations.		
Post inspections	Describe requirements for post-installation inspections,		
-	including data collection requirements and the role of		
	post-installation inspections in the energy savings		
	calculations, measure verification and incentive		
	payment release.		
Performance testing	Describe requirements for performance testing of		
_	measures as a component of post-installation measure		
	installation verification and incentive payment release.		
Commissioning	Describe requirements for project or building		
	commissioning as applicable, including review and		
	approval of commissioning plans and qualifications of		
	commissioning agents and/or service providers.		
M&V	Describe post-installation M&V requirements and the		
	role of M&V in project verification and incentive		
	payment release.		
Contractor certification	Describe certification requirements for contractors		
	providing project construction and quality control		
	services.		
Minimum experience	In addition to certifications, any minimum experience		
	requirements for contractors should be listed.		
Training	List requirements for ongoing training.		
PA notification requirements	Protocols for informing a PA representative of issues		
	with project quality should be described.		

sonsunan ge i roccurres		
Issue	Criteria	
Reporting requirements	Minimum requirements for consultant reports should be	
	described.	
Report review and approval	The report review procedures and affiliations and	
	qualifications of report reviewers should be described.	
Evaluation criteria	Evaluation criteria for consultant QC reviews should be	
	listed.	
Sampling requirements	Sampling procedures for consultant QC reviews should	
	be described.	
Consultant certifications	Certification requirements for consultants should be	
	listed.	
Consultant skills and	Beyond basic certification requirements, a description of	
experience	the skill and experience requirements for consultants	
	should be listed.	
PA notification	Protocols for informing a PA representative of issues	
requirements	with consultant services quality should be described.	

Consultant QC Procedures

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

Return to Table of Contents

APPENDIX A

BUILDING TYPES

The sections that follow provides savings data by building type. A description and additional details of each building type is shown in the table below and the sections that follow.

Note: the building type classifications are defined primarily by activity, HVAC system type, and number of floors since the deemed parameters in the Tech Manual are generally normalized to equipment or measure size.

Building Type	Description			
	Public buildings that include community centers, libraries, performance and movie			
Assembly	theaters, auditoria, police and fire stations, gymnasia, sports arenas, and			
Auto	Repair shops and auto dealerships including parking lots and parking structures			
	Single story, high-bay retail stores with ceiling heights of 25 feet or more. Majority			
	of floor space is dedicated to non-food items, but could include refrigerated and			
Big Box	non-refrigerated food sales areas.			
	Community college campus and post-secondary technical and vocational education			
	buildings, including classroom, computer labs, dining and office. Conditioned by			
Community College	packaged HVAC systems			
Dormitory	College or University dormitories			
Fast Food	Self-service restaurants with primarily disposable plates, utensils etc.			
Full Service	Full service restaurants with full dishwashing facilities			
Restaurant				
Grocery	specialty food sales			
Clotely	Single or multistory buildings containing industrial processes including nump			
	stations water and wastewater treatment plants: may be conditioned or			
Heavy Industrial	unconditioned.			
	Inpatient and outpatient care facility conditioned by built-up HVAC systems.			
Hospital	Excludes medical offices			
	Multifunction lodging facility with guest rooms, meeting space, foodservice			
Hotel	conditioned by built-up HVAC system			
Industrial	Refrigerated warehouses and food processing facilities maintained at space			
Refrigeration	temperatures of 55 °F or less.			
T 0.07	Office space in buildings greater than 3 stories conditioned by built-up HVAC			
Large Office	system.			
	Single story work space with heating and air-conditioning; conditioned by packaged			
Light Industrial	HVAC systems Multi family building with more than 2 stories canditioned by built up UVAC			
Multi family high rise	system			
Multi family low rise	Multi-family building with 3 stories or less conditioned by packaged HVAC system			
Wulti-failing low-fise	Lodging facilities with primarily quest room space served by packaged HVAC			
Motel	systems			
Multi Story Retail	Retail building with 2 or more stories served by built-up HVAC system			
Primary School	K-8 school			
Religious	Religious worship			
Secondary School	9-12 school			

Building Type	Description		
Single-family	Single-family detached residences		
residential			
	Office occupancy in buildings 3 stories or less served by packaged HVAC systems;		
Small Office	includes Medical offices		
	Single story retail with ceiling height of less than 25 feet; primarily non-food retail		
	and storage areas served by packaged HVAC systems. Includes service businesses,		
Small Retail	post offices, Laundromats, and exercise facilities.		
	University campus buildings, including classroom, computer labs, biological and/or		
	chemical labs, workshop space, dining and office. Conditioned by built-up HVAC		
University	systems		
	Primarily non-refrigerated storage space could include attached offices served by		
Warehouse	packaged HVAC system.		

Note: for commercial buildings that cannot be reasonably associated with one the building types above, savings values for the "other" category should be used.

PROTOTYPICAL BUILDING DESCRIPTIONS

Residential Building Prototypes

Analysis used to develop parameters for the energy and demand savings calculations are based on DOE-2.2 simulations of a set of prototypical residential buildings. The prototypical simulation models were derived from the residential building prototypes used in the California Database for Energy Efficiency Resources (DEER)⁴⁹² study, with adjustments made for local building practices and climate. Three separate models were created to represent general vintages of buildings:

- Old, poorly insulated buildings constructed before 1979, before the NY State Energy Code went into effect. This vintage is referred to as the "old" vintage.
- Existing, average insulated buildings conforming to 1980s era building codes. This vintage is referred to as the "average" vintage, covering buildings constructed from 1979 to 2006.
- New construction conforming to the 2007 Energy Conservation Construction Code of New York State (ECCCNYS) for residential buildings. This vintage is referred to as the "new" vintage, and covers buildings constructed from 2007 to present.

SINGLE-FAMILY RESIDENTIAL PROTOTYPE

The single-family "model" in fact contains four separate residential buildings: 2 one-story and 2 two-story buildings. Each version of the 1 story and 2 story buildings are identical except for the orientation, which is shifted by 90 degrees. The selection of these four buildings is designed to give a reasonable average response of buildings of different design and orientation to the impact of energy efficiency measures. A sketch of the single-family residential prototype buildings is shown below.

⁴⁹² 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study, Final Report, Itron, Inc. Vancouver, WA. December 2005. Available at

 $www.calmac.org/publications/2004-05_DEER_Update_Final_Report-Wo.pdf$

The general characteristics of the single-family residential building prototype model are summarized below.

Characteristic	Value	
Vintage	Three vintages simulated – old poorly insulated buildings,	
	existing average insulated buildings and new buildings	
Conditioned floor area	1 story house: 1465 SF (not including basement)	
	2 story house: 2930 SF (not including basement)	
Wall construction and R-value	Wood frame with siding, R-value varies by vintage	
Roof construction and R-value	Wood frame with asphalt shingles, R-value varies by vintage	
Glazing type	Single and double pane; properties vary by vintage	
Lighting and appliance power	0.51 W/SF average	
density		
HVAC system type	Packaged single zone AC or heat pump	
HVAC system size	Based on peak load with 20% over-sizing.	
HVAC system efficiency	Baseline SEER = 13	
Thermostat set points	Heating: 70°F with setback to 67°F	
	Cooling: 75°F with setup to 78°F	
Duct location	Buildings without basement: attic	
	Buildings with basement: basement	
Duct surface area	Single story house: 390 SF supply, 72 SF return	
	Two story house: 505 SF supply, 290 SF return	
Duct insulation	Uninsulated	
Duct leakage	20% of fan flow total leakage evenly split between supply and	
_	return.	
Natural ventilation	Allowed during cooling season when cooling set point	
	exceeded and outdoor temperature < 65°F. 3 air changes per	
	hour	

SINGLE-FAMILY RESIDENTIAL BUILD	ING PROTOTYPE DESCRIPTION

Wall, Floor and Ceiling Insulation Levels

The assumed values for wall and ceiling by vintage are shown below.

Vintage	Assumed R-value of insulated wall	Notes
Older, poorly insulated	4.8	No insulation in 2 by 4 wall; 3.5 in. air gap resistance only
Existing, average insulation	11	Fiberglass insulation in 2 by 4 wall per MEC 1980
New construction	19	Code

WALL INSULATION R-VALUE ASSUMPTIONS BY VINTAGE

CEILING INSULATION R-VALUE ASSUMPTIONS BY VINTAGE

Vintage	Assumed R-value of insulated ceiling	Notes
Older, poorly insulated	11	Minimal ceiling insulation
Existing, average insulation	19	Fiberglass insulation per MEC 1980
New construction	30 (NYC), 38 (all others)	Code

Windows

The glazing U-value and solar heat gain coefficient (SHGC) assumptions for the three vintages are shown below.

WINDOW PROPERTY ASSUMPTIONS BY VINTAGE

Vintage	U-value (BTU/hr-F- SF)	SHGC	Notes
Older, poorly insulated	0.93	0.87	Single pane clear
Existing, average insulation	0.87	0.77	Double pane clear
New construction	0.28	.49	Double low e

Infiltration

Infiltration rate assumptions were set by vintage as shown below.

INFILTRATION RATE ASSUMPTIONS BY VINTAGE

Vintage	Assumed infiltration rate	Notes
Older, poorly insulated	1 ACH	
Existing, average insulation	0.5 ACH	
New construction	0.35 ACH	Minimum without forced ventilation per ASHRAE Standard 66.

MULTI-FAMILY LOW-RISE

The low-rise prototype "model" in fact contains 2 separate buildings. Each version of the buildings is identical except for the orientation, which is shifted by 90 degrees. The selection of these 2 buildings is designed to give a reasonable average response of buildings of different design and orientation to the impact of energy efficiency measures.

Four separate models were created to represent general vintages of buildings:

- Built prior to 1940, uninsulated masonry buildings. This vintage is referred to as "Prewar uninsulated brick."
- Built prior to 1979 when the NYS Energy Code (known as the Energy Conservation Construction Code of New York State ECCCNYS) went into effect, poorly insulated wood-frame buildings This vintage is referred to as "Prior to 1979"
- Built from 1979 through 2006, with insulation conforming to 1980s era building codes (1979 ECCCNYS.) This vintage is referred to as "From 1979 through 2006."
- Built from 2007 through the present, new construction with insulation conforming to the 2007 ECCCNYS for residential buildings and the New York City Energy Conservative Construction Code (if applicable.) This vintage is referred to as "From 2007 through the present."

Each building vintage was run with 7 different HVAC system types to capture the range of HVAC systems common in low-rise multi-family buildings. A sketch of the low-rise prototype buildings is shown below.

The general characteristics of the residential building prototype model are summarized below.

Characteristic	Value
Vintage	Four vintages simulated: Pre-war uninsulated brick; Prior to 1979
	(wood frame); From 1979-2006; and From 2007 to present
Conditioned floor area	949 SF per unit; 6 units per floor, 2 floors per building, 11,388 SF
	total.
Wall construction and R-value	R-value and construction varies by vintage.
Roof construction and R-value	Wood frame with asphalt shingles. R-value varies by vintage.
Glazing type	Single or double pane. Properties vary by vintage.
Lighting and appliance power	0.87 W/SF average in bedrooms, 0.58 W/SF in living space.
density	

MULTI-FAMILY LOW-RISE RESIDENTIAL BUILDING PROTOTYPE DESCRIPTION

Characteristic	Value		
HVAC system types	1. Split system AC with central gas heat		
	2. Split system AC with electric heat		
	3. Split system heat pump		
	4. PTAC with electric heat		
	5. PTHP		
	6. Electric heat only (no AC)		
	Central gas heat only (no AC)		
	8. Central steam (within the building) heat only (no AC)		
HVAC system size	Based on peak load with 20% over-sizing.		
HVAC system efficiency	AC and heat pump: SEER = 13		
	PTAC and PTHP: EER = 7.7		
	Furnace / boiler: AFUE = 78%		
	Steam boiler: AFUE = 75%		
Thermostat set points	1. Heating: 70°F with setback to 67°F(other than NYC); 73°F		
	with setback to 70°F (NYC only)		
	2. Cooling: 75°F with setup to 78°F		
Duct location (for systems with	In attic and plenum space between first and second floors.		
ducts)	PTACs and PTHPs have no ductwork.		
Duct surface area (for systems	256 SF supply, 47 SF return per system		
with ducts)			
Duct insulation (for systems with	Uninsulated		
ducts)			
Duct leakage (for systems with	20% of fan flow total leakage, evenly split between supply and		
ducts)	return.		
Natural ventilation	Allowed during cooling season when cooling set point exceeded		
	and outdoor temperature $< 65^{\circ}$ F. 3 air changes per hour		

Wall and Ceiling Insulation Levels The assumed values for wall and ceiling by vintage are below.

	WALL INSULATION R-VALUE ASSUMP	TIONS BY VINTAGE
--	--------------------------------	------------------

Vintage	Assumed R- value of insulated wall	Notes
Pre-war uninsulated brick	4	Three 4" brick layers. No insulation. 2" air gap resistance only.
Prior to 1979	7	Wood frame with siding. No insulation in 2 by 4 wall; 3.5" air gap resistance only
From 1979 through 2006	11	Wood frame with siding. Fiberglass insulation in 2 by 4 wall per MEC 1980.
From 2007 through the present	19	Code

CEILING INSULATION R-VALUE ASSUMPTIONS BY VINTAGE

Vintage	Assumed R- value of insulated ceiling	Notes
Pre-war uninsulated brick	2	No ceiling insulation
Prior to 1979	11	Minimal ceiling insulation
From 1979 through 2006	19	Fiberglass insulation per MEC 1980
From 2007 through the present	38	NYS Code for climate zones 4 & 5
	49	NYS Code for climate zone 6

Vintage	Set point and setback (°F)	Notes
Pre-war uninsulated brick	73, 70	NYC
	70, 67	All others
Prior to 1979	70, 67	
From 1979 through 2006	70, 67	
From 2007 through the present	70, 67	

THERMOSTATIC HEATING SET POINT ASSUMPTIONS BY VINTAGE

Windows

The glazing U-value and solar heat gain coefficient (SHGC) assumptions for the four vintages are shown below.

WINDOW PROPERTY ASSUMPTIONS BY VINTAGE

Vintage	U-value (BTU/hr-⁰F-SF)	SHGC	Notes
Pre-war uninsulated brick	0.93	0.87	Single pane clear
Prior to 1979	0.93	0.87	Single pane clear
From 1979 through 2006	0.68	0.77	Double pane clear
From 2007 through the present	0.28	0.49	Double low e per code

Infiltration

Infiltration rate assumptions were set by vintage as shown below.

INFILTRATION RATE ASSUMPTIONS BY VINTAGE

Vintage	Assumed infiltration rate	Notes
Pre-war uninsulated brick	1 ACH	
Prior to 1979	1 ACH	
From 1979 through 2006	0.5 ACH	
From 2007 through the present	0.35 ACH	Minimum without forced ventilation per ASHRAE Standard 66.

MULTI-FAMILY HIGH-RISE

The multi-family high-rise model was developed using the conceptual design "wizard" in eQUEST program, rather than a DEER prototype. A computer-generated sketch of the multi-family high-rise prototype is shown in the figure below.

Note: The middle floors, since they thermally equivalent, are simulated as a single floor, and the results are multiplied by 8 to represent the energy consumption of the 8 middle floors. The general characteristics of the multi-family high-rise building prototype model are summarized below.

Characteristic	Value
Vintage	Four vintages simulated: Pre-war uninsulated brick; Prior to
	1979 (wood frame); From 1979-2006; and From 2007 to
	present
Conditioned floor area	810 SF per unit; 10 units per floor, 10 floors per building;
	81,000 SF total living space.
	Corridors and common space: 18,255 SF;
	Laundry rooms: 6,845 SF
	Storage: 7,985 SF
	Total: 114,085 SF
Wall construction and R-value	Masonry wall with brick exterior, R-value varies by vintage
Roof construction and R-value	Wood frame with built-up roofing, R-value varies by vintage
Glazing type	Single or double pane; properties vary by vintage
Lighting and appliance power	0.7 W/SF average
density	
HVAC system type	1. Four pipe fan coil with air cooled electric chiller and gas hot
	water boiler
	2. Central building steam
HVAC system size	Based on peak load with 20% over-sizing.
HVAC system efficiency	Chiller: COP = 3.9
	Hot water boiler: Thermal efficiency = 78%
	Steam boiler: thermal efficiency = 75%
Thermostat set points	1. Heating: 70°F with setback to 67°F(other than NYC); 73°F
	with setback to 700F (NYC only)
	2. Cooling: 75°F with setup to 78°F

MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDING PROTOTYPE DESCRIPTION

Wall, Floor Insulation Levels

The assumed values for wall and ceiling by vintage are shown below.

Vintage	Assumed R- value of insulated wall	Notes
Pre-war uninsulated brick	4	Same as low-rise
Prior to 1979	7	No insulation; air gap resistance only
From 1979 through 2006	11	Same as low-rise
From 2007 through the present	19	Code

WALL INSULATION R-VALUE ASSUMPTIONS BY VINTAGE

ROOF INSULATION R-VALUE ASSUMPTIONS BY VINTAGE

Vintage	Assumed R- value of insulated ceiling	Notes
Pre-war uninsulated brick	2	Same as low-rise
Prior to 1979	11	Same as low-rise
From 1979 through 2006	19	Same as low-rise
From 2007 through the present	38	Code for climate zone 4 & 5
	49	Code for climate zone 6

THERMOSTATIC HEATING SET POINT ASSUMPTIONS BY VINTAGE

Vintage	Assumed R- value of insulated ceiling	Notes
Pre-war uninsulated brick	2	Same as low-rise
Prior to 1979	11	Same as low-rise
From 1979 through 2006	19	Same as low-rise
From 2007 through the present	38	Code for climate zone 4 & 5
	49	Code for climate zone 6

Windows

The glazing U-value and solar heat gain coefficient (SHGC) assumptions for the four vintages are shown below.

WINDOW PROPERTY ASSUMPTIONS BY VINTAGE

Vintage	U-value (BTU/hr-F- SF)	SHGC	Notes
Pre-war uninsulated brick	0.93	0.87	Single pane clear
Prior to 1979	0.93	0.87	Single pane clear
From 1979 through 2006	0.68	0.77	Double pane clear
From 2007 through the present	0.28	0.49	Double low E per code

Infiltration

Infiltration rate assumptions were set by vintage as shown below.

	INFILTRATION RATE	ASSUMP	TIONS BY	VINTAGE
--	-------------------	--------	----------	---------

Vintage	Assumed infiltration rate	Notes
Pre-war uninsulated brick	1 ACH	
Prior to 1979	1 ACH	Same as low-rise
From 1979 through 2006	0.5 ACH	Same as low-rise
From 2007 through the present	0.35 ACH	Minimum without forced ventilation per
		ASHRAE Standard 66.

COMMERCIAL BUILDING PROTOTYPES

Analysis used to develop parameters for the energy and demand savings calculations is based on DOE-2.2 simulations of a set of prototypical small and large buildings. The prototypical simulation models were derived from the commercial building prototypes used in the California Database for Energy Efficiency Resources (DEER)⁴⁹³ study, with adjustments made for local building practices and climate.

The primary distinction between small and large buildings is the HVAC system type rather than a specific conditioned floor area criterion. Small buildings in this study utilize packaged rooftop HVAC systems or packaged terminal air conditioners (PTAC). Large buildings use built-up HVAC systems with chillers and boilers.

Note: for purposes of applying the building type specific results to buildings not included in the prototype list, use the "other" category within each applicable measure savings section. **Assembly**

A prototypical building energy simulation model for an assembly building was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	34,000 square feet
	Auditorium: 33,240 SF
	Office: 760 SF
Number of floors	1
Wall construction and R-value	Concrete block, R-5
Roof construction and R-value	Wood frame with built-up roof, R-12
Glazing type	Single pane clear
Lighting power density	Auditorium: 3.4 W/SF
	Office: 2.2 W/SF
Plug load density	Auditorium: 1.2 W/SF
	Office: 1.7 W/SF
Operating hours	Mon-Sun: 8am – 9pm
HVAC system type	Packaged single zone, no economizer
HVAC system size	100 - 110 SF/ton depending on climate
Thermostat set points	Occupied hours: 76 cooling, 72 heating
	Unoccupied hours: 79 cooling, 69 heating

ASSEMBLY PROTOTYPE BUILDING DESCRIPTION

⁴⁹³ 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study, Final Report, Itron, Inc. Vancouver, WA. December 2005. Available at

www.calmac.org/publications/2004-05_DEER_Update_Final_Report-Wo.pdf

A computer-generated sketch of the Assembly Building prototype is shown below.

Auto Repair

A prototypical building energy simulation model for an auto repair building was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	5150 square feet
Number of floors	1
Wall construction and R-value	Concrete block, R-7.5
Roof construction and R-value	Wood frame with built-up roof, R-13,5
Glazing type	Double pane clear; SHGC = ,74
	U-value = 0,72
Lighting power density	2.2 W/SF
Plug load density	1.2 W/SF
Operating hours	Mon-Sun: 9am – 9pm
HVAC system type	Packaged single zone, no economizer
HVAC system size	280 SF/ton
Thermostat set points	Occupied hours: 76 cooling, 72 heating
	Unoccupied hours: 81 cooling, 67 heating

AUTO REPAIR PROTOTYPE BUILDING DESCRIPTION

A computer-generated sketch of the Auto Repair Building prototype is shown below.

Big Box Retail

A prototypical building energy simulation model for a big box retail building was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	130,500 square feet
	Sales: 107,339 SF
	Storage: 11,870 SF
	Office: 4,683 SF
	Auto repair: 5,151 SF
	Kitchen: 1,459 SF
Number of floors	1
Wall construction and R-value	Concrete block with insulation, R-5
Roof construction and R-value	Metal frame with built-up roof, R-12
Glazing type	Single pane clear
Lighting power density	Sales: 3.36 W/SF
	Storage: 0.88 W/SF
	Office: 2.2 W/SF
	Auto repair: 2.15 W/SF
	Kitchen: 4.3 W/SF
Plug load density	Sales: 1.15 W/SF
	Storage: 0.23 W/SF
	Office: 1.73 W/SF
	Auto repair: 1.15 W/SF
	Kitchen: 3.23 W/SF
Operating hours	Mon-Sun: 10am – 9pm
HVAC system type	Packaged single zone, no economizer
HVAC system size	230 - 260 SF/ton depending on climate
Thermostat set points	Occupied hours: 76 cooling, 72 heating
	Unoccupied hours: 79 cooling, 69 heating

BIG BOX RETAIL PROTOTYPE BUILDING DESCRIPTION

A computer-generated sketch of the Big Box Building prototype is shown below.

Community College

A prototypical building energy simulation model for a community college was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The model is really two identical buildings oriented 90 degrees apart. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	2 buildings, 150,000 square feet each; oriented 90° from each
	other
	Classroom: 150,825 SF
	Computer room: 9,625 SF
	Dining area: 26,250 SF
	Kitchen: 5,625 SF
	Office: 70,175 SF
	Total: 300,000 SF
Number of floors	3
Wall construction and R-value	CMU with brick veneer, plus R-7.5
Roof construction and R-value	Wood frame with built-up roof, R-13.5
Glazing type	Double pane clear, SHGC = 0.73; U-value = 0,72
Lighting power density	Classroom: 3.6 W/SF
	Computer room: 3.6 W/SF
	Dining area: 1.5 W/SF
	Gymnasium: 1.8 W/SF
	Kitchen: 3.6 W/SF
Plug load density	Classroom: 1.1 W/SF
	Computer room: 5.5 W/SF
	Dining area: 0.6 W/SF
	Gymnasium: 0.6 W/SF
	Kitchen: 3.3 W/SF
Operating hours	Mon-Fri: 8am – 7pm
	Sat: 8am – 4pm
	Sun: closed
HVAC system type	Combination PSZ and built-up with screw chiller and hot water
HVAC system size	250 SF/ton
l nermostat set points	Occupied hours: 76 cooling, 72 heating
	Unoccupied hours: 81 cooling, 67 heating
	Vater cooled and air cooled
Chilled water system type	Variable volume with 2 way control valves,
Chilled water system control	Constant CHVV Temp, 45 °F set point
Boiler type	Hot water, 80% efficiency
Hot water system type	Variable volume with 2 way control valves,
Hot water system control	Constant HW Temp, 180 °F set point

Each set of measures was run using each of three different HVAC system configurations: a constant volume reheat system without economizer, a constant volume reheat system with economizer, and a VAV system with economizer. The constant volume reheat system without economizer represents a system with the most heating and cooling operating hours, while the VAV system with economizer represents a system with the least heating and cooling hours. This presents a range of system loads and energy savings for each measure analyzed.

A computer-generated sketch of the Community College Building prototype is shown below.

Dormitory

A prototypical building energy simulation model for a university dormitory was developed using the DOE-2.2 building energy simulation program. The dormitory building was extracted from the DEER university prototype and modeled separately. The model consists of two identical buildings oriented 90 degrees apart. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	170,000 square feet
Number of floors	4
Wall construction and R-value	CMU with R-7.5
Roof construction and R-value	Wood frame with built-up roof, R-13.5
Glazing type	Double pane clear; SHGC = 0.73
	U-value = 0.72
Lighting power density	Rooms: 0.5 W/SF
	Corridors and common space: 0.8
Plug load density	Rooms: 0.6 W/SF
	Corridors and common space: 0.2
Operating hours	24/7 - 365
HVAC system type	Fan coils with centrifugal chiller and hot water boiler
HVAC system size	800 SF/ton
Thermostat set points	Daytime hours: 76 cooling, 72 heating
	Night setback hours: 81 cooling, 67 heating

DORMITORY PROTOTYPE BUILDING DESCRIPTION

A computer-generated sketch of the Dormitory Building prototype is shown below.

Note: The middle floors, since they thermally equivalent, are simulated as a single floor, and the results are multiplied by 2 to represent the energy consumption of the 2 middle floors.

Elementary School

A prototypical building energy simulation model for an elementary school was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The model is really of two identical buildings oriented in two different directions. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	2 buildings, 25,000 square feet each; oriented 90° from each other
	Classroom: 15,750 SF
	Cafeteria: 3,750 SF
	Gymnasium: 3,750 SF
	Kitchen: 1,750 SF
Number of floors	1
Wall construction and R-value	Wood frame with brick veneer, R-5
Roof construction and R-value	Wood frame with built-up roof, R-12
Glazing type	Single pane clear
Lighting power density	Classroom: 4.4 W/SF
	Cafeteria: 1.7 W/SF
	Gymnasium: 2.1 W/SF
	Kitchen: 4.3 W/SF
Plug load density	Classroom: 1.2 W/SF
	Cafeteria: 0.6 W/SF
	Gymnasium: 0.6 W/SF
	Kitchen: 4.2 W/SF
Operating hours	Mon-Fri: 8am – 6pm
	Sun: 8am – 4pm
HVAC system type	Packaged single zone, no economizer
HVAC system size	160 - 180 SF/ton depending on climate
Thermostat set points	Occupied hours: 76 cooling, 72 heating
	Unoccupied hours: 79 cooling, 69 heating

ELEMENTARY SCHOOL PROTOTYPE BUILDING DESCRIPTION

A computer-generated sketch of the Elementary School Building prototype is shown below.

Fast Food Restaurant

A prototypical building energy simulation model for a fast food restaurant was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	2000 square feet
	1,000 SF dining
	600 SF entry/lobby
	300 SF kitchen
	100 SF restroom
Number of floors	1
Wall construction and R-value	Concrete block with brick veneer, R-5
Roof construction and R-value	Concrete deck with built-up roof, R-12
Glazing type	Single pane clear
Lighting power density	1.7 W/SF dining
	2.5 W/SF entry/lobby
	4.3 W/SF kitchen
	1.0 W/SF restroom
Plug load density	0.6 W/SF dining
	0.6 W/SF entry/lobby
	4.3 W/SF kitchen
	0.2 W/SF restroom
Operating hours	Mon-Sun: 6am – 11pm
HVAC system type	Packaged single zone, no economizer
HVAC system size	100 – 120 SF/ton depending on climate
Thermostat set points	Occupied hours: 77 cooling, 72 heating
	Unoccupied hours: 80 cooling, 69 heating

FAST FOOD RESTAURANT PROTOTYPE BUILDING DESCRIPTION

A computer-generated sketch of the Fast Food Building prototype is shown below.

Full-Service Restaurant

A prototypical building energy simulation model for a full-service restaurant was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the full service restaurant prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	2000 square foot dining area
	600 square foot entry/reception area
	1200 square foot kitchen
	200 square foot restrooms
Number of floors	1
Wall construction and R-value	Concrete block with brick veneer, R-5
Roof construction and R-value	Wood frame with built-up roof, R-12
Glazing type	Single pane clear
Lighting power density	Dining area: 1.7 W/SF
	Entry area: 2.5 W/SF
	Kitchen: 4.3 W/SF
	Restrooms: 1.0 W/SF
Plug load density	Dining area: 0.6 W/SF
	Entry area: 0.6 W/SF
	Kitchen: 3.1 W/SF
	Restrooms: 0.2 W/SF
Operating hours	9am – 12am
HVAC system type	Packaged single zone, no economizer
HVAC system size	140 – 160 SF/ton depending on climate
Thermostat set points	Occupied hours: 77 cooling, 72 heating
	Unoccupied hours: 80 cooling, 69 heating

FULL SERVICE RESTAURANT PROTOTYPE DESCRIPTION

A computer-generated sketch of the Full-Service Restaurant Building prototype is shown below.

Grocery

A prototypical building energy simulation model for a grocery building was developed using the DOE-2.2R⁴⁹⁴ building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value		
Vintage	Existing (1970s) vintage		
Size	50,000 square feet		
	Sales: 40,000 SF		
	Office and employee lounge: 3,500 SF		
	Dry storage: 2,860 SF		
	50 °F prep area: 1,268 SF		
	35 °F walk-in cooler: 1,560 SF		
	- 5 °F walk-in freezer: 812 SF		
Number of floors	1		
Wall construction and R-value	Concrete block with insulation, R-5		
Roof construction and R-value	Metal frame with built-up roof, R-12		
Glazing type	Single pane clear		
Lighting power density	Sales: 3.36 W/SF		
	Office: 2.2 W/SF		
	Storage: 1.82 W/SF		
	50°F prep area: 4.3 W/SF		
	35°F walk-in cooler: 0.9 W/SF		
	- 5°F walk-in freezer: 0.9 W/SF		
Equipment power density	Sales: 1.15 W/SF		
	Office: 1.73 W/SF		
	Storage: 0.23 W/SF		
	50°F prep area: 0.23 W/SF + 36 kBTU/hr process load		
	35°F walk-in cooler: 0.23 W/SF + 17 kBTU/hr process load		
	- 5°F walk-in freezer: 0.23 W/SF+ 29 kBTU/hr process load		
Operating hours	Mon-Sun: 6am – 10pm		
HVAC system type	Packaged single zone, no economizer		
Refrigeration system type	Air cooled multiplex		
Refrigeration system size	Low temperature (-20°F suction temp): 23 compressor ton		
	Medium temperature (18°F suction temp): 45 compressor ton		
Refrigeration condenser size	Low temperature: 535 kBTU/hr THR		
	Medium temperature: 756 kBTU/hr THR		
Thermostat set points	Occupied hours: 74°F cooling, 70°F heating		
	Unoccupied hours: 79°F cooling, 65°F heating		

CROCERV	PROTOTVPF	BIIII DINC	DESCRIP	TION
UNOCENT	INCIDINE	DOILDING	DESCIM	11011

A computer-generated sketch of the Grocery Building prototype is shown below.

High School

⁴⁹⁴ DOE-2.2R is a specialized version of the DOE-2.2 program, designed specifically to model refrigeration systems.

A prototypical building energy simulation model for a high school was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The model is really of four identical buildings oriented in four different directions, with a common gymnasium. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	4 buildings, 25,000 square feet each; oriented 90° from each other Classroom: 88,200 SF
	Computer room: 3082 SF
	Dining area: 22,500 SF
	Gymnasium: 22.500 SF
	Citicnen: 10,500 SF
Number of floors	10tal: 150,000 SF
Number of floors	2 ONU with heigh wareau alwa D 7.5
Wall construction and R-value	CMU with brick veneer, plus R-7.5
Roof construction and R-value	Wood frame with built-up roof, R-13.5
Glazing type	Double pane clear, SHGC = 0.73 ; U-value = 0.72
Lighting power density	Classroom: 3.6 W/SF
	Computer room: 3.6 W/SF
	Dining area: 1.5 W/SF
	Gymnasium: 1.8 W/SF
	Kitchen: 3.6 W/SF
Plug load density	Classroom: 1.1 W/SF
	Computer room: 5.5 W/SF
	Dining area: 0.6 W/SF
	Gymnasium: 0.6 W/SF
	Kitchen: 3.3 W/SF
Operating hours	Mon-Fri: 8am – 7pm
	Sat: 8am – 4pm
	Sun: closed
HVAC system type	Combination PSZ and built-up with screw chiller and hot water boiler.
HVAC system size	250 SF/ton
Thermostat set points	Occupied hours: 76 cooling, 72 heating
	Unoccupied hours: 81 cooling, 67 heating

HIGH SCHOOL PROTOTYPE BUILDING DESCRIPTION

A computer-generated sketch of the High School Building prototype is shown below.

Hospital

A prototypical building energy simulation model for a large hospital building was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	250,000 square feet
Number of floors	3
Wall construction and R-value	Brick and CMU, R=7.5
Roof construction and R-value	Built-up roof, R-13.5
Glazing type	Multi-pane; Shading-coefficient = 0.84
	U-value = 0.72
Lighting power density	Patient rooms: 2.3 W/SF
	Office: 2.2 W/SF
	Lab: 4.4
	Dining: 1.7
	Kitchen and food prep: 4.3
Plug load density	Patient rooms: 1.7 W/SF
	Office: 1.7 W/SF
	Lab: 1.7
	Dining: 0.6
	Kitchen and food prep: 4.6
Operating hours	24/7, 365
HVAC system types	Patient Rooms: 4 pipe fan coil
	Kitchen: Rooftop DX
	Remaining space;
	1. Central constant volume system with hydronic reheat, without
	economizer;
	2. Central constant volume system with hydronic reheat, with
	economizer;
	3. Central VAV system with hydronic reheat, with economizer
HVAC system size	Based on ASHRAE design day conditions, 10% over-sizing
	assumed.
Chiller type	Water cooled and air cooled
Chilled water system type	Constant volume with 3 way control valves,
Chilled water system control	Constant CHW Temp, 45 °F set point
Boiler type	Hot water, 80% efficiency
Hot water system type	Constant volume with 3 way control valves,
Hot water system control	Constant HW Temp, 180 °F set point
Thermostat set points	Occupied hours: 76 cooling, 72 heating
	Unoccupied hours: 79 cooling, 69 heating

LARGE HOSPITAL PROTOTYPE BUILDING DESCRIPTION

Each set of measures was run using each of three different HVAC system configurations: a constant volume reheat system without economizer, a constant volume reheat system with economizer, and a VAV system with economizer. The constant volume reheat system without economizer represents a system with the most heating and cooling operating hours, while the VAV system with economizer represents a system with the least heating and cooling hours. This presents a range of system loads and energy savings for each measure analyzed.

A computer-generated sketch of the Large Hospital Building prototype is shown below.

Hotel

A prototypical building energy simulation model for a hotel building was developed using the DOE-2.2 building energy simulation program. The characteristics of the prototype are summarized below.

HOTEL	PROTOTYPE	BUILDING	DESCRIPTION
HOTEL	INOIOTHE	DUILDING	DESCRIPTION

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	200,000 square feet total
	Bar, cocktail lounge – 800 SF
	Corridor – 20,100 SF
	Dining Area – 1,250 SF
	Guest rooms – 160,680 SF
	Kitchen – 750 SF
	Laundry – 4,100 SF
	Lobby – 8,220
	Office – 4,100 SF
Number of floors	11
Wall construction and R-value	Block construction, R-7.5
Roof construction and R-value	Wood deck with built-up roof, R-13.5
Glazing type	Multi-pane; Shading-coefficient = 0.84
	U-value = 0.72
Lighting power density	Bar, cocktail lounge – 1.7 W/SF
	Corridor – 1.0 W/SF
	Dining Area – 1.7 W/SF
	Guest rooms – 0.6 W/SF
	Kitchen – 4.3 W/SF
	Laundry – 1.8 W/SF
	Lobby – 3.1 W/SF
	Office – 2.2 W/SF
Plug load density	Bar, cocktail lounge – 1.2 W/SF
	Corridor – 0.2 W/SF
	Dining Area – 0.6 W/SF
	Guest rooms – 0.6 W/SF
	Kitchen – 3.0 W/SF
	Laundry – 3.5 W/SF
	Lobby – 0.6 W/SF
	Office – 1.7 W/SF
Operating hours	Rooms: 60% occupied
	40% unoccupied
	All others: 24 hr / day
HVAC system type	Central built-up system: All except corridors and rooms

Characteristic	Value
	1. Central constant volume system with perimeter hydronic
	reheat, without economizer;
	2. Central constant volume system with perimeter hydronic
	reheat, with economizer;
	3. Central VAV system with perimeter hydronic reheat, with
	economizer
	PTAC (Packaged Terminal Air Conditioner): Guest rooms
	PSZ: Corridors
HVAC system size	Based on ASHRAE design day conditions, 10% over-sizing
	assumed.
Minimum outdoor air fraction	Built up system 0.3; PSZ: 0.14; PTAC: 0.11 is typical.
Chiller type	Water cooled and air cooled
Chilled water system type	Constant volume with 3 way control valves,
Chilled water system control	Constant CHW Temp, 45 °F set point
Boiler type	Hot water, 80% efficiency
Hot water system type	Constant volume with 3 way control valves,
Hot water system control	Constant HW Temp, 180 °F set point
Thermostat set points	Occupied hours: 76 cooling, 72 heating
	Unoccupied hours: 81 cooling, 67 heating

A computer-generated sketch of the Hotel Building prototype is shown below.

Large Office

A prototypical building energy simulation model for a large office building was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

LARGE OFFICE PROTOTYPE BUILDING DESCRIPTION

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	350,000 square feet
Number of floors	10
Wall construction and R-value	Glass curtain wall, R-7.5
Roof construction and R-value	Built-up roof, R-13.5
Glazing type	Multi-pane; Shading-coefficient = 0.84
	U-value = 0.72
Lighting power density	Perimeter offices: 1.55 W/SF
	Core offices: 1.45 W/SF
Plug load density	Perimeter offices: 1.6 W/SF
	Core offices: 0.7 W/SF
Operating hours	Mon-Sat: 9am – 6pm
	Sun: Unoccupied
HVAC system types	1. Central constant volume system with hydronic reheat, without
	economizer;
	2. Central constant volume system with hydronic reheat, with
	economizer;
	3. Central VAV system with hydronic reheat, with economizer
HVAC system size	Based on ASHRAE design day conditions, 10% over-sizing
	assumed.
Chiller type	Water cooled and air cooled
Chilled water system type	Constant volume with 3 way control valves,
Chilled water system control	Constant CHW Temp, 45 °F set point
Boiler type	Hot water, 80% efficiency
Hot water system type	Constant volume with 3 way control valves,
Hot water system control	Constant HW Temp, 180 $^{\circ}\mathrm{F}$ set point
Thermostat set points	Occupied hours: 75 cooling, 70 heating
	Unoccupied hours: 78 cooling, 67 heating

Each set of measures was run using each of three different HVAC system configurations: a constant volume reheat system without economizer, a constant volume reheat system with economizer, and a VAV system with economizer. The constant volume reheat system without economizer represents a system with the most heating and cooling operating hours, while the VAV system with economizer represents a system with the least heating and cooling hours. This presents a range of system loads and energy savings for each measure analyzed.

A computer-generated sketch of the Large Office Building prototype is shown below.

Note: The middle floors, since they thermally equivalent, are simulated as a single floor, and the results are multiplied by 8 to represent the energy consumption of the eight middle floors.

Large Retail

A prototypical building energy simulation model for a large retail building was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	130,000 square feet
	Sales area: 96,000 SF
	Storage: 18,000 SF
	Office: 6,000 SF
Number of floors	3
Wall construction and R-value	Brick and CMU with R-7.5
Roof construction and R-value	Built-up roof, R-13.5
Glazing type	Multi-pane; SHGC= 0.73
	U-value = 0.72
Lighting power density	Sales area: 2.8 W/SF
	Storage: 0.8 W/SF
	Office: 1.8 W/SF
Plug load density	Sales area: 1.1 W/SF
	Storage: 0.2 W/SF
	Office: 1.7 W/SF
Operating hours	Mon-Sat: 9am – 10pm
	Sun: 9am – 7pm
HVAC system types	1. Central constant volume system with hydronic reheat, without
	economizer;
	2. Central constant volume system with hydronic reheat, with
	economizer;
	3. Central VAV system with hydronic reheat, with economizer
HVAC system size	340 SF/ton
Chiller type	Water cooled and air cooled
Chilled water system type	Variable volume with 2 way control valves,
Chilled water system control	Constant CHW Temp, 45 °F set point
Boiler type	Hot water, 80% efficiency
Hot water system type	Variable volume with 2 way control valves,
Hot water system control	Constant HW Temp, 180 °F set point
Thermostat set points	Occupied hours: 76 cooling, 72 heating
	Unoccupied hours: 81 cooling, 67 heating

|--|

Each set of measures was run using each of three different HVAC system configurations: a constant volume reheat system without economizer, a constant volume reheat system with economizer, and a VAV system with economizer. The constant volume reheat system without economizer represents a system with the most heating and cooling operating hours, while the VAV system with economizer represents a system with the least heating and cooling hours. This presents a range of system loads and energy savings for each measure analyzed.

A computer-generated sketch of the Large Retail Building prototype is shown below.

Light Industrial

A prototypical building energy simulation model for a light industrial building was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

LIGHT INDUSTRIAL	PROTOTYPE	BUILDING	DESCRIPTION

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	100,000 square feet total
	80,000 SF factory
	20,000 SF warehouse
Number of floors	1
Wall construction and R-value	Concrete block with insulation, R-5
Roof construction and R-value	Concrete deck with built-up roof, R-12
Glazing type	Single pane clear
Lighting power density	Factory – 2.1 W/SF
	Warehouse – 0.9 W/SF
Plug load density	Factory – 1.2 W/SF
	Warehouse – 0.2 W/SF
Operating hours	Mon-Fri: 6am – 6pm
	Sat Sun: Unoccupied
HVAC system type	Packaged single zone, no economizer
HVAC system size	500 - 560 SF/ton depending on climate
Thermostat set points	Occupied hours: 78 cooling, 70 heating
	Unoccupied hours: 81 cooling, 67 heating

A computer-generated sketch of the Light Industrial Building prototype is shown below.

Motel

A prototypical building energy simulation model for a motel was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	30,000 square feet
Number of floors	2
Wall construction and R-value	Frame with R-5
Roof construction and R-value	Wood frame with built-up roof, R-12
Glazing type	Single pane clear; SHGC = .87
	U-value = 1.2
Lighting power density	0.6 W/SF
Plug load density	0.6 W/SF
Operating hours	24/7 - 365
HVAC system type	PTAC with electric heat
HVAC system size	540 SF/ton
Thermostat set points	Daytime hours: 76 cooling, 72 heating
	Night setback hours: 81 cooling, 67 heating

|--|

A computer-generated sketch of the Motel Building prototype is shown below.

Refrigerated Warehouse

A prototypical building energy simulation model for a refrigerated warehouse building was developed using the DOE-2.2R⁴⁹⁵ building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value	
Vintage	New construction	
Shape	Rectangular (400 ft by 230 ft)	
Floor area	Freezer: 40,000 SF	
	Cooler: 40,000 SF	
	Shipping Dock: 12,000 SF	
	Total: 92,000 SF	
Number of floors	1	

PROTOTYPICAL REFRIGERATED WAREHOUSE MODEL DESCRIPTION

⁴⁹⁵ DOE-2.2R is a specialized version of the DOE-2.2 program, designed specifically to model refrigeration systems.

Characteristic	Value
Floor to ceiling height	30 ft
Exterior wall construction	Insulated metal panel
Ext wall R-Value	Cooler and loading dock – R-20; Freezer – R-26

A computer-generated sketch of the Refrigerated Warehouse Building prototype is shown below.

Religious

A prototypical building energy simulation model for a religious worship building was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	11,000 square feet
Number of floors	1
Wall construction and R-value	Brick with R-5
Roof construction and R-value	Wood frame with built-up roof, R-12
Glazing type	Single pane clear; SHGC = .87
	U-value = 1.2
Lighting power density	1.7 W/SF
Plug load density	1.2 W/SF
Operating hours	Mon-Sat: 12pm-6pm
	Sun: 9am – 7pm
HVAC system type	Packaged single zone, no economizer
HVAC system size	250 SF/ton
Thermostat set points	Occupied hours: 76 cooling, 70 heating
	Unoccupied hours: 82 cooling, 64 heating

RELIGIOUS WORSHIP PROTOTYPE BUILDING DESCRIPTION

A computer-generated sketch of the Religious Building prototype is shown below.

Small Office

A prototypical building energy simulation model for a small office was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the small office prototype are summarized below.

SMALL	OFFICE	PROTOT	YPE BUIL	DING	DESCRIP	TION
011111111	01100				D DO CILLI	

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	10,000 square feet
Number of floors	2
Wall construction and R-value	Wood frame with brick veneer, R-5
Roof construction and R-value	Wood frame with built-up roof, R-12
Glazing type	Single pane clear
Lighting power density	Perimeter offices: 2.2 W/SF
	Core offices: 1.5 W/SF
Plug load density	Perimeter offices: 1.6 W/SF
	Core offices: 0.7 W/SF
Operating hours	Mon-Sat: 9am – 6pm
	Sun: Unoccupied
HVAC system type	Packaged single zone, no economizer
HVAC system size	230 - 245 SF/ton depending on climate
Thermostat set points	Occupied hours: 76 cooling, 72 heating
	Unoccupied hours: 79 cooling, 69 heating

A computer-generated sketch of the Small Office Building prototype is shown below.

Small Retail

A prototypical building energy simulation model for a small retail building was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The characteristics of the small retail building prototype are summarized below.

Characteristic	Value	
Vintage	Existing (1970s) vintage	
Size	6400 square foot sales area	
	1600 square foot storage area	
	8000 square feet total	
Number of floors	1	
Wall construction and R-value	Concrete block with brick veneer, R-5	
Roof construction and R-value	Wood frame with built-up roof, R-12	
Glazing type	Single pane clear	
Lighting power density	Sales area: 3.4 W/SF	
	Storage area: 0.9 W/SF	
Plug load density	Sales area: 1.2 W/SF	
	Storage area: 0.2 W/SF	
Operating hours	10 – 10 Monday-Saturday	
	10 – 8 Sunday	
HVAC system type	Packaged single zone, no economizer	
HVAC system size	230 – 250 SF/ton depending on climate	
Thermostat set points	Occupied hours: 76 cooling, 72 heating	
	Unoccupied hours: 79 cooling, 69 heating	

SMALL RETAIL PROTOTYPE DESCRIPTION

A computer-generated sketch of the Small Retail Building prototype is shown below.

University

A prototypical building energy simulation model for a university building was developed using the DOE-2.2 building energy simulation program. The simulations were driven using TMY3 long-term average weather data. The model is really four identical buildings oriented 90 degrees apart. The characteristics of the prototype are summarized below.

UNIVERSITY PROTOTYPE BUILDING DESCRIPT	TION

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	4 buildings, 200,000 square feet each; oriented 90° from each
	other
	Classroom: 431,160 SF
	Computer room: 27,540 SF

Characteristic	Value		
	Dining area: 24,000 SF		
	Kitchen: 10,500 SF		
	Office: 226,800 SF		
	Total: 800,000 SF		
Number of floors	4		
Wall construction and R-value	Insulated frame wall with R-7.5		
Roof construction and R-value	Wood frame with built-up roof, R-13.5		
Glazing type	Double pane clear, SHGC = 0.73; U-value = 0,72		
Lighting power density	Classroom: 3.6 W/SF		
	Computer room: 3.6 W/SF		
	Dining area: 1.5 W/SF		
	Office: 2.0 W/SF		
	Kitchen: 3.6 W/SF		
Plug load density	Classroom: 1.1 W/SF		
	Computer room: 5.5 W/SF		
	Dining area: 0.6 W/SF		
	Office: 1.6 W/SF		
	Kitchen: 3.3 W/SF		
Operating hours	Mon-Fri: 8am – 10pm		
	Sat: 8am – 7pm		
	Sun: closed		
HVAC system type	Combination PSZ and built-up with centrifugal chiller and hot		
	water boiler.		
HVAC system size	400 SF/ton		
Thermostat set points	Occupied hours: 76 cooling, 72 heating		
	Unoccupied hours: 81 cooling, 67 heating		
Chiller type	Water cooled and air cooled		
Chilled water system type	Variable volume with 2 way control valves,		
Chilled water system control	Constant CHW Temp, 45 °F set point		
Boiler type	Hot water, 80% efficiency		
Hot water system type	Variable volume with 2 way control valves,		
Hot water system control	Constant HW Temp, 180 °F set point		

Each set of measures was run using each of three different HVAC system configurations: a constant volume reheat system without economizer, a constant volume reheat system with economizer, and a VAV system with economizer. The constant volume reheat system without economizer represents a system with the most heating and cooling operating hours, while the VAV system with economizer represents a system with the least heating and cooling hours. This presents a range of system loads and energy savings for each measure analyzed.

A computer-generated sketch of the University Building prototype is shown below.

Warehouse

A prototypical building energy simulation model for a warehouse building was developed using the DOE-2.2 building energy simulation program. The characteristics of the prototype are summarized below.

Characteristic	Value
Vintage	Existing (1970s) vintage
Size	500,000
Number of floors	1
Wall construction and insulation	Concrete block, R-5
R-value	
Roof construction and insulation	Wood deck with built-up roof, R-12
R-value	
Glazing type	Multi-pane; Shading-coefficient = 0.84
	U-value = 0.72
Lighting power density	0.9 W/SF
Plug load density	0.2 W/SF
Operating hours	Mon-Fri: 7am – 6pm
	Sat Sun: Unoccupied
HVAC system type	Packaged single zone, no economizer
HVAC system size	Based on ASHRAE design day conditions, 10% over-sizing
	assumed.
Thermostat set points	Occupied hours: 80 cooling, 68 heating
	Unoccupied hours: 85 cooling, 63 heating

WAREHOUSE PROTOTYPE BUILDING DESCRIPTION

A computer-generated sketch of the Warehouse Building prototype is shown below.

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
7-13-1	7/31/2013
7-13-18	7/31/2013
7-13-19	7/31/2013
7-13-21	7/31/2013
3-14-1	3/17/2014

Return to Table of Contents

APPENDIX B

HVAC WEIGHTING FACTORS

As described in the data sources and default value tables, it is permissible to use weighted average values across HVAC system types and building vintages when measure specific data are not available. Program administrators shall submit weighting factors used in their calculations for review and approval by the DPS. The weighting factors presented in this section may be used in lieu of program-specific weighting factors until such data are available.

Weighting factors developed for this section were taken from survey data compiled by the US Energy Information Agency (EIA), as part of the 2005 Residential Energy Consumption Survey (RECS) and the 2003 Commercial Building Energy Consumption Survey (CBECS). RECS survey data were collected specifically for New York state; CBECS data were collected for census division 2 (Middle Atlantic), which includes New York, New Jersey, and Pennsylvania.

SINGLE-FAMILY RESIDENTIAL BUILDING CALCULATIONS The fractions of total building floor space for the Old and Average vintages are shown below. These data are compiled for building total (conditioned and unconditioned), heated and cooled floor space.

Vintage Weights for Single-family Detached Residential Buildings

	Total	Heated	Cooled
Old	0.441	0.420	0.358
Average	0.559	0.580	0.642

For example, approximately 64% of the cooled floor space is in buildings within the Average vintage, while 36% of the cooled floor space is in the Old vintage. Note, the RECS data did not provide information for new construction. Weighting calculations involving cooling savings should use the cooled floor space weights, while weighting calculations involving heating savings should use the heated floor space weights. Within each building vintage category, the weights by HVAC system type are shown below.

System Type Weights by Vintage for Single-family Detached Residential Buildings

System Type	Old	Average
AC with gas heat	0.474	0.616
Heat Pump	0.000	0.049
AC with electric heat	0.002	0.013
Electric heat only	0.004	0.017
Gas heat only	0.519	0.306
Room AC	0.629	0.371

<u>MULTI-FAMILY RESIDENTIAL BUILDING CALCULATIONS</u> The fractions of total multi-family low-rise building floor space for the Old and Average vintage are shown below. These data are compiled for building total (conditioned and unconditioned), heated and cooled floor space. Low-rise buildings were identified as buildings with 2-4 units; or 1 or 2 story buildings with 5 or more units.

	Total	Heated	Cooled
Old	0.097	0.089	0.134
Average	0.903	0.911	0.866

Vintage Weights for Low-rise Multi-family Residential Buildings

The fractions of total multi-family high-rise building floor space for the Old and Average vintage are shown below. These data are compiled for building total (conditioned and unconditioned), heated and cooled floor space. High-rise buildings were identified as buildings with 3 or more stories.

Vintage Weights for High-rise Multi-family Residential Buildings

	Total	Heated	Cooled
Old	0.827	0.828	0.712
Average	0.173	0.172	0.288

Note, the RECS data did not provide information for new construction. Weighting calculations involving cooling savings should use the cooled floor space weights, while weighting calculations involving heating savings should use the heated floor space weights. For low-rise building calculations, weights by HVAC system type have been compiled. Within each building vintage category, the weights by HVAC system type are shown below.

HVAC System Type	Old	Average
AC with gas heat	0.542	0.350
Heat Pump	0.000	0.000
AC with electric heat	0.000	0.000
Electric heat only	0.006	0.012
Gas heat only	0.450	0.627
PTAC	0.003	0.012
РТНР	0.000	0.000

Note: The Tech Manual assumes a single HVAC system type for high-rise buildings, thus weighting across HVAC system types is not required.

COMMERCIAL BUILDING CALCULATIONS

Weighting Factors for Commercial Building Calculations

The Tech Manual currently lists energy savings estimates for small commercial buildings for a single vintage and HVAC system type, with the exception of HVAC interactive effects multipliers. Use the weights in the table below for HVAC interactive effects:

Building Type	AC with gas heat	Heat Pump	AC with electric heat	Electric heat only	Gas heat only
Assembly	0.63	0.08	0.12	0.03	0.14
Auto Repair	0.54	0.08	0.10	0.04	0.24

System Type Weights for Built-Up HVAC Systems from CBECS

Big Box	0.66	0.07	0.18	0.02	0.07
Elementary School	0.68	0.11	0.11	0.01	0.08
Fast Food	0.67	0.09	0.18	0.01	0.06
Full Service	0.67	0.09	0.18	0.01	0.06
Grocery	0.66	0.07	0.18	0.02	0.07
Light Industrial	0.46	0.06	0.00	0.10	0.37
Motel	0.46	0.23	0.26	0.02	0.03
Religious	0.57	0.11	0.13	0.03	0.15
Small Office	0.69	0.10	0.19	0.00	0.02
Small Retail	0.66	0.07	0.18	0.02	0.07
Warehouse	0.46	0.06	0.00	0.10	0.37
Other	0.60	0.10	0.14	0.03	0.13

(Note: Some types do not add up to exactly 1.00 due to rounding.)

Savings estimates for large commercial buildings are developed for several HVAC system and chiller type combinations. The CBECS data were analyzed to develop system type weights for these building types. The weighting factors for each of the two HVAC system types constant volume reheat (CV) and variable air volume (VAV) are shown below.

System Type Weights for Built-Up HVAC Systems from CBECS

	Building					
System Type	Hospital	Office	Education	Lodging	Retail	Other
CV	0.16	0.14	0.31	1.00	0.16	0.35
VAV	0.84	0.86	0.69	0.00	0.84	0.65
D 1 4 D 1 4						

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
7-13-22	7/31/2013
9-13-3	9/27/2013

Return to Table of Contents

APPENDIX C

As a cross reference, the Effective Useful life (in hours) used for some lighting products, including LEDs, may be found in <u>Appendix</u> \underline{P} which relies upon estimates established by the Design Lights Consortium and Energy Star.⁴⁹⁶

STANDARD FIXTURE WATTS 497

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture		
COMPACT FLUORESCENT FIXTURES								
(Hard-wired or Pin-based only)								
CF10/2D	CFD10W	Compact Fluorescent, 2D, (1) 10W lamp	Mag-STD	1	10	16		
CF10/2D-L	CFD10W	Compact Fluorescent, 2D, (1) 10W lamp	Electronic	1	10	12		
CF11/1	CF11W	Compact Fluorescent, (1) 11W lamp	Mag-STD	1	11	13		
CF11/2	CF11W	Compact Fluorescent, (2) 11W lamp	Mag-STD	2	11	26		
CF16/2D	CFD16W	Compact Fluorescent, 2D, (1) 16W lamp	Mag-STD	1	16	26		
CF16/2D-L	CFD16W	Compact Fluorescent, 2D, (1) 16W lamp	Electronic	1	16	18		
CF18/3-L	CF18W	Compact Fluorescent, (3) 18W lamp	Electronic	3	18	60		
CF21/2D	CFD21W	Compact Fluorescent, 2D, (1) 21W lamp	Mag-STD	1	21	26		
CF21/2D-L	CFD21W	Compact Fluorescent, 2D, (1) 21W lamp	Electronic	1	21	22		
CF23/1	CF23W	Compact Fluorescent, (1) 23W lamp	Mag-STD	1	23	29		
CF23/1-L	CF23W	Compact Fluorescent, (1) 23W lamp	Electronic	1	23	25		
CF26/3-L	CF26W	Compact Fluorescent, (3) 26W lamp	Electronic	3	26	82		
CF26/4-L	CF26W	Compact Fluorescent, (4) 26W lamp	Electronic	4	26	108		
CF26/6-L	CF26W	Compact Fluorescent, (6) 26W lamp	Electronic	6	26	162		
CF26/8-L	CF26W	Compact Fluorescent, (8) 26W lamp	Electronic	8	26	216		
CF28/2D	CFD28W	Compact Fluorescent, 2D, (1) 28W lamp	Mag-STD	1	28	35		

⁴⁹⁶ Some of the EULs of LED lighting products are based on the listing found in the Qualified Products List by the Design Light Consortium (DLC) at 35,000 or 50,000 hours, according to the appropriate Application Category as specified in the DLC"s *Product Qualification Criteria, Technical Requirement Table* version 2.0 or higher. The EUL of other LED products are based on the listing found in the *Energy Star Qualified Fixture List*, according to the appropriate luminaire classification as specified in the *Energy Star Program requirements for Luminaires*, version 1.2. The total hours are divided by estimated annual use, but capped at 15 years regardless (consistent with C&I redecoration and business type change patterns.)

⁴⁹⁷ (Reference: NYSERDA Existing Buildings Lighting Table with Circline Additions from CA SPC Table)

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
CF28/2D-L	CFD28W	Compact Fluorescent, 2D, (1) 28W lamp	Electronic	1	28	28
CF32/3-L	CF32W	Compact Fluorescent, (3) 32W lamp	Electronic	3	32	114
CF32/4-L	CF32W	Compact Fluorescent, (4) 32W lamp	Electronic	4	32	152
CF32/6-L	CF32W	Compact Fluorescent, (6) 32W lamp	Electronic	6	32	228
CF32/8-L	CF32W	Compact Fluorescent, (8) 32W lamp	Electronic	8	32	304
CF38/2D	CFD38W	Compact Fluorescent, 2D, (1) 38W lamp	Mag-STD	1	38	46
CF38/2D-L	CFD38W	Compact Fluorescent, 2D, (1) 38W lamp	Electronic	1	38	36
CF42/1-L	CF42W	Compact Fluorescent, (1) 42W lamp	Electronic	1	42	48
CF42/2-L	CF42W	Compact Fluorescent, (2) 42W lamp	Electronic	2	42	100
CF42/3-L	CF42W	Compact Fluorescent, (3) 42W lamp	Electronic	3	42	141
CF42/4-L	CF42W	Compact Fluorescent, (4) 42W lamp	Electronic	4	42	188
CF42/6-L	CF42W	Compact Fluorescent, (6) 42W lamp	Electronic	6	42	282
CF42/8-L	CF42W	Compact Fluorescent, (8) 42W lamp	Electronic	8	42	376
CFQ10/1	CFQ10W	Compact Fluorescent, quad, (1) 10W lamp	Mag-STD	1	10	15
CFQ13/1	CFQ13W	Compact Fluorescent, quad, (1) 13W lamp	Mag-STD	1	13	17
CFQ13/1-L	CFQ13W	Compact Fluorescent, quad, (1) 13W lamp, BF=1.05	Electronic	1	13	15
CFQ13/2	CFQ13W	Compact Fluorescent, quad, (2) 13W lamp	Mag-STD	2	13	31
CFQ13/2-L	CFQ13W	Compact Fluorescent, quad, (2) 13W lamp, BF=1.0	Electronic	2	13	28
CFQ13/3	CFQ13W	Compact Fluorescent, quad, (3) 13W lamp	Mag-STD	3	13	48
CFQ15/1	CFQ15W	Compact Fluorescent, quad, (1) 15W lamp	Mag-STD	1	15	20
CFQ17/1	CFQ17W	Compact Fluorescent, quad, (1) 17W lamp	Mag-STD	1	17	24
CFQ17/2	CFQ17W	Compact Fluorescent, quad, (2) 17W lamp	Mag-STD	2	17	48
CFQ18/1	CFQ18W	Compact Fluorescent, quad, (1) 18W lamp	Mag-STD	1	18	26
CFQ18/1-L	CFQ18W	Compact Fluorescent, quad, (1) 18W lamp, BF=1.0	Electronic	1	18	20
CFQ18/2	CFQ18W	Compact Fluorescent, quad, (2) 18W lamp	Mag-STD	2	18	45
CFQ18/2-L	CFQ18W	Compact Fluorescent, quad, (2) 18W lamp, BF=1.0	Electronic	2	18	38

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
CFQ18/4	CFQ18W	Compact Fluorescent, quad, (4) 18W lamp	Mag-STD	2	18	90
CFQ20/1	CFQ20W	Compact Fluorescent, quad, (1) 20W lamp	Mag-STD	1	20	23
CFQ20/2	CFQ20W	Compact Fluorescent, quad, (2) 20W lamp	Mag-STD	2	20	46
CFQ22/1	CFQ22W	Compact Fluorescent, quad, (1) 22W lamp	Mag-STD	1	22	24
CFQ22/2	CFQ22W	Compact Fluorescent, quad, (2) 22W lamp	Mag-STD	2	22	48
CFQ22/3	CFQ22W	Compact Fluorescent, quad, (3) 22W lamp	Mag-STD	3	22	72
CFQ25/1	CFQ25W	Compact Fluorescent, quad, (1) 25W lamp	Mag-STD	1	25	33
CFQ25/2	CFQ25W	Compact Fluorescent, quad, (2) 25W lamp	Mag-STD	2	25	66
CFQ26/1	CFQ26W	Compact Fluorescent, quad, (1) 26W lamp	Mag-STD	1	26	33
CFQ26/1-L	CFQ26W	Compact Fluorescent, quad, (1) 26W lamp, BF=0.95	Electronic	1	26	27
CFQ26/2	CFQ26W	Compact Fluorescent, quad, (2) 26W lamp	Mag-STD	2	26	66
CFQ26/2-L	CFQ26W	Compact Fluorescent, quad, (2) 26W lamp, BF=0.95	Electronic	2	26	50
CFQ26/3	CFQ26W	Compact Fluorescent, quad, (3) 26W lamp	Mag-STD	3	26	99
CFQ26/6-L	CFQ26W	Compact Fluorescent, quad, (6) 26W lamp, BF=0.95	Electronic	6	26	150
CFQ28/1	CFQ28W	Compact Fluorescent, quad, (1) 28W lamp	Mag-STD	1	28	33
CFQ9/1	CFQ9W	Compact Fluorescent, quad, (1) 9W lamp	Mag-STD	1	9	14
CFQ9/2	CFQ9W	Compact Fluorescent, quad, (2) 9W lamp	Mag-STD	2	9	23
CFS7/1	CFS7W	Compact Fluorescent, spiral, (1) 7W lamp	Electronic	1	7	7
CFS9/1	CFS9W	Compact Fluorescent, spiral, (1) 9W lamp	Electronic	1	9	9
CFS11/1	CFS11W	Compact Fluorescent, spiral, (1) 11W lamp	Electronic	1	11	11
CFS15/1	CFS15W	Compact Fluorescent, spiral, (1) 15W lamp	Electronic	1	15	15
CFS20/1	CFS20W	Compact Fluorescent, spiral, (1) 20W lamp	Electronic	1	20	20
CFS23/1	CFS23W	Compact Fluorescent, spiral, (1) 23W lamp	Electronic	1	23	23
CFS27/1	CFS27W	Compact Fluorescent, spiral, (1) 27W lamp	Electronic	1	27	27
CFT13/1	CFT13W	Compact Fluorescent, twin, (1) 13W lamp	Mag-STD	1	13	17
CFT13/2	CFT13W	Compact Fluorescent, twin, (2) 13W lamp	Mag-STD	2	13	31

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
CFT13/3	CFT13W	Compact Fluorescent, twin, (3) 13 W lamp	Mag-STD	3	13	48
CFT18/1	CFT18W	Compact Fluorescent, long twin., (1) 18W lamp	Mag-STD	1	18	24
CFT22/1	CFT22W	Compact Fluorescent, twin, (1) 22W lamp	Mag-STD	1	22	27
CFT22/2	CFT22W	Compact Fluorescent, twin, (2) 22W lamp	Mag-STD	2	22	54
CFT22/4	CFT22W	Compact Fluorescent, twin, (4) 22W lamp	Mag-STD	4	22	108
CFT24/1	CFT24W	Compact Fluorescent, long twin, (1) 24W lamp	Mag-STD	1	24	32
CFT28/1	CFT28W	Compact Fluorescent, twin, (1) 28W lamp	Mag-STD	1	28	33
CFT28/2	CFT28W	Compact Fluorescent, twin, (2) 28W lamp	Mag-STD	2	28	66
CFT32/1-L	CFM32W	Compact Fluorescent, twin or multi, (1) 32W lamp	Electronic	1	32	34
CFT32/2-L	CFM32W	Compact Fluorescent, twin or multi, (2) 32W lamp	Electronic	2	32	62
CFT32/6-L	CFM32W	Compact Fluorescent, twin or multi, (2) 32W lamp	Electronic	6	32	186
CFT36/1	CFT36W	Compact Fluorescent, long twin, (1) 36W lamp	Mag-STD	1	36	51
CFT36/4-BX	CFT36W	Compact Fluorescent, Biax, (4) 36W lamp	Electronic	4	36	148
CFT36/6-BX	CFT36W	Compact Fluorescent, Biax, (6) 36W lamp	Electronic	6	36	212
CFT36/6-L	CFT36W	Compact Fluorescent, long Twin, (6) 36W lamp	Electronic	6	36	198
CFT36/6-L	CFT36W	Compact Fluorescent, long Twin, (6) 36W lamp/ High Ballast Factor	Electronic	6	36	210
CFT36/8-BX	CFT36W	Compact Fluorescent, Biax, (8) 36W lamp	Electronic	8	36	296
CFT36/8-L	CFT36W	Compact Fluorescent, long Twin, (8) 36W lamp	Electronic	8	36	270
CFT36/8-L	CFT36W	Compact Fluorescent, long Twin, (8) 36W lamp/ High Ballast Factor	Electronic	8	36	286
CFT36/9-BX	CFT36W	Compact Fluorescent, Biax, (9) 36W lamp	Electronic	9	36	318
CFT40/1	CFT40W	Compact Fluorescent, twin, (1) 40W lamp	Mag-STD	1	40	46
CFT40/12-BX	CFT40W	Compact Fluorescent, Biax, (12) 40W lamp	Electronic	12	40	408
CFT40/1-BX	CFT40W	Compact Fluorescent, Biax, (1) 40W lamp	Electronic	1	40	46
CFT40/1-L	CFT40W	Compact Fluorescent, long twin, (1) 40W lamp	Electronic	1	40	43

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
CFT40/2	CFT40W	Compact Fluorescent, twin, (2) 40W lamp	Mag-STD	2	40	85
CFT40/2-BX	CFT40W	Compact Fluorescent, Biax, (2) 40W lamp	Electronic	2	40	72
CFT40/2-L	CFT40W	Compact Fluorescent, long twin, (2) 40W lamp	Electronic	2	40	72
CFT40/3	CFT40W	Compact Fluorescent, twin, (3) 40 W lamp	Mag-STD	3	40	133
CFT40/3-BX	CFT40W	Compact Fluorescent, Biax, (3) 40W lamp	Electronic	3	40	102
CFT40/3-L	CFT40W	Compact Fluorescent, long twin, (3) 40W lamp	Electronic	3	40	105
CFT40/4-BX	CFT40W	Compact Fluorescent, Biax, (4) 40W lamp	Electronic	4	40	144
CFT40/5-BX	CFT40W	Compact Fluorescent, Biax, (5) 40W lamp	Electronic	5	40	190
CFT40/6-BX	CFT40W	Compact Fluorescent, Biax, (6) 40W lamp	Electronic	6	40	204
CFT40/6-L	CFT40W	Compact Fluorescent, long Twin, (6) 40W lamp	Electronic	6	40	220
CFT40/6-L	CFT40W	Compact Fluorescent, long Twin, (6) 40W lamp/ High Ballast Factor	Electronic	6	40	233
CFT40/8-BX	CFT40W	Compact Fluorescent, Biax, (8) 40W lamp	Electronic	8	40	288
CFT40/8-L	CFT40W	Compact Fluorescent, long Twin, (8) 40W lamp	Electronic	8	40	300
CFT40/8-L	CFT40W	Compact Fluorescent, long Twin, (8) 40W lamp/ High Ballast Factor	Electronic	8	40	340
CFT40/9-BX	CFT40W	Compact Fluorescent, Biax, (9) 40W lamp	Electronic	9	40	306
CFT5/1	CFT5W	Compact Fluorescent, twin, (1) 5W lamp	Mag-STD	1	5	9
CFT5/2	CFT5W	Compact Fluorescent, twin, (2) 5W lamp	Mag-STD	2	5	18
CFT50/12-BX	CFT50W	Compact Fluorescent, Biax, (12) 50W lamp	Electronic	12	50	648
CFT50/1-BX	CFT50W	Compact Fluorescent, Biax, (1) 50W lamp	Electronic	1	50	54
CFT50/2-BX	CFT50W	Compact Fluorescent, Biax, (2) 50W lamp	Electronic	2	50	108
CFT50/3-BX	CFT50W	Compact Fluorescent, Biax, (3) 50W lamp	Electronic	3	50	162
CFT50/4-BX	CFT50W	Compact Fluorescent, Biax, (4) 50W lamp	Electronic	4	50	216
CFT50/5-BX	CFT50W	Compact Fluorescent, Biax, (5) 50W lamp	Electronic	5	50	270
CFT50/6-BX	CFT50W	Compact Fluorescent, Biax, (6) 50W lamp	Electronic	6	50	324
CFT50/8-BX	CFT50W	Compact Fluorescent, Biax, (8) 50W lamp	Electronic	8	50	432
CFT50/9-BX	CFT50W	Compact Fluorescent, Biax, (9) 50W lamp	Electronic	9	50	486

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
CFT55/12-BX	CFT55W	Compact Fluorescent, Biax, (12) 55W lamp	Electronic	12	55	672
CFT55/1-BX	CFT55W	Compact Fluorescent, Biax, (1) 55W lamp	Electronic	1	55	56
CFT55/2-BX	CFT55W	Compact Fluorescent, Biax, (2) 55W lamp	Electronic	2	55	112
CFT55/3-BX	CFT55W	Compact Fluorescent, Biax, (3) 55W lamp	Electronic	3	55	168
CFT55/4-BX	CFT55W	Compact Fluorescent, Biax, (4) 55W lamp	Electronic	4	55	224
CFT55/5-BX	CFT55W	Compact Fluorescent, Biax, (5) 55W lamp	Electronic	5	55	280
CFT55/6-BX	CFT55W	Compact Fluorescent, Biax, (6) 55W lamp	Electronic	6	55	336
CFT55/6-L	CFT55W	Compact Fluorescent, long Twin, (6) 55W lamp	Electronic	6	55	352
CFT55/6-L	CFT55W	Compact Fluorescent, long Twin, (6) 55W lamp/ High Ballast Factor	Electronic	6	55	373
CFT55/8-BX	CFT55W	Compact Fluorescent, Biax, (8) 55W lamp	Electronic	8	55	448
CFT55/8-L	CFT55W	Compact Fluorescent, long Twin, (8) 55W lamp	Electronic	8	55	468
CFT55/8-L	CFT55W	Compact Fluorescent, long Twin, (8) 55W lamp/ High Ballast Factor	Electronic	8	55	496
CFT55/9-BX	CFT55W	Compact Fluorescent, Biax, (9) 55W lamp	Electronic	9	55	504
CFT7/1	CFT7W	Compact Fluorescent, twin, (1) 7W lamp	Mag-STD	1	7	10
CFT7/2	CFT7W	Compact Fluorescent, twin, (2) 7W lamp	Mag-STD	2	7	21
CFT9/1	CFT9W	Compact Fluorescent, twin, (1) 9W lamp	Mag-STD	1	9	11
CFT9/2	CFT9W	Compact Fluorescent, twin, (2) 9W lamp	Mag-STD	2	9	23
CFT9/3	CFT9W	Compact Fluorescent, twin, (3) 9W lamp	Mag-STD	3	9	34
EXIT SIGN FIXTUR	RES					
ECF5/1	CFT5W	EXIT Compact Fluorescent, (1) 5W lamp	Mag-STD	1	5	9
ECF5/2	CFT5W	EXIT Compact Fluorescent, (2) 5W lamp	Mag-STD	2	5	20
ECF7/1	CFT7W	EXIT Compact Fluorescent, (1) 7W lamp	Mag-STD	1	7	10
ECF7/2	CFT7W	EXIT Compact Fluorescent, (2) 7W lamp	Mag-STD	2	7	21
ECF8/1	F8T5	EXIT T5 Fluorescent, (1) 8W lamp	Mag-STD	1	8	12
ECF8/2	F8T5	EXIT T5 Fluorescent, (2) 8W lamp	Mag-STD	2	8	24
ECF9/1	CFT9W	EXIT Compact Fluorescent, (1) 9W lamp	Mag-STD	1	9	12

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
ECF9/2	CFT9W	EXIT Compact Fluorescent, (2) 9W lamp	Mag-STD	2	9	20
EI10/2	l10	EXIT Incandescent, (2) 10W lamp		2	10	20
EI15/1	l15	EXIT Incandescent, (1) 15W lamp		1	15	15
EI15/2	l15	EXIT Incandescent, (2) 15W lamp		2	15	30
EI20/1	120	EXIT Incandescent, (1) 20W lamp		1	20	20
EI20/2	120	EXIT Incandescent, (2) 20W lamp		2	20	40
EI25/1	125	EXIT Incandescent, (1) 25W lamp		1	25	25
EI25/2	125	EXIT Incandescent, (2) 25W lamp		2	25	50
EI34/1	134	EXIT Incandescent, (1) 34W lamp		1	34	34
EI34/2	134	EXIT Incandescent, (2) 34W lamp		2	34	68
EI40/1	140	EXIT Incandescent, (1) 40W lamp		1	40	40
EI40/2	140	EXIT Incandescent, (2) 40W lamp		2	40	80
EI5/1	15	EXIT Incandescent, (1) 5W lamp		1	5	5
EI5/2	15	EXIT Incandescent, (2) 5W lamp		2	5	10
EI50/2	150	EXIT Incandescent, (2) 50W lamp		2	50	100
EI7.5/1	17.5	EXIT Tungsten, (1) 7.5 W lamp		1	7.5	8
EI7.5/2	17.5	EXIT Tungsten, (2) 7.5 W lamp		2	7.5	15
ELED0.5/1	LED0.5W	EXIT Light Emitting Diode, (1) 0.5W lamp, Single Sided		1	0.5	0.5
ELED0.5/2	LED0.5W	EXIT Light Emitting Diode, (2) 0.5W lamp, Dual Sided		2	0.5	1
ELED1.5/1	LED1.5W	EXIT Light Emitting Diode, (1) 1.5W lamp, Single Sided		1	1.5	1.5
ELED1.5/2	LED1.5W	EXIT Light Emitting Diode, (2) 1.5W lamp, Dual Sided		2	1.5	3
ELED10.5/1	LED10.5W	EXIT Light Emitting Diode, (1) 10.5W lamp, Single Sided		1	10.5	10.5
ELED10.5/2	LED10.5W	EXIT Light Emitting Diode, (2) 10.5W lamp, Dual Sided		2	10.5	21
ELED2/1	LED2W	EXIT Light Emitting Diode, (1) 2W lamp, Single Sided		1	2	2

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture		
ELED2/2	LED2W	EXIT Light Emitting Diode, (2) 2W lamp, Dual Sided		2	2	4		
ELED3/1	LED3W	EXIT Light Emitting Diode, (1) 3W lamp, Single Sided		1	3	3		
ELED3/2	LED3W	EXIT Light Emitting Diode, (2) 3W lamp, Dual Sided		2	3	6		
ELED5/1	LED5W	EXIT Light Emitting Diode, (1) 5W lamp, Single Sided		1	5	5		
ELED5/2	LED5W	EXIT Light Emitting Diode, (2) 5W lamp, Dual Sided		2	5	10		
ELED8/1	LED8W	EXIT Light Emitting Diode, (1) 8W lamp, Single Sided		1	8	8		
ELED8/2	LED8W	EXIT Light Emitting Diode, (2) 8W lamp, Dual Sided		2	8	16		
LINEAR FLUORESCENT FIXTURES								
F1.51LS	F15T8	Fluorescent, (1) 18" T8 lamp	Mag-STD	1	15	19		
F1.51SS	F15T12	Fluorescent, (1) 18" T12 lamp	Mag-STD	1	15	19		
F1.52LS	F15T8	Fluorescent, (2) 18" T8 lamp	Mag-STD	2	15	36		
F1.52SS	F15T12	Fluorescent, (2) 18", T12 lamp	Mag-STD	2	15	36		
F21HS	F24T12/HO	Fluorescent, (1) 24", HO lamp	Mag-STD	1	35	62		
F21ILL	F17T8	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	1	17	20		
F21ILL/T2	F17T8	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	17	17		
F21ILL/T2-R	F17T8	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, RLO (BF<.85), Tandem 2 Lamp Ballast	Electronic	1	17	15		
F21ILL/T3	F17T8	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 3 Lamp Ballast	Electronic	1	17	16		
F21ILL/T3-R	F17T8	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, RLO (BF<.85), Tandem 3 Lamp Ballast	Electronic	1	17	14		

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F21ILL/T4	F17T8	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	1	17	15
F21ILL/T4-R	F17T8	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, RLO (BF<.85), Tandem 4 Lamp Ballast	Electronic	1	17	14
F21ILX-R	F17T8	Fluorescent, (1) 24", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	1	17	15
F21ILX	F17T8	Fluorescent, (1) 24", T-8 lamp, HE Instant/Program Start Ballast, NLO (BF: .85- .95)	Electronic	1	17	16
F21LL	F17T8	Fluorescent, (1) 24", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	1	17	16
F21LL/T2	F17T8	Fluorescent, (1) 24", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	17	16
F21LL/T3	F17T8	Fluorescent, (1) 24", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 3 Lamp Ballast	Electronic	1	17	17
F21LL/T4	F17T8	Fluorescent, (1) 24", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	1	17	17
F21LL-R	F17T8	Fluorescent, (1) 24", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	1	17	15
F21LS	F17T8	Fluorescent, (1) 24", T8 lamp, Standard Ballast	Mag-STD	1	17	24
F21GL	F24T5	Fluorescent, (1) 24", STD T5 lamp	Electronic	1	14	18
F21SE	F20T12	Fluorescent, (1) 24", STD lamp	Mag-ES	1	20	26
F21SS	F20T12	Fluorescent, (1) 24", STD lamp	Mag-STD	1	20	28
F21GHL	F24T5/HO	Fluorescent, (1) 24", STD HO T5 lamp	Electronic	1	24	29
F22SHS	F24T12/HO	Fluorescent, (2) 24", HO lamp	Mag-STD	2	35	90
F22GHL	F24T5/HO	Fluorescent, (2) 24", STD HO T5 lamp	Electronic	2	24	55
F22ILE	F17T8	Fluorescent, (2) 24", T-8 Instant Start lamp, Energy Saving Magnetic Ballast	Mag-ES	2	17	45

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F22ILL	F17T8	Fluorescent, (2) 24", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	2	17	33
F22ILL/T4	F17T8	Fluorescent, (2) 24", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	2	17	31
F22ILL/T4-R	F17T8	Fluorescent, (2) 24", T-8 lamp, Instant Start Ballast, RLO (BF<.85), Tandem 4 Lamp Ballast	Electronic	2	17	28
F22ILL-R	F17T8	Fluorescent, (2) 24", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	2	17	29
F22ILX-R	F17T8	Fluorescent, (2) 24", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	2	17	27
F22ILX	F17T8	Fluorescent, (2) 24", T-8 lamp, HE Instant/Program Start Ballast, NLO (BF: .85- .95)	Electronic	2	17	31
F22LL	F17T8	Fluorescent, (2) 24", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	2	17	31
F22LL/T4	F17T8	Fluorescent, (2) 24", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	2	17	34
F22LL-R	F17T8	Fluorescent, (2) 24", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	2	17	28
F22GL	F24T5	Fluorescent, (2) 24", STD T5 lamp	Electronic	2	14	35
F22SE	F20T12	Fluorescent, (2) 24", STD lamp	Mag-ES	2	20	51
F22SS	F20T12	Fluorescent, (2) 24", STD lamp	Mag-STD	2	20	56
F23ILL	F17T8	Fluorescent, (3) 24", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	3	17	47
F23ILL-H	F17T8	Fluorescent, (3) 24", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	3	17	49
F23ILL-R	F17T8	Fluorescent, (3) 24", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	3	17	43
F23ILX	F17T8	Fluorescent, (3) 24", T-8 lamp, HE Instant/Program Start Ballast, NLO (BF: .85- .95)	Electronic	3	17	45
F23ILX-R	F17T8	Fluorescent, (3) 24", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	3	17	40

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F23LL	F17T8	Fluorescent, (3) 24", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	3	17	52
F23LL-R	F17T8	Fluorescent, (3) 24", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	3	17	41
F23SE	F20T12	Fluorescent, (3) 24", STD lamp	Mag-ES	3	20	77
F23SS	F20T12	Fluorescent, (3) 24", STD lamp	Mag-STD	3	20	84
F24ILL	F17T8	Fluorescent, (4) 24", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	4	17	61
F24ILL-R	F17T8	Fluorescent, (4) 24", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	4	17	55
F24ILX-R	F17T8	Fluorescent, (4) 24", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	4	17	53
F24LL	F17T8	Fluorescent, (4) 24", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	4	17	68
F24LL-R	F17T8	Fluorescent, (4) 24", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	4	17	57
F24SE	F20T12	Fluorescent, (4) 24", STD lamp	Mag-ES	4	20	102
F24SS	F20T12	Fluorescent, (4) 24", STD lamp	Mag-STD	4	20	112
F26SE	F20T12	Fluorescent, (6) 24", STD lamp	Mag-ES	6	20	153
F26SS	F20T12	Fluorescent, (6) 24", STD lamp	Mag-STD	6	20	168
F31EE	F30T12/ES	Fluorescent, (1) 36", ES lamp	Mag-ES	1	25	38
F31EE/T2	F30T12/ES	Fluorescent, (1) 36", ES lamp, Tandem wired	Mag-ES	1	25	33
F31EL	F30T12/ES	Fluorescent, (1) 36", ES lamp	Electronic	1	25	26
F31ES	F30T12/ES	Fluorescent, (1) 36", ES lamp	Mag-STD	1	25	42
F31ES/T2	F30T12/ES	Fluorescent, (1) 36", ES lamp, Tandem wired	Mag-STD	1	25	37
F31ILL	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	1	25	26
F31ILL/T2	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	25	23
F31ILL/T2-H	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, HLO (BF: .96-1.1), Tandem 2 Lamp Ballast	Electronic	1	25	24

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F31ILL/T2-R	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, RLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	25	23
F31ILL/T3	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 3 Lamp Ballast	Electronic	1	25	22
F31ILL/T3-R	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, RLO (BF<.85), Tandem 3 Lamp Ballast	Electronic	1	25	22
F31ILL/T4	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	1	25	22
F31ILL/T4-R	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, RLO (BF<.85), Tandem 4 Lamp Ballast	Electronic	1	25	22
F31ILL-H	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	1	25	28
F31ILL-R	F25T8	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	1	25	27
F31LL	F25T8	Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	1	25	24
F31LL/T2	F25T8	Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	25	23
F31LL/T3	F25T8	Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 3 Lamp Ballast	Electronic	1	25	24
F31LL/T4	F25T8	Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	1	25	22
F31LL-H	F25T8	Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, HLO (BF:.96-1.1)	Electronic	1	25	26
F31LL-R	F25T8	Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	1	25	23
F31ILX-R	F25T8	Fluorescent, (1) 36", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	1	25	21

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F31SE/T2	F30T12	Fluorescent, (1) 36", STD lamp, Tandem wired	Mag-ES	1	30	37
F31GHL	F36T5/HO	Fluorescent, (1) 36", STD HO T5 lamp	Electronic	1	39	43
F31SHS	F36T12/HO	Fluorescent, (1) 36", HO lamp	Mag-STD	1	50	70
F31SL	F30T12	Fluorescent, (1) 36", STD lamp	Electronic	1	30	31
F31GL	F36T5	Fluorescent, (1) 36", STD T5 lamp	Electronic	1	21	27
F31SS	F30T12	Fluorescent, (1) 36", STD lamp	Mag-STD	1	30	46
F31SS/T2	F30T12	Fluorescent, (1) 36", STD lamp, Tandem wired	Mag-STD	1	30	41
F32EE	F30T12/ES	Fluorescent, (2) 36", ES lamp	Mag-ES	2	25	66
F32EL	F30T12/ES	Fluorescent, (2) 36", ES lamp	Electronic	2	25	50
F32ES	F30T12/ES	Fluorescent, (2) 36", ES lamp	Mag-STD	2	25	73
F32ILL	F25T8	Fluorescent, (2) 36", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	2	25	46
F32ILL/T4	F25T8	Fluorescent, (2) 36", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	2	25	44
F32ILL/T4-R	F25T8	Fluorescent, (2) 36", T-8 lamp, Instant Start Ballast, RLO (BF<.85), Tandem 4 Lamp Ballast	Electronic	2	25	43
F32ILL-H	F25T8	Fluorescent, (2) 36", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	2	25	48
F32ILL-R	F25T8	Fluorescent, (2) 36", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	2	25	46
F32ILX-R	F25T8	Fluorescent, (2) 36", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	2	25	39
F32LE	F25T8	Fluorescent, (2) 36", T-8 lamp	Mag-ES	2	25	65
F32LL	F25T8	Fluorescent, (2) 36", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	2	25	46
F32LL/T4	F25T8	Fluorescent, (2) 36", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	2	25	45
F32LL-H	F25T8	Fluorescent, (2) 36", T-8 lamp, Rapid Start Ballast, HLO (BF:.96-1.1)	Electronic	2	25	50

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F32LL-R	F25T8	Fluorescent, (2) 36", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	2	25	42
F32LL-V	F25T8	Fluorescent, (2) 36", T-8 lamp, Rapid Start Ballast, VHLO (BF>1.1)	Electronic	2	25	70
F32SE	F30T12	Fluorescent, (2) 36", STD lamp	Mag-ES	2	30	74
F32GHL	F36T5/HO	Fluorescent, (1) 36", STD HO T5 lamp	Electronic	2	39	85
F32SHS	F36T12/HO	Fluorescent, (2) 36", HO, lamp	Mag-STD	2	50	114
F32SL	F30T12	Fluorescent, (2) 36", STD lamp	Electronic	2	30	58
F32GL	F36T5	Fluorescent, (1) 36", STD T5 lamp	Electronic	2	21	52
F32SS	F30T12	Fluorescent, (2) 36", STD lamp	Mag-STD	2	30	81
F33ES	F30T12/ES	Fluorescent, (3) 36", ES lamp	Mag-STD	3	25	115
F33ILL	F25T8	Fluorescent, (3) 36", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	3	25	67
F33ILL-R	F25T8	Fluorescent, (3) 36", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	3	25	66
F33LL	F25T8	Fluorescent, (3) 36", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	3	25	72
F33LL-R	F25T8	Fluorescent, (3) 36", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	3	25	62
F33SE	F30T12	Fluorescent, (3) 36", STD lamp, (1) STD ballast and (1) ES ballast	Mag-ES	3	30	120
F33SS	F30T12	Fluorescent, (3) 36", STD lamp	Mag-STD	3	30	127
F34ILL	F25T8	Fluorescent, (4) 36", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	4	25	87
F34ILL-R	F25T8	Fluorescent, (4) 36", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	4	25	86
F34LL	F25T8	Fluorescent, (4) 36", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	4	25	89
F34LL-R	F25T8	Fluorescent, (4) 36", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	4	25	84
F34SE	F30T12	Fluorescent, (4) 36", STD lamp	Mag-ES	4	30	148
F34SL	F30T12	Fluorescent, (4) 36", STD lamp	Electronic	4	30	116
F34SS	F30T12	Fluorescent, (4) 36", STD lamp	Mag-STD	4	30	162

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F36EE	F30T12/ES	Fluorescent, (6) 36", ES lamp	Mag-ES	6	25	198
F36ILL-R	F25T8	Fluorescent, (6) 36", T-8 lamp, Instant Start Ballast, RLO (BF<.85)	Electronic	6	25	134
F36SE	F30T12	Fluorescent, (6) 36", STD lamp	Mag-ES	6	30	238
F40EE/D1	None	Fluorescent, (0) 48" lamp, Completely delamped fixture with (1) hot ballast	Mag-ES	0	0	4
F40EE/D2	None	Fluorescent, (0) 48" lamp, Completely delamped fixture with (2) hot ballast	Mag-ES	0	0	8
F41EE	F40T12/ES	Fluorescent, (1) 48", ES lamp	Mag-ES	1	34	43
F41EE/D2	F40T12/ES	Fluorescent, (1) 48", ES lamp, 2 ballast	Mag-ES	1	34	43
F41EE/T2	F40T12/ES	Fluorescent, (1) 48", ES lamp, tandem wired, 2-lamp ballast	Mag-ES	1	34	36
F41EHS	F48T12/HO/ES	Fluorescent, (1) 48", ES HO lamp	Mag-STD	1	55	80
F41EIS	F48T12/ES	Fluorescent, (1) 48" ES Instant Start lamp. Magnetic ballast	Mag-STD	1	30	51
F41EL	F40T12/ES	Fluorescent, (1) 48", T12 ES lamp, Electronic Ballast	Electronic	1	34	32
F41EL/T2	F40T12/ES	Fluorescent, (1) 48", T-12 ES lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	34	32
F41ES	F40T12/ES	Fluorescent, (1) 48", ES lamp	Mag-STD	1	34	50
F41EVS	F48T12/VHO/ES	Fluorescent, (1) 48", VHO ES lamp	Mag-STD	1		123
F41IAL	F25T12	Fluorescent, (1) 48", F25T12 lamp, Instant Start Ballast	Electronic	1	25	25
F41IAL/T2-R	F25T12	Fluorescent, (1) 48", F25T12 lamp, Instant Start, Tandem 2-Lamp Ballast, RLO (BF<0.85)	Electronic	1	25	19
F41IAL/T3-R	F25T12	Fluorescent, (1) 48", F25T12 lamp, Instant Start, Tandem 3-Lamp Ballast, RLO (BF<0.85)	Electronic	1	25	20
F41ILL	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	1	32	31
F41SILL	F30T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	1	30	28
F41SILL/T2	F30T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	30	27

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F41SILL/T3	F30T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 3 Lamp Ballast	Electronic	1	30	27
F41SILL/T4	F30T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	1	30	26
F41SILL-R	F30T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	1	30	25
F41SILL/T2-R	F30T8	Fluorescent, (1) 48", Super T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 2 Lamp Ballast	Electronic	1	30	24
F41SILL/T3-R	F30T8	Fluorescent, (1) 48", Super T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 3 Lamp Ballast	Electronic	1	30	24
F41SILL/T4-R	F30T8	Fluorescent, (1) 48", Super T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 4 Lamp Ballast	Electronic	1	30	23
F41SILL-H	F30T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	1	30	37
F41SILL/T2-H	F30T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1), Tandem 2 Lamp Ballast	Electronic	1	30	36
F41SILL/T3-H	F30T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1), Tandem 3 Lamp Ballast	Electronic	1	30	36
F41SSILL	F28T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	1	28	26
F41SSILL/T2	F28T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	28	25
F41SSILL/T3	F28T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 3 Lamp Ballast	Electronic	1	28	25
F41SSILL/T4	F28T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	1	28	24

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F41SSILL-R	F28T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	1	28	23
F41SSILL/T2-R	F28T8	Fluorescent, (1) 48", Super T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 2 Lamp Ballast	Electronic	1	28	22
F41SSILL/T3-R	F28T8	Fluorescent, (1) 48", Super T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 3 Lamp Ballast	Electronic	1	28	22
F41SSILL/T4-R	F28T8	Fluorescent, (1) 48", Super T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 4 Lamp Ballast	Electronic	1	28	21
F41SSILL-H	F28T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	1	28	33
F41SSILL/T2-H	F28T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1), Tandem 2 Lamp Ballast	Electronic	1	28	32
F41SSILL/T3-H	F28T8	Fluorescent, (1) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1), Tandem 3 Lamp Ballast	Electronic	1	28	32
F41ILL/T2	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	32	30
F41ILL/T2-H	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1), Tandem 2 Lamp Ballast	Electronic	1	32	33
F41ILL/T2-R	F32T8	Fluorescent, (1) 48", T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 2 Lamp Ballast	Electronic	1	32	26
F41ILL/T3	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 3 Lamp Ballast	Electronic	1	32	30
F41ILL/T3-H	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1), Tandem 3 Lamp Ballast	Electronic	1	32	31
F41ILL/T3-R	F32T8	Fluorescent, (1) 48", T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 3 Lamp Ballast	Electronic	1	32	26

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F41ILL/T4	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	1	32	28
F41ILL/T4-R	F32T8	Fluorescent, (1) 48", T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 4 Lamp Ballast	Electronic	1	32	26
F41ILL-H	F32T8	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	1	32	36
F41ILX-H	F32T8	Fluorescent, (1) 48", T-8 lamp, HE Instant/Program Start Ballast, HLO (BF:.96- 1.1)	Electronic	1	32	35
F41ILX-R	F32T8	Fluorescent, (1) 48", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	1	32	25
F41LE	F32T8	Fluorescent, (1) 48", T-8 lamp	Mag-ES	1	32	35
F41LL	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	1	32	32
F41LL/T2	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	32	30
F41LL/T2-H	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, HLO (BF:.96-1.1), Tandem 2 Lamp Ballast	Electronic	1	32	39
F41LL/T2-R	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85), Tandem 2 Lamp Ballast	Electronic	1	32	27
F41LL/T3	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 3 Lamp Ballast	Electronic	1	32	31
F41LL/T3-H	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, HLO (BF:.96-1.1), Tandem 3 Lamp Ballast	Electronic	1	32	33
F41LL/T3-R	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85), Tandem 3 Lamp Ballast	Electronic	1	32	25
F41LL/T4	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	1	32	30

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F41LL/T4-R	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85), Tandem 4 Lamp Ballast	Electronic	1	32	26
F41LL-H	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, HLO (BF:.96-1.1)	Electronic	1	32	39
F41LL-R	F32T8	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	1	32	27
F41SE	F40T12	Fluorescent, (1) 48", STD lamp	Mag-ES	1	40	50
F41GHL	F48T5/HO	Fluorescent, (1) 48", STD HO T5 lamp	Electronic	1	54	59
F41SHS	F48T12/HO	Fluorescent, (1) 48", STD HO lamp	Mag-STD	1	60	85
F41SIL	F48T12	Fluorescent, (1) 48", STD IS lamp, Electronic ballast	Electronic	1	39	46
F41SIL/T2	F48T12	Fluorescent, (1) 48", STD IS lamp, Electronic ballast, tandem wired	Electronic	1	39	37
F41SIS	F48T12	Fluorescent, (1) 48", STD IS lamp	Mag-STD	1	39	60
F41SIS/T2	F48T12	Fluorescent, (1) 48", STD IS lamp, tandem to 2-lamp ballast	Mag-STD	1	39	52
F41GL	F48T5	Fluorescent, (1) 48", STD T5 lamp	Electronic	1	28	32
F41SL/T2	F40T12	Fluorescent, (1) 48", T-12 STD lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	40	36
F41SS	F40T12	Fluorescent, (1) 48", STD lamp	Mag-STD	1	40	57
F41SVS	F48T12/VHO	Fluorescent, (1) 48", STD VHO lamp	Mag-STD	1	110	135
F41TS	F40T10	Fluorescent, (1) 48", T-10 lamp	Mag-STD	1	40	51
F42EE	F40T12/ES	Fluorescent, (2) 48", ES lamp	Mag-ES	2	34	72
F42EE/D2	F40T12/ES	Fluorescent, (2) 48", ES lamp, 2 Ballasts (delamped)	Mag-ES	2	34	76
F42EHS	F48T12/HO/ES	Fluorescent, (2) 42", HO lamp (3.5' lamp)	Mag-STD	2	55	135
F42EIS	F48T12/ES	Fluorescent, (2) 48" ES Instant Start lamp. Magnetic ballast	Mag-STD	2	30	82
F42EL	F40T12/ES	Fluorescent, (2) 48", T12 ES lamps, Electronic Ballast	Electronic	2	34	60
F42ES	F40T12/ES	Fluorescent, (2) 48", ES lamp	Mag-STD	2	34	80

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F42EVS	F48T12/VHO/ES	Fluorescent, (2) 48", VHO ES lamp	Mag-STD	2		210
F42IAL/T4-R	F25T12	Fluorescent, (2) 48", F25T12 lamp, Instant Start, Tandem 4-Lamp Ballast, RLO (BF<0.85)	Electronic	2	25	40
F42IAL-R	F25T12	Fluorescent, (2) 48", F25T12 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	2	25	39
F42ILL	F32T8	Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	2	32	59
F42SILL	F30T8	Fluorescent, (2) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	2	30	53
F41SILL/T4	F30T8	Fluorescent, (2) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	2	30	52
F42SILL-R	F30T8	Fluorescent, (2) 48", Super T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	2	30	47
F41SILL/T4-R	F30T8	Fluorescent, (2) 48", Super T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 4 Lamp Ballast	Electronic	2	30	46
F42SILL-H	F30T8	Fluorescent, (2) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-2.2)	Electronic	2	30	72
F42SSILL	F28T8	Fluorescent, (2) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	2	28	48
F41SSILL/T4	F28T8	Fluorescent, (2) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	2	28	47
F42SSILL-R	F28T8	Fluorescent, (2) 48", Super T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	2	28	45
F41SSILL/T4-R	F28T8	Fluorescent, (2) 48", Super T-8 lamp, IS Ballast, RLO (BF<0.85), Tandem 4 Lamp Ballast	Electronic	2	28	44
F42SSILL-H	F28T8	Fluorescent, (2) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-2.2)	Electronic	2	28	67
F42ILL/T4	F32T8	Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	2	32	56
Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
--------------	-----------	---	------------	--------------	----------------	-------------------
F42ILL/T4-R	F32T8	Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, RLO (BF<0.85), Tandem 4 Lamp Ballast	Electronic	2	32	51
F42ILL-H	F32T8	Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	2	32	65
F42ILL-R	F32T8	Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	2	32	52
F42ILL-V	F32T8	Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, VHLO (BF>1.1)	Electronic	2	32	79
F42ILX-H	F32T8	Fluorescent, (2) 48", T-8 lamp, HE Instant/Program Start Ballast, HLO (BF:.96- 1.1)	Electronic	2	32	63
F42ILX-R	F32T8	Fluorescent, (2) 48", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	2	32	48
F42ILX-V	F32T8	Fluorescent, (2) 48", T-8 lamp, HE Instant/Program Start Ballast, VHLO (BF>1.1)	Electronic	2	32	74
F42LE	F32T8	Fluorescent, (2) 48", T-8 lamp	Mag-ES	2	32	71
F42LL	F32T8	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	2	32	60
F42LL/T4	F32T8	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	2	32	59
F42LL/T4-R	F32T8	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85), Tandem 4 Lamp Ballast	Electronic	2	32	53
F42LL-H	F32T8	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, HLO (BF:.96-1.1)	Electronic	2	32	70
F42LL-R	F32T8	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	2	32	54
F42LL-V	F32T8	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, VHLO (BF>1.1)	Electronic	2	32	85
F42SE	F40T12	Fluorescent, (2) 48", STD lamp	Mag-ES	2	40	86
F42GHL	F48T5/HO	Fluorescent, (2) 48", STD HO T5 lamp	Electronic	2	54	117
F42SHS	F48T12/HO	Fluorescent, (2) 48", STD HO lamp	Mag-STD	2	60	145

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F42SIL	F48T12	Fluorescent, (2) 48", STD IS lamp, Electronic ballast	Electronic	2	39	74
F42SIS	F48T12	Fluorescent, (2) 48", STD IS lamp	Mag-STD	2	39	103
F42GL	F48T5	Fluorescent, (2) 48", STD T5 lamp	Electronic	2	28	63
F42SS	F40T12	Fluorescent, (2) 48", STD lamp	Mag-STD	2	40	94
F42SVS	F48T12/VHO	Fluorescent, (2) 48", STD VHO lamp	Mag-STD	2	110	242
F43EE	F40T12/ES	Fluorescent, (3) 48", ES lamp	Mag-ES	3	34	115
F43EHS	F48T12/HO/ES	Fluorescent, (3) 48", ES HO lamp (3.5' lamp)	Mag-STD	3	55	215
F43EIS	F48T12/ES	Fluorescent, (3) 48" ES Instant Start lamp. Magnetic ballast	Mag-STD	3	30	133
F43EL	F40T12/ES	Fluorescent, (3) 48", T12 ES lamps, Electronic Ballast	Electronic	3	34	92
F43ES	F40T12/ES	Fluorescent, (3) 48", ES lamp	Mag-STD	3	34	130
F43EVS	F48T12/VHO/ES	Fluorescent, (3) 48", VHO ES lamp	Mag-STD	3		333
F43IAL-R	F25T12	Fluorescent, (3) 48", F25T12 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	3	25	60
F43ILL	F32T8	Fluorescent, (3) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	3	32	89
F43SILL	F30T8	Fluorescent, (3) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	3	30	78
F43SILL-R	F30T8	Fluorescent, (3) 48", Super T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	3	30	70
F43SILL-H	F30T8	Fluorescent, (3) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-3.3)	Electronic	3	30	105
F43SSILL	F28T8	Fluorescent, (3) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	3	28	72
F43SSILL-R	F28T8	Fluorescent, (3) 48", Super T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	3	28	66
F43SSILL-H	F28T8	Fluorescent, (3) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-3.3)	Electronic	3	28	98
F43ILL/2	F32T8	Fluorescent, (3) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), (2) ballast	Electronic	3	32	90
F43ILL-H	F32T8	Fluorescent, (3) 48", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	3	32	93

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F43ILL-R	F32T8	Fluorescent, (3) 48", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	3	32	78
F43ILL-V	F32T8	Fluorescent, (3) 48", T-8 lamp, Instant Start Ballast, VHLO (BF>1.1)	Electronic	3	32	112
F43ILX-H	F32T8	Fluorescent, (3) 48", T-8 lamp, HE Instant/Program Start Ballast, HLO (BF:.96- 1.1)	Electronic	3	32	90
F43ILX-R	F32T8	Fluorescent, (3) 48", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	3	32	73
F43ILX-R/2	F32T8	Fluorescent, (3) 48", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85), (2) ballast	Electronic	3	32	73
F43LE	F32T8	Fluorescent, (3) 48", T-8 lamp	Mag-ES	3	32	110
F43LL	F32T8	Fluorescent, (3) 48", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	3	32	93
F43LL/2	F32T8	Fluorescent, (3) 48", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), (2) ballast	Electronic	3	32	92
F43LL-H	F32T8	Fluorescent, (3) 48", T-8 lamp, Rapid Start Ballast, HLO (BF:.96-1.1)	Electronic	3	32	98
F43LL-R	F32T8	Fluorescent, (3) 48", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	3	32	76
F43SE	F40T12	Fluorescent, (3) 48", STD lamp	Mag-ES	3	40	136
F43GHL	F48T5/HO	Fluorescent, (3) 48", STD HO T5 lamp	Electronic	3	54	177
F43SHS	F48T12/HO	Fluorescent, (3) 48", STD HO lamp	Mag-STD	3	60	230
F43SIL	F40T12	Fluorescent, (3) 48", STD IS lamp, Electronic ballast	Electronic	3	39	120
F43SIS	F48T12	Fluorescent, (3) 48", STD IS lamp	Mag-STD	3	39	162
F43SS	F40T12	Fluorescent, (3) 48", STD lamp	Mag-STD	3	40	151
F43SVS	F48T12/VHO	Fluorescent, (3) 48", STD VHO lamp	Mag-STD	3	110	377
F44EE	F40T12/ES	Fluorescent, (4) 48", ES lamp	Mag-ES	4	34	144
F44EE/D4	F40T12/ES	Fluorescent, (4) 48", ES lamp, 4 Ballasts (delamped)	Mag-ES	4	34	152
F44EHS	F48T12/HO/ES	Fluorescent, (4) 48", ES HO lamp	Mag-STD	4	55	270

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F44EIS	F48T12/ES	Fluorescent, (4) 48" ES Instant Start lamp, Magnetic ballast	Mag-STD	4	30	164
F44EL	F40T12/ES	Fluorescent, (4) 48", T12 ES lamp, Electronic Ballast	Electronic	4	34	120
F44ES	F40T12/ES	Fluorescent, (4) 48", ES lamp	Mag-STD	4	34	160
F44EVS	F48T12/VHO/ES	Fluorescent, (4) 48", VHO ES lamp	Mag-STD	4		420
F44IAL-R	F25T12	Fluorescent, (4) 48", F25T12 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	4	25	80
F44ILL	F32T8	Fluorescent, (4) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	4	32	112
F44SILL	F30T8	Fluorescent, (4) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	4	30	105
F44SILL-R	F30T8	Fluorescent, (4) 48", Super T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	4	30	91
F44SILL-H	F30T8	Fluorescent, (4) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-4.4)	Electronic	4	30	140
F44SSILL	F28T8	Fluorescent, (4) 48", Super T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	4	28	96
F44SSILL-R	F28T8	Fluorescent, (4) 48", Super T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	4	28	86
F44SSILL-H	F28T8	Fluorescent, (4) 48", Super T-8 lamp, Instant Start Ballast, HLO (BF:.96-4.4)	Electronic	4	28	131
F44ILL/2	F32T8	Fluorescent, (4) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), (2) ballast	Electronic	4	32	118
F44ILL-R	F32T8	Fluorescent, (4) 48", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	4	32	102
F44ILX-R	F32T8	Fluorescent, (4) 48", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	4	32	96
F44ILX-R/2	F32T8	Fluorescent, (4) 48", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85), (2) ballast	Electronic	4	32	96
F44LE	F32T8	Fluorescent, (4) 48", T-8 lamp	Mag-ES	4	32	142
F44LL	F32T8	Fluorescent, (4) 48", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595)	Electronic	4	32	118
F44LL/2	F32T8	Fluorescent, (4) 48", T-8 lamp, Rapid Start Ballast, NLO (BF: .8595), (2) ballast	Electronic	4	32	120

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F44LL-R	F32T8	Fluorescent, (4) 48", T-8 lamp, Rapid Start Ballast, RLO (BF<0.85)	Electronic	4	32	105
F44SE	F40T12	Fluorescent, (4) 48", STD lamp	Mag-ES	4	40	172
F44GHL	F48T5/HO	Fluorescent, (4) 48", STD HO T5 lamp	Electronic	4	54	234
F44SHS	F48T12/HO	Fluorescent, (4) 48", STD HO lamp	Mag-STD	4	60	290
F44SIL	F48T12	Fluorescent, (4) 48", STD IS lamp, Electronic ballast	Electronic	4	39	148
F44SIS	F48T12	Fluorescent, (4) 48", STD IS lamp	Mag-STD	4	39	204
F44SS	F40T12	Fluorescent, (4) 48", STD lamp	Mag-STD	4	40	188
F44SVS	F48T12/VHO	Fluorescent, (4) 48", STD VHO lamp	Mag-STD	4	110	484
F45ILL	F32T8	Fluorescent, (5) 48", T-8 lamp, (1) 3-lamp IS ballast and (1) 2-lamp IS ballast, NLO (BF: .8595)	Electronic	5	32	148
F45GHL	F48T5/HO	Fluorescent, (5) 48", STD HO T5 lamp	Electronic	5	54	294
F46EE	F40T12/ES	Fluorescent, (6) 48", ES lamp	Mag-ES	6	34	216
F46EL	F40T12/ES	Fluorescent, (6) 48", ES lamp	Electronic	6	34	186
F46ES	F40T12/ES	Fluorescent, (6) 48", ES lamp	Mag-STD	6	34	236
F46ILL	F32T8	Fluorescent, (6) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	6	32	175
F46ILL-R	F32T8	Fluorescent, (6) 48", T-8 lamp, Instant Start Ballast, RLO (BF< .85)	Electronic	6	32	156
F46ILX-R	F32T8	Fluorescent, (6) 48", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF< .85)	Electronic	6	32	146
F46LL	F32T8	Fluorescent, (6) 48", T-8 lamp, NLO (BF: .8595)	Electronic	6	32	182
F46GHL	F48T5/HO	Fluorescent, (6) 48", STD HO T5 lamp	Electronic	6	54	351
F46SE	F40T12	Fluorescent, (6) 48", STD lamp	Mag-ES	6	40	258
F46SS	F40T12	Fluorescent, (6) 48", STD lamp	Mag-STD	6	40	282
F48EE	F40T12/ES	Fluorescent, (8) 48", ES lamp	Mag-ES	8	34	288
F48ILL	F32T8	Fluorescent, (8) 48", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	8	32	224

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F48ILL-R	F32T8	Fluorescent, (8) 48", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	8	32	204
F48ILX-R	F32T8	Fluorescent, (8) 48", T-8 lamp, HE Instant/Program Start Ballast, RLO (BF<0.85)	Electronic	8	32	192
F48GHL	F48T5/HO	Fluorescent, (8) 48", STD HO T5 lamp	Electronic	8	54	468
F51ILHL	F60T12/HO	Fluorescent, (1) 60", T-8 HO lamp, Instant Start Ballast	Electronic	1	55	59
F51ILL	F40T8	Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	1	40	36
F51ILL/T2	F40T8	Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	40	36
F51ILL/T3	F40T8	Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 3 Lamp Ballast	Electronic	1	40	35
F51ILL/T4	F40T8	Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 4 Lamp Ballast	Electronic	1	40	34
F51ILL-R	F40T8	Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	1	40	43
F51SHE	F60T12/HO	Fluorescent, (1) 60", STD HO lamp	Mag-ES	1	75	88
F51SHL	F60T12/HO	Fluorescent, (1) 60", STD HO lamp	Electronic	1	75	69
F51GHL	F60T5/HO	Fluorescent, (1) 60", STD HO T5 lamp	Electronic	1	80	89
F51SHS	F60T12/HO	Fluorescent, (1) 60", STD HO lamp	Mag-STD	1	75	92
F51SL	F60T12	Fluorescent, (1) 60", STD lamp	Electronic	1	50	44
F51GL	F60T5	Fluorescent, (1) 60", STD T5 lamp	Electronic	1	35	39
F51SS	F60T12	Fluorescent, (1) 60", STD lamp	Mag-STD	1	50	63
F51SVS	F60T12/VHO	Fluorescent, (1) 60", VHO ES lamp	Mag-STD	1	135	165
F52ILHL	F60T12/HO	Fluorescent, (2) 60", T-8 HO lamp, Instant Start Ballast	Electronic	2	55	123
F52ILL	F40T8	Fluorescent, (2) 60", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	2	40	72

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F52ILL/T4	F40T8	Fluorescent, (2) 60", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	2	40	67
F52ILL-H	F40T8	Fluorescent, (2) 60", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	2	40	80
F52ILL-R	F40T8	Fluorescent, (2) 60", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	2	40	73
F52SHE	F60T12/HO	Fluorescent, (2) 60", STD HO lamp	Mag-ES	2	75	176
F52SHL	F60T12/HO	Fluorescent, (2) 60", STD HO lamp	Electronic	2	75	138
F52GHL	F60T5/HO	Fluorescent, (2) 60", STD HO T5 lamp	Electronic	2	49	106
F52SHS	F60T12/HO	Fluorescent, (2) 60", STD HO lamp	Mag-STD	2	75	168
F52SL	F60T12	Fluorescent, (2) 60", STD lamp	Electronic	2	50	88
F52GL	F60T5	Fluorescent, (2) 60", STD T5 lamp	Electronic	2	35	76
F52SS	F60T12	Fluorescent, (2) 60", STD lamp	Mag-STD	2	50	128
F52SVS	F60T12/VHO	Fluorescent, (2) 60", VHO ES lamp	Mag-STD	2	135	310
F53ILL	F40T8	Fluorescent, (3) 60", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	3	40	106
F53ILL-H	F40T8	Fluorescent, (3) 60", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	3	40	108
F54ILL	F40T8	Fluorescent, (4) 60", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	4	40	134
F54ILL-H	F40T8	Fluorescent, (4) 60", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	4	40	126
F61ISL	F72T12	Fluorescent, (1) 72", STD lamp, IS electronic ballast	Electronic	1	55	68
F61SE	F72T12	Fluorescent, (1) 72", STD lamp	Mag-ES	1	55	76
F61SHS	F72T12/HO	Fluorescent, (1) 72", STD HO lamp	Mag-STD	1	85	120
F61SS	F72T12	Fluorescent, (1) 72", STD lamp	Mag-STD	1	55	90
F61SVS	F72T12/VHO	Fluorescent, (1) 72", VHO lamp	Mag-STD	1	160	180
F62ILHL	F72T8	Fluorescent, (2) 72", T-8 HO lamp, Instant Start Ballast	Electronic	2	65	147
F62ISL	F72T12	Fluorescent, (2) 72", STD lamp, IS electronic ballast	Electronic	2	55	108

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F62SE	F72T12	Fluorescent, (2) 72", STD lamp	Mag-ES	2	55	122
F62SHE	F72T12/HO	Fluorescent, (2) 72", STD HO lamp	Mag-ES	2	85	194
F62SHS	F72T12/HO	Fluorescent, (2) 72", STD HO lamp	Mag-STD	2	85	220
F62SL	F72T12	Fluorescent, (2) 72", STD lamp	Electronic	2	55	108
F62SS	F72T12	Fluorescent, (2) 72", STD lamp	Mag-STD	2	55	145
F62SVS	F72T12/VHO	Fluorescent, (2) 72", VHO lamp	Mag-STD	2	160	330
F63ISL	F72T12	Fluorescent, (3) 72", STD lamp, IS electronic ballast	Electronic	3	55	176
F63SS	F72T12	Fluorescent, (3) 72", STD lamp	Mag-STD	3	55	202
F64ISL	F72T12	Fluorescent, (4) 72", STD lamp, IS electronic ballast	Electronic	4	55	216
F64SE	F72T12	Fluorescent, (4) 72", STD lamp	Mag-ES	4	55	230
F64SHE	F72T12/HO	Fluorescent, (4) 72", STD HO lamp	Mag-ES	4	85	388
F64SS	F72T12	Fluorescent, (4) 72", STD lamp	Mag-STD	4	55	244
F81EE/T2	F96T12/ES	Fluorescent, (1) 96", ES lamp, tandem to 2- lamp ballast	Mag-ES	1	60	62
F81EHL	F96T12/HO/ES	Fluorescent, (1) 96", ES HO lamp	Electronic	1	95	80
F81EHL/T2	F96T12/HO/ES	Fluorescent, (1) 96", ES HO lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	95	85
F81EHS	F96T12/HO/ES	Fluorescent, (1) 96", ES HO lamp	Mag-STD	1	95	125
F81EL	F96T12/ES	Fluorescent, (1) 96", ES lamp	Electronic	1	60	60
F81EL/T2	F96T12/ES	Fluorescent, (1) 96", ES lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	60	55
F81ES	F96T12/ES	Fluorescent, (1) 96", ES lamp	Mag-STD	1	60	83
F81ES/T2	F96T12/ES	Fluorescent, (1) 96", ES lamp, tandem to 2- lamp ballast	Mag-STD	1	60	64
F81EVS	F96T12/VHO/ES	Fluorescent, (1) 96", ES VHO lamp	Mag-STD	1	185	200
F81ILL	F96T8	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	1	59	58

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F81ILL/T2	F96T8	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	59	55
F81ILL/T2-R	F96T8	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, RLO (BF<.85), Tandem 2 Lamp Ballast	Electronic	1	59	49
F81ILL-H	F96T8	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, HLO (BF:.96-1.1)	Electronic	1	59	68
F81ILL-R	F96T8	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	1	59	57
F81ILL-V	F96T8	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, VHLO (BF>1.1)	Electronic	1	59	71
F81LHL	F96T8/HO	Fluorescent, (1) 96", T8 HO lamp	Electronic	1	86	85
F81LHL/T2	F96T8/HO	Fluorescent, (1) 96", T8 HO lamp, tandem wired to 2-lamp ballast	Electronic	1	86	80
F81SE	F96T12	Fluorescent, (1) 96", STD lamp	Mag-ES	1	75	91
F81EHS	F96T12/HO	Fluorescent, (1) 96", ES HO lamp	Mag-STD	1	95	125
F81SHE	F96T12/HO	Fluorescent, (1) 96", STD HO lamp	Mag-ES	1	110	132
F81SHL/T2	F96T12/HO	Fluorescent, (1) 96", STD HO lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	110	98
F81SHS	F96T12/HO	Fluorescent, (1) 96", STD HO lamp	Mag-STD	1	110	145
F81SL	F96T12	Fluorescent, (1) 96", STD lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	1	75	70
F81SL/T2	F96T12	Fluorescent, (1) 96", STD lamp, Rapid Start Ballast, NLO (BF: .8595), Tandem 2 Lamp Ballast	Electronic	1	75	67
F81SS	F96T12	Fluorescent, (1) 96", STD lamp	Mag-STD	1	75	100
F81SVS	F96T12/VHO	Fluorescent, (1) 96", STD VHO lamp	Mag-STD	1	215	230
F82EE	F96T12/ES	Fluorescent, (2) 96", ES lamp	Mag-ES	2	60	123
F82EHE	F96T12/HO/ES	Fluorescent, (2) 96", ES HO lamp	Mag-ES	2	95	207
F82EHL	F96T12/HO/ES	Fluorescent, (2) 96", ES HO lamp	Electronic	2	95	170
F82EHS	F96T12/HO/ES	Fluorescent, (2) 96", ES HO lamp	Mag-STD	2	95	227

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F82EL	F96T12/ES	Fluorescent, (2) 96", ES lamp	Electronic	2	60	110
F82ES	F96T12/ES	Fluorescent, (2) 96", ES lamp	Mag-STD	2	60	138
F82EVS	F96T12/VHO/ES	Fluorescent, (2) 96", ES VHO lamp	Mag-STD	2	185	390
F82ILL	F96T8	Fluorescent, (2) 96", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	2	59	109
F82ILL-R	F96T8	Fluorescent, (2) 96", T-8 lamp, Instant Start Ballast, RLO (BF<0.85)	Electronic	2	59	98
F82LHL	F96T8/HO	Fluorescent, (2) 96", T8 HO lamp	Electronic	2	86	160
F82SE	F96T12	Fluorescent, (2) 96", STD lamp	Mag-ES	2	75	158
F82SHE	F96T12/HO	Fluorescent, (2) 96", STD HO lamp	Mag-ES	2	110	237
F82SHL	F96T12/HO	Fluorescent, (2) 96", STD HO lamp	Electronic	2	110	195
F82SHS	F96T12/HO	Fluorescent, (2) 96", STD HO lamp	Mag-STD	2	110	257
F82SL	F96T12	Fluorescent, (2) 96", STD lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	2	75	134
F82SS	F96T12	Fluorescent, (2) 96", STD lamp	Mag-STD	2	75	173
F82SVS	F96T12/VHO	Fluorescent, (2) 96", STD VHO lamp	Mag-STD	2	215	450
F83EE	F96T12/ES	Fluorescent, (3) 96", ES lamp	Mag-ES	3	60	210
F83EHE	F96T12/HO/ES	Fluorescent, (3) 96", ES HO lamp, (1) 2-lamp ES Ballast, (1) 1-lamp STD Ballast	Mag- ES/STD	3	95	319
F83EHS	F96T12/HO/ES	Fluorescent, (3) 96", ES HO lamp	Mag-STD	3	95	352
F83EL	F96T12/ES	Fluorescent, (3) 96", ES lamp	Electronic	3	60	179
F83ES	F96T12/ES	Fluorescent, (3) 96", ES lamp	Mag-STD	3	60	221
F83EVS	F96T12/VHO/ES	Fluorescent, (3) 96", ES VHO lamp	Mag-STD	3	185	590
F83ILL	F96T8	Fluorescent, (3) 96", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	3	59	167
F83SHS	F96T12/HO	Fluorescent, (3) 96", STD HO lamp	Mag-STD	3	110	392
F83SS	F96T12	Fluorescent, (3) 96", STD lamp	Mag-STD	3	75	273
F83SVS	F96T12/VHO	Fluorescent, (3) 96", STD VHO lamp	Mag-STD	3	215	680
F84EE	F96T12/ES	Fluorescent, (4) 96", ES lamp	Mag-ES	4	60	246
F84EHE	F96T12/HO/ES	Fluorescent, (4) 96", ES HO lamp	Mag-ES	4	95	414

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
F84EHL	F96T12/HO/ES	Fluorescent, (4) 96", ES HO lamp	Electronic	4	95	340
F84EHS	F96T12/HO/ES	Fluorescent, (4) 96", ES HO lamp	Mag-STD	4	95	454
F84EL	F96T12/ES	Fluorescent, (4) 96", ES lamp	Electronic	4	60	220
F84ES	F96T12/ES	Fluorescent, (4) 96", ES lamp	Mag-STD	4	60	276
F84EVS	F96T12/VHO/ES	Fluorescent, (4) 96", ES VHO lamp	Mag-STD	4	185	780
F84ILL	F96T8	Fluorescent, (4) 96", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	4	59	219
F84LHL	F96T8/HO	Fluorescent, (4) 96", T8 HO lamp	Electronic	4	86	320
F84SE	F96T12	Fluorescent, (4) 96", STD lamp	Mag-ES	4	75	316
F84SHE	F96T12/HO	Fluorescent, (4) 96", STD HO lamp	Mag-ES	4	110	474
F84SHL	F96T12/HO	Fluorescent, (3) 96", STD HO lamp	Electronic	4	110	390
F84SHS	F96T12/HO	Fluorescent, (4) 96", STD HO lamp	Mag-STD	4	110	514
F84SL	F96T12	Fluorescent, (4) 96", STD lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	4	75	268
F84SS	F96T12	Fluorescent, (4) 96", STD lamp	Mag-STD	4	75	346
F84SVS	F96T12/VHO	Fluorescent, (4) 96", STD VHO lamp	Mag-STD	4	215	900
F86EHS	F96T12/HO/ES	Fluorescent, (6) 96", ES HO lamp	Mag-STD	6	95	721
F86ILL	F96T8	Fluorescent, (6) 96", T-8 lamp, Instant Start Ballast, NLO (BF: .8595)	Electronic	6	59	328
CIRCLINE FLUORES	SCENT FIXTURES					
FC12/1	FC12T9	Fluorescent, (1) 12" circular lamp, RS ballast	Mag-STD	1	32	31
FC12/2	FC12T9	Fluorescent, (2) 12" circular lamp, RS ballast	Mag-STD	2	32	62
FC16/1	FC16T9	Fluorescent, (1) 16" circular lamp	Mag-STD	1	40	35
FC20	FC6T9	Fluorescent, Circlite, (1) 20W lamp, Preheat ballast	Mag-STD	1	20	20
FC22/1	FC8T9	Fluorescent, Circlite, (1) 22W lamp, preheat ballast	Mag-STD	1	22	20
FC22/32/1	FC22/32T9	Fluorescent, Circlite, (1) 22W/32W lamp, preheat ballast	Mag-STD	1	22/32	58
FC32/1	FC12T9	Fluorescent, Circline, (1) 32W lamp, preheat ballast	Mag-STD	1	32	40

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture			
FC32/40/1	FC32/40T9	Fluorescent, Circlite, (1) 32W/40W lamp, preheat ballast	Mag-STD	1	32/40	80			
FC40/1	FC16T9	Fluorescent, Circline, (1) 32W lamp, preheat ballast	Mag-STD	1	32	42			
FC44/1	FC44T9	Fluorescent, Circlite, (1) 44W lamp, preheat ballast	Mag-STD	1	44	46			
FC6/1	FC6T9	Fluorescent, (1) 6" circular lamp, RS ballast	Mag-STD	1	20	25			
FC8/1	FC8T9	Fluorescent, (1) 8" circular lamp, RS ballast	Mag-STD	1	22	26			
FC8/2	FC8T9	Fluorescent, (2) 8" circular lamp, RS ballast	Mag-STD	2	22	52			
U-TUBE FLUORESCENT FIXTURES									
FU1EE	FU40T12/ES	Fluorescent, (1) U-Tube, ES lamp	Mag-ES	1	34	43			
FU1ILL	FU31T8/6	Fluorescent, (1) U-Tube, T-8 lamp, Instant Start ballast	Electronic	1	32	31			
FU1LL	FU31T8/6	Fluorescent, (1) U-Tube, T-8 lamp	Electronic	1	32	32			
FU1LL-R	FU31T8/6	Fluorescent, (1) U-Tube, T-8 lamp, RLO (BF<0.85)	Electronic	1	31	27			
FU1ILX-R	FU31T8/6	Fluorescent, (1) U-Tube, T-8 lamp, HE Instant/Program Start Ballast RLO (BF<0.85)	Electronic	1	31	25			
FU2SS	FU40T12	Fluorescent, (2) U-Tube, STD lamp	Mag-STD	2	40	96			
FU2SE	FU40T12	Fluorescent, (2) U-Tube, STD lamp	Mag-ES	2	40	85			
FU2EE	FU40T12/ES	Fluorescent, (2) U-Tube, ES lamp	Mag-ES	2	34	72			
FU2ES	FU40T12/ES	Fluorescent, (2) U-Tube, ES lamp	Mag-STD	2	34	82			
FU2ILL	FU31T8/6	Fluorescent, (2) U-Tube, T-8 lamp, Instant Start Ballast	Electronic	2	32	59			
FU2ILL/T4	FU31T8/6	Fluorescent, (2) U-Tube, T-8 lamp, Instant Start Ballast, tandem wired	Electronic	2	32	56			
FU2ILL/T4-R	FU31T8/6	Fluorescent, (2) U-Tube, T-8 lamp, Instant Start Ballast, RLO, tandem wired	Electronic	2	32	51			
FU2ILL-H	FU31T8/6	Fluorescent, (2) U-Tube, T-8 lamp, Instant Start HLO Ballast	Electronic	2	32	65			
FU2ILL-R	FU31T8/6	Fluorescent, (2) U-Tube, T-8 lamp, Instant Start RLO Ballast	Electronic	2	32	52			

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
FU2ILX-R	FU31T8/6	Fluorescent, (2) U-Tube, T-8 lamp, HE Instant/Program Start Ballast RLO (BF<0.85)	Electronic	2	31	48
FU2LL	FU31T8/6	Fluorescent, (2) U-Tube, T-8 lamp	Electronic	2	32	60
FU2LL/T2	FU31T8/6	Fluorescent, (2) U-Tube, T-8 lamp, Tandem 4 lamp ballast	Electronic	2	32	59
FU2LL-R	FU31T8/6	Fluorescent, (2) U-Tube, T-8 lamp, RLO (BF<0.85)	Electronic	54	31	54
FU3EE	FU40T12/ES	Fluorescent, (3) U-Tube, ES lamp	Mag-ES	3	35	115
FU3ILL	FU31T8/6	Fluorescent, (3) U-Tube, T-8 lamp, Instant Start Ballast	Electronic	3	32	89
FU3ILL-R	FU31T8/6	Fluorescent, (3) U-Tube, T-8 lamp, Instant Start RLO Ballast	Electronic	3	32	78
STANDARD INCAND	ESCENT FIXTURE	2 <u>S</u>				
1100/1	l100	Incandescent, (1) 100W lamp	N/A	1	100	100
1100/2	l100	Incandescent, (2) 100W lamp	N/A	2	100	200
1100/3	l100	Incandescent, (3) 100W lamp	N/A	3	100	300
1100/4	l100	Incandescent, (4) 100W lamp	N/A	4	100	400
1100/5	l100	Incandescent, (5) 100W lamp	N/A	5	100	500
11000/1	I1000	Incandescent, (1) 1000W lamp	N/A	1	1000	1000
I100E/1	I100/ES	Incandescent, (1) 100W ES lamp	N/A	1	90	90
I100EL/1	I100/ES/LL	Incandescent, (1) 100W ES/LL lamp	N/A	1	90	90
1120/1	l120	Incandescent, (1) 120W lamp	N/A	1	120	120
1120/2	l120	Incandescent, (2) 120W lamp	N/A	2	120	240
1125/1	l125	Incandescent, (1) 125W lamp	N/A	1	125	125
1135/1	l135	Incandescent, (1) 135W lamp	N/A	1	135	135
1135/2	l135	Incandescent, (2) 135W lamp	N/A	2	135	270
115/1	l15	Incandescent, (1) 15W lamp	N/A	1	15	15
115/2	l15	Incandescent, (2) 15W lamp	N/A	2	15	30
1150/1	I150	Incandescent, (1) 150W lamp	N/A	1	150	150
1150/2	1150	Incandescent, (2) 150W lamp	N/A	2	150	300

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
11500/1	I1500	Incandescent, (1) 1500W lamp	N/A	1	1500	1500
I150E/1	I150/ES	Incandescent, (1) 150W ES lamp	N/A	1	135	135
I150EL/1	I150/ES/LL	Incandescent, (1) 150W ES/LL lamp	N/A	1	135	135
1170/1	l170	Incandescent, (1) 170W lamp	N/A	1	170	170
120/1	120	Incandescent, (1) 20W lamp	N/A	1	20	20
120/2	120	Incandescent, (2) 20W lamp	N/A	2	20	40
1200/1	1200	Incandescent, (1) 200W lamp	N/A	1	200	200
1200/2	1200	Incandescent, (2) 200W lamp	N/A	2	200	400
12000/1	12000	Incandescent, (1) 2000W lamp	N/A	1	2000	2000
I200L/1	1200/LL	Incandescent, (1) 200W LL lamp	N/A	1	200	200
125/1	125	Incandescent, (1) 25W lamp	N/A	1	25	25
125/2	125	Incandescent, (2) 25W lamp	N/A	2	25	50
125/4	125	Incandescent, (4) 25W lamp	N/A	4	25	100
1250/1	1250	Incandescent, (1) 250W lamp	N/A	1	250	250
1300/1	1300	Incandescent, (1) 300W lamp	N/A	1	300	300
134/1	134	Incandescent, (1) 34W lamp	N/A	1	34	34
134/2	134	Incandescent, (2) 34W lamp	N/A	2	34	68
136/1	136	Incandescent, (1) 36W lamp	N/A	1	36	36
140/1	140	Incandescent, (1) 40W lamp	N/A	1	40	40
140/2	140	Incandescent, (2) 40W lamp	N/A	2	40	80
I400/1	1400	Incandescent, (1) 400W lamp	N/A	1	400	400
I40E/1	140/ES	Incandescent, (1) 40W ES lamp	N/A	1	34	34
I40EL/1	I40/ES/LL	Incandescent, (1) 40W ES/LL lamp	N/A	1	34	34
142/1	142	Incandescent, (1) 42W lamp	N/A	1	42	42
I448/1	1448	Incandescent, (1) 448W lamp	N/A	1	448	448
I45/1	145	Incandescent, (1) 45W lamp	N/A	1	45	45
150/1	150	Incandescent, (1) 50W lamp	N/A	1	50	50
150/2	150	Incandescent, (2) 50W lamp	N/A	2	50	100

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
1500/1	1500	Incandescent, (1) 500W lamp	N/A	1	500	500
152/1	152	Incandescent, (1) 52W lamp	N/A	1	52	52
152/2	152	Incandescent, (2) 52W lamp	N/A	2	52	104
154/1	154	Incandescent, (1) 54W lamp	N/A	1	54	54
154/2	154	Incandescent, (2) 54W lamp	N/A	2	54	108
155/1	155	Incandescent, (1) 55W lamp	N/A	1	55	55
155/2	155	Incandescent, (2) 55W lamp	N/A	2	55	110
160/1	160	Incandescent, (1) 60W lamp	N/A	1	60	60
160/2	160	Incandescent, (2) 60W lamp	N/A	2	60	120
160/3	160	Incandescent, (3) 60W lamp	N/A	3	60	180
160/4	160	Incandescent, (4) 60W lamp	N/A	4	60	240
160/5	160	Incandescent, (5) 60W lamp	N/A	5	60	300
I60E/1	160/ES	Incandescent, (1) 60W ES lamp	N/A	1	52	52
I60EL/1	I60/ES/LL	Incandescent, (1) 60W ES/LL lamp	N/A	1	52	52
165/1	165	Incandescent, (1) 65W lamp	N/A	1	65	65
165/2	165	Incandescent, (2) 65W lamp	N/A	2	65	130
167/1	167	Incandescent, (1) 67W lamp	N/A	1	67	67
167/2	167	Incandescent, (2) 67W lamp	N/A	2	67	134
167/3	167	Incandescent, (3) 67W lamp	N/A	3	67	201
169/1	169	Incandescent, (1) 69W lamp	N/A	1	69	69
17.5/1	17.5	Tungsten exit light, (1) 7.5 W lamp, used in night light application	N/A	1	7.5	8
17.5/2	17.5	Tungsten exit light, (2) 7.5 W lamp, used in night light application	N/A	2	7.5	15
172/1	172	Incandescent, (1) 72W lamp	N/A	1	72	72
175/1	175	Incandescent, (1) 75W lamp	N/A	1	75	75
175/2	175	Incandescent, (2) 75W lamp	N/A	2	75	150
175/3	175	Incandescent, (3) 75W lamp	N/A	3	75	225
175/4	175	Incandescent, (4) 75W lamp	N/A	4	75	300

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
1750/1	1750	Incandescent, (1) 750W lamp	N/A	1	750	750
I75E/1	175/ES	Incandescent, (1) 75W ES lamp	N/A	1	67	67
I75EL/1	I75/ES/LL	Incandescent, (1) 75W ES/LL lamp	N/A	1	67	67
180/1	180	Incandescent, (1) 80W lamp	N/A	1	80	80
185/1	185	Incandescent, (1) 85W lamp	N/A	1	85	85
190/1	190	Incandescent, (1) 90W lamp	N/A	1	90	90
190/2	190	Incandescent, (2) 90W lamp	N/A	2	90	180
190/3	190	Incandescent, (3) 90W lamp	N/A	3	90	270
193/1	193	Incandescent, (1) 93W lamp	N/A	1	93	93
195/1	195	Incandescent, (1) 95W lamp	N/A	1	95	95
195/2	195	Incandescent, (2) 95W lamp	N/A	2	95	190
HALOGEN INCANDE	ESCENT FIXTURE	5				
H100/1	H100	Halogen Incandescent, (1) 100W lamp	N/A	1	100	100
H1000/1	H1000	Halogen Incandescent, (1) 1000W lamp	N/A	1	1000	1000
H1200/1	H1200	Halogen Incandescent, (1) 1200W lamp	N/A	1	1200	1200
H150/1	H150	Halogen Incandescent, (1) 150W lamp	N/A	1	150	150
H150/2	H150	Halogen Incandescent, (2) 150W lamp	N/A	2	150	300
H1500/1	H1500	Halogen Incandescent, (1) 1500W lamp	N/A	1	1500	1500
H200/1	H200	Halogen Incandescent, (1) 200W lamp	N/A	1	200	200
H250/1	H250	Halogen Incandescent, (1) 250W lamp	N/A	1	250	250
H300/1	H300	Halogen Incandescent, (1) 300W lamp	N/A	1	300	300
H35/1	H35	Halogen Incandescent, (1) 35W lamp	N/A	1	35	35
H350/1	H350	Halogen Incandescent, (1) 350W lamp	N/A	1	350	350
H40/1	H40	Halogen Incandescent, (1) 40W lamp	N/A	1	40	40
H400/1	H400	Halogen Incandescent, (1) 400W lamp	N/A	1	400	400
H42/1	H42	Halogen Incandescent, (1) 42W lamp	N/A	1	42	42
H425/1	H425	Halogen Incandescent, (1) 425W lamp	N/A	1	425	425
H45/1	H45	Halogen Incandescent, (1) 45W lamp	N/A	1	45	45

Fixture Code	Lamp Code	Description	Description Ballast Lamp/Fixture				
H45/2	H45	Halogen Incandescent, (2) 45W lamp	N/A	2	45	90	
H50/1	H50	Halogen Incandescent, (1) 50W lamp	N/A	1	50	50	
H50/2	H50	Halogen Incandescent, (2) 50W lamp	N/A	2	50	100	
H500/1	H500	Halogen Incandescent, (1) 500W lamp	N/A	1	500	500	
H52/1	H52	Halogen Incandescent, (1) 52W lamp	N/A	1	52	52	
H55/1	H55	Halogen Incandescent, (1) 55W lamp	N/A	1	55	55	
H55/2	H55	Halogen Incandescent, (2) 55W lamp	N/A	2	55	110	
H60/1	H60	Halogen Incandescent, (1) 60W lamp	N/A	1	60	60	
H72/1	H72	Halogen Incandescent, (1) 72W lamp	N/A	1	72	72	
H75/1	H75	Halogen Incandescent, (1) 75W lamp	N/A	1	75	75	
H75/2	H75	Halogen Incandescent, (2) 75W lamp	N/A	2	75	150	
H750/1	H750	Halogen Incandescent, (1) 750W lamp	N/A	1	750	750	
H90/1	H90	Halogen Incandescent, (1) 90W lamp	N/A	1	90	90	
H90/2	H90	Halogen Incandescent, (2) 90W lamp	N/A	2	90	180	
H900/1	H900	Halogen Incandescent, (1) 900W lamp	N/A	1	900	900	
HLV20/1	H20/LV	Halogen Low Voltage Incandescent, (1) 20W lamp	N/A	1	20	30	
HLV25/1	H25/LV	Halogen Low Voltage Incandescent, (1) 25W lamp	N/A	1	25	35	
HLV35/1	H35/LV	Halogen Low Voltage Incandescent, (1) 35W lamp	N/A	1	35	45	
HLV42/1	H42/LV	Halogen Low Voltage Incandescent, (1) 42W lamp	N/A	1	42	52	
HLV50/1	H50/LV	Halogen Low Voltage Incandescent, (1) 50W lamp	N/A	1	50	60	
HLV65/1	H65/LV	Halogen Low Voltage Incandescent, (1) 65W lamp	N/A	1	65	75	
HLV75/1	H75/LV	Halogen Low Voltage Incandescent, (1) 75W lamp	N/A	1	75	85	
QL INDUCTION FIX	XTURES						
QL55/1	QL55	QL Induction, (1) 55W lamp	Generator	1	55	55	

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
QL85/1	QL85	QL Induction, (1) 85W lamp	Generator	1	85	85
QL165/1	QL165	QL Induction, (1) 165W lamp	Generator	1	165	165
HIGH PRESSURE SO	DIUM FIXTURES					
HPS100/1	HPS100	High Pressure Sodium, (1) 100W lamp	CWA	1	100	138
HPS1000/1	HPS1000	High Pressure Sodium, (1) 1000W lamp	CWA	1	1000	1100
HPS150/1	HPS150	High Pressure Sodium, (1) 150W lamp	CWA	1	150	188
HPS200/1	HPS200	High Pressure Sodium, (1) 200W lamp	CWA	1	200	250
HPS225/1	HPS225	High Pressure Sodium, (1) 225W lamp	CWA	1	225	275
HPS250/1	HPS250	High Pressure Sodium, (1) 250W lamp	CWA	1	250	295
HPS310/1	HPS310	High Pressure Sodium, (1) 310W lamp	CWA	1	310	365
HPS35/1	HPS35	High Pressure Sodium, (1) 35W lamp	CWA	1	35	46
HPS360/1	HPS360	High Pressure Sodium, (1) 360W lamp	CWA	1	360	414
HPS400/1	HPS400	High Pressure Sodium, (1) 400W lamp	CWA	1	400	465
HPS50/1	HPS50	High Pressure Sodium, (1) 50W lamp	CWA	1	50	66
HPS600/1	HPS600	High Pressure Sodium, (1) 600W lamp	CWA	1	600	675
HPS70/1	HPS70	High Pressure Sodium, (1) 70W lamp	CWA	1	70	95
HPS750/1	HPS750	High Pressure Sodium, (1) 750W lamp	CWA	1	750	835
METAL HALIDE FIX	<u>KTURES</u>					
MH100/1	MH100	Metal Halide, (1) 100W lamp	CWA	1	100	128
MH1000/1	MH1000	Metal Halide, (1) 1000W lamp	CWA	1	1000	1080
MH150/1	MH150	Metal Halide, (1) 150W lamp	CWA	1	150	190
MH1500/1	MH1500	Metal Halide, (1) 1500W lamp	CWA	1	1500	1610
MH175/1	MH175	Metal Halide, (1) 175W lamp	CWA	1	175	215
MH1800/1	MH1800	Metal Halide, (1) 1800W lamp	CWA	1	1800	1875
MH200/1	MH200	Metal Halide, (1) 200W lamp	CWA	1	200	232
MH250/1	MH250	Metal Halide, (1) 250W lamp	CWA	1	250	295
MH32/1	MH32	Metal Halide, (1) 32W lamp	CWA	1	32	43

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
MH300/1	MH300	Metal Halide, (1) 300W lamp	CWA	1	300	342
MH320/1	MH320	Metal Halide, (1) 320W lamp	CWA	1	320	365
MH350/1	MH350	Metal Halide, (1) 350W lamp	CWA	1	350	400
MH360/1	MH360	Metal Halide, (1) 360W lamp	CWA	1	360	430
MH400/1	MH400	Metal Halide, (1) 400W lamp	CWA	1	400	458
MH400/2	MH400	Metal Halide, (2) 400W lamp	CWA	2	400	916
MH450/1	MH450	Metal Halide, (1) 450W lamp	CWA	1	450	508
MH35/1	MH35	Metal Halide, (1) 35W lamp	CWA	1	35	44
MH50/1	MH50	Metal Halide, (1) 50W lamp	CWA	1	50	72
MH70/1	MH70	Metal Halide, (1) 70W lamp	CWA	1	70	95
MH750/1	MH750	Metal Halide, (1) 750W lamp	CWA	1	750	850
MHPS/LR/100/1	MHPS100	Metal Halide Pulse Start, (1) 100W lamp w/ Linear Reactor Ballast	LR	1	100	118
MHPS/LR/150/1	MHPS150	Metal Halide Pulse Start, (1) 150W lamp w/ Linear Reactor Ballast	LR	1	150	170
MHPS/LR/175/1	MHPS175	Metal Halide Pulse Start, (1) 175W lamp w/ Linear Reactor Ballast	LR	1	175	194
MHPS/LR/200/1	MHPS200	Metal Halide Pulse Start, (1) 200W lamp w/ Linear Reactor Ballast	LR	1	200	219
MHPS/LR/250/1	MHPS250	Metal Halide Pulse Start, (1) 250W lamp w/ Linear Reactor Ballast	LR	1	250	275
MHPS/LR/300/1	MHPS300	Metal Halide Pulse Start, (1) 300W lamp w/ Linear Reactor Ballast	LR	1	300	324
MHPS/LR/320/1	MHPS320	Metal Halide Pulse Start, (1) 320W lamp w/ Linear Reactor Ballast	LR	1	320	349
MHPS/LR/350/1	MHPS350	Metal Halide Pulse Start, (1) 350W lamp w/ Linear Reactor Ballast	LR	1	350	380
MHPS/LR/400/1	MHPS400	Metal Halide Pulse Start, (1) 400W lamp w/ Linear Reactor Ballast	LR	1	400	435
MHPS/LR/450/1	MHPS450	Metal Halide Pulse Start, (1) 450W lamp w/ Linear Reactor Ballast	LR	1	450	485
MHPS/LR/750/1	MHPS750	Metal Halide Pulse Start, (1) 750W lamp w/ Linear Reactor Ballast	LR	1	750	805

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
MHPS/SCWA/100/1	MHPS100	Metal Halide Pulse Start, (1) 100W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	100	128
MHPS/SCWA/1000/1	MHPS1000	Metal Halide Pulse Start, (1) 1000W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	1000	1080
MHPS/SCWA/150/1	MHPS150	Metal Halide Pulse Start, (1) 150W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	150	190
MHPS/SCWA/175/1	MHPS175	Metal Halide Pulse Start, (1) 175W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	175	208
MHPS/SCWA/200/1	MHPS200	Metal Halide Pulse Start, (1) 200W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	200	232
MHPS/SCWA/250/1	MHPS250	Metal Halide Pulse Start, (1) 250W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	250	288
MHPS/SCWA/300/1	MHPS300	Metal Halide Pulse Start, (1) 300W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	300	342
MHPS/SCWA/320/1	MHPS320	Metal Halide Pulse Start, (1) 320W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	320	368
MHPS/SCWA/350/1	MHPS350	Metal Halide Pulse Start, (1) 350W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	350	400
MHPS/SCWA/400/1	MHPS400	Metal Halide Pulse Start, (1) 400W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	400	450
MHPS/SCWA/450/1	MHPS450	Metal Halide Pulse Start, (1) 450W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	450	506
MHPS/SCWA/750/1	MHPS750	Metal Halide Pulse Start, (1) 750W lamp w/ Super Constant Wattage Autotransformer Ballast	SCWA	1	750	815

Fixture Code	Lamp Code	Description	Ballast	Lamp/Fixture	Watt / Lamp	Watt / Fixture
MERCURY VAPOR I	FIXTURES					
MV100/1	MV100	Mercury Vapor, (1) 100W lamp	CWA	1	100	125
MV1000/1	MV1000	Mercury Vapor, (1) 1000W lamp	CWA	1	1000	1075
MV175/1	MV175	Mercury Vapor, (1) 175W lamp	CWA	1	175	205
MV250/1	MV250	Mercury Vapor, (1) 250W lamp	CWA	1	250	290
MV40/1	MV40	Mercury Vapor, (1) 40W lamp	CWA	1	40	50
MV400/1	MV400	Mercury Vapor, (1) 400W lamp	CWA	1	400	455
MV400/2	MV400	Mercury Vapor, (2) 400W lamp	CWA	2	400	910
MV50/1	MV50	Mercury Vapor, (1) 50W lamp	CWA	1	50	74
MV700/1	MV700	Mercury Vapor, (1) 700W lamp	CWA	1	700	780
MV75/1	MV75	Mercury Vapor, (1) 75W lamp	CWA	1	75	93

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
7-13-23	7/31/2013

Return to Table of Contents

APPENDIX D

HVAC INTERACTIVE EFFECTS MULTIPLIERS

SINGLE-FAMILY RESIDENTIAL

	AC with gas heat		eat	Heat Pump			AC with electric heat		Electric heat only			Gas heat only			
	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg
Albany	0.043	0.073	-0.026	-0.214	0.119	0.000	-0.575	0.073	0.000	-0.521	0.000	0.000	0.000	0.000	-0.026
Binghamton	0.034	0.182	-0.014	-0.148	0.169	0.000	-0.603	0.182	0.000	-0.313	0.000	0.000	0.000	0.000	-0.014
Buffalo	0.040	0.171	-0.027	-0.230	0.190	0.000	-0.655	0.171	0.000	-0.551	0.000	0.000	0.000	0.000	-0.027
Massena	0.034	0.112	-0.029	-0.298	0.131	0.000	-0.489	0.112	0.000	-0.607	0.000	0.000	0.000	0.000	-0.029
NYC	0.077	0.085	-0.023	-0.105	0.111	0.000	-0.579	0.085	0.000	-0.403	0.000	0.000	0.000	0.000	-0.023
Poughkeepsie	0.060	0.079	-0.025	-0.160	0.115	0.000	-0.577	0.079	0.000	-0.462	0.000	0.000	0.000	0.000	-0.025
Syracuse	0.045	0.095	-0.019	-0.157	0.119	0.000	-0.615	0.095	0.000	-0.382	0.000	0.000	0.000	0.000	-0.019

MULTI-FAMILY LOW-RISE

	AC with gas heat		eat	Heat Pump			AC with electric heat			Electric heat only			Gas heat only		
City	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg
Albany	0.020	0.128	-0.017	-0.140	0.150	0.000	-0.329	0.128	0.000	-0.363	0.000	0.000	-0.014	0.000	-0.017
Binghamton	0.003	0.137	-0.018	-0.178	0.151	0.000	-0.384	0.137	0.000	-0.407	0.000	0.000	-0.020	0.000	-0.018
Buffalo	0.014	0.142	-0.017	-0.143	0.157	0.000	-0.332	0.142	0.000	-0.359	0.000	0.000	-0.014	0.000	-0.017
Massena	0.015	0.158	-0.018	-0.161	0.181	0.000	-0.349	0.158	0.000	-0.377	0.000	0.000	-0.013	0.000	-0.018
NYC	0.055	0.136	-0.016	-0.064	0.163	0.000	-0.260	0.136	0.000	-0.320	0.000	0.000	-0.005	0.000	-0.016
Poughkeepsie	0.038	0.132	-0.017	-0.102	0.157	0.000	-0.295	0.132	0.000	-0.342	0.000	0.000	-0.010	0.000	-0.017
Syracuse	0.017	0.140	-0.018	-0.160	0.150	0.000	-0.361	0.140	0.000	-0.391	0.000	0.000	-0.013	0.000	-0.018

MULTI-FAMILY HIGH-RISE

	Fan coil	with chiller water boile	and hot	Steam heat only				
City	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg		
Albany	0.080	0.113	-0.025	0.000	0.000	-0.028		

	Fan coil	with chiller water boile	and hot	Steam heat only					
City	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg			
Binghamton	0.068	0.073	-0.027	0.000	0.000	-0.030			
Buffalo	0.072	0.113	-0.026	0.000	0.000	-0.029			
Massena	0.073	0.094	-0.026	0.000	0.000	-0.029			
NYC	0.101	0.194	-0.021	0.000	0.000	-0.024			
Poughkeepsie	0.092	0.168	-0.023	0.000	0.000	-0.026			
Syracuse	0.080	0.113	-0.024	0.000	0.000	-0.027			

SMALL COMMERCIAL BUILDINGS

		AC	with gas h	neat		Heat Pumj)	AC w	ith electri	c heat	Ele	ctric heat (only	G	as heat on	ly
Building	City	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg
Assembly	Albany	0.100	0.200	-0.031	-0.388	0.200	0.000	-0.536	0.200	0.000	-0.644	0.000	0.000	0.000	0.000	-0.032
(Asy)	Binghamton	0.090	0.200	-0.036	-0.444	0.200	0.000	-0.676	0.200	0.000	-0.778	0.000	0.000	0.000	0.000	-0.036
	Buffalo	0.100	0.200	-0.034	-0.405	0.200	0.000	-0.645	0.200	0.000	-0.757	0.000	0.000	0.000	0.000	-0.036
	Massena	0.090	0.200	-0.041	-0.491	0.200	0.000	-0.653	0.200	0.000	-0.764	0.000	0.000	0.000	0.000	-0.037
	NYC	0.160	0.200	-0.021	-0.052	0.200	0.000	-0.243	0.200	0.000	-0.400	0.000	0.000	0.000	0.000	-0.020
	Poughkeepsie	0.130	0.200	-0.026	-0.361	0.200	0.000	-0.578	0.200	0.000	-0.700	0.000	0.000	0.000	0.000	-0.034
	Syracuse	0.110	0.200	-0.029	-0.364	0.200	0.000	-0.481	0.200	0.000	-0.610	0.000	0.000	0.000	0.000	-0.029
Auto repair	Albany	0.044	0.200	-0.032	-0.377	0.200	0.000	-0.630	0.200	0.000	-0.699	0.000	0.000	0.000	0.000	-0.032
(AR)	Binghamton	0.038	0.200	-0.028	-0.345	0.200	0.000	-0.564	0.200	0.000	-0.614	0.000	0.000	0.000	0.000	-0.028
	Buffalo	0.043	0.200	-0.033	-0.316	0.200	0.000	-0.661	0.200	0.000	-0.724	0.000	0.000	0.000	0.000	-0.033
	Massena	0.039	0.200	-0.033	-0.443	0.200	0.000	-0.653	0.200	0.000	-0.715	0.000	0.000	0.000	0.000	-0.033
	NYC	0.076	0.200	-0.041	-0.308	0.200	0.000	-0.795	0.200	0.000	-0.891	0.000	0.000	0.000	0.000	-0.042
	Poughkeepsie	0.057	0.200	-0.037	-0.408	0.200	0.000	-0.726	0.200	0.000	-0.811	0.000	0.000	0.000	0.000	-0.037
	Syracuse	0.046	0.200	-0.036	-0.394	0.200	0.000	-0.727	0.200	0.000	-0.809	0.000	0.000	0.000	0.000	-0.037
Big Box	Albany	0.120	0.200	-0.023	-0.166	0.200	0.000	-0.330	0.200	0.000	-0.458	0.000	0.000	0.000	0.000	-0.023
(BB)	Binghamton	0.110	0.200	-0.023	-0.172	0.200	0.000	-0.330	0.200	0.000	-0.462	0.000	0.000	0.000	0.000	-0.023
	Buffalo	0.110	0.200	-0.023	-0.163	0.200	0.000	-0.299	0.200	0.000	-0.424	0.000	0.000	0.000	0.000	-0.022
	Massena	0.100	0.200	-0.027	-0.298	0.200	0.000	-0.463	0.200	0.000	-0.572	0.000	0.000	0.000	0.000	-0.028
	NYC	0.170	0.200	-0.013	0.055	0.200	0.000	-0.065	0.200	0.000	-0.226	0.000	0.000	0.000	0.000	-0.013
	Poughkeepsie	0.145	0.200	-0.018	-0.085	0.200	0.000	-0.200	0.200	0.000	-0.350	0.000	0.000	0.000	0.000	-0.019
	Syracuse	0.120	0.200	-0.022	-0.144	0.200	0.000	-0.301	0.200	0.000	-0.425	0.000	0.000	0.000	0.000	-0.021
	Albany	0.060	0.200	-0.039	-0.399	0.200	0.000	-0.809	0.200	0.000	-0.916	0.000	0.000	0.000	0.000	-0.040
	Binghamton	0.040	0.200	-0.041	-0.406	0.200	0.000	-0.818	0.200	0.000	-0.950	0.000	0.000	0.000	0.000	-0.042

		AC	with gas l	neat		Heat Pum	0	AC v	vith electri	c heat	Ele	ctric heat o	only	G	as heat on	lv
Building	City	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg
	Buffalo	0.040	0.200	-0.041	-0.382	0.200	0.000	-0.773	0.200	0.000	-0.908	0.000	0.000	0.000	0.000	-0.040
Elementary	Massena	0.040	0.200	-0.044	-0.509	0.200	0.000	-0.850	0.200	0.000	-0.963	0.000	0.000	0.000	0.000	-0.042
School	NYC	0.110	0.200	-0.029	-0.150	0.200	0.000	-0.481	0.200	0.000	-0.646	0.000	0.000	0.000	0.000	-0.029
(Elem)	Poughkeepsie	0.085	0.200	-0.034	-0.327	0.200	0.000	-0.743	0.200	0.000	-0.907	0.000	0.000	0.000	0.000	-0.040
	Syracuse	0.060	0.200	-0.039	-0.385	0.200	0.000	-0.778	0.200	0.000	-0.902	0.000	0.000	0.000	0.000	-0.040
Fast Food	Albany	0.070	0.200	-0.037	-0.702	0.200	0.000	-0.702	0.200	0.000	-0.818	0.000	0.000	0.000	0.000	-0.039
(FF)	Binghamton	0.060	0.200	-0.035	-0.732	0.200	0.000	-0.732	0.200	0.000	-0.808	0.000	0.000	0.000	0.000	-0.038
	Buffalo	0.070	0.200	-0.036	-0.677	0.200	0.000	-0.677	0.200	0.000	-0.815	0.000	0.000	0.000	0.000	-0.038
	Massena	0.070	0.200	-0.036	-0.717	0.200	0.000	-0.717	0.200	0.000	-0.814	0.000	0.000	0.000	0.000	-0.039
	NYC	0.110	0.200	-0.028	-0.471	0.200	0.000	-0.471	0.200	0.000	-0.827	0.000	0.000	0.000	0.000	-0.040
	Poughkeepsie	0.090	0.200	-0.033	-0.660	0.200	0.000	-0.660	0.200	0.000	-0.816	0.000	0.000	0.000	0.000	-0.039
	Syracuse	0.070	0.200	-0.035	-0.682	0.200	0.000	-0.682	0.200	0.000	-0.817	0.000	0.000	0.000	0.000	-0.039
Full Service	Albany	0.070	0.200	-0.039	-0.656	0.200	0.000	-0.656	0.200	0.000	-0.792	0.000	0.000	0.000	0.000	-0.037
Restaurant	Binghamton	0.060	0.200	-0.038	-0.738	0.200	0.000	-0.738	0.200	0.000	-0.856	0.000	0.000	0.000	0.000	-0.041
(F5)	Buffalo	0.070	0.200	-0.037	-0.645	0.200	0.000	-0.645	0.200	0.000	-0.777	0.000	0.000	0.000	0.000	-0.037
	Massena	0.060	0.200	-0.038	-0.720	0.200	0.000	-0.720	0.200	0.000	-0.821	0.000	0.000	0.000	0.000	-0.039
	NYC	0.110	0.200	-0.030	-0.486	0.200	0.000	-0.486	0.200	0.000	-0.637	0.000	0.000	0.000	0.000	-0.032
	Poughkeepsie	0.090	0.200	-0.035	-0.573	0.200	0.000	-0.573	0.200	0.000	-0.756	0.000	0.000	0.000	0.000	-0.037
	Syracuse	0.080	0.200	-0.037	-0.631	0.200	0.000	-0.631	0.200	0.000	-0.762	0.000	0.000	0.000	0.000	-0.036
Grocery	Albany	0.120	0.200	-0.023	-0.166	0.200	0.000	-0.330	0.200	0.000	-0.458	0.000	0.000	0.000	0.000	-0.023
	Binghamton	0.110	0.200	-0.023	-0.172	0.200	0.000	-0.330	0.200	0.000	-0.462	0.000	0.000	0.000	0.000	-0.023
	Buffalo	0.110	0.200	-0.023	-0.163	0.200	0.000	-0.299	0.200	0.000	-0.424	0.000	0.000	0.000	0.000	-0.022
	Massena	0.100	0.200	-0.027	-0.298	0.200	0.000	-0.463	0.200	0.000	-0.572	0.000	0.000	0.000	0.000	-0.028
	NYC	0.170	0.200	-0.013	0.055	0.200	0.000	-0.065	0.200	0.000	-0.226	0.000	0.000	0.000	0.000	-0.013
	Poughkeepsie	0.145	0.200	-0.018	-0.085	0.200	0.000	-0.200	0.200	0.000	-0.350	0.000	0.000	0.000	0.000	-0.019
	Syracuse	0.120	0.200	-0.022	-0.144	0.200	0.000	-0.301	0.200	0.000	-0.425	0.000	0.000	0.000	0.000	-0.021
Light	Albany	0.070	0.200	-0.026	-0.213	0.200	0.000	-0.456	0.200	0.000	-0.539	0.000	0.000	0.000	0.000	-0.026
Industrial (Ind)	Binghamton	0.060	0.200	-0.028	-0.277	0.200	0.000	-0.507	0.200	0.000	-0.582	0.000	0.000	0.000	0.000	-0.028
(ind)	Buffalo	0.060	0.200	-0.028	-0.236	0.200	0.000	-0.474	0.200	0.000	-0.550	0.000	0.000	0.000	0.000	-0.027
	Massena	0.060	0.200	-0.028	-0.286	0.200	0.000	-0.490	0.200	0.000	-0.568	0.000	0.000	0.000	0.000	-0.027
	NYC	0.100	0.200	-0.021	-0.083	0.200	0.000	-0.313	0.200	0.000	-0.415	0.000	0.000	0.000	0.000	-0.020
	Poughkeepsie	0.085	0.200	-0.024	-0.165	0.200	0.000	-0.399	0.200	0.000	-0.491	0.000	0.000	0.000	0.000	-0.024
	Syracuse	0.070	0.200	-0.026	-0.218	0.200	0.000	-0.459	0.200	0.000	-0.542	0.000	0.000	0.000	0.000	-0.026
Motel	Albany	0.080	0.200	-0.027	-0.318	0.200	0.000	-0.485	0.200	0.000	-0.586	0.000	0.000	0.000	0.000	-0.028
(Motel)	Binghamton	0.069	0.200	-0.028	-0.342	0.200	0.000	-0.519	0.200	0.000	-0.613	0.000	0.000	0.000	0.000	-0.029
	Buffalo	0.073	0.200	-0.028	-0.314	0.200	0.000	-0.495	0.200	0.000	-0.597	0.000	0.000	0.000	0.000	-0.028
	Massena	0.068	0.200	-0.030	-0.383	0.200	0.000	-0.537	0.200	0.000	-0.627	0.000	0.000	0.000	0.000	-0.029

		AC	with gas l	neat		Heat Pum)	AC w	vith electri	c heat	Ele	ctric heat o	only	G	as heat on	lv
Building	City	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg
	NYC	0.114	0.200	-0.023	-0.155	0.200	0.000	-0.340	0.200	0.000	-0.482	0.000	0.000	0.000	0.000	-0.023
	Poughkeepsie	0.097	0.200	-0.025	-0.271	0.200	0.000	-0.453	0.200	0.000	-0.577	0.000	0.000	0.000	0.000	-0.027
	Syracuse	0.081	0.200	-0.027	-0.313	0.200	0.000	-0.485	0.200	0.000	-0.591	0.000	0.000	0.000	0.000	-0.028
Religious	Albany	0.078	0.200	-0.012	-0.119	0.200	0.000	-0.193	0.200	0.000	-0.274	0.000	0.000	0.000	0.000	-0.012
(Rel)	Binghamton	0.071	0.200	-0.013	-0.122	0.200	0.000	-0.229	0.200	0.000	-0.309	0.000	0.000	0.000	0.000	-0.013
	Buffalo	0.075	0.200	-0.011	-0.117	0.200	0.000	-0.194	0.200	0.000	-0.272	0.000	0.000	0.000	0.000	-0.012
	Massena	0.069	0.200	-0.013	-0.151	0.200	0.000	-0.219	0.200	0.000	-0.289	0.000	0.000	0.000	0.000	-0.013
	NYC	0.092	0.200	-0.013	-0.060	0.200	0.000	-0.199	0.200	0.000	-0.291	0.000	0.000	0.000	0.000	-0.013
	Poughkeepsie	0.089	0.200	-0.013	-0.078	0.200	0.000	-0.220	0.200	0.000	-0.310	0.000	0.000	0.000	0.000	-0.013
	Syracuse	0.081	0.200	-0.012	-0.118	0.200	0.000	-0.204	0.200	0.000	-0.285	0.000	0.000	0.000	0.000	-0.012
Small	Albany	0.100	0.200	-0.019	-0.112	0.200	0.000	-0.283	0.200	0.000	-0.376	0.000	0.000	0.000	0.000	-0.019
Office	Binghamton	0.090	0.200	-0.021	-0.145	0.200	0.000	-0.321	0.200	0.000	-0.413	0.000	0.000	0.000	0.000	-0.021
(3010)	Buffalo	0.090	0.200	-0.020	-0.129	0.200	0.000	-0.307	0.200	0.000	-0.405	0.000	0.000	0.000	0.000	-0.020
	Massena	0.090	0.200	-0.021	-0.177	0.200	0.000	-0.333	0.200	0.000	-0.426	0.000	0.000	0.000	0.000	-0.021
	NYC	0.120	0.200	-0.015	-0.003	0.200	0.000	-0.157	0.200	0.000	-0.239	0.000	0.000	0.000	0.000	-0.013
	Poughkeepsie	0.110	0.200	-0.017	-0.061	0.200	0.000	-0.219	0.200	0.000	-0.335	0.000	0.000	0.000	0.000	-0.017
	Syracuse	0.100	0.200	-0.020	-0.119	0.200	0.000	-0.286	0.200	0.000	-0.383	0.000	0.000	0.000	0.000	-0.019
Small Retail	Albany	0.100	0.200	-0.027	-0.191	0.200	0.000	-0.428	0.200	0.000	-0.555	0.000	0.000	0.000	0.000	-0.027
(SRet)	Binghamton	0.090	0.200	-0.029	-0.190	0.200	0.000	-0.448	0.200	0.000	-0.568	0.000	0.000	0.000	0.000	-0.028
	Buffalo	0.090	0.200	-0.028	-0.205	0.200	0.000	-0.447	0.200	0.000	-0.555	0.000	0.000	0.000	0.000	-0.027
	Massena	0.080	0.200	-0.031	-0.264	0.200	0.000	-0.535	0.200	0.000	-0.632	0.000	0.000	0.000	0.000	-0.031
	NYC	0.130	0.200	-0.022	-0.044	0.200	0.000	-0.258	0.200	0.000	-0.375	0.000	0.000	0.000	0.000	-0.019
	Poughkeepsie	0.115	0.200	-0.025	-0.137	0.200	0.000	-0.350	0.200	0.000	-0.481	0.000	0.000	0.000	0.000	-0.024
	Syracuse	0.090	0.200	-0.028	-0.180	0.200	0.000	-0.451	0.200	0.000	-0.563	0.000	0.000	0.000	0.000	-0.028
Warehouse	Albany	0.063	0.200	-0.016	-0.170	0.200	0.000	-0.311	0.200	0.000	-0.373	0.000	0.000	0.000	0.000	-0.016
(WH)	Binghamton	0.054	0.200	-0.017	-0.187	0.200	0.000	-0.341	0.200	0.000	-0.397	0.000	0.000	0.000	0.000	-0.017
	Buffalo	0.054	0.200	-0.016	-0.178	0.200	0.000	-0.325	0.200	0.000	-0.380	0.000	0.000	0.000	0.000	-0.016
	Massena	0.055	0.200	-0.014	-0.156	0.200	0.000	-0.280	0.200	0.000	-0.335	0.000	0.000	0.000	0.000	-0.014
	NYC	0.078	0.200	-0.015	-0.109	0.200	0.000	-0.273	0.200	0.000	-0.352	0.000	0.000	0.000	0.000	-0.015
	Poughkeepsie	0.073	0.200	-0.017	-0.127	0.200	0.000	-0.312	0.200	0.000	-0.388	0.000	0.000	0.000	0.000	-0.017
	Syracuse	0.066	0.200	-0.017	-0.205	0.200	0.000	-0.334	0.200	0.000	-0.401	0.000	0.000	0.000	0.000	-0.017
Other	Albany	0.080	0.200	-0.027	-0.318	0.200	0.000	-0.485	0.200	0.000	-0.586	0.000	0.000	0.000	0.000	-0.028
	Binghamton	0.069	0.200	-0.028	-0.342	0.200	0.000	-0.519	0.200	0.000	-0.613	0.000	0.000	0.000	0.000	-0.029
	Buffalo	0.073	0.200	-0.028	-0.314	0.200	0.000	-0.495	0.200	0.000	-0.597	0.000	0.000	0.000	0.000	-0.028
	Massena	0.068	0.200	-0.030	-0.383	0.200	0.000	-0.537	0.200	0.000	-0.627	0.000	0.000	0.000	0.000	-0.029
	NYC	0.114	0.200	-0.023	-0.155	0.200	0.000	-0.340	0.200	0.000	-0.482	0.000	0.000	0.000	0.000	-0.023
	Poughkeepsie	0.097	0.200	-0.025	-0.271	0.200	0.000	-0.453	0.200	0.000	-0.577	0.000	0.000	0.000	0.000	-0.027

		AC	with gas h	neat	Heat Pump			AC with electric heat			Electric heat only			Gas heat only		
Building	City	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg
_	Syracuse	0.081	0.200	-0.027	-0.313	0.200	0.000	-0.485	0.200	0.000	-0.591	0.000	0.000	0.000	0.000	-0.028

LARGE COMMERCIAL BUILDINGS

Building City			CV Noecon	l		CV Econ		VAV Econ			
Dunung	City	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	
	Albany	0.045	0.200	-0.014	0.016	0.200	-0.015	0.080	0.200	-0.007	
	Binghamton	0.042	0.200	-0.009	0.014	0.200	-0.010	0.064	0.200	-0.005	
	Buffalo	0.042	0.200	-0.011	0.014	0.200	-0.012	0.065	0.200	-0.005	
Community College (CC)	Massena	0.040	0.200	-0.015	0.013	0.200	-0.015	0.043	0.200	-0.008	
	NYC	0.044	0.200	-0.025	0.019	0.200	-0.024	0.124	0.200	-0.003	
	Poughkeepsie	0.040	0.200	-0.022	0.014	0.200	-0.021	0.083	0.200	-0.009	
	Syracuse	0.045	0.200	-0.017	0.016	0.200	-0.017	0.087	0.200	-0.005	
	Albany	0.033	0.200	-0.027	0.014	0.200	-0.027	0.037	0.200	-0.021	
	Binghamton	0.028	0.200	-0.028	0.009	0.200	-0.028	0.030	0.200	-0.022	
	Buffalo	0.031	0.200	-0.027	0.010	0.200	-0.027	0.035	0.200	-0.021	
High School (HS)	Massena	0.030	0.200	-0.028	0.012	0.200	-0.027	0.026	0.200	-0.023	
	NYC	0.042	0.200	-0.026	0.022	0.200	-0.025	0.049	0.200	-0.020	
	Poughkeepsie	0.037	0.200	-0.028	0.016	0.200	-0.027	0.034	0.200	-0.023	
	Syracuse	0.033	0.200	-0.028	0.015	0.200	-0.027	0.037	0.200	-0.022	
	Albany	0.029	0.200	-0.021	0.014	0.200	-0.021	0.045	0.200	-0.016	
	Binghamton	0.027	0.200	-0.021	0.011	0.200	-0.021	0.039	0.200	-0.015	
	Buffalo	0.027	0.200	-0.021	0.012	0.200	-0.021	0.044	0.200	-0.015	
Hospital (Hosp)	Massena	0.026	0.200	-0.022	0.012	0.200	-0.022	0.033	0.200	-0.017	
	NYC	0.033	0.200	-0.022	0.019	0.200	-0.022	0.065	0.200	-0.013	
	Poughkeepsie	0.029	0.200	-0.023	0.014	0.200	-0.023	0.053	0.200	-0.016	
	Syracuse	0.029	0.200	-0.022	0.014	0.200	-0.022	0.054	0.200	-0.015	
	Albany	0.029	0.200	-0.021	0.014	0.200	-0.021	0.045	0.200	-0.016	
	Binghamton	0.027	0.200	-0.021	0.011	0.200	-0.021	0.039	0.200	-0.015	
	Buffalo	0.027	0.200	-0.021	0.012	0.200	-0.021	0.044	0.200	-0.015	
Hotel (Hotel)	Massena	0.026	0.200	-0.022	0.012	0.200	-0.022	0.033	0.200	-0.017	
	NYC	0.033	0.200	-0.022	0.019	0.200	-0.022	0.065	0.200	-0.013	
	Poughkeepsie	0.029	0.200	-0.023	0.014	0.200	-0.023	0.053	0.200	-0.016	
	Syracuse	0.029	0.200	-0.022	0.014	0.200	-0.022	0.054	0.200	-0.015	
	Albany	0.029	0.200	-0.021	0.014	0.200	-0.021	0.045	0.200	-0.016	
Large Office (LOfc)	Binghamton	0.027	0.200	-0.021	0.011	0.200	-0.021	0.039	0.200	-0.015	
	Buffalo	0.027	0.200	-0.021	0.012	0.200	-0.021	0.044	0.200	-0.015	

Building	City		CV Noecon			CV Econ			VAV Econ	
Dunung	City	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg
	Massena	0.026	0.200	-0.022	0.012	0.200	-0.022	0.033	0.200	-0.017
	NYC	0.033	0.200	-0.022	0.019	0.200	-0.022	0.065	0.200	-0.013
	Poughkeepsie	0.029	0.200	-0.023	0.014	0.200	-0.023	0.053	0.200	-0.016
	Syracuse	0.029	0.200	-0.022	0.014	0.200	-0.022	0.054	0.200	-0.015
	Albany	0.031	0.200	-0.027	0.018	0.200	-0.027	0.043	0.200	-0.024
	Binghamton	0.032	0.200	-0.027	0.015	0.200	-0.028	0.044	0.200	-0.023
	Buffalo	0.030	0.200	-0.026	0.017	0.200	-0.028	0.045	0.200	-0.022
Large Retail (LRet)	Massena	0.029	0.200	-0.028	0.016	0.200	-0.029	0.036	0.200	-0.026
	NYC	0.037	0.200	-0.023	0.023	0.200	-0.024	0.057	0.200	-0.017
	Poughkeepsie	0.033	0.200	-0.025	0.018	0.200	-0.025	0.056	0.200	-0.019
	Syracuse	0.032	0.200	-0.027	0.017	0.200	-0.029	0.044	0.200	-0.024
	Albany	0.051	0.200	-0.023	0.018	0.200	-0.025	0.111	0.200	-0.012
	Binghamton	0.049	0.200	-0.019	0.014	0.200	-0.020	0.098	0.200	-0.012
	Buffalo	0.052	0.200	-0.020	0.018	0.200	-0.022	0.104	0.200	-0.012
University (Univ)	Massena	0.042	0.200	-0.025	0.012	0.200	-0.027	0.086	0.200	-0.014
	NYC	0.048	0.200	-0.027	0.020	0.200	-0.028	0.142	0.200	-0.010
	Poughkeepsie	0.044	0.200	-0.027	0.014	0.200	-0.028	0.120	0.200	-0.009
	Syracuse	0.047	0.200	-0.024	0.016	0.200	-0.026	0.110	0.200	-0.012

COLLEGE DORMITORY

	Fan coil w	ith chiller and	hot water			
City		boiler		S	team heat onl	у
	HVACc	HVACd	HVACg	HVACc	HVACd	HVACg
Albany	0.029	.200	-0.014	0.000	0.000	-0.015
Binghamton	0.029	.200	-0.014	0.000	0.000	-0.016
Buffalo	0.027	.200	-0.014	0.000	0.000	-0.016
Massena	0.025	.200	-0.015	0.000	0.000	-0.016
NYC	0.025	.200	-0.012	0.000	0.000	-0.013
Poughkeepsie	0.035	.200	-0.014	0.000	0.000	-0.015
Syracuse	0.028	.200	-0.014	0.000	0.000	-0.016

REFRIGERATED WAREHOUSE

City	Water Cool Screw Co	ed Ammonia ompressors
·	HVACc	HVACd
Albany	0.370	.200
Binghamton	0.400	.200

Buffalo	0.400	.200
Massena	0.390	.200
NYC	0.390	.200
Poughkeepsie	0.410	.200
Syracuse	0.390	.200

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

Return to Table of Contents

APPENDIX E

OPAQUE SHELL MEASURE SAVINGS

SINGLE-FAMILY RESIDENTIAL INSULATION UPGRADES

Building:	Single-Fa	amily Low	-rise	City: Alk	bany	HVAC: A	AC with G	as Heat		Measure	e: Wall Ins	sulation			
Base		0			11			13			17			19	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	51.2	0.065	51.9												
13	58.7	0.076	60.3	7.6	0.011	8.3									
17	70.2	0.098	72.1	19.1	0.033	20.2	11.5	0.022	11.8						
19	74.1	0.098	76.4	23.0	0.033	24.5	15.4	0.022	16.2	3.9	0.000	4.3			
21	77.9	0.108	80.0	26.8	0.043	28.1	19.2	0.033	19.7	7.7	0.011	7.9	3.8	0.011	3.6
25	83.0	0.108	85.6	31.9	0.043	33.7	24.3	0.033	25.4	12.8	0.011	13.5	8.9	0.011	9.2
27	85.3	0.119	87.9	34.1	0.054	36.0	26.6	0.043	15.8	15.1	0.022	15.8	11.2	0.022	11.5

Building: Sing	gle-Family	City: Albany	/	HVAC: H	leat Pump	Measu	ire: Wall Insu	ation		
Base		0		11		13		17	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	772.8	0.043								
13	896.3	0.054	123.5	0.011						
17	1065.6	0.065	292.8	0.022	169.3	0.011				
19	1126.6	0.076	353.8	0.033	230.3	0.022	61.0	0.011		
21	1178.0	0.076	405.2	0.033	281.7	0.022	112.4	0.011	51.4	0.000
25	1257.9	0.076	485.0	0.033	361.6	0.022	192.3	0.011	131.3	0.000
27	1290.5	0.087	517.7	0.043	224.9	0.033	224.9	0.022	163.9	0.011

Building: Si	ngle-Family	Ci	ity: Albany		HVAC: AC w	ith Electric He	at	Measure:	Wall Insulation	on
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1192.1	0.065								
13	1382.2	0.076	190.1	0.011						
17	1650.6	0.098	458.5	0.033	268.4	0.022				
19	1748.1	0.098	556.0	0.033	365.9	0.022	97.6	0.000		
21	1830.2	0.108	638.1	0.043	448.0	0.033	179.6	0.011	82.1	0.011
25	1958.5	0.108	766.4	0.043	576.3	0.033	307.9	0.011	210.4	0.011
27	2010.2	0.119	818.1	0.054	628.0	0.043	359.6	0.022	262.1	0.022

Building: Si	ngle-Family			City: Al	bany	HVAC:	Electric Heat	, no AC Mea	sure: Wall	Insulation
Base	()	1	1		13		17		19
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1166.2	0.000								
13	1352.7	0.000	186.5	0.000						
17	1615.2	0.000	449.1	0.000	262.5	0.000				
19	1710.9	0.000	544.8	0.000	358.2	0.000	95.7	0.000		
21	1790.9	0.000	624.8	0.000	438.2	0.000	175.7	0.000	80.0	0.000
25	1916.9	0.000	750.7	0.000	564.2	0.000	301.6	0.000	205.9	0.000
27	1967.4	0.000	801.2	0.000	614.7	0.000	352.2	0.000	256.4	0.000

Building: Sir	ngle-Fan	nily		City: A	lbany	HVAC: 0	Gas Heat,	no AC				Measur	e: Wall Insulat	ion	
Base		0			11			13			17			19	
	kWh/		therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/		kW/	therm/
Measure	kSF	kW/ kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kWh/ kSF	kSF	kSF
11	25.1	0.000	51.9												
13	29.2	0.000	60.3	4.0	0.000	8.3									
17	34.9	0.000	72.1	9.8	0.000	20.2	5.7	0.000	11.8						
19	37.0	0.000	76.4	11.8	0.000	24.5	7.8	0.000	16.2	2.1	0.000	4.3			
21	38.7	0.000	80.0	13.5	0.000	28.1	9.5	0.000	19.7	3.8	0.000	7.9	1.7	0.000	3.6
25	41.4	0.000	85.6	16.3	0.000	33.7	12.2	0.000	25.4	6.5	0.000	13.5	4.4	0.000	9.2
27	42.5	0.000	87.9	17.3	0.000	36.0	13.3	0.000	27.6	7.6	0.000	15.8	5.5	0.000	11.5

Building: \$	Single-Fan	nily		City: A	lbany		HV	AC: AC w	ith Gas H	eat			Measure: Ro	of Insula	ation
Base		0			11			19			30			38	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/		kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kWh/ kSF	kSF	kSF
11	336.9	0.119	322.4												
19	380.5	0.188	362.3	43.7	0.068	39.9									
30	403.4	0.222	385.8	66.6	0.102	63.5	22.9	0.034	23.5						
38	414.8	0.239	395.1	78.0	0.119	72.7	34.3	0.051	32.8	11.4	0.017	9.2			
49	421.2	0.239	403.1	84.3	0.119	80.7	40.6	0.051	40.8	17.7	0.017	17.2	6.3	0.000	8.0
60	425.4	0.256	408.4	88.6	0.137	86.0	44.9	0.068	46.1	22.0	0.034	22.5	10.6	0.017	13.3

Building: Sir	ngle-Family	City: Alba	ny	HVAC:	Heat Pump			N	leasure: Roof	Insulation
Base	U	0	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	5582.8	0.188								
19	6213.0	0.239	630.2	0.051						
30	6570.8	0.273	988.1	0.085	357.8	0.034				
38	6710.4	0.273	1127.6	0.085	497.4	0.034	139.6	0.000		
49	6828.0	0.290	1245.2	0.102	615.0	0.051	257.2	0.017	117.6	0.017
60	6904.8	0.290	1322.0	0.102	691.8	0.051	334.0	0.017	194.4	0.017

Building: Sir	ngle-Family	City: Alba	ny	HVAC:	AC with Elect	ric Heat	Ме	asure: Roof In	sulation	
Base		D	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	7631.9	0.119								
19	8563.5	0.188	931.6	0.068						
30	9106.8	0.222	1474.9	0.102	543.3	0.034				
38	9320.3	0.239	1688.4	0.119	756.8	0.051	213.5	0.017		
49	9502.6	0.239	1870.6	0.119	939.1	0.051	395.7	0.017	182.3	0.000
60	9621.8	0.256	1989.9	0.137	1058.4	0.068	515.0	0.034	301.5	0.017

Building: Si	ngle-Family			City: A	lbany	HVA	C: Electric Hea	t, no AC	Measure: Roof	Insulation
Base	()	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	7449.5	0.000								
19	8356.1	0.000	906.7	0.000						
30	8887.5	0.000	1438.1	0.000	531.4	0.000				
38	9093.9	0.000	1644.4	0.000	737.7	0.000	206.3	0.000		
49	9273.5	0.000	1824.1	0.000	917.4	0.000	386.0	0.000	179.7	0.000
60	9391.0	0.000	1941.5	0.000	1034.8	0.000	503.4	0.000	297.1	0.000

Building:	Single-Fa	mily		City: All	bany	HVAC: C	Gas Heat I	No AC		Measure	e: Roof In	sulation			
Base		0			11			19			30			38	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	154.6	0.000	322.5												
19	173.4	0.000	362.5	18.8	0.000	39.9									
30	184.3	0.000	386.0	29.7	0.000	63.5	10.9	0.000	23.5						
38	188.6	0.000	395.2	34.0	0.000	72.7	15.2	0.000	32.8	4.3	0.000	9.2			
49	192.3	0.000	403.2	37.7	0.000	80.7	18.9	0.000	40.8	8.0	0.000	17.2	3.8	0.000	8.0
60	194.7	0.000	408.5	40.1	0.000	86.0	21.3	0.000	46.1	10.4	0.000	22.5	6.1	0.000	13.3

Building:	Single-F	Family		City: Bu	ffalo	HVAC:	AC with G	ias Heat		Measure	e: Wall Ins	sulation			
Base		0			11			13			17			19	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	46.4	0.043	54.2												
13	53.7	0.043	62.8	7.3	0.000	8.6									
17	64.9	0.054	74.9	18.5	0.011	20.7	11.3	0.011	12.1						
19	68.6	0.054	79.3	22.2	0.011	25.1	15.0	0.011	16.6	3.7	0.000	4.4			
21	71.3	0.054	83.0	24.9	0.011	28.8	17.7	0.011	20.3	6.4	0.000	8.1	2.7	0.000	3.7
25	76.0	0.054	88.9	29.6	0.011	34.7	22.3	0.011	26.1	11.1	0.000	14.0	7.4	0.000	9.5
27	77.0	0.065	91.2	30.6	0.022	37.0	23.3	0.022	16.3	12.0	0.011	16.3	8.3	0.011	11.8

Building:	Building: Single-Family			City: Buffalo	0	HVAC: Heat	Pump		Measure: Wa	all Insulation
Base	(0	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	841.3	0.043								
13	972.3	0.043	130.9	0.000						
17	1154.8	0.054	313.5	0.011	182.5	0.011				
19	1221.2	0.054	379.9	0.011	249.0	0.011	66.4	0.000		
21	1275.0	0.054	433.7	0.011	302.7	0.011	120.2	0.000	53.8	0.000
25	1360.1	0.065	518.8	0.022	387.8	0.022	205.3	0.011	138.8	0.011
27	1394.0	0.065	552.7	0.022	239.2	0.022	239.2	0.011	172.8	0.011

Building:	Single-Famil	у	City: Buffalo)	HVAC: AC w	ith Electric He	at	Measure: Wa	all Insulation	
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1246.8	0.043								
13	1444.4	0.043	197.6	0.000						
17	1722.6	0.054	475.8	0.011	278.2	0.011				
19	1823.7	0.054	576.8	0.011	379.3	0.011	101.0	0.000		
21	1907.4	0.054	660.6	0.011	463.0	0.011	184.8	0.000	83.8	0.000
25	2039.8	0.054	793.0	0.011	595.4	0.011	317.1	0.000	216.1	0.000
27	2091.9	0.065	845.1	0.022	647.5	0.022	369.3	0.011	268.3	0.011

Building:	Single-Family	y	City: Buffalo	1	HVAC: Electr	ric Heat, no AC	;	Measure: Wa	Il Insulation	
Base	0		1	1	1:	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1227.4	0.000								
13	1422.0	0.000	194.6	0.000						
17	1694.9	0.000	467.5	0.000	272.9	0.000				
19	1794.4	0.000	567.0	0.000	372.4	0.000	99.5	0.000		
21	1877.4	0.000	650.0	0.000	455.5	0.000	182.5	0.000	83.0	0.000
25	2007.9	0.000	780.5	0.000	586.0	0.000	313.0	0.000	213.5	0.000
27	2060.2	0.000	832.8	0.000	638.2	0.000	365.3	0.000	265.8	0.000

Building:	Single-	Family		City: B	uffalo	HVAC: C	Gas Heat,	no AC	Measure: Wall Insulation 17 19 therm/ kW/ therm/ kWh/ kW/ therm kSF						
Base		0			11			13			17			19	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/		kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kWh/ kSF	kSF	kSF	kSF	kSF	kSF
11	26.9	0.000	54.2												
13	31.2	0.000	62.8	4.3	0.000	8.6									
17	37.2	0.000	74.9	10.3	0.000	20.7	6.0	0.000	12.1						
19	39.3	0.000	79.3	12.5	0.000	25.1	8.1	0.000	16.6	2.2	0.000	4.4			
21	41.2	0.000	83.0	14.3	0.000	28.8	10.0	0.000	20.3	4.0	0.000	8.1	1.8	0.000	3.7
25	44.0	0.000	88.9	17.1	0.000	34.7	12.8	0.000	26.1	6.8	0.000	14.0	4.7	0.000	9.5
27	45.2	0.000	91.3	18.3	0.000	37.1	14.0	0.000	28.5	8.0	0.000	16.4	5.9	0.000	11.9

Building:	Single	Family		City: E	Buffalo	HVAC:	AC with G	Gas Heat		Measure	e: Roof In	sulation			
Base		0			11			19			30			38	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	292.5	0.256	320.6												
19	327.0	0.290	360.6	34.5	0.034	39.9									
30	350.3	0.307	384.0	57.8	0.051	63.3	23.4	0.017	23.4						
38	357.0	0.324	393.2	64.5	0.068	72.5	30.0	0.034	32.6	6.7	0.017	9.2			
49	366.7	0.324	401.2	74.2	0.068	80.5	39.8	0.034	40.6	16.4	0.017	17.2	9.7	0.000	8.0
60	370.5	0.324	406.5	78.0	0.068	85.8	43.5	0.034	45.9	20.1	0.017	22.5	13.5	0.000	13.3

Building:	Single-Fami	ly		City: Buffalo	2	HVAC: Heat	Pump		Measure: Ro	of Insulation
Base	()	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	5565.7	0.239								
19	6216.2	0.273	650.5	0.034						
30	6586.5	0.307	1020.8	0.068	370.3	0.034				
38	6729.7	0.307	1164.0	0.068	513.5	0.034	143.2	0.000		
49	6857.7	0.307	1292.0	0.068	641.5	0.034	271.2	0.000	128.0	0.000
60	6938.4	0.307	1372.7	0.068	722.2	0.034	351.9	0.000	208.7	0.000

Building:	Single-Fan	nily		City: Buffa	lo	HVAC: AC	with Electric	: Heat		Measure: Roof Insulation
Base	()	1	1	1	9	3	0		38
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	7602.2	0.256								
19	8528.5	0.290	926.3	0.034						
30	9073.4	0.307	1471.2	0.051	544.9	0.017				
38	9284.0	0.324	1681.7	0.068	755.5	0.034	210.6	0.017		
49	9472.2	0.324	1870.0	0.068	943.7	0.034	398.8	0.017	188.2	0.000
60	9592.3	0.324	1990.1	0.068	1063.8	0.034	518.9	0.017	308.4	0.000

Building:	Single-Family	у	City: Buffalo)	HVAC: Elect	tric Heat, no A	C	Measure: Ro	of Insulation	
Base	0)	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	7464.7	0.000								
19	8375.4	0.000	910.8	0.000						
30	8907.8	0.000	1443.2	0.000	532.4	0.000				
38	9116.2	0.000	1651.5	0.000	740.8	0.000	208.4	0.000		
49	9298.5	0.000	1833.8	0.000	923.0	0.000	390.6	0.000	182.3	0.000
60	9417.2	0.000	1952.6	0.000	1041.8	0.000	509.4	0.000	301.0	0.000

Building:	Single-F	amily		City: Bu	ffalo	HVAC: 0	Gas Heat	No AC		Measure	e: Roof In	sulation			
Base		0			11			19			30			38	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	154.9	0.000	320.6												
19	173.9	0.000	360.6	18.9	0.000	39.9									
30	184.8	0.000	384.0	29.9	0.000	63.3	10.9	0.000	23.4						
38	189.2	0.000	393.2	34.3	0.000	72.5	15.4	0.000	32.6	4.4	0.000	9.2			
49	193.0	0.000	401.2	38.1	0.000	80.5	19.1	0.000	40.6	8.2	0.000	17.2	3.8	0.000	8.0
60	195.4	0.000	406.5	40.4	0.000	85.8	21.5	0.000	45.9	10.6	0.000	22.5	6.1	0.000	13.3

Building:	Single-fa	mily		City: Ma	issena	HVAC: A	AC with G	as Heat		Measure	e: Wall Ins	sulation			
Base		0			11			13			17			19	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	53.2	0.065	61.7												
13	61.1	0.076	71.5	7.9	0.011	9.9									
17	72.9	0.087	85.5	19.7	0.022	23.8	11.8	0.011	14.0						
19	77.5	0.098	90.7	24.3	0.033	29.0	16.4	0.022	19.2	4.6	0.011	5.2			
21	80.2	0.098	94.9	27.0	0.033	33.3	19.1	0.022	23.4	7.3	0.011	9.4	2.7	0.000	4.2
25	87.4	0.108	101.7	34.1	0.043	40.0	26.2	0.033	30.1	14.4	0.022	16.2	9.9	0.011	10.9
27	89.4	0.108	104.4	36.2	0.043	42.7	28.3	0.033	18.9	16.5	0.022	18.9	11.9	0.011	13.7

Building:	Single-famil	у		City: Masse	na	HVAC: Heat	Pump		Measure: Wa	all Insulation
Base	(0	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1039.7	0.043								
13	1201.9	0.054	162.3	0.011						
17	1430.7	0.076	391.1	0.033	228.8	0.022				
19	1514.0	0.076	474.3	0.033	312.1	0.022	83.2	0.000		
21	1582.1	0.087	542.4	0.043	380.1	0.033	151.3	0.011	68.1	0.011
25	1688.9	0.098	649.3	0.054	487.0	0.043	258.2	0.022	174.9	0.022
27	1734.9	0.098	695.2	0.054	304.1	0.043	304.1	0.022	220.9	0.022

Building:	Single-family	/	City: Masser	าล	HVAC: AC w	ith Electric He	at	Measure: Wa	all Insulation	
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1423.9	0.065								
13	1651.2	0.076	227.3	0.011						
17	1971.8	0.087	547.9	0.022	320.6	0.011				
19	2089.2	0.098	665.3	0.033	438.0	0.022	117.4	0.011		
21	2186.2	0.098	762.3	0.033	535.0	0.022	214.4	0.011	97.0	0.000
25	2341.6	0.108	917.7	0.043	690.4	0.033	369.8	0.022	252.4	0.011
27	2403.2	0.108	979.3	0.043	752.0	0.033	431.4	0.022	314.0	0.011

Building:	Single-family	/	City: Masser	na	HVAC: Electi	ric Heat, no AC		Measure: W	all Insulation	
Base	(0	1	1	1	3		17	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1400.7	0.000								
13	1624.9	0.000	224.1	0.000						
17	1940.3	0.000	539.6	0.000	315.4	0.000				
19	2055.9	0.000	655.2	0.000	431.1	0.000	115.7	0.000		
21	2152.1	0.000	751.4	0.000	527.2	0.000	211.8	0.000	96.1	0.000
25	2303.6	0.000	902.9	0.000	678.7	0.000	363.3	0.000	247.7	0.000
27	2364.8	0.000	964.1	0.000	740.0	0.000	424.6	0.000	308.9	0.000

Building: Single-family				City: Ma	assena				HVAC: Gas Heat, no AC Me			Mea	asure: Wall Insulation		
Base	0			11			13				17		19		
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	30.0	0.000	61.7												
13	34.9	0.000	71.5	4.9	0.000	9.9									
17	41.6	0.000	85.5	11.6	0.000	23.8	6.7	0.000	14.0						
19	44.1	0.000	90.7	14.1	0.000	29.0	9.2	0.000	19.2	2.5	0.000	5.2			
21	46.2	0.000	94.9	16.2	0.000	33.3	11.3	0.000	23.4	4.6	0.000	9.4	2.1	0.000	4.2
25	49.4	0.000	101.8	19.4	0.000	40.1	14.5	0.000	30.2	7.8	0.000	16.3	5.3	0.000	11.1
27	50.7	0.000	104.5	20.7	0.000	42.8	15.8	0.000	33.0	9.1	0.000	19.0	6.6	0.000	13.8

Building: Single-family				City: Ma	assena	HVAC:	AC with Gas Heat						Measure: Roof Insulation					
Base	0			11			19			30			38					
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/		kW/	therm/			
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kWh/ kSF	kSF	kSF			
11	338.4	0.290	381.2															
19	377.0	0.341	429.0	38.6	0.051	47.8												
30	400.2	0.375	457.2	61.8	0.085	75.9	23.2	0.034	28.2									
38	412.5	0.392	468.3	74.1	0.102	87.0	35.5	0.051	39.2	12.3	0.017	11.1						
49	420.6	0.392	477.8	82.3	0.102	96.6	43.7	0.051	48.8	20.5	0.017	20.6	8.2	0.000	9.6			
60	426.3	0.410	484.1	87.9	0.119	102.9	49.3	0.068	55.1	26.1	0.034	27.0	13.8	0.017	15.9			
Building:	Single-family			City: Massen	a	HVAC: Heat F	Pump		Measure: Roc	of Insulation								
-----------	---------------	---------	----------	--------------	----------	--------------	----------	---------	--------------	---------------								
Base	0		1	1	1	9	3	0	3	8								
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF								
11	7099.8	0.222																
19	7936.3	0.273	836.5	0.051														
30	8425.4	0.290	1325.6	0.068	489.1	0.017												
38	8614.0	0.307	1514.2	0.085	677.6	0.034	188.6	0.017										
49	8776.5	0.307	1676.6	0.085	840.1	0.034	351.0	0.017	162.5	0.000								
60	8883.6	0.324	1783.8	0.102	947.3	0.051	458.2	0.034	269.6	0.017								

Building:	Single-family		City: Massena	l	HVAC: AC wi	th Electric Hea	at	Measure: Roc	of Insulation	
Base	0)	1	1	1	19	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	9089.2	0.290								
19	10202.2	0.341	1113.0	0.051						
30	10854.3	0.375	1765.0	0.085	652.0	0.034				
38	11112.8	0.392	2023.5	0.102	910.6	0.051	258.5	0.017		
49	11336.0	0.392	2246.8	0.102	1133.8	0.051	481.7	0.017	223.2	0.000
60	11481.7	0.410	2392.5	0.119	1279.5	0.068	627.5	0.034	368.9	0.017

Building:	Single-family		City: Massena	ı	HVAC: Electr	ic Heat, no AC	;	Measure: Roo	of Insulation	
Base	()	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	8931.1	0.000								
19	10027.6	0.000	1096.6	0.000						
30	10670.0	0.000	1738.9	0.000	642.3	0.000				
38	10921.5	0.000	1990.4	0.000	893.9	0.000	251.5	0.000		
49	11140.6	0.000	2209.6	0.000	1113.0	0.000	470.6	0.000	219.1	0.000
60	11284.0	0.000	2352.9	0.000	1256.3	0.000	614.0	0.000	362.5	0.000

Building: S	Single-fan	nily		City: Mas	ssena	HVAC: G	as Heat, r	no AC		Measure	: Roof Insi	ulation			
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	180.4	0.000	381.4												
19	202.9	0.000	429.2	22.5	0.000	47.8									
30	216.0	0.000	457.3	35.7	0.000	75.9	13.1	0.000	28.2						
38	221.3	0.000	468.4	41.0	0.000	87.0	18.4	0.000	39.2	5.3	0.000	11.1			
49	225.8	0.000	478.0	45.4	0.000	96.6	22.9	0.000	48.8	9.7	0.000	20.6	4.4	0.000	9.6
60	228.7	0.000	484.3	48.3	0.000	102.9	25.8	0.000	55.1	12.6	0.000	27.0	7.3	0.000	15.9

Building: S	Single-far	nily		City: NYC	C	HVAC: A	C with Ga	is Heat		Measure	: Wall Insu	llation			
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	60.0	0.054	36.6												
13	66.7	0.065	42.3	6.6	0.011	5.6									
17	80.6	0.076	50.6	20.6	0.022	14.0	14.0	0.011	8.3						
19	85.8	0.076	53.7	25.8	0.022	17.0	19.2	0.011	11.4	5.2	0.000	3.0			
21	90.1	0.076	56.1	30.0	0.022	19.5	23.4	0.011	13.9	9.4	0.000	5.5	4.2	0.000	2.5
25	95.5	0.087	60.2	35.4	0.033	23.5	28.8	0.022	17.9	14.8	0.011	9.5	9.6	0.011	6.5
27	97.8	0.087	61.7	37.7	0.033	25.0	31.1	0.022	11.1	17.1	0.011	11.1	11.9	0.011	8.0

Building:	Single-family			City: NYC		HVAC: Heat F	Pump		Measure: Wa	II Insulation
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	430.4	0.076								
13	493.8	0.087	63.4	0.011						
17	590.6	0.098	160.2	0.022	96.8	0.011				
19	626.1	0.108	195.6	0.033	132.2	0.022	35.4	0.011		
21	654.8	0.108	224.4	0.033	161.0	0.022	64.2	0.011	28.7	0.000
25	698.8	0.108	268.4	0.033	205.0	0.022	108.2	0.011	72.7	0.000
27	717.2	0.119	286.8	0.043	126.6	0.033	126.6	0.022	91.2	0.011

Building:	Single-family		City: NYC		HVAC: AC wi	th Electric Hea	at	Measure: Wa	I Insulation	
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	840.8	0.054								
13	968.0	0.065	127.2	0.011						
17	1158.0	0.076	317.3	0.022	190.0	0.011				
19	1227.4	0.076	386.6	0.022	259.4	0.011	69.4	0.000		
21	1284.8	0.076	444.1	0.022	316.8	0.011	126.8	0.000	57.4	0.000
25	1374.3	0.087	533.5	0.033	406.2	0.022	216.2	0.011	146.9	0.011
27	1410.1	0.087	569.4	0.033	442.1	0.022	252.1	0.011	182.7	0.011

Building:	Single-family		City: NYC		HVAC: Electr	ic Heat, no AC	;	Measure: Wal	I Insulation	
Base	(0	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	798.1	0.000								
13	921.6	0.000	123.6	0.000						
17	1101.2	0.000	303.2	0.000	179.6	0.000				
19	1166.7	0.000	368.6	0.000	245.1	0.000	65.5	0.000		
21	1221.5	0.000	423.5	0.000	299.9	0.000	120.3	0.000	54.8	0.000
25	1307.6	0.000	509.5	0.000	386.0	0.000	206.4	0.000	140.9	0.000
27	1341.6	0.000	543.6	0.000	420.0	0.000	240.4	0.000	174.9	0.000

Building:	Single-fa	mily		City	: NYC	H	IVAC: Gas	Heat, no	AC		Meas	ure: Wall	Insulation		
Base		0			11			13			17				
	kWh/		therm/			therm/			therm/			therm/			therm/
Measure	kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF
11	17.2	0.000	36.7												
13	19.8	0.000	42.4	2.6	0.000	5.6									
17	23.7	0.000	50.6	6.5	0.000	13.9	3.9	0.000	8.2						
19	25.1	0.000	53.8	7.9	0.000	17.0	5.3	0.000	11.4	1.4	0.000	3.1			
21	26.3	0.000	56.3	9.1	0.000	19.5	6.5	0.000	13.9	2.6	0.000	5.6	1.2	0.000	2.5
25	28.3	0.000	60.3	11.1	0.000	23.5	8.5	0.000	17.9	4.6	0.000	9.6	3.1	0.000	6.5
27	29.0	0.000	61.8	11.8	0.000	25.0	9.2	0.000	19.4	5.3	0.000	11.2	3.9	0.000	8.0

Building: S	Single-fan	nily		City: NYC	2	HVAC: A	C with Ga	is Heat		Measure	: Roof Insi	ulation			
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	415.2	0.307	224.4												
19	468.9	0.375	252.4	53.8	0.068	28.0									
30	497.8	0.392	268.6	82.6	0.085	44.2	28.8	0.017	16.2						
38	508.4	0.410	275.1	93.2	0.102	50.7	39.4	0.034	22.7	10.6	0.017	6.5			
49	515.2	0.410	280.5	100.0	0.102	56.1	46.2	0.034	28.2	17.4	0.017	11.9	6.8	0.000	5.5
60	521.8	0.427	284.1	106.7	0.119	59.7	52.9	0.051	31.7	24.1	0.034	15.5	13.5	0.017	9.0

Building:	Single-family			City: NYC		HVAC: Heat F	Pump		Measure: Roo	f Insulation
Base	0		1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	2988.4	0.341								
19	3333.1	0.410	344.7	0.068						
30	3528.3	0.461	539.9	0.119	195.2	0.051				
38	3604.4	0.478	616.0	0.137	271.3	0.068	76.1	0.017		
49	3665.9	0.478	677.5	0.137	332.8	0.068	137.5	0.017	61.4	0.000
60	3708.9	0.495	720.5	0.154	375.8	0.085	180.5	0.034	104.4	0.017

Building:	Single-family		City: NYC		HVAC: AC wi	th Electric Hea	at	Measure: Roc	of Insulation	
Base	0)	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	5338.7	0.307								
19	5996.6	0.375	657.8	0.068						
30	6373.9	0.392	1035.2	0.085	377.3	0.017				
38	6520.6	0.410	1181.9	0.102	524.1	0.034	146.8	0.017		
49	6646.8	0.410	1308.0	0.102	650.2	0.034	272.9	0.017	126.1	0.000
60	6731.1	0.427	1392.3	0.119	734.5	0.051	357.2	0.034	210.4	0.017

Building:	Single-family	City: NYC			HVAC: Electri	c Heat, no AC		Measure: Roof	Insulation	
Base	0		1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	5028.7	0.000								
19	5645.6	0.000	616.9	0.000						
30	6001.4	0.000	972.7	0.000	355.8	0.000				
38	6140.8	0.000	1112.1	0.000	495.2	0.000	139.4	0.000		
49	6262.6	0.000	1234.0	0.000	617.1	0.000	261.3	0.000	121.8	0.000
60	6342.2	0.000	1313.5	0.000	696.6	0.000	340.8	0.000	201.4	0.000

Building: S	Building: Single-family			City: NYC		HVAC: A	C with Ga	s Heat		Measure	: Roof Insu	ulation			
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	105.6	0.000	224.4												
19	118.4	0.000	252.6	12.8	0.000	28.2									
30	125.9	0.000	268.8	20.3	0.000	44.4	7.5	0.000	16.2						
38	128.8	0.000	275.1	23.2	0.000	50.7	10.4	0.000	22.5	2.9	0.000	6.3			
49	131.4	0.000	280.7	25.8	0.000	56.3	13.0	0.000	28.2	5.5	0.000	11.9	2.6	0.000	5.6
60	133.1	0.000	284.3	27.5	0.000	59.9	14.7	0.000	31.7	7.2	0.000	15.5	4.3	0.000	9.2

Building: S	Building: Single-family				acuse	HVAC: A	C with Ga	as Heat		Measure	: Wall Insu	Ilation			
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	49.2	0.033	51.4												
13	57.2	0.033	59.6	8.0	0.000	8.2									
17	72.6	0.043	71.2	23.4	0.011	19.8	15.4	0.011	11.6						
19	74.9	0.043	75.4	25.7	0.011	24.1	17.7	0.011	15.8	2.3	0.000	4.2			
21	79.4	0.043	79.0	30.2	0.011	27.6	22.2	0.011	19.4	6.8	0.000	7.8	4.6	0.000	3.6
25	84.5	0.054	84.5	35.3	0.022	33.2	27.3	0.022	24.9	11.9	0.011	13.3	9.6	0.011	9.1
27	88.0	0.054	86.8	38.8	0.022	35.4	30.8	0.022	15.6	15.4	0.011	15.6	13.1	0.011	11.4

Building:	Single-family				City: Syracu	se	HVAC: Heat F	Pump	Measure: Wa	Il Insulation
Base	()	1	1	1	3		17		19
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	760.8	0.033								
13	878.8	0.033	118.0	0.000						
17	1046.2	0.043	285.4	0.011	167.4	0.011				
19	1105.9	0.043	345.1	0.011	227.1	0.011	59.7	0.000		
21	1154.8	0.043	394.0	0.011	276.0	0.011	108.6	0.000	48.9	0.000
25	1233.0	0.054	472.3	0.022	354.2	0.022	186.9	0.011	127.1	0.011
27	1265.8	0.054	505.0	0.022	219.6	0.022	219.6	0.011	159.9	0.011

Building:	Single-family		City: Syracus	е	HVAC: AC wi	th Electric Heat	at	Measure: Wa	I Insulation	
Base	(0	1	1	1	13	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1175.9	0.033								
13	1363.4	0.033	187.5	0.000						
17	1631.7	0.043	455.8	0.011	268.3	0.011				
19	1726.3	0.043	550.4	0.011	362.9	0.011	94.6	0.000		
21	1807.7	0.043	631.8	0.011	444.3	0.011	176.0	0.000	81.4	0.000
25	1933.8	0.054	757.9	0.022	570.3	0.022	302.1	0.011	207.5	0.011
27	1985.6	0.054	809.7	0.022	622.2	0.022	353.9	0.011	259.3	0.011

Building:	Single-family		City: Syracus	e	HVAC: Electr	ic Heat, no AC	;	Measure: Wal	I Insulation	
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1151.6	0.000								
13	1335.1	0.000	183.5	0.000						
17	1593.5	0.000	441.9	0.000	258.4	0.000				
19	1688.1	0.000	536.4	0.000	352.9	0.000	94.5	0.000		
21	1766.6	0.000	615.0	0.000	431.5	0.000	173.1	0.000	78.6	0.000
25	1890.3	0.000	738.7	0.000	555.2	0.000	296.8	0.000	202.3	0.000
27	1939.7	0.000	788.1	0.000	604.6	0.000	346.2	0.000	251.7	0.000

Building: S	Single-far	nily		City: Syr	acuse		HVA	C: Gas He	at, no AC	;			Measure	: Wall Insu	lation
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	25.0	0.000	51.5												
13	29.0	0.000	59.6	4.0	0.000	8.1									
17	34.7	0.000	71.3	9.6	0.000	19.8	5.6	0.000	11.7						
19	36.7	0.000	75.5	11.7	0.000	24.1	7.7	0.000	15.9	2.1	0.000	4.2			
21	38.4	0.000	79.1	13.3	0.000	27.6	9.3	0.000	19.5	3.7	0.000	7.8	1.6	0.000	3.6
25	41.1	0.000	84.7	16.0	0.000	33.2	12.0	0.000	25.0	6.4	0.000	13.3	4.3	0.000	9.1
27	42.2	0.000	86.8	17.1	0.000	35.3	13.1	0.000	27.2	7.5	0.000	15.5	5.4	0.000	11.3

Building: S	uilding: Single-family			City: Syra	acuse	HVAC: A	C with Ga	s Heat		Measure	: Roof Insi	ulation			
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	344.0	0.188	318.9												
19	384.3	0.205	357.8	40.3	0.017	38.9									
30	406.0	0.222	380.7	61.9	0.034	61.8	21.7	0.017	22.9						
38	416.4	0.239	389.8	72.4	0.051	70.8	32.1	0.034	31.9	10.4	0.017	9.0			
49	420.6	0.239	397.6	76.6	0.051	78.7	36.3	0.034	39.8	14.7	0.017	16.9	4.3	0.000	7.8
60	426.3	0.239	402.7	82.3	0.051	83.8	42.0	0.034	44.9	20.3	0.017	22.0	9.9	0.000	13.0

Building:	Single-family			City: Syracus	е	HVAC: Heat F	Pump		Measure: Roc	of Insulation
Base	()	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	5539.8	0.188								
19	6144.0	0.205	604.3	0.017						
30	6488.6	0.222	948.8	0.034	344.5	0.017				
38	6621.2	0.239	1081.4	0.051	477.1	0.034	132.6	0.017		
49	6737.4	0.239	1197.6	0.051	593.3	0.034	248.8	0.017	116.2	0.000
60	6813.0	0.256	1273.2	0.068	668.9	0.051	324.4	0.034	191.8	0.017

Building:	Single-family	/	City: Syracuse	e	HVAC: AC wi	th Electric Hea	at		Measure: Roof	Insulation
Base		0	1	1	1	9	3	D	38	3
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	7544.0	0.188								
19	8444.2	0.205	900.2	0.017						
30	8970.3	0.222	1426.3	0.034	526.1	0.017				
38	9178.5	0.239	1634.5	0.051	734.3	0.034	208.2	0.017		
49	9355.3	0.239	1811.3	0.051	911.1	0.034	385.0	0.017	176.8	0.000
60	9473.7	0.239	1929.7	0.051	1029.5	0.034	503.4	0.017	295.2	0.000

Building:	Single-family		City: Syracuse	9	HVAC: Electr	ic Heat, no AC	;		Measure: Roof	Insulation
Base	0)	1	1	1	9	3	D	38	3
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	7354.6	0.000								
19	8232.6	0.000	878.0	0.000						
30	8747.6	0.000	1393.0	0.000	515.0	0.000				
38	8949.5	0.000	1594.9	0.000	716.9	0.000	201.9	0.000		
49	9125.8	0.000	1771.2	0.000	893.2	0.000	378.2	0.000	176.3	0.000
60	9241.0	0.000	1886.3	0.000	1008.4	0.000	493.3	0.000	291.5	0.000

Building: S	uilding: Single-family				acuse	HVAC: Ga	as Heat N	lo AC		Measure	: Roof Insi	ulation			
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	154.4	0.000	318.9												
19	172.7	0.000	357.8	18.3	0.000	38.9									
30	183.3	0.000	380.7	28.8	0.000	61.8	10.6	0.000	22.9						
38	187.4	0.000	389.8	32.9	0.000	70.8	14.7	0.000	31.9	4.1	0.000	9.0			
49	191.1	0.000	397.6	36.7	0.000	78.7	18.4	0.000	39.8	7.8	0.000	16.9	3.8	0.000	7.8
60	193.5	0.000	402.7	39.1	0.000	83.8	20.8	0.000	44.9	10.2	0.000	22.0	6.1	0.000	13.0

Building:	Single-fam	nily	City: Bing	hamton	HVAC: AC	with Gas	Heat		Measure:	Wall Insula	ation			
	0			11			13			17			19	
		therm/			therm/			therm/			therm/			therm/
kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF
46.2	0.043	54.0												
54.3	0.054	62.6	8.1	0.011	8.7									
64.3	0.065	74.8	18.1	0.022	20.8	10.0	0.011	12.1						
67.4	0.065	79.2	21.2	0.022	25.3	13.1	0.011	16.6	3.1	0.000	4.4			
71.0	0.076	82.9	24.8	0.033	28.9	16.7	0.022	20.3	6.7	0.011	8.1	3.6	0.011	3.7
75.4	0.076	88.7	29.3	0.033	34.7	21.1	0.022	26.0	11.2	0.011	13.9	8.0	0.011	9.4
77.5	0.076	90.9	31.3	0.033	37.0	23.2	0.022	16.2	13.2	0.011	16.2	10.1	0.011	11.7

Single-family			City: Bingham	ton	HVAC: Heat Pu	ımp		Measure: Wall	Insulation
	D	1	1	1	3	1	7	1	9
kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
846.0	0.054								
978.9	0.054	132.9	0.000						
1165.7	0.065	319.7	0.011	186.9	0.011				
1232.2	0.076	386.2	0.022	253.3	0.022	66.4	0.011		
1288.1	0.076	442.1	0.022	309.2	0.022	122.4	0.011	55.9	0.000
1374.2	0.087	528.2	0.033	395.3	0.033	208.4	0.022	142.0	0.011
1407.8	0.087	561.8	0.033	242.0	0.033	242.0	0.022	175.6	0.011

Single-family				City: Bingham	ton	HVAC: AC with	Electric Heat	Measure: Wall	Insulation
(D	1	1	1	3	1	7	1	9
kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
1241.4	0.043								
1440.0	0.054	198.6	0.011						
1717.9	0.065	476.5	0.022	277.9	0.011				
1818.7	0.065	577.3	0.022	378.7	0.011	100.8	0.000		
1903.9	0.076	662.5	0.033	463.9	0.022	186.0	0.011	85.2	0.011
2035.0	0.076	793.6	0.033	595.1	0.022	317.1	0.011	216.3	0.011
2087.1	0.076	845.8	0.033	647.2	0.022	369.3	0.011	268.5	0.011

Single-family				City: Bingham	ton	HVAC: Electric	Heat, no AC	Measure: Wall	Insulation
(D	1	1	1	3	1	7	1	9
kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
1222.6	0.000								
1417.4	0.000	194.8	0.000						
1691.4	0.000	468.8	0.000	274.0	0.000				
1791.5	0.000	568.8	0.000	374.1	0.000	100.0	0.000		
1874.9	0.000	652.3	0.000	457.5	0.000	183.5	0.000	83.5	0.000
2004.4	0.000	781.8	0.000	587.0	0.000	313.0	0.000	213.0	0.000
2055.6	0.000	833.0	0.000	638.2	0.000	364.2	0.000	264.1	0.000

			City: Bing	hamton	HVAC: Ga	is Heat, no	AC	Measure:	Wall Insula	ation				
	0			11			13			17			19	
		therm/			therm/			therm/			therm/			therm/
kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF
27.3	0.000	54.0												
31.8	0.000	62.6	4.4	0.000	8.7									
37.8	0.000	74.8	10.5	0.000	20.8	6.1	0.000	12.1						
40.1	0.000	79.2	12.8	0.000	25.3	8.3	0.000	16.6	2.3	0.000	4.4			
41.9	0.000	82.9	14.6	0.000	28.9	10.2	0.000	20.3	4.1	0.000	8.1	1.8	0.000	3.7
44.9	0.000	88.7	17.6	0.000	34.7	13.1	0.000	26.0	7.0	0.000	13.9	4.8	0.000	9.4
46.0	0.000	90.9	18.6	0.000	37.0	14.2	0.000	28.3	8.1	0.000	16.2	5.9	0.000	11.7

City: Binghamton HVAC: AC with G							as Heat		Measur	e: Roof Ins	sulation			
	0			11			19			30			38	
		therm/			therm/			therm/			therm/			therm/
kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF
311.4	0.290	332.9												
350.9	0.341	374.4	39.4	0.051	41.5									
369.8	0.358	398.8	58.4	0.068	65.9	18.9	0.017	24.4						
377.1	0.375	408.2	65.7	0.085	75.3	26.3	0.034	33.8	7.3	0.017	9.4			
385.2	0.392	416.6	73.7	0.102	83.6	34.3	0.051	42.2	15.4	0.034	17.7	8.0	0.017	8.4
389.4	0.392	422.0	78.0	0.102	89.1	38.6	0.051	47.6	19.6	0.034	23.2	12.3	0.017	13.8

Single-family				City:	Binghamt	ton	HVA	C: Heat P	ump			Measure:	Roof Insu	lation
	0			11			19			30			38	
kWh/ kSF	k٧	V/ kSF	kWh/ kS	SF k	W/ kSF	kWh/ k	SF k	W/kSF	kWh/ kS	SF k'	W/ kSF	kWh/ kS	SF k	W/ kSF
5853.1	C).273												
6534.8	C).324	681.7		0.051									
6923.9	C).358	1070.8	3	0.085	389.1		0.034						
7075.4	C).358	1222.4	1	0.085	540.6	5	0.034	151.5		0.000			
7208.7	C).375	1355.6	6	0.102	673.9)	0.051	284.8		0.017	133.3	3	0.017
7294.7	C).375	1441.6	6	0.102	759.9)	0.051	370.8		0.017	219.3	}	0.017
Single-family	y					City: Bing	hamton		HVAC: AC	with Elec	tric Heat	Measure:	Roof Insu	lation
	0			11			19			30			38	
kWh/ kSF	k٧	V/ kSF	kWh/ kS	SF k	W/ kSF	kWh/ kS	SF k	W/kSF	kWh/ kS	SF k	W/ kSF	kWh/ kS	SF k	W/ kSF
7921.3	C).290												
8887.9	C).341	966.6		0.051									
9449.0	C).358	1527.6	6	0.068	561.1		0.017						
9668.3	0).375	1746.9)	0.085	780.4	-	0.034	219.3		0.017			
9861.9	0).392	1940.6	6	0.102	974.1		0.051	413.0		0.034	193.7	,	0.017
9987.0	C).392	2065.7	7	0.102	1099.	1	0.051	538.1		0.034	318.8	}	0.017
							_							
Single-family	y					City: Bing	hamton		HVAC: Ele	ectric Heat	. no AC	Measure:	Roof Insu	lation
	~					<u>, </u>			1		,	1		
	0			11			19			30			38	
kWh/ kSF	kV	V/ kSF	kWh/ kS	11 SF k	W/ kSF	kWh/ k	19 SF k	W/kSF	kWh/ kS	30 SF k	W/ kSF	kWh/ ks	38 SF k	W/kSF
kWh/ kSF 7775.8	0 kV	V/ kSF 0.000	kWh/ kS	11 SF k	W/ kSF	kWh/ks	19 SF k	W/ kSF	kWh/ kS	30 SF k'	W/ kSF	kWh/ kS	38 SF k	W/ kSF
kWh/ kSF 7775.8 8723.0		V/ kSF 0.000 0.000	kWh/ ks	11 SF k	W/ kSF 0.000	kWh/ k	19 SF k	W/ kSF	kWh/ kS	30 SF k'	W/ kSF	kWh/ kS	38 SF k	W/ kSF
kWh/ kSF 7775.8 8723.0 9277.1		V/ kSF 0.000 0.000 0.000	kWh/ kS 947.3 1501.4	11 6F k	W/ kSF 0.000 0.000	554.1	19 SF k	W/ kSF	kWh/ kS	30 SF k'	W/ kSF	kWh/ ks	38 SF k	W/kSF
kWh/ kSF 7775.8 8723.0 9277.1 9493.9		V/ kSF 0.000 0.000 0.000 0.000	kWh/ kS 947.3 1501.4 1718.1	11 6F k	W/ kSF 0.000 0.000 0.000	kWh/ ks 554.1 770.8	19 SF k	0.000 0.000	kWh/ kS	30 6F k	W/ kSF	kWh/kS	38 SF k	W/kSF
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4		V/ kSF 0.000 0.000 0.000 0.000 0.000	kWh/ kS 947.3 1501.4 1718.1 1907.7	11 6F k 4	W/ kSF 0.000 0.000 0.000 0.000	kWh/ ks 554.1 770.8 960.4	19 SF k	0.000 0.000 0.000	kWh/ kS	30 6F K	W/ kSF 0.000 0.000	kWh/ kS	38 SF k	0.000
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4 9807.0		V/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	8400 kWh/ kS 947.3 1501.4 1718.1 1907.7 2031.2	11 6F k 4 1 2	W/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	kWh/ ks 554.1 770.8 960.4 1084.1	19 SF k 	0.000 0.000 0.000 0.000 0.000	kWh/ kS 216.7 406.3 529.9	30 6F K	W/ kSF 0.000 0.000 0.000	kWh/ ks 189.6 313.1	38 SF k	0.000 0.000
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4 9807.0		V/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	kWh/ kS 947.3 1501.4 1718.1 1907.7 2031.2	11 6F k 4 2	W/ kSF 0.000 0.000 0.000 0.000 0.000	kWh/ ks 554.1 770.8 960.4 1084.0	19 5F k 	0.000 0.000 0.000 0.000 0.000	kWh/ kS 216.7 406.3 529.9	30 6F k'	W/ kSF 0.000 0.000 0.000	kWh/ kS 189.6 313.1	38 SF k	0.000 0.000
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4 9807.0		V/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	kWh/ kS 947.3 1501.4 1718.1 1907.7 2031.2 City: Bing	11 5F k 4 1 2 hamton	W/ kSF 0.000 0.000 0.000 0.000 0.000 HVAC: Ga	kWh/ ks 554.1 770.8 960.4 1084.0 as Heat No	19 SF k 3 4 0 AC 40	0.000 0.000 0.000 0.000 0.000	kWh/ kS 216.7 406.3 529.9 Measure:	30 SF k Roof Insul	0.000 0.000 0.000 0.000 0.000	kWh/ kS	38 5F k	0.000 0.000
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4 9807.0	0 KV 0 CC 0 CCC 0 CC 0 CCC 0 CCCC	V/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	kWh/ kS 947.3 1501.4 1718.1 1907.7 2031.2 City: Bing	11 DF k 1 1 2 hamton 11	W/ kSF 0.000 0.000 0.000 0.000 0.000 HVAC: Ga	kWh/ ks 554.1 770.8 960.4 1084.0 as Heat No	19 SF	0.000 0.000 0.000 0.000 0.000	kWh/ kS 216.7 406.3 529.9 Measure:	30 SF k Roof Insul 30	W/ kSF 0.000 0.000 0.000 0.000	kWh/ kS	38 SF k 3 3 38	0.000 0.000
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4 9807.0		V/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 therm/	kWh/ kS 947.3 1501.4 1718.1 1907.7 2031.2 City: Bing	11 5F k 4 1 2 hamton 11 kw//ksc	W/ kSF 0.000 0.000 0.000 0.000 0.000 HVAC: Ga	kWh/ ks 554.1 770.8 960.4 1084.1 as Heat No	19 SF k 	0.000 0.000 0.000 0.000 0.000	kWh/ kS 216.7 406.3 529.9 Measure:	30 3F k 8 8 8 8 8 8 8 8 8 8 8 8 8	0.000 0.000 0.000 0.000 lation	kWh/ kS	38 SF k 38 38 38	0.000 0.000 0.000
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4 9807.0	0 KV 0 CC 0 CCC 0 CC 0 CCC 0	V/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 therm/ kSF 222.1	kWh/ kS 947.3 1501.4 1718.1 1907.7 2031.2 City: Bing kWh/ kSF	11 SF k	W/ kSF 0.000 0.000 0.000 0.000 0.000 HVAC: Ga therm/ kSF	kWh/ kSF	19 SF k 	0.000 0.000 0.000 0.000 0.000 therm/ kSF	kWh/ kSF	30 SF k Roof Insul 30 kW/ kSF	W/ kSF 0.000 0.000 0.000 lation therm/ kSF	kWh/ kSF	38 SF k 38 38 kW/ kSF	0.000 0.000 0.000 therm/ kSF
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4 9807.0 kWh/ kSF kV 166.0	0 KV 0 CC 0 CCC 0 CC 0 CCC 0 CCCC 0 CCCC 0 CCCC 0 CCCCC 0 CCCCCCCCCC	V/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 therm/ kSF 333.1 274.6	kWh/ kS 947.3 1501.2 1718.1 1907.7 2031.2 City: Bing kWh/ kSF	11 SF k 4	W/ kSF 0.000 0.000 0.000 0.000 HVAC: Ga therm/ kSF 41 5	kWh/ kSF	19 SF k 	W/ kSF 0.000 0.000 0.000 0.000 0.000 therm/ kSF	kWh/ kSF	30 SF k BF k B ST ST ST ST ST ST ST ST ST ST	W/ kSF 0.000 0.000 0.000 lation therm/ kSF	kWh/ kSF	38 SF k 38 38 kW/ kSF	0.000 0.000 0.000 therm/ kSF
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4 9807.0 kWh/ kSF kW 166.0 186.3 (108.1	0 KV 0 CC CC CC 0 CC 0 CCC 0 CCCC 0 CCCC 0 CCCC 0 CCCCCCCCCC	V/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 therm/ kSF 333.1 374.6 209.8	kWh/ kS 947.3 1501.2 1718.1 1907.7 2031.2 City: Bing kWh/ kSF 20.3 22.1	11 SF k I	W/ kSF 0.000 0.000 0.000 0.000 HVAC: Ga therm/ kSF 41.5 65.7	kWh/ kSF	19 SF k 	W/ kSF 0.000 0.000 0.000 0.000 0.000 therm/ kSF	kWh/ kSF	30 SF k BRoof Insul 30 kW/ kSF	W/ kSF 0.000 0.000 0.000 lation therm/ kSF	kWh/ kSF	38 SF k 38 38 kW/ kSF	0.000 0.000 0.000 therm/ kSF
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4 9807.0 kWh/ kSF kW 166.0 (186.3 (198.1 (202.7	0 kW 0 0 0 0 0 0 0 0 0 0 0 0 0	V/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 therm/ kSF 333.1 374.6 398.8 408.4	kWh/ kS 947.3 1501.4 1718.1 1907.7 2031.2 City: Bing kWh/ kSF 20.3 32.1 36.7	11 SF k 4	W/ kSF 0.000 0.000 0.000 0.000 HVAC: Ga therm/ kSF 41.5 65.7 75.3	kWh/ kS 554.1 770.8 960.4 1084.0 as Heat No kWh/ kSF	19 SF k 	W/ kSF 0.000 0.000 0.000 0.000 therm/ kSF 24.2 23.8	kWh/ kS 216.7 406.3 529.9 Measure: kWh/ kSF	30 SF k ¹ Roof Insul 30 kW/ kSF	W/ kSF 0.000 0.000 0.000 lation therm/ kSF	kWh/ kSF	38 SF k 38 8 kW/ kSF	0.000 0.000 0.000 therm/ kSF
kWh/ kSF 7775.8 8723.0 9277.1 9493.9 9683.4 9807.0 kWh/ kSF kW 166.0 (186.3 (198.1 (202.7 (0 kW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 therm/ kSF 333.1 374.6 398.8 408.4	kWh/ kS 947.3 1501.4 1718.1 1907.7 2031.2 City: Bing kWh/ kSF 20.3 32.1 36.7	11 SF k SF k I I Z I hamton 11 kW/ kSF I 0.000 0.000 0.000 0.000	W/ kSF 0.000 0.000 0.000 0.000 HVAC: Ga therm/ kSF 41.5 65.7 75.3	kWh/ ks 554.1 770.8 960.4 1084.0 as Heat No kWh/ kSF	19 SF k 0 AC 19 kW/ kSF 0.000 0.000	W/ kSF 0.000 0.000 0.000 0.000 therm/ kSF 24.2 33.8	kWh/ kSF	30 SF k None for the set of the	W/ kSF 0.000 0.000 0.000 ation therm/ kSF 9.6	kWh/ kSF	38 SF k 38 38 kW/ kSF	0.000 0.000 0.000 therm/ kSF

47.6

0.000

11.3

0.000

23.4

6.7

0.000

0.000

209.4

422.2

43.3

0.000

89.1

23.0

13.8

Building: S	Single-fa	mily		City: Poug	ghkeepsie	HVAC: A	C with Ga	as Heat		Measure	: Wall Insu	ulation			
Base		0			11			13			17			19	
	kWh/		therm/			therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	48.3	0.043	46.2												
13	53.4	0.054	53.8	5.1	0.011	7.6									
17	67.3	0.065	64.4	19.0	0.022	18.2	13.9	0.011	10.6						
19	71.0	0.065	68.3	22.7	0.022	22.1	17.6	0.011	14.5	3.7	0.000	3.9			
21	73.7	0.076	71.8	25.4	0.033	25.6	20.3	0.022	18.0	6.4	0.011	7.4	2.7	0.011	3.5
25	79.0	0.076	76.8	30.7	0.033	30.7	25.6	0.022	23.1	11.7	0.011	12.5	8.0	0.011	8.6
27	81.7	0.076	78.9	33.4	0.033	32.7	28.3	0.022	14.5	14.4	0.011	14.5	10.7	0.011	10.6

Building:	Single-family	,	City: Poughke	eepsie		HVAC: Hea	at Pump		Measure: Wall	Insulation
Base	C)	1	1	13		17		19)
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	591.6	0.054								
13	686.4	0.065	94.8	0.011						
17	823.1	0.076	231.5	0.022	136.7	0.011				
19	871.1	0.087	279.5	0.033	184.7	0.022	48.0	0.011		
21	914.8	0.087	323.2	0.033	228.4	0.022	91.7	0.011	43.7	0.000
25	978.4	0.098	386.8	0.043	292.0	0.033	155.3	0.022	107.3	0.011
27	1004.0	0.098	412.4	0.043	180.9	0.033	180.9	0.022	132.9	0.011

Building:	Single-family		City: Poughke	epsie		HVAC: AC wit	th Electric Hea	at	Measure: Wal	l Insulation
Base	0)	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1031.3	0.043								
13	1197.2	0.054	165.8	0.011						
17	1435.7	0.065	404.4	0.022	238.6	0.011				
19	1521.5	0.065	490.1	0.022	324.3	0.011	85.7	0.000		
21	1597.1	0.076	565.8	0.033	400.0	0.022	161.4	0.011	75.7	0.011
25	1710.1	0.076	678.7	0.033	512.9	0.022	274.3	0.011	188.6	0.011
27	1755.9	0.076	724.6	0.033	558.7	0.022	320.2	0.011	234.4	0.011

Building:	Single-famil	у	City: Poughl	keepsie		HVAC: Elect	ric Heat, no A	٩C		Measure: Wall Insulation
Base	()	1	1	1	3	1	7		19
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1005.0	0.000								
13	1169.5	0.000	164.5	0.000						
17	1399.1	0.000	394.1	0.000	229.6	0.000				
19	1483.0	0.000	478.0	0.000	313.5	0.000	83.9	0.000		
21	1558.0	0.000	553.0	0.000	388.5	0.000	158.9	0.000	75.0	0.000
25	1667.5	0.000	662.5	0.000	497.9	0.000	268.4	0.000	184.5	0.000
27	1711.5	0.000	706.5	0.000	541.9	0.000	312.4	0.000	228.5	0.000

Building: S	Single-fai	nily		City: Poug	ghkeepsie				HVAC: Ga	s Heat, ı	no AC	Measure: V	Vall Ins	ulation	
Base		0			11			13			17			19	
	kWh/		therm/			therm/	kWh/		therm/	kWh/			kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/kSF	therm/ kSF	kSF	kW/ kSF	kSF
11	21.8	0.000	46.3												
13	25.4	0.000	53.8	3.6	0.000	7.5									
17	30.2	0.000	64.5	8.5	0.000	18.2	4.9	0.000	10.7						
19	32.1	0.000	68.4	10.3	0.000	22.1	6.7	0.000	14.6	1.8	0.000	3.9			
21	33.7	0.000	71.9	11.9	0.000	25.6	8.3	0.000	18.1	3.5	0.000	7.4	1.6	0.000	3.5
25	36.1	0.000	77.0	14.3	0.000	30.7	10.7	0.000	23.2	5.9	0.000	12.5	4.0	0.000	8.6
27	37.0	0.000	79.0	15.2	0.000	32.7	11.6	0.000	25.3	6.7	0.000	14.5	4.9	0.000	10.6

Building:	Single-fa	mily	City: Pou	ghkeepsi	e	HVAC:	AC with G	as Heat			Me	asure: Ro	of Insula	tion	
Base		$\frac{0}{11}$						19			30			38	
	kWh/	kW/	therm/	kWh/		therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kW/ kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	333.4	0.410	297.6												
19	374.6	0.461	335.5	41.1	0.051	37.9									
30	393.0	0.478	357.8	59.6	0.068	60.2	18.4	0.017	22.4						
38	402.7	0.495	366.7	69.3	0.085	69.1	28.2	0.034	31.2	9.7	0.017	8.9			
49	411.8	0.495	374.6	78.3	0.085	77.0	37.2	0.034	39.1	18.8	0.017	16.7	9.0	0.000	7.8
60	416.7	0.512	379.5	83.3	0.102	81.9	42.2	0.051	44.0	23.7	0.034	21.7	14.0	0.017	12.8

Building:	Si	ngle-fami	ly			City: Pough	nkeepsie	H	VAC: Heat	Pump			Measure	: Roof II	nsulation
Base		0 kWh/ kSF kW/ kS			1'	1		19			30			38	
Measur	e k	Wh/ kSF	kW/ kS	SF kWI	h/ kSF	kW/ kSF	kWh/ k	SF	kW/ kSF	kWh/ k	SF k\	N/ kSF	kWh/ kS	SF k	W/ kSF
11		4368.1	0.444	ŀ											
19		4865.2	0.512	2 49	97.1	0.068									
30		5151.0	0.529) 73	82.9	0.085	285.8	8	0.017						
38		5265.7	0.546	S 8	97.6	0.102	400.	5	0.034	114.7	' (0.017			
49		5364.7	0.563	3 99	96.6	0.119	499.	5	0.051	213.7	' (0.034	99.0		0.017
60		5427.1	0.563	3 10	59.0	0.119	561.9	9	0.051	276.1	(0.034	161.4		0.017
Building:	Singl	e-family			City:	Poughkeeps	sie H	VAC: A	C with Ele	ctric Heat		Measure:	Roof Insu	ulation	
Base		0			11			19			30			38	
Measure	kW	h/ kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/ kS	SF k	(W/ kSF	kWh/ kS	SF k\	N/ kSF	kWh/ kS	SF k	(W/ kSF
11	68	388.1	0.410												
19	77	742.8	0.461	854	4.8	0.051									
30	82	240.6	0.478	135	2.6	0.068	497.8		0.017						
38	84	139.1	0.495	155	1.0	0.085	696.2		0.034	198.5		0.017			
49	86	513.3	0.495	172	5.3	0.085	870.5		0.034	372.7		0.017	174.2		0.000
60	87	725.8	0.512	183	7.7	0.102	982.9		0.051	485.2		0.034	286.7		0.017
	Cim al	. familu		0.4											
										-		N/			
Building:	Singi	e-ramily		City:	Pougnke	epsie	HVAC: E	lectric H	leat, no AG	; 	20	Measure:	Roof Insi	ulation	
Building: Base		e-ramity 0			Pougnke 11		HVAC: E	19		<i>k</i> //b//k	30	Measure:		ulation 38	
Building: Base Measure	kW	h/ kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/kS	19 19 F k	W/kSF	kWh/ ks	30 SF k ¹	Measure: N/ kSF	kWh/ks	38 37 37	W/kSF
Building: Base Measure	kW	6-ramity 0 h/ kSF 694.7	kW/ kSF	kWh/	Pougnke 11 kSF	kW/ kSF	kWh/kS	Iectric F 19 SF k	W/kSF	kWh/ ks	30 SF k\	Measure: // kSF	Roof Insi kWh/ kS	38 3F k	W/kSF
Building: Base Measure 11 19		6-ramity 0 h/ kSF 594.7 526.8	kW/ kSF 0.000 0.000	kWh/	2.1	kW/ kSF	KWh/kS	Iectric F 19 SF k	W/kSF	kWh/ ks	30 SF k1	Measure: W/kSF	kWh/ks	38 SF k	W/ kSF
Building: Base Measure 11 19 30 29		0 h/ kSF 594.7 526.8 017.2	kW/ kSF 0.000 0.000 0.000	KWh/ 832 132	2.1 2.5	kW/ kSF 0.000 0.000	HVAC: E kWh/ kS	Iectric F 19 SF k	0.000	kWh/ ks	30 SF k1	Measure: W/kSF	KWh/ ks	38 SF k	W/kSF
Building: Base Measure 11 19 30 38		O h/ kSF 594.7 526.8 017.2 209.6 276.8	kW/ kSF 0.000 0.000 0.000 0.000	City: 1	2.1 2.5 4.8 2.1	kW/ kSF 0.000 0.000 0.000	HVAC: E kWh/ kS 490.4 682.8	Iectric F 19 SF k	0.000 0.000	kWh/ ks	30 SF k1	Measure: // kSF 0.000	KWh/kS	alation 38 SF k	W/ kSF
Building: Base Measure 11 19 30 38 49 60		o 0 h/ kSF 594.7 526.8 017.2 209.6 376.8 186.9	kW/ kSF 0.000 0.000 0.000 0.000 0.000	City: 1 kWh/ 832 132 151 168 179	2.1 2.5 2.1 2.2 2.5 2.1 2.1 2.2	kW/ kSF 0.000 0.000 0.000 0.000 0.000	HVAC: E kWh/ kS 490.4 682.8 850.0 960.1	Iectric F 19 SF k	0.000 0.000 0.000 0.000	kWh/ ks	30 SF k1	Measure: // kSF 0.000 0.000 0.000	Roof Insi kWh/kS	ulation 38 SF k	W/ kSF
Building: Base Measure 11 19 30 38 49 60	8 kW 66 75 80 82 82 83 83 84	o h/ kSF 594.7 526.8 017.2 209.6 376.8 486.9	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	City: kWh/ 832 132 151 168 179	Pougnke 11 'kSF 2.1 2.5 4.8 2.1 2.2	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	HVAC: E kWh/ kS 490.4 682.8 850.0 960.1	Iectric F 19 SF k	0.000 0.000 0.000 0.000 0.000	kWh/ ks 192.3 359.6 469.6	30 6F k1	Measure: // kSF 0.000 0.000 0.000	Roof Inst kWh/ kS 167.2 277.3	38 SF k	W/ kSF 0.000 0.000
Building: Base Measure 11 19 30 30 38 49 60 Building:	5 ingi	o h/ kSF 594.7 526.8 017.2 209.6 376.8 486.9 amily	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	City: 1 KWh/ 832 132 151 168 179 City: Pou	Pougnke 11 kSF 2.1 2.5 4.8 2.1 2.2	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	HVAC: E kWh/ kS 490.4 682.8 850.0 960.1 Gas Heat		0.000 0.000 0.000 0.000 0.000	kWh/ ks 192.3 359.6 469.6	30 SF k1 	Measure: // kSF 0.000 0.000 0.000 0.000 sulation	Roof Inst kWh/ kS 167.2 277.3	38 SF k	W/ kSF 0.000 0.000
Building: Base Measure 11 19 30 38 49 60 Building: Base	5 kW 66 75 80 82 82 83 82 83 84 Single-fa	o h/ kSF 594.7 526.8 017.2 209.6 376.8 486.9 amily 0	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	City: 1 KWh/ 832 132 151 168 179 City: Pour	Pougnke 11 kSF 2.1 2.5 4.8 2.1 2.2 ghkeeps 11	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 kie HVAC: 0	HVAC: E kWh/ kS 490.4 682.8 850.0 960.1 Gas Heat I	No AC	0.000 0.000 0.000 0.000 0.000	kWh/ ks 192.3 359.6 469.6 Measure	30 SF k1 	Measure: // kSF 0.000 0.000 0.000 sulation	Roof Inst kWh/ kS 167.2 277.3	alation 38 SF k	W/ kSF 0.000 0.000
Building: Base Measure 11 19 30 38 49 60 Building: Base	Single-fa	o h/ kSF 594.7 526.8 017.2 209.6 376.8 486.9 amily 0 kW/	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000	City: 1 KWh/ 832 132 151 168 179 City: Pour KWh/	Pougnke 11 kSF 2.1 2.5 4.8 2.1 2.2 ghkeeps 11	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 kie HVAC: 0	HVAC: E kWh/ kS 490.4 682.8 850.0 960.1 Gas Heat I kWh/	Iectric H 19 SF k Image: second seco	0.000 0.000 0.000 0.000 0.000 0.000	kWh/ ks 192.3 359.6 469.6 Measure kWh/	30 SF k1 	Measure: // kSF 0.000 0.000 0.000 sulation therm/	Roof Inst kWh/ kS 167.2 277.3	ulation 38 SF k 38 38 38 38 38 38	W/ kSF 0.000 0.000 0.000
Building: Base Measure 11 19 30 38 49 60 Building: Base Measure	Single-fa	o h/ kSF 594.7 526.8 017.2 209.6 376.8 486.9 amily 0 kW/ kSF	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 therm/ kSF	City: 1 KWh/ 832 132 151 168 179 City: Pou KWh/ kSF	Pougnke 11 kSF 2.1 2.5 4.8 2.1 2.2 ghkeeps 11 kW/ kS	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	HVAC: E kWh/ kS 490.4 682.8 850.0 960.1 Gas Heat I kWh/ kSF	Iectric H 19 SF k Image: second seco	0.000 0.000 0.000 0.000 0.000 0.000 0.000	kWh/ ks	30 SF k1 SF k1	Measure: // kSF 0.000 0.000 0.000 sulation therm/ kSF	Roof Inst kWh/ kS 167.2 277.3 kWh/ kSF	ulation 38 SF 4	W/ kSF 0.000 0.000 0.000 therm/ kSF
Building: Base Measure 11 19 30 38 49 60 Building: Base Measure 11	Single-fa 80 82 82 82 82 82 82 82 82 82 82 82 84 84 84 84 84 84 84 84 84 84 84 84 84	o 0 h/ kSF 6394.7 526.8 017.2 209.6 376.8 486.9 amily 0 kW/ kSF 0.000	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 therm/ kSF 297.6	City: 1 KWh/ 132 151 168 179 City: Pour KWh/ kSF	Pougnke 11 'kSF 2.1 2.5 4.8 2.1 2.2 ghkeeps 11 kW/ kS	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 kie HVAC: 0 kSF kSF	HVAC: E kWh/ kS 490.4 682.8 850.0 960.1 Gas Heat I kWh/ kSF	Iectric H 19 SF k Image: second seco	0.000 0.000 0.000 0.000 0.000 0.000 therm/ kSF	kWh/ kS 192.3 359.6 469.6 Measure kWh/ kSF	30 SF k 	Measure: // kSF 0.000 0.000 0.000 sulation therm/ kSF	Roof Inst kWh/ kS 167.2 277.3 kWh/ kSF	ulation 38 SF 4 - -	W/ kSF 0.000 0.000 0.000 therm/ kSF
Building: Base Measure 11 19 30 38 49 60 Building: Base Measure 11	Single-fa kWh/ kWh/ kSF 140.8 158.4	o 0 h/ kSF 6394.7 526.8 017.2 209.6 376.8 486.9 amily 0 kW/ kSF 0.000 0.000	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 therm/ kSF 297.6 335.5	City: 1 KWh/ 132 151 168 179 City: Pour KWh/ kSF 17.6	Pougnke 11 'kSF 2.1 2.5 4.8 2.1 2.5 4.8 2.1 2.2 ghkeeps 11 kW/ kS 0.0000	kW/ kSF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SF KSF 0 37.9	HVAC: E kWh/ kS 490.4 682.8 850.0 960.1 Gas Heat I kWh/ kSF	Iectric H 19 SF k Image: second seco	0.000 0.000 0.000 0.000 0.000 0.000 0.000	kWh/ kS 192.3 359.6 469.6 Measure kWh/ kSF	30 SF k 	Measure: // kSF 0.000 0.000 0.000 sulation therm/ kSF	Roof Inst kWh/ kS 167.2 277.3 kWh/ kSF	ulation 38 SF 4	W/ kSF 0.000 0.000 therm/ kSF
Building: Base Measure 11 19 30 38 49 60 Building: Base Measure 11 19 30 38 49 60 Building: Base Measure 11 19 30	Single-fa kWh/ kSF 140.8 158.4 168.6	o 0 h/ kSF 694.7 526.8 017.2 209.6 376.8 486.9 amily 0 kW/ kSF 0.000 0.000 0.000	kW/ kSF 0.000 0.000 0.000 0.000 0.000 therm/ kSF 297.6 335.5 358.0	City: 1 KWh/ 132 151 168 179 City: Pou KWh/ kSF 17.6 27.8	Pougnke 11 'kSF 2.1 2.5 4.8 2.1 2.5 4.8 2.1 2.2 ghkeeps 11 kW/ kS 0.000 0.000	kW/ kSF 0.000	HVAC: E kWh/ kS 490.4 682.8 850.0 960.1 Gas Heat I kWh/ kSF 10.2	Iectric H 19 SF k Image: second seco	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	kWh/ ks 192.3 359.6 469.6 Measure kWh/ kSF	30 SF k 	Measure: // kSF 0.000 0.000 0.000 sulation therm/ kSF	Roof Inst kWh/ kS 167.2 277.3 kWh/ kSF	ulation 38 SF 4 Image: second	W/ kSF 0.000 0.000 therm/ kSF
Building: Base Measure 11 19 30 38 49 60 Building: Base Measure 11 19 30 38 49 60	Single fa 80 80 80 80 80 80 80 80 80 80 80 80 80	o 0 h/ kSF 694.7 526.8 017.2 209.6 376.8 486.9 amily 0 kW/ kSF 0.000 0.000 0.000 0.000	kW/ kSF 0.000 0.000 0.000 0.000 0.000 therm/ kSF 297.6 335.5 358.0 366.7	City: 1 KWh/ 132 151 168 179 City: Pou KWh/ kSF 17.6 27.8 31.7	Pougnke 11 'kSF 2.1 2.5 4.8 2.1 2.5 4.8 2.1 2.2 ghkeeps 11 kW/ kS 0.000 0.000 0.000	kW/ kSF 0.000	HVAC: E kWh/ kS 490.4 682.8 850.0 960.1 Gas Heat I kWh/ kSF 10.2 14.2	Iectric H 19 SF k Image: second seco	therm/ kSF 0.000 0.000 0.000 0.000 2.000 2.000	kWh/ kS 192.3 359.6 469.6 Measure kWh/ kSF	30 SF k SF k 	Measure: // kSF 0.000 0.000 sulation therm/ kSF 8.7	Roof Inst kWh/ kS 167.2 277.3 kWh/ kSF	ulation 38 SF 4	W/ kSF 0.000 0.000 therm/ kSF
Building: Base Measure 11 19 30 38 49 60 Building: Base Measure 11 19 30 38 49 60 Building: Base Measure 11 19 30 38 49	Single kW 66 75 80 82 82 82 82 82 82 82 82 82 82	o 0 h/ kSF 594.7 526.8 017.2 209.6 376.8 486.9 amily 0 kW/ kSF 0.000 0.000 0.000 0.000 0.000	kW/ kSF 0.000 0.000 0.000 0.000 0.000 therm/ kSF 297.6 335.5 358.0 366.7 374.4	City: 1 KWh/ 832 132 151 168 179 City: Pour kWh/ kSF 17.6 27.8 31.7 35.3	Pougnke 11 kSF 2.1 2.5 4.8 2.1 2.2 ghkeeps 11 kW/ kS 0.000 0.000 0.000 0.000 0.000 0.000	kW/ kSF 0.000	HVAC: E kWh/kS 490.4 682.8 850.0 960.1 Gas Heat kWh/ kSF 10.2 14.2 17.7	Iectric H 19 SF k Image: second seco	therm/ kSF 0.000 0.000 0.000 0.000 2.000 2.000 2.000 2.000 3.000 0.0000 0.000000	kWh/ kS 192.3 359.6 469.6 Measure kWh/ kSF 	30 SF k SF k 2 2 30 kW/ kSF 0.000 0.000	Measure: // kSF 0.000 0.000 sulation therm/ kSF 8.7 16.4	Roof Inst kWh/ kS 167.2 277.3 kWh/ kSF 3.6	ulation 38 SF k 38 38 kW/ kSF 0.000	W/ kSF 0.000 0.000 therm/ kSF 7.7

MULTI-FAMILY LOW-RISE INSULATION UPGRADES

Building: I	Multi-Fan	nily Low-ri	se	City: Alb	any	HVAC: A	C with Ga	is Heat		Measure	: Wall Insu	llation			
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	44.5	0.046	61.0												
13	57.4	0.057	80.7	13.0	0.011	19.7									
17	77.2	0.069	108.7	32.7	0.023	47.7	19.7	0.011	28.0						
19	84.5	0.080	119.0	40.0	0.034	58.0	27.1	0.023	38.3	7.3	0.011	10.3			
21	87.9	0.080	128.0	43.5	0.034	67.0	30.5	0.023	47.2	10.8	0.011	19.3	3.4	0.000	8.9
25	99.0	0.092	141.7	54.5	0.046	80.7	41.5	0.034	61.0	21.8	0.023	33.0	14.4	0.011	22.7
27	100.9	0.092	147.2	56.4	0.046	86.2	43.5	0.034	66.5	23.7	0.023	38.5	16.4	0.011	28.2

Building:	Multi-Family I	Low-rise		City: Albany		HVAC: Heat F	Pump		Measure: Wa	II Insulation
Base	(D	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	764.5	0.000								
13	1010.1	0.011	245.6	0.000						
17	1348.0	0.034	583.5	0.023	337.9	0.000				
19	1472.4	0.034	707.9	0.023	462.3	0.000	124.4	0.000		
21	1577.3	0.034	812.9	0.023	567.3	0.000	229.3	0.000	104.9	0.000
25	1743.4	0.046	978.9	0.034	733.3	0.011	395.4	0.011	271.0	0.000
27	1809.9	0.046	1045.4	0.034	799.8	0.011	461.9	0.011	337.5	0.000

Building:		Multi-Fami	ly Low-rise	City: Alk	bany	HVAC	C: AC with Ele	ctric Heat Me	easure: Wall In	sulation
Base		D	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	989.8	0.000								
13	1301.1	0.011	311.3	0.000						
17	1740.6	0.023	750.8	0.011	439.5	0.000				
19	1901.3	0.034	911.5	0.023	600.2	0.011	160.6	0.000		
21	2032.9	0.034	1043.1	0.023	731.8	0.011	292.3	0.000	131.6	0.000
25	2245.8	0.046	1256.0	0.034	944.7	0.023	505.2	0.011	344.6	0.000
27	2328.6	0.046	1338.8	0.034	1027.5	0.023	588.0	0.011	427.4	0.000

Building:		Multi-Fami	ly Low-rise	City: All	bany	HVAC	C: Electric Hea	it, no AC Me	easure: Wall Ir	sulation
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	980.4	0.000								
13	1289.9	0.000	309.5	0.000						
17	1724.5	0.000	744.1	0.000	434.6	0.000				
19	1883.4	0.000	903.0	0.000	593.5	0.000	158.9	0.000		
21	2015.5	0.000	1035.1	0.000	725.6	0.000	291.0	0.000	132.1	0.000
25	2226.0	0.000	1245.6	0.000	936.1	0.000	501.5	0.000	342.6	0.000
27	2309.6	0.000	1329.2	0.000	1019.7	0.000	585.1	0.000	426.2	0.000

Building: I	Multi-Fan	nily Low-ri	se	City: Alb	any	HVAC: G	as Heat, i	no AC	Measure:	Wall Ins	ulation				
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	35.1	0.000	61.0												
13	46.2	0.000	80.7	11.1	0.000	19.7									
17	60.9	0.000	108.7	25.8	0.000	47.7	14.7	0.000	28.0						
19	66.5	0.000	119.0	31.4	0.000	58.0	20.3	0.000	38.3	5.6	0.000	10.3			
21	70.4	0.000	128.0	35.3	0.000	67.0	24.2	0.000	47.2	9.5	0.000	19.3	3.9	0.000	8.9
25	79.3	0.000	141.7	44.3	0.000	80.7	33.1	0.000	61.0	18.5	0.000	33.0	12.8	0.000	22.7
27	82.1	0.000	147.2	47.0	0.000	86.2	35.9	0.000	66.5	21.2	0.000	38.5	15.6	0.000	28.2

Building: I	Multi-Farr	nily Low-ri	se	City: Alb	any	HVAC: A	C with Ga	is Heat		Measure	: Roof Insi	ulation			
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	344.6	0.351	253.9												
19	406.0	0.413	301.5	61.3	0.061	47.6									
30	443.0	0.448	332.1	98.4	0.097	78.2	37.1	0.035	30.6						
38	459.5	0.466	344.5	114.8	0.114	90.6	53.5	0.053	43.0	16.4	0.018	12.4			
49	473.2	0.483	355.8	128.5	0.132	101.9	67.2	0.070	54.3	30.1	0.035	23.7	13.7	0.018	11.3
60	481.1	0.492	363.2	136.4	0.141	109.3	75.1	0.079	61.7	38.0	0.044	31.1	21.6	0.026	18.7

Building:	Multi-Family I	Low-rise		City: Albany		HVAC: Heat F	Pump		Measure: Roo	of Insulation
Base	()	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	4386.5	0.343								
19	5086.8	0.404	700.3	0.061						
30	5517.8	0.439	1131.3	0.097	431.0	0.035				
38	5694.0	0.448	1307.6	0.105	607.2	0.044	176.2	0.009		
49	5849.7	0.466	1463.2	0.123	762.9	0.061	331.9	0.026	155.7	0.018
60	5952.4	0.474	1565.9	0.132	865.6	0.070	434.6	0.035	258.4	0.026

Building:		Multi-Fami	ly Low-rise	City: Alk	bany	HVAC	C: AC with Electron	ctric Heat Me	easure: Roof Ir	sulation
Base				1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	5034.2	0.351								
19	5883.8	0.413	849.6	0.061						
30	6408.2	0.448	1374.0	0.097	524.4	0.035				
38	6620.8	0.466	1586.6	0.114	737.0	0.053	212.6	0.018		
49	6809.0	0.483	1774.8	0.132	925.2	0.070	400.9	0.035	188.3	0.018
60	6933.1	0.492	1899.0	0.141	1049.4	0.079	525.0	0.044	312.4	0.026

Building:		Multi-Fami	ly Low-rise	City: Alk	bany	HVAC	: Electric Hea	t, no AC Me	asure: Roof Ir	sulation
Base	Base 0		1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	4849.7	0.000								
19	5667.1	0.000	817.4	0.000						
30	6173.5	0.000	1323.8	0.000	506.4	0.000				
38	6375.7	0.000	1526.0	0.000	708.6	0.000	202.2	0.000		
49	6558.3	0.000	1708.6	0.000	891.2	0.000	384.8	0.000	182.6	0.000
60	6678.5	0.000	1828.8	0.000	1011.3	0.000	505.0	0.000	302.7	0.000

Building: I	Multi-Fam	nily Low-ri	se	City: Alba	any	HVAC: Ga	as Heat N	lo AC		Measure	: Roof Insi	ulation			
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	160.2	0.000	253.9												
19	189.3	0.000	301.5	29.2	0.000	47.6									
30	208.4	0.000	332.1	48.2	0.000	78.2	19.1	0.000	30.6						
38	214.5	0.000	344.5	54.4	0.000	90.6	25.2	0.000	43.0	6.1	0.000	12.4			
49	222.4	0.000	355.8	62.3	0.000	101.9	33.1	0.000	54.3	14.1	0.000	23.7	7.9	0.000	11.3
60	226.5	0.000	363.2	66.3	0.000	109.3	37.2	0.000	61.7	18.1	0.000	31.1	11.9	0.000	18.7

Building:	Multi-Fan	nily Low-ri	se	City: Buf	falo	HVAC: A	C with Ga	is Heat		Measure	: Wall Insu	llation			
Base		0			11			13			17			19	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	35.3	0.023	61.7												
13	48.8	0.023	81.0	13.5	0.000	19.3									
17	62.5	0.034	107.7	27.2	0.011	46.0	13.6	0.011	26.7						
19	67.7	0.034	117.5	32.3	0.011	55.8	18.8	0.011	36.6	5.2	0.000	9.9			
21	72.6	0.046	125.8	37.3	0.023	64.1	23.7	0.023	44.8	10.1	0.011	18.1	4.9	0.011	8.3
25	80.5	0.046	139.1	45.2	0.023	77.4	31.6	0.023	58.1	18.0	0.011	31.4	12.8	0.011	21.6
27	83.7	0.046	144.5	48.4	0.023	82.8	34.9	0.023	63.5	21.2	0.011	36.8	16.1	0.011	26.9

Building:	Mult	ti-Family Low	rise	City: E	Buffalo	H١	AC: Heat Pur	np	Measure: Wa	all Insulation
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	760.8	0.000								
13	1005.4	0.000	244.6	0.000						
17	1336.9	0.011	576.1	0.011	331.5	0.000				
19	1457.6	0.011	696.8	0.011	452.2	0.000	120.7	0.000		
21	1557.4	0.011	796.6	0.011	552.0	0.000	220.5	0.000	99.8	0.000
25	1716.5	0.023	955.7	0.023	711.2	0.011	379.7	0.011	258.9	0.000
27	1781.2	0.023	1020.4	0.023	775.8	0.011	444.3	0.011	323.6	0.000

Building:	Multi-Family	Low-rise		City: Buffalo)	HVAC: AC w	ith Electric F	leat		Measure: Wall Insulation
Base	()	1	1	1	3	1	7		19
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	964.0	0.000								
13	1275.2	0.000	311.2	0.000						
17	1698.2	0.011	734.2	0.011	423.0	0.000				
19	1852.5	0.011	888.5	0.011	577.3	0.000	154.3	0.000		
21	1982.3	0.023	1018.3	0.023	707.1	0.011	284.1	0.011	129.8	0.000
25	2187.0	0.023	1223.0	0.023	911.8	0.011	488.8	0.011	334.5	0.000
27	2268.8	0.023	1304.8	0.023	993.6	0.011	570.6	0.011	416.2	0.000

Building:	Multi-Family	Low-rise		City: Buffalo)	HVAC: Elect	ric Heat, no A	AC		Measure: Wall Insu	lation
Base	e C)	1	1	1	3	1	7		19	
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	
11	960.2	0.000									
13	1267.2	0.000	307.0	0.000							
17	1690.7	-0.023	730.5	-0.023	423.6	0.000					
19	1843.7	0.000	883.5	0.000	576.5	0.023	153.0	0.000			
21	1975.5	0.000	1015.3	0.000	708.3	0.023	284.7	0.000	131.8		0.000
25	2177.4	-0.023	1217.2	-0.023	910.2	0.000	486.6	-0.023	333.7		0.000
27	2260.1	0.000	1299.9	0.000	992.9	0.023	569.3	0.000	416.4		0.000

Building: I	Multi-Fan	nily Low-ri	se	City: Buf	falo	HVAC: G	as Heat, r	no AC	Measure:	Wall Ins	ulation				
Base		0			11			13			17			19	
Measure	kWh/	kW/ kSF	therm/	kWh/ kSF	kW/kSF	therm/	kWh/ kSE	kW/kSF	therm/	kWh/ kSE	kW/ kSF	therm/	kWh/ kSE	kW//kSF	therm/
44				KOI	KW/ KOI	KOI	KOI		KOI	KOI	KW/ KOI	KOI	KOI		KOI
11	31.5	0.000	61.7												
13	40.8	0.000	81.0	9.3	0.000	19.3									
17	55.2	-0.023	107.7	23.6	-0.023	46.0	14.3	0.000	26.7						
19	58.7	0.000	117.5	27.2	0.000	55.8	17.9	0.023	36.6	3.6	0.000	9.9			
21	65.8	0.000	125.8	34.3	0.000	64.1	25.0	0.023	44.8	10.7	0.000	18.1	7.1	0.000	8.3
25	70.9	-0.023	139.1	39.3	-0.023	77.4	30.0	0.000	58.1	15.7	-0.023	31.4	12.2	0.000	21.6
27	74.9	0.000	144.5	43.3	0.000	82.8	34.1	0.023	63.5	19.7	0.000	36.8	16.2	0.000	26.9

Building: I	Multi-Fan	nily Low-ri	se	City: Buf	falo	HVAC: A	C with Ga	is Heat		Measure	: Roof Ins	ulation			
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	283.9	0.193	255.7												
19	332.8	0.237	302.5	48.8	0.044	46.7									
30	364.2	0.246	332.2	80.3	0.053	76.4	31.5	0.009	29.7						
38	377.1	0.255	344.2	93.1	0.061	88.5	44.3	0.018	41.7	12.8	0.009	12.0			
49	387.5	0.272	354.8	103.6	0.079	99.1	54.7	0.035	52.4	23.3	0.026	22.7	10.5	0.018	10.6
60	394.8	0.272	361.9	110.9	0.079	106.2	62.0	0.035	59.5	30.6	0.026	29.8	17.7	0.018	17.7

Building:	Multi-Family I	_ow-rise		City: Buffalo		HVAC: Heat F	Pump		Measure: Roc	of Insulation
Base	()	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	4262.2	0.193								
19	4950.5	0.228	688.3	0.035						
30	5361.6	0.246	1099.4	0.053	411.1	0.018				
38	5525.9	0.246	1263.6	0.053	575.3	0.018	164.3	0.000		
49	5670.6	0.255	1408.4	0.061	720.1	0.026	309.1	0.009	144.8	0.009
60	5769.6	0.264	1507.3	0.070	819.0	0.035	408.0	0.018	243.7	0.018

Building:	Multi-Family	Low-rise		City: Buffalo)	HVAC: AC w	vith Electric H	leat		Measure: Roof Insulation
Base	(0	1	1	1	9	3	0		38
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	5017.6	0.193								
19	5846.5	0.237	829.0	0.044						
30	6357.2	0.246	1339.6	0.053	510.7	0.009				
38	6562.5	0.255	1544.9	0.061	716.0	0.018	205.3	0.009		
49	6743.3	0.272	1725.7	0.079	896.8	0.035	386.1	0.026	180.8	0.018
60	6862.8	0.272	1845.2	0.079	1016.3	0.035	505.6	0.026	300.3	0.018

Building:	Multi-Family	Low-rise		City: Buffalo)	HVAC: Elect	tric Heat, no A	AC		Measure: Roof Insulation
Base	()	1	1	1	9	3	0		38
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	4884.2	0.000								
19	5690.2	-0.044	806.0	0.000						
30	6186.5	-0.018	1302.3	0.026	496.3	0.000				
38	6385.3	-0.018	1501.1	0.026	695.1	0.000	198.8	0.000		
49	6561.2	-0.018	1677.0	0.026	870.9	0.000	374.7	0.000	175.9	0.000
60	6677.4	-0.018	1793.2	0.026	987.2	0.000	490.9	0.000	292.1	0.000

Building:	Multi-Fan	nily Low-ri	se	City: Buf	falo	HVAC: G	as Heat N	o AC		Measure	: Roof Insi	ulation			
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	150.6	0.000	255.7												
19	176.6	-0.044	302.5	26.0	0.000	46.7									
30	193.6	-0.018	332.2	43.0	0.026	76.4	17.0	0.000	29.7						
38	199.9	-0.018	344.2	49.3	0.026	88.5	23.3	0.000	41.7	6.2	0.000	12.0			
49	205.4	-0.018	354.8	54.8	0.026	99.1	28.8	0.000	52.4	11.8	0.000	22.7	5.5	0.000	10.6
60	209.4	-0.018	361.9	58.9	0.026	106.2	32.9	0.000	59.5	15.8	0.000	29.8	9.6	0.000	17.7

Building: I	Multi-Fan	nily Low-ri	ise	City: Mes	sina	HVAC: A	C with Ga	is Heat		Measure	: Wall Insu	Ilation			
Base		0			11			13			17			19	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	43.1	0.034	68.1												
13	56.8	0.046	90.7	13.6	0.011	22.6									
17	77.3	0.057	122.9	34.2	0.023	54.8	20.5	0.011	32.2						
19	83.0	0.069	134.6	39.9	0.034	66.5	26.3	0.023	43.9	5.7	0.011	11.7			
21	87.9	0.069	144.1	44.8	0.034	76.0	31.2	0.023	53.4	10.7	0.011	21.2	4.9	0.000	9.5
25	96.4	0.080	159.7	53.3	0.046	91.6	39.7	0.034	69.0	19.1	0.023	36.8	13.4	0.011	25.1
27	100.4	0.080	166.0	57.3	0.046	97.9	43.7	0.034	75.3	23.2	0.023	43.1	17.4	0.011	31.4

Building:	Multi-Family L	_ow-rise		City: Messina	l	HVAC: Heat F	Pump		Measure: Wal	I Insulation
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	933.6	0.000								
13	1229.6	0.011	296.0	0.000						
17	1645.5	0.023	711.8	0.011	415.9	0.000				
19	1795.1	0.034	861.5	0.023	565.5	0.011	149.6	0.000		
21	1921.3	0.034	987.7	0.023	691.8	0.011	275.9	0.000	126.2	0.000
25	2118.2	0.046	1184.6	0.034	888.7	0.023	472.8	0.011	323.1	0.000
27	2195.4	0.046	1261.8	0.034	965.8	0.023	549.9	0.011	400.3	0.000

Building:		Multi-Fami	ly Low-rise	City: Me	ssina	HVAC: AC with Electric Heat Measure: Wall Insulation				
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1142.6	0.000								
13	1504.5	0.011	361.9	0.000						
17	2034.9	0.023	892.2	0.011	530.3	0.000				
19	2219.4	0.034	1076.7	0.023	714.8	0.011	184.5	0.000		
21	2373.1	0.034	1230.5	0.023	868.6	0.011	338.3	0.000	153.8	0.000
25	2616.9	0.046	1474.3	0.034	1112.4	0.023	582.0	0.011	397.5	0.000
27	2715.5	0.046	1572.9	0.034	1211.0	0.023	680.7	0.011	496.2	0.000

Building:		Multi-Fami	ly Low-rise	City: Me	ssina	HVAC: Electric Heat, no AC Measure: Wall Insulation				
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1136.1	0.000								
13	1496.4	0.000	360.3	0.000						
17	2022.1	0.000	886.0	0.000	525.7	0.000				
19	2206.7	0.000	1070.6	0.000	710.4	0.000	184.6	0.000		
21	2362.3	0.000	1226.2	0.000	866.0	0.000	340.2	0.000	155.6	0.000
25	2604.1	0.000	1468.0	0.000	1107.7	0.000	581.9	0.000	397.3	0.000
27	2703.2	0.000	1567.1	0.000	1206.9	0.000	681.1	0.000	496.5	0.000

Building: I	Multi-Fan	nily Low-ri	se	City: Mes	ssina	HVAC: G	as Heat, r	10 AC	Measure:	Wall Ins	ulation				
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	36.2	0.000	68.1												
13	48.2	0.000	90.7	11.9	0.000	22.6									
17	64.4	0.000	122.8	28.2	0.000	54.7	16.3	0.000	32.1						
19	70.6	0.000	134.5	34.4	0.000	66.4	22.5	0.000	43.8	6.2	0.000	11.7			
21	76.9	0.000	144.0	40.7	0.000	75.9	28.8	0.000	53.3	12.5	0.000	21.2	6.3	0.000	9.5
25	83.5	0.000	159.6	47.2	0.000	91.5	35.3	0.000	68.9	19.0	0.000	36.8	12.8	0.000	25.1
27	88.1	0.000	166.0	51.8	0.000	97.9	39.9	0.000	75.3	23.6	0.000	43.2	17.4	0.000	31.5

Building:	Multi-Fan	nily Low-ri	se	City: Mes	ssina	HVAC: A	C with Ga	is Heat		Measure	: Roof Ins	ulation			
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	350.3	0.404	301.6												
19	414.3	0.466	357.2	64.0	0.061	55.6									
30	450.0	0.510	392.4	99.7	0.105	90.8	35.7	0.044	35.2						
38	466.7	0.527	406.7	116.4	0.123	105.2	52.4	0.061	49.5	16.7	0.018	14.3			
49	480.0	0.536	419.7	129.8	0.132	118.2	65.7	0.070	62.5	30.0	0.026	27.3	13.4	0.009	13.0
60	487.8	0.545	428.1	137.6	0.141	126.5	73.5	0.079	70.9	37.9	0.035	35.7	21.2	0.018	21.3

Building:	Multi-Family I	Low-rise		City: Messina	ı	HVAC: Heat F	Pump		Measure: Roc	of Insulation
Base	Base 0		1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	5933.3	0.387								
19	6907.4	0.457	974.1	0.070						
30	7488.7	0.492	1555.4	0.105	581.3	0.035				
38	7715.0	0.501	1781.7	0.114	807.6	0.044	226.3	0.009		
49	7921.5	0.518	1988.1	0.132	1014.1	0.061	432.8	0.026	206.4	0.018
60	8056.0	0.527	2122.7	0.141	1148.6	0.070	567.3	0.035	341.0	0.026

Building:		Multi-Fami	amily Low-rise City: Messina HVAC: AC with Electric Heat Measure						easure: Roof In	nsulation
Base	()	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	6004.7	0.404								
19	7014.4	0.466	1009.8	0.061						
30	7635.5	0.510	1630.9	0.105	621.1	0.044				
38	7887.7	0.527	1883.1	0.123	873.3	0.061	252.2	0.018		
49	8110.2	0.536	2105.5	0.132	1095.8	0.070	474.7	0.026	222.4	0.009
60	8255.6	0.545	2251.0	0.141	1241.2	0.079	620.1	0.035	367.9	0.018

Building: Multi-Family Low-rise City: Messina HVAC: Electric Heat, n						t, no AC Me	easure: Roof Ir	sulation		
Base	C)	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	5829.0	0.000								
19	6806.8	-0.026	977.8	0.000						
30	7412.7	-0.044	1583.7	-0.018	605.9	0.000				
38	7655.7	-0.044	1826.7	-0.018	848.9	0.000	243.0	0.000		
49	7871.7	-0.044	2042.6	-0.018	1064.8	0.000	458.9	0.000	215.9	0.000
60	8014.6	-0.044	2185.5	-0.018	1207.8	0.000	601.9	0.000	358.9	0.000

Building:	Multi-Fan	nily Low-ri	se	City: Mes	ssina	HVAC: G	as Heat N	lo AC		Measure	: Roof Insi	ulation			
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	174.8	0.000	301.6												
19	206.7	-0.026	357.2	31.9	0.000	55.6									
30	227.2	-0.044	392.4	52.4	-0.018	90.8	20.5	0.000	35.2						
38	234.7	-0.044	406.7	59.9	-0.018	105.2	28.0	0.000	49.5	7.6	0.000	14.3			
49	241.8	-0.044	419.7	66.9	-0.018	118.1	35.1	0.000	62.5	14.6	0.000	27.2	7.0	0.000	12.9
60	247.0	-0.044	428.1	72.2	-0.018	126.5	40.3	0.000	70.9	19.9	0.000	35.7	12.3	0.000	21.3

Building:	Multi-Fan	nily Low-ri	se	City: NYC	2	HVAC: A	C with Ga	is Heat		Measure	: Wall Insu	llation			
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	37.8	0.034	44.1												
13	51.6	0.046	59.1	13.8	0.011	14.9									
17	70.1	0.069	78.9	32.2	0.034	34.7	18.5	0.023	19.8						
19	75.2	0.069	86.0	37.4	0.034	41.9	23.6	0.023	26.9	5.2	0.000	7.1			
21	79.3	0.080	92.1	41.5	0.046	47.9	27.7	0.034	33.0	9.3	0.011	13.2	4.1	0.011	6.1
25	88.5	0.080	101.6	50.7	0.046	57.4	36.9	0.034	42.5	18.5	0.011	22.7	13.3	0.011	15.6
27	90.8	0.080	105.1	53.0	0.046	61.0	39.2	0.034	46.1	20.8	0.011	26.3	15.6	0.011	19.1

Building:		Multi-Fami	ly Low-rise	City: NY	°C	HVAC: Heat Pump			easure: Wall In	sulation
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	469.7	0.000								
13	618.2	0.011	148.5	0.000						
17	832.5	0.023	362.8	0.011	214.3	0.000				
19	908.6	0.023	438.9	0.011	290.4	0.000	76.1	0.000		
21	971.4	0.034	501.8	0.023	353.3	0.011	139.0	0.011	62.8	0.000
25	1070.9	0.034	601.2	0.023	452.7	0.011	238.4	0.011	162.3	0.000
27	1104.2	0.046	634.6	0.034	486.1	0.023	271.8	0.023	195.6	0.000

Building:		Multi-Fami	ly Low-rise	City: NY	Ϋ́C	C HVAC: AC with Electric Heat Measure: Wall Insulation						
Base	()	1	1	1	3	1	7	1	9		
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF		
11	687.5	0.000										
13	905.2	0.011	217.6	0.000								
17	1210.0	0.034	522.4	0.023	304.8	0.000						
19	1319.6	0.034	632.0	0.023	414.4	0.000	109.6	0.000				
21	1411.0	0.046	723.4	0.034	505.8	0.011	201.0	0.011	91.4	0.000		
25	1557.0	0.046	869.5	0.034	651.9	0.011	347.1	0.011	237.5	0.000		
27	1603.8	0.046	916.3	0.034	698.7	0.011	393.9	0.011	284.3	0.000		

Building:	Multi-Family	Low-rise		City: NYC		HVAC: Elect	tric Heat, no	AC		Measure: Wall Insulation
Base	()	1	1	1	3	1	7		19
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	673.1	0.000								
13	883.3	0.000	210.2	0.000						
17	1178.3	0.000	505.2	0.000	295.0	0.000				
19	1287.4	0.000	614.3	0.000	404.1	0.000	109.0	0.000		
21	1375.9	0.000	702.8	0.000	492.6	0.000	197.6	0.000	88.5	0.000
25	1518.4	0.000	845.3	0.000	635.1	0.000	340.1	0.000	231.1	0.000
27	1564.3	0.000	891.2	0.000	681.0	0.000	386.0	0.000	276.9	0.000

Building:	: Multi-Fan	nily Low-ri	ise			City: NYC)	HVAC: Ga	s Heat, no	AC		Measure:	Wall Insu	ulation	
Base		0			11			13			17			19	
			therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kWh/ kSF	kW/ kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/kSF	kSF
11	23.4	0.000	44.1												
13	29.6	0.000	59.1	6.2	0.000	14.9									
17	38.3	0.000	78.9	14.9	0.000	34.7	8.7	0.000	19.8						
19	42.8	0.000	86.0	19.4	0.000	41.9	13.2	0.000	26.9	4.5	0.000	7.1			
21	44.3	0.000	92.1	20.9	0.000	47.9	14.7	0.000	33.0	6.0	0.000	13.2	1.5	0.000	6.1
25	49.9	0.000	101.7	26.5	0.000	57.6	20.3	0.000	42.7	11.6	0.000	22.8	7.1	0.000	15.7
27	51.1	0.000	105.1	27.7	0.000	61.0	21.6	0.000	46.1	12.8	0.000	26.3	8.4	0.000	19.1

Building: I	Multi-Fan	nily Low-ri	se	City: NYC	2	HVAC: A	C with Ga	is Heat		Measure	: Roof Insi	ulation			
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	372.7	0.369	181.6												
19	436.9	0.430	214.3	64.2	0.061	32.7									
30	475.4	0.466	235.4	102.7	0.097	53.9	38.5	0.035	21.2						
38	491.4	0.483	243.9	118.8	0.114	62.3	54.6	0.053	29.6	16.1	0.018	8.4			
49	505.1	0.492	251.0	132.4	0.123	69.4	68.2	0.061	36.7	29.7	0.026	15.5	13.6	0.009	7.1
60	514.9	0.501	256.1	142.2	0.132	74.5	78.0	0.070	41.8	39.5	0.035	20.6	23.5	0.018	12.2

Building:	Multi-	Family Lo	ow-rise		(City: NYC		H	IVAC: Heat	Pump			Measure	e: Roof	Insulation
Base		0			11			19			30			38	
Measure	kW	/h/ kSF	kW/ kSF	kWł	n/ kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/ k	SF	kW/ kSF
11	2	594.7	0.351												
19	3	016.6	0.413	42	21.9	0.061									
30	3	275.1	0.448	68	30.5	0.097	258	3.5	0.035						
38	3	379.9	0.466	78	35.2	0.114	363	3.3	0.053	104	1.7	0.018			
49	3-	472.5	0.474	87	7.8	0.123	455	5.9	0.061	197	7.3	0.026	92.6	6	0.009
60	3	531.2	0.483	93	36.6	0.132	514	4.6	0.070	256	6.1	0.035	151.	4	0.018
Building:			Multi-Fa	mily Low-	rise	City: N	YC		HVA	C: AC wi	th Electr	ic Heat M	easure: R	oof Ins	ulation
Base		0			11			19			30			38	
Measure	kWł	n/ kSF	kW/ kSF	kWh	/ kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/ k	SF	kW/ kSF
11	35	91.8	0.369												
19	41	83.7	0.430	59	1.8	0.061									
30	45	46.3	0.466	95	4.5	0.097	362	2.6	0.035						
38	46	92.6	0.483	110	0.8	0.114	508	3.9	0.053	146	.3	0.018			
49	48	22.2	0.492	123	30.3	0.123	638	3.5	0.061	275	.8	0.026	129.	6	0.009
60	49	08.4	0.501	131	6.5	0.132	724	.7	0.070	362	.0	0.035	215.	8	0.018
Building:			Multi-Fa	mily Low-	rise	City: N	YC		HVA	C: Electr	ic Heat, ı	no AC M	easure: R	oof Insi	ulation
Base		0			11			19			30			38	
Measure	kWł	n/ kSF	kW/ kSF	kWh	/ kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/ k	SF	kW/ kSF
11	33	50.2	0.000												
19	39	00.6	0.000	55	0.5	0.000									
30	42	38.8	0.000	88	8.6	0.000	338	3.1	0.000						
38	43	75.1	0.000	102	24.9	0.000	474	1.5	0.000	136	.3	0.000			
49	44	95.1	0.000	114	15.0	0.000	594	1.5	0.000	256	.3	0.000	120.	0	0.000
60	45	74.6	0.000	122	24.5	0.000	674	1.0	0.000	335	.9	0.000	199.	5	0.000
Buildina:	Multi-Far	nilv Low-	rise	Citv: NY	Ċ	HVAC: G	as Heat I	No AC		Measure	e: Roof li	nsulation			
Base		0		-	11			19			30			38	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	131.1	0.000	181.6												
19	153.9	0.000	214.3	22.8	0.000	32.7									
30	167.7	0.000	235.4	36.6	0.000	53.9	13.8	0.000	21.2						
38	173.9	0.000	243.9	42.9	0.000	62.3	20.0	0.000	29.6	6.2	0.000	8.4			
49	178.1	0.000	251.0	47.0	0.000	69.4	24.2	0.000	36.7	10.4	0.000	15.5	4.1	0.000	7.1
60	181.3	0.000	256.1	50.3	0.000	74.5	27.4	0.000	41.8	13.6	0.000	20.6	7.4	0.000	12.2

Building:	Multi-Far	nily Low-	rise	City: Sy	racuse	HVAC: A	AC with G	as Heat		Measure	e: Wall Ins	sulation			
Base		0			11			13			17			19	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	44.8	0.034	61.3												
13	60.0	0.057	80.8	15.1	0.023	19.5									
17	79.1	0.069	108.5	34.3	0.034	47.1	19.1	0.011	27.6						
19	87.6	0.080	118.7	42.8	0.046	57.3	27.6	0.023	37.8	8.5	0.011	10.2			
21	93.7	0.092	127.5	48.8	0.057	66.2	33.7	0.034	46.7	14.6	0.023	19.0	6.1	0.011	8.8
25	103.4	0.092	140.9	58.6	0.057	79.6	43.5	0.034	60.1	24.3	0.023	32.5	15.8	0.011	22.2
27	106.9	0.103	146.5	62.0	0.069	85.2	46.9	0.046	65.7	27.7	0.034	38.1	19.3	0.023	27.9

Building:	Multi-Family	Low-rise		City: Syracu	se	HVAC: Heat	Pump		Measure: Wa	all Insulation
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	785.3	0.000								
13	1030.8	0.011	245.5	0.000						
17	1380.9	0.034	595.6	0.023	350.1	0.000				
19	1506.7	0.046	721.4	0.034	475.9	0.011	125.8	0.000		
21	1613.9	0.046	828.6	0.034	583.1	0.011	233.0	0.000	107.2	0.000
25	1780.3	0.057	995.0	0.046	749.5	0.023	399.4	0.011	273.6	0.000
27	1847.5	0.057	1062.1	0.046	816.6	0.023	466.6	0.011	340.8	0.000

Building: Mu	ulti-Family Low	v-rise	City: Syı	racuse	HVAC	: AC with Ele	ctric Heat	N	leasure: Wall	Insulation
Base		0	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1009.1	0.000								
13	1328.2	0.023	319.1	0.000						
17	1775.4	0.034	766.3	0.011	447.2	0.000				
19	1940.4	0.046	931.3	0.023	612.2	0.011	165.0	0.000		
21	2078.0	0.057	1068.9	0.034	749.8	0.023	302.6	0.011	137.6	0.000
25	2294.2	0.057	1285.2	0.034	966.1	0.023	518.9	0.011	353.9	0.000
27	2380.3	0.069	1371.3	0.046	1052.2	0.034	605.0	0.023	440.0	0.000

Building:		Multi-Fa	mily Low-rise	City:	Syracuse	HV	AC: Electric He	eat, no AC	Measure: Wall	Insulation
Base	0		11		13	5	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1002.1	0.000								
13	1316.7	0.000	314.6	0.000						
17	1762.6	0.000	760.6	0.000	445.9	0.000				
19	1924.7	0.000	922.6	0.000	608.0	0.000	162.0	0.000		
21	2062.4	-0.023	1060.3	-0.023	745.7	-0.023	299.7	-0.023	137.7	0.000
25	2277.6	0.000	1275.5	0.000	960.9	0.000	515.0	0.000	352.9	0.000
27	2363.4	0.000	1361.3	0.000	1046.7	0.000	600.7	0.000	438.7	0.000

Building:	Multi-Fai	mily Low-	rise	City: Sy	racuse	HVAC: C	Gas Heat,	no AC	Measure	e: Wall Ins	sulation				
Base		0			11			13			17			19	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	38.0	0.000	61.3												
13	48.4	0.000	80.8	10.4	0.000	19.5									
17	66.3	0.000	108.5	28.3	0.000	47.1	17.9	0.000	27.6						
19	71.9	0.000	118.7	33.9	0.000	57.3	23.5	0.000	37.8	5.6	0.000	10.2			
21	78.0	-0.023	127.5	40.0	-0.023	66.2	29.6	-0.023	46.7	11.7	-0.023	19.0	6.1	0.000	8.8
25	86.7	0.000	140.9	48.7	0.000	79.6	38.3	0.000	60.1	20.4	0.000	32.5	14.8	0.000	22.2
27	89.9	0.000	146.5	51.9	0.000	85.2	41.5	0.000	65.7	23.6	0.000	38.1	18.0	0.000	27.9

Building:	Building: Multi-Family Low-rise			City: Sy	racuse	HVAC: A	AC with G	as Heat		Measure	e: Roof In	sulation			
Base		0	-		11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	351.8	0.290	248.3												
19	414.0	0.351	294.7	62.1	0.061	46.5									
30	454.5	0.395	324.4	102.7	0.105	76.2	40.6	0.044	29.7						
38	470.3	0.413	337.3	118.4	0.123	89.0	56.3	0.061	42.5	15.7	0.018	12.8			
49	485.1	0.430	348.6	133.3	0.141	100.3	71.2	0.079	53.9	30.6	0.035	24.2	14.8	0.018	11.3
60	494.8	0.439	356.7	142.9	0.149	108.4	80.8	0.088	61.9	40.2	0.044	32.2	24.5	0.026	19.4

Building:			Multi-Fa	mily Low	-rise	City: S	Syracuse		HV	AC: Heat	Pump	Ν	Aeasure: F	Roof Insu	ulation
Base		0			11			19			30			38	
Measure	kWh	n/ kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/ I	kSF ł	⟨W/ kSF	kWh/k	SF k	:W/ kSF
11	41	82.6	0.290												
19	48	51.0	0.351	668	3.4	0.061									
30	52	70.0	0.387	108	7.3	0.097	419	.0	0.035						
38	54	41.1	0.404	125	8.5	0.114	590	.1	0.053	171.	1	0.018			
49	55	93.8	0.422	141	1.1	0.132	742	.8	0.070	323.	8	0.035	152.7	7	0.018
60	56	93.9	0.430	151	1.3	0.141	842	.9	0.079	424.	0	0.044	252.8	3	0.026
Building:	Multi-Fan	nily Low-	rise	С	ity: Syrac	use		HVAC:	AC with Ele	ectric Hea	t	Ν	Aeasure: F	Roof Insu	ulation
Base		0			11			19			30			38	
Measure	kWh	n/ kSF	kW/ kSF	kWh/	′ kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/ I	<sf i<="" th=""><th>kW/ kSF</th><th>kWh/ k</th><th>SF 🖡</th><th>:W/ kSF</th></sf>	kW/ kSF	kWh/ k	SF 🖡	:W/ kSF
11	48	74.3	0.290												
19	57	01.5	0.351	82	7.2	0.061									
30	62	20.2	0.395	134	5.9	0.105	518	.7	0.044						
38	64	31.1	0.413	155	6.8	0.123	729	.6	0.061	210.	9	0.018			
49	66	20.7	0.430	174	6.4	0.141	919	.2	0.079	400.	5	0.035	189.6	6	0.018
60	67	45.7	0.439	187	1.4	0.149	1044	1.2	0.088	525.	5	0.044	314.6	6	0.026
Building:			Multi-Fa	mily Low	-rise	City: S	Syracuse		HV	AC: Elect	ric Heat,	no AC	Aeasure: F	Roof Insi	lation
Base		0		T Í	11		1	19			30			38	
Measure	kWh	n/ kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/	kSF	kW/ kSF	kWh/ I	<sf th="" <=""><th>⟨W/ kSF</th><th>kWh/k</th><th>SF k</th><th>W/kSF</th></sf>	⟨W/ kSF	kWh/k	SF k	W/kSF
11	46	85.6	0.000												
19	54	80.2	-0.044	794	4.6	0.000									
30	59	77.4	-0.044	129	1.8	0.000	497	.2	0.000						
38	61	81.4	-0.061	149	5.8	-0.018	701	.2	-0.018	204.	0	0.000			
49	63	62.0	-0.061	167	6.4	-0.018	881	.8	-0.018	384.	6	0.000	180.6	6	0.000
60	64	81.5	-0.061	179	5.9	-0.018	1001	1.3	-0.018	504.	1	0.000	300.1		0.000
Duitalian				0:4							Destin				
Building:	wuiti-ran		rise	City: Sy	racuse		as neat i	NOAC		weasure		Sulation			
Base		0	1		11			19			30			38	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	163.3	0.000	248.3												
19	192.7	-0.044	294.7	29.4	0.000	46.5									
30	211.9	-0.044	324.4	48.6	0.000	76.2	19.2	0.000	29.7						
38	220.7	-0.061	337.3	57.4	-0.018	89.0	27.9	-0.018	42.5	8.8	0.000	12.8			
49	226.7	-0.061	348.6	63.3	-0.018	100.3	33.9	-0.018	53.9	14.8	0.000	24.2	6.0	0.000	11.3
60	230.7	-0.061	356.7	67.4	-0.018	108.4	38.0	-0.018	61.9	18.8	0.000	32.2	10.0	0.000	19.4

Building:	Multi-Far	nily Low-	rise	City: Bin	ghamton	HVAC:	AC with G	as Heat		Measure	e: Wall Ins	sulation			
Base		0			11			13			17			19	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	41.6	0.023	62.8												
13	55.7	0.034	82.8	14.1	0.011	20.0									
17	73.2	0.046	112.0	31.5	0.023	49.2	17.4	0.011	29.2						
19	80.7	0.046	122.7	39.1	0.023	59.9	25.0	0.011	39.9	7.6	0.000	10.7			
21	87.5	0.046	132.1	45.9	0.023	69.3	31.8	0.011	49.3	14.3	0.000	20.1	6.8	0.000	9.4
25	96.2	0.057	146.5	54.6	0.034	83.7	40.5	0.023	63.8	23.0	0.011	34.5	15.5	0.011	23.9
27	99.8	0.057	152.2	58.1	0.034	89.3	44.0	0.023	69.4	26.6	0.011	40.1	19.0	0.011	29.5

Building:	Multi-Family	Low-rise		City: Bingha	amton	HVAC: Heat	Pump		Measure: Wa	all Insulation
Base	()	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	791.9	0.000								
13	1040.8	0.011	248.9	0.000						
17	1395.4	0.023	603.5	0.011	354.5	0.000				
19	1524.5	0.023	732.6	0.011	483.7	0.000	129.1	0.000		
21	1633.2	0.023	841.3	0.011	592.4	0.000	237.8	0.000	108.7	0.000
25	1802.5	0.034	1010.7	0.023	761.7	0.011	407.2	0.011	278.1	0.000
27	1869.7	0.034	1077.9	0.023	828.9	0.011	474.4	0.011	345.3	0.000

	HVAC: AC with Electric									
Building:		Multi-Fam	ily Low-rise	City: B	inghamton	Hea	t	Μ	leasure: Wall I	nsulation
Base		D	1	11		13		7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	1019.7	0.000								
13	1341.6	0.011	321.9	0.000						
17	1793.1	0.023	773.4	0.011	451.6	0.000				
19	1960.3	0.023	940.6	0.011	618.7	0.000	167.2	0.000		
21	2101.1	0.023	1081.4	0.011	759.5	0.000	308.0	0.000	140.8	0.000
25	2319.2	0.034	1299.5	0.023	977.6	0.011	526.1	0.011	358.9	0.000
27	2406.7	0.034	1387.0	0.023	1065.1	0.011	613.6	0.011	446.4	0.000

Building:		Multi-Family Low-rise			inghamton	HVA	C: Electric He	at, no AC	Measure: Wall Insulation		
Base	()	1	1	1	3	1	7	1	9	
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	
11	1014.6	0.000									
13	1333.0	0.000	318.4	0.000							
17	1785.0	0.011	770.4	0.011	452.0	0.000					
19	1950.6	0.011	936.0	0.011	617.6	0.000	165.6	0.000			
21	2089.0	0.011	1074.4	0.011	756.0	0.000	304.0	0.000	138.4	0.000	
25	2307.5	0.023	1293.0	0.023	974.5	0.011	522.5	0.011	357.0	0.000	
27	2394.3	0.023	1379.8	0.023	1061.3	0.011	609.3	0.011	443.8	0.000	

Base		0			11			13			17			19	
	kWh/	kW/	therm/												
Measure	kSF	kSF	kSF												
11	36.6	0.000	62.8												
13	47.1	0.000	82.8	10.5	0.000	20.0									
17	64.9	0.011	112.0	28.3	0.011	49.2	17.8	0.000	29.2						
19	71.2	0.011	122.7	34.6	0.011	59.9	24.1	0.000	39.9	6.3	0.000	10.7			
21	75.2	0.011	132.1	38.6	0.011	69.3	28.1	0.000	49.3	10.3	0.000	20.1	4.0	0.000	9.4
25	84.5	0.023	146.4	47.9	0.023	83.6	37.4	0.011	63.6	19.6	0.011	34.4	13.3	0.000	23.7
27	87.3	0.023	152.2	50.7	0.023	89.3	40.1	0.011	69.4	22.4	0.011	40.1	16.1	0.000	29.5

Building: Multi-Family Low-rise			rise	City: Bin	ghamton	ton HVAC: AC with Gas Heat				Measure	e: Roof In	sulation			
Base		0			11			19			30			38	
	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
Measure	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	301.9	0.264	257.9												
19	356.6	0.307	306.3	54.7	0.044	48.4									
30	392.1	0.343	337.3	90.2	0.079	79.3	35.5	0.035	30.9						
38	404.6	0.351	350.3	102.7	0.088	92.4	48.0	0.044	44.0	12.5	0.009	13.1			
49	417.3	0.360	360.9	115.4	0.097	103.0	60.7	0.053	54.6	25.2	0.018	23.6	12.7	0.009	10.5
60	424.9	0.369	368.4	123.1	0.105	110.4	68.3	0.061	62.0	32.9	0.026	31.1	20.4	0.018	18.0

Building:	Multi-Family Low-rise			City: Bingha	amton		Measure: Ro	of Insulation		
Base	()	11		1	9	3	0	38	
Measure	kWh/kSF kW/kSF		kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	4382.6	0.255								
19	5099.3	0.299	716.7	0.044						
30	5544.9	0.334	1162.3	0.079	445.7	0.035				
38	5723.0	0.343	1340.4	0.088	623.7	0.044	178.1	0.009		
49	5881.2	0.351	1498.6	0.097	782.0	0.053	336.3	0.018	158.2	0.009
60	5987.4	0.360	1604.8	0.105	888.2	0.061	442.5	0.026	264.4	0.018

Building: Mu	Building: Multi-Family Low-rise			nton	HVAC: AC wit	th Electric Hea	at Measure: Roof Insulation				
Base		0	11		1	9	3	80	3	8	
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kWh/ kSF kW/ kSF		kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	
11	5076.3	0.264									
19	5946.5	0.307	870.2	0.044							
30	6484.6	0.343	1408.2	0.079	538.1	0.035					
38	6698.7	0.351	1622.3	0.088	752.2	0.044	214.1	0.009			
49	6890.3	0.360	1813.9	0.097	943.8	0.053	405.7	0.018	191.6	0.009	
60	7015.9	0.369	1939.6	0.105	1069.4	0.061	531.3	0.026	317.2	0.018	

Building:	Multi-Family Low-rise			City: B	inghamton	HVA	C: Electric He	at, no AC	Measure: Roof Insulation		
Base	(0	11		19		3	0	38		
Measure	kWh/ kSF	Wh/ kSF kW/ kSF k		kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	
11	4935.8	0.000									
19	5778.6	0.018	842.8	0.000							
30	6301.2	0.026	1365.5	0.009	522.6	0.000					
38	6510.2	0.026	1574.5	0.009	731.6	0.000	209.0	0.000			
49	6696.9	0.026	1761.1	0.009	918.3	0.000	395.7	0.000	186.7	0.000	
60	6818.9	0.026	1883.1	0.009	1040.2	0.000	517.6	0.000	308.6	0.000	

Building: Multi-Family Low-rise C					City: Bir	City: Binghamton HVAC: Gas Heat				No AC Measure: Roof Insulation					
Base		0			11			19			30		38		
Measur	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/	kWh/	kW/	therm/
е	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF	kSF
11	161.2	0.000	257.9												
19	188.5	0.018	306.3	27.3	0.000	48.4									
30	208.6	0.026	337.3	47.4	0.009	79.3	20.1	0.000	30.9						
38	215.9	0.026	350.3	54.7	0.009	92.4	27.4	0.000	44.0	7.3	0.000	13.1			
49	223.8	0.026	360.9	62.5	0.009	103.0	35.2	0.000	54.6	15.1	0.000	23.6	7.8	0.000	10.5
60	227.8	0.026	368.4	66.6	0.009	110.4	39.3	0.000	62.0	19.2	0.000	31.1	11.9	0.000	18.0

Building: I	Multi-Fai	nily Low-r	ise	City: Poug	ghkeepsie	HVAC: A	C with Ga	as Heat		Measure	: Wall Insu	ulation			
Base		0			11			13			17			19	
	kWh/		therm/			therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	39.4	0.023	61.6												
13	53.3	0.023	81.6	13.9	0.000	20.1									
17	69.3	0.046	110.9	29.8	0.023	49.3	15.9	0.023	29.2						
19	77.4	0.046	121.8	38.0	0.023	60.2	24.1	0.023	40.1	8.1	0.000	10.9			
21	82.7	0.046	130.7	43.2	0.023	69.1	29.4	0.023	49.1	13.4	0.000	19.8	5.3	0.000	8.9
25	91.5	0.057	145.3	52.1	0.034	83.7	38.2	0.034	63.6	22.2	0.011	34.4	14.1	0.011	23.5
27	94.8	0.057	151.1	55.4	0.034	89.6	41.5	0.034	69.5	25.6	0.011	40.2	17.4	0.011	29.4

uilding:	Multi-Family I	_ow-rise		City: Poughk	eepsie	HVAC: Heat F	Pump	Measure: Wall Insulation			
Base	()	11		1	13		7	19		
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	
11	663.6	0.000									
13	873.5	0.011	210.0	0.000							
17	1171.2	0.023	507.6	0.011	297.7	0.000					
19	1284.4	0.023	620.8	0.011	410.8	0.000	113.2	0.000			
21	1374.0	0.023	710.5	0.011	500.5	0.000	202.8	0.000	89.7	0.000	
25	1519.1	0.034	855.5	0.023	645.6	0.011	347.9	0.011	234.7	0.000	
27	1577.0	0.034	913.4	0.023	703.5	0.011	405.8	0.011	292.6	0.000	

Building:	Iding: Multi-Fan			City: Po	ughkeepsie	HVAC: AC with Electric Heat Measure: Wall Insulation					
Base	()	1	1	1	3	1	7	1	9	
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	
11	867.7	0.000									
13	1144.5	0.000	276.8	0.000							
17	1532.2	0.023	664.5	0.023	387.7	0.000					
19	1676.5	0.023	808.9	0.023	532.0	0.000	144.4	0.000			
21	1795.8	0.023	928.1	0.023	651.3	0.000	263.6	0.000	119.3	0.000	
25	1984.6	0.034	1117.0	0.034	840.2	0.011	452.5	0.011	308.1	0.000	
27	2060.1	0.034	1192.4	0.034	915.6	0.011	527.9	0.011	383.6	0.000	

Building:		Multi-Fami	ly Low-rise	City: Po	ughkeepsie	HVAG	C: Electric Hea	it, no AC Me	easure: Wall In	sulation
Base		D	1	1	1	3	1	7	1	9
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	863.4	0.000								
13	1137.9	0.000	274.5	0.000						
17	1524.7	0.000	661.3	0.000	386.8	0.000				
19	1666.8	0.023	803.3	0.023	528.8	0.023	142.1	0.000		
21	1786.3	0.023	922.8	0.023	648.3	0.023	261.6	0.000	119.5	0.000
25	1974.8	0.000	1111.3	0.000	836.8	0.000	450.1	-0.023	308.0	0.000
27	2050.5	0.000	1187.0	0.000	912.5	0.000	525.7	-0.023	383.7	0.000

Building: Multi-Family Low-rise City: Poughkeepsie HVAC: Gas Heat, no AC Measure: Wall Insulation

Base		0			11			13			17			19	
	kWh/		therm/			therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF
11	35.4	0.000	61.6												
13	47.0	0.000	81.8	11.6	0.000	20.2									
17	62.1	0.000	110.9	26.7	0.000	49.3	15.1	0.000	29.1						
19	67.9	0.023	121.8	32.5	0.023	60.2	20.9	0.023	40.0	5.7	0.000	10.9			
21	73.4	0.023	130.6	38.0	0.023	69.0	26.4	0.023	48.8	11.2	0.000	19.7	5.5	0.000	8.8
25	81.8	0.000	145.3	46.3	0.000	83.7	34.7	0.000	63.5	19.6	-0.023	34.4	13.9	0.000	23.5
27	85.2	0.000	151.2	49.8	0.000	89.7	38.2	0.000	69.5	23.0	-0.023	40.4	17.3	0.000	29.5

Building:	uilding: Multi-Family Low-rise				ghkeepsie	HVAC: A	C with Ga	as Heat		Measure	: Roof Ins	ulation			
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	357.2	0.343	246.5												
19	423.3	0.395	298.1	66.1	0.053	51.6									
30	464.6	0.430	332.0	107.4	0.088	85.5	41.3	0.035	33.9						
38	481.2	0.448	346.5	124.0	0.105	100.0	57.9	0.053	48.4	16.6	0.018	14.5			
49	495.7	0.457	359.4	138.5	0.114	112.9	72.5	0.061	61.3	31.2	0.026	27.4	14.6	0.009	12.9
60	504.6	0.466	368.1	147.4	0.123	121.6	81.3	0.070	70.0	40.1	0.035	36.1	23.5	0.018	21.6

Building:	Multi-Family I	_ow-rise		City: Poughk	eepsie	HVAC: Heat F	Pump		Measure: Roc	of Insulation
Base	()	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	3838.4	0.334								
19	4496.7	0.387	658.4	0.053						
30	4908.8	0.422	1070.5	0.088	412.1	0.035				
38	5074.2	0.439	1235.9	0.105	577.5	0.053	165.4	0.018		
49	5221.4	0.448	1383.0	0.114	724.7	0.061	312.6	0.026	147.1	0.009
60	5317.8	0.448	1479.4	0.114	821.0	0.061	408.9	0.026	243.5	0.009

Building:		Multi-Fami	ly Low-rise	City: Po	ughkeepsie	HVAC	C: AC with Ele	ctric Heat Me	easure: Roof In	nsulation
Base	()	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	4482.9	0.343								
19	5283.0	0.395	800.1	0.053						
30	5783.2	0.430	1300.3	0.088	500.2	0.035				
38	5985.8	0.448	1502.9	0.105	702.8	0.053	202.6	0.018		
49	6165.8	0.457	1682.9	0.114	882.8	0.061	382.6	0.026	180.0	0.009
60	6284.3	0.466	1801.4	0.123	1001.3	0.070	501.1	0.035	298.5	0.018

Building:		Multi-Fami	ly Low-rise	City: Po	ughkeepsie	HVAC	C: Electric Hea	it, no AC Me	easure: Roof I	nsulation
Base	C)	1	1	1	9	3	0	3	8
Measure	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
11	4298.9	0.000								
19	5064.3	-0.018	765.4	0.000						
30	5544.0	-0.018	1245.1	0.000	479.7	0.000				
38	5738.0	-0.018	1439.2	0.000	673.7	0.000	194.1	0.000		
49	5911.7	-0.018	1612.8	0.000	847.4	0.000	367.7	0.000	173.7	0.000
60	6026.6	-0.018	1727.8	0.000	962.3	0.000	482.6	0.000	288.6	0.000

Building:	Multi-Far	nily Low-ri	se	City: Poug	ghkeepsie	HVAC: G	as Heat N	lo AC		Measure	: Roof Ins	ulation			
Base		0			11			19			30			38	
	kWh/		therm/		kWh/ kSF kW/ kSF kSF				therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kWh/ kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	173.1	0.000	246.5												
19	204.6	-0.018	298.1	31.5	0.000	51.6									
30	225.4	-0.018	332.0	52.4	0.000	85.5	20.8	0.000	33.9						
38	233.5	-0.018	346.5	60.4	0.000	100.0	28.9	0.000	48.4	8.1	0.000	14.5			
49	241.5	-0.018	359.5	68.4	0.000	113.0	36.9	0.000	61.4	16.1	0.000	27.5	8.0	0.000	13.0
60	246.8	-0.018	368.2	73.7	0.000	121.7	42.2	0.000	70.1	21.3	0.000	36.2	13.3	0.000	21.7

MULTI-FAMILY HIGH-RISE INSULATION UPGRADES

Building:	Multi-Fa	mily High-ı	rise	City:	Albany		HVAC:	Chiller an	nd Boiler v	with FPFC)	Measure:		Wall Insu	lation
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	14.6	0.008	51.3												
13	18.9	0.014	67.0	4.3	0.005	15.7									
17	24.7	0.016	88.9	10.1	0.008	37.5	5.8	0.003	21.8						
19	26.8	0.019	96.9	12.2	0.011	45.6	7.9	0.005	29.9	2.1	0.003	8.1			
21	28.5	0.022	103.6	13.9	0.014	52.2	9.6	0.008	36.5	3.8	0.005	14.7	1.7	0.003	6.6
25	31.0	0.022	113.5	16.3	0.014	62.2	12.0	0.008	46.5	6.2	0.005	24.7	4.2	0.003	16.6
27	32.0	0.024	117.6	17.4	0.016	66.3	13.1	0.011	50.6	7.3	0.008	28.7	5.2	0.005	20.7

Building:	Multi-Far	nily High-ı	rise	City:	Albany		HVAC:	Chiller an	d Boiler v	with FPFC	;	Measure:		Roof Insu	llation
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	138.1	0.254	411.4												
19	150.5	0.263	476.4	12.4	0.009	65.0									
30	156.8	0.281	515.6	18.8	0.026	104.2	6.3	0.018	39.2						
38	159.1	0.281	531.1	21.0	0.026	119.7	8.6	0.018	54.7	2.3	0.000	15.5			
49	160.9	0.298	545.2	22.9	0.044	133.9	10.4	0.035	68.8	4.1	0.018	29.6	1.8	0.018	14.1
60	162.1	0.307	554.7	24.0	0.053	143.3	11.6	0.044	78.3	5.3	0.026	39.1	3.0	0.026	23.6

Building:	Multi-Fa	mily High-	rise	City:	Albany		HVAC:	Steam Bo	oiler Only			Measure:	Wall Insu	ulation	
Base)	0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/			kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	therm/ kSF	kSF	kW/ kSF	kSF
11	0.0	0.0	57.2												
13	0.0	0.0	74.7	0.0	0.0	17.5									
17	0.0	0.0	99.0	0.0	0.0	41.8	0.0	0.0	24.3						
19	0.0	0.0	108.0	0.0	0.0	50.8	0.0	0.0	33.3	0.0	0.0	9.0			
21	0.0	0.0	115.4	0.0	0.0	58.2	0.0	0.0	40.7	0.0	0.0	16.4	0.0	0.0	7.4
25	0.0	0.0	126.5	0.0	0.0	69.3	0.0	0.0	51.8	0.0	0.0	27.5	0.0	0.0	18.5
27	0.0	0.0	131.1	0.0	0.0	73.9	0.0	0.0	56.4	0.0	0.0	32.0	0.0	0.0	23.1

Building:	Multi-Fa	mily High-	rise	City:	Albany		HVAC:	Steam Bo	oiler Only			Measure:		Roof Insu	ulation
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	0.0	0.0	458.4												
19	0.0	0.0	530.9	0.0	0.0	72.5									
30	0.0	0.0	574.5	0.0	0.0	116.1	0.0	0.0	43.7						
38	0.0	0.0	591.8	0.0	0.0	133.4	0.0	0.0	60.9	0.0	0.0	17.3			
49	0.0	0.0	607.5	0.0	0.0	149.2	0.0	0.0	76.7	0.0	0.0	33.0	0.0	0.0	15.7
60	0.0	0.0	618.1	0.0	0.0	159.7	0.0	0.0	87.2	0.0	0.0	43.6	0.0	0.0	26.3

Building:	Multi-Fa	mily High-ı	rise	City:	Buffalo		HVAC:	Chiller an	d Boiler v	with FPFC	;	Measure:		Wall Insu	lation
Base		0			11			13			17			19	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	10.2	0.005	52.3												
13	13.2	0.008	68.8	3.0	0.003	16.5									
17	17.3	0.011	91.8	7.1	0.005	39.5	4.1	0.003	23.0						
19	18.7	0.011	100.0	8.5	0.005	47.7	5.5	0.003	31.2	1.4	0.000	8.2			
21	19.9	0.014	106.8	9.7	0.008	54.5	6.7	0.005	38.0	2.6	0.003	15.0	1.2	0.003	6.8
25	21.7	0.014	117.4	11.4	0.008	65.1	8.4	0.005	48.6	4.4	0.003	25.6	3.0	0.003	17.4
27	22.4	0.014	121.7	12.2	0.008	69.4	9.1	0.005	52.9	5.1	0.003	29.9	3.7	0.003	21.7

Building:	Multi-Family High-rise			City:	Buffalo		HVAC: Chiller and Boiler with I					Measure:		Roof Insulation	
Base	0			11			19			30			38		
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	110.0	0.079	406.5												
19	117.0	0.105	468.2	7.0	0.026	61.7									
30	120.1	0.123	506.7	10.1	0.044	100.3	3.1	0.018	38.6						
38	121.0	0.131	521.7	11.0	0.053	115.2	3.9	0.026	53.5	0.9	0.009	14.9			
49	121.7	0.131	535.6	11.7	0.053	129.1	4.6	0.026	67.4	1.6	0.009	28.8	0.7	0.000	13.9
60	122.1	0.140	544.5	12.1	0.061	138.1	5.1	0.035	76.3	2.0	0.018	37.8	1.1	0.009	22.9
Building:	Multi-Fa	mily High-	rise	City:	Buffalo		HVAC:	Steam Bo	oiler Only			Measure:	Wall Insu	ulation	
-----------	---	------------	---------------	-------------	---------	---------------	-------------	----------	---------------	-------------	---------	------------	-------------	---------	---------------
Base		0			11			13			17			19	
Measure	kWh/ ther kSF kW/kSF kS 0.0 0.0 58.		therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	0.0	0.0	58.3												
13	0.0	0.0	76.7	0.0	0.0	18.4									
17	0.0	0.0	102.3	0.0	0.0	44.0	0.0	0.0	25.6						
19	0.0	0.0	111.4	0.0	0.0	53.1	0.0	0.0	34.8	0.0	0.0	9.1			
21	0.0	0.0	119.0	0.0	0.0	60.7	0.0	0.0	42.4	0.0	0.0	16.7	0.0	0.0	7.6
25	0.0	0.0	130.8	0.0	0.0	72.5	0.0	0.0	54.1	0.0	0.0	28.5	0.0	0.0	19.4
27	0.0	0.0	135.6	0.0	0.0	77.3	0.0	0.0	59.0	0.0	0.0	33.3	0.0	0.0	24.2

Building:	Multi-Family High-rise			City:	Buffalo		HVAC:	Steam Bo	oiler Only			Measure:		Roof Insu	ulation
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF
11	0.0	0.0	452.9												
19	0.0	0.0	521.7	0.0	0.0	68.8									
30	0.0	0.0	564.7	0.0	0.0	111.7	0.0	0.0	43.0						
38	0.0	0.0	581.3	0.0	0.0	128.3	0.0	0.0	59.6	0.0	0.0	16.6			
49	0.0	0.0	596.8	0.0	0.0	143.9	0.0	0.0	75.1	0.0	0.0	32.1	0.0	0.0	15.5
60	0.0	0.0	606.8	0.0	0.0	153.8	0.0	0.0	85.1	0.0	0.0	42.1	0.0	0.0	25.5

Building:	Multi-Family High-rise		rise	City:	Massena		HVAC:	Chiller an	d Boiler v	with FPFC	;	Measure:		Wall Insu	lation
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	17.9	0.016	61.3												
13	23.2	0.024	80.3	5.3	0.008	19.0									
17	30.5	0.033	106.3	12.6	0.016	45.0	7.3	0.008	26.0						
19	33.1	0.035	115.6	15.2	0.019	54.3	9.9	0.011	35.3	2.6	0.003	9.4			
21	35.3	0.038	123.6	17.4	0.022	62.3	12.1	0.014	43.3	4.8	0.005	17.3	2.2	0.003	8.0
25	38.6	0.041	136.0	20.8	0.024	74.7	15.4	0.016	55.7	8.1	0.008	29.7	5.5	0.005	20.3
27	40.0	0.044	140.9	22.1	0.027	79.6	16.8	0.019	60.6	9.5	0.011	34.6	6.9	0.008	25.3

Building:	Multi-Family High-rise		rise	City:	Massena		HVAC:	Chiller an	d Boiler v	with FPFC	;	Measure:		Roof Insu	Ilation
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	130.3	0.149	481.9												
19	140.4	0.175	556.3	10.1	0.026	74.3									
30	145.5	0.193	601.4	15.2	0.044	119.5	5.1	0.018	45.1						
38	147.3	0.210	619.5	16.9	0.061	137.5	6.8	0.035	63.2	1.8	0.018	18.1			
49	148.8	0.219	635.5	18.4	0.070	153.6	8.3	0.044	79.2	3.2	0.026	34.1	1.5	0.009	16.0
60	149.5	0.228	645.7	19.2	0.079	163.7	9.1	0.053	89.4	4.0	0.035	44.3	2.3	0.018	26.2

Building:	Multi-Fa	mily High-	rise	City:	Massena		HVAC:	Steam Bo	oiler Only			Measure:	Wall Insu	ulation	
Base	e	0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/			kWh/		therm/
Measure	kSF	kW/kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	therm/ kSF	kSF	kW/ kSF	kSF
11	0.0	0.0	68.3												
13	0.0	0.0	89.5	0.0	0.0	21.2									
17	0.0	0.0	118.4	0.0	0.0	50.1	0.0	0.0	28.9						
19	0.0	0.0	128.9	0.0	0.0	60.5	0.0	0.0	39.4	0.0	0.0	10.4			
21	0.0	0.0	137.7	0.0	0.0	69.4	0.0	0.0	48.2	0.0	0.0	19.3	0.0	0.0	8.9
25	0.0	0.0	151.5	0.0	0.0	83.2	0.0	0.0	62.0	0.0	0.0	33.1	0.0	0.0	22.7
27	0.0	0.0	157.0	0.0	0.0	88.7	0.0	0.0	67.5	0.0	0.0	38.6	0.0	0.0	28.2

Building:	Multi-Family High-rise			City:	Massena		HVAC:	Steam Bo	oiler Only			Measure:		Roof Insu	ulation
Base	è	0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	0.0	0.0	537.0												
19	0.0	0.0	619.9	0.0	0.0	82.8									
30	0.0	0.0	670.2	0.0	0.0	133.1	0.0	0.0	50.3						
38	0.0	0.0	690.3	0.0	0.0	153.3	0.0	0.0	70.4	0.0	0.0	20.1			
49	0.0	0.0	708.1	0.0	0.0	171.1	0.0	0.0	88.3	0.0	0.0	38.0	0.0	0.0	17.9
60	0.0	0.0	719.5	0.0	0.0	182.5	0.0	0.0	99.6	0.0	0.0	49.3	0.0	0.0	29.2

Building:	Multi-Family High-rise		rise	City:	NYC		HVAC:	Chiller an	d Boiler v	with FPFC)	Measure:		Wall Insu	lation
Base		0			11			13			17			19	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	36.2	0.008	35.5												
13	47.2	0.011	46.2	11.0	0.003	10.7									
17	62.4	0.016	61.2	26.2	0.008	25.7	15.2	0.005	15.0						
19	67.9	0.016	66.5	31.7	0.008	30.9	20.6	0.005	20.3	5.5	0.000	5.2			
21	72.4	0.019	71.1	36.2	0.011	35.5	25.2	0.008	24.9	10.0	0.003	9.8	4.5	0.003	4.6
25	79.5	0.019	78.3	43.2	0.011	42.8	32.2	0.008	32.1	17.1	0.003	17.1	11.6	0.003	11.9
27	82.3	0.022	81.0	46.0	0.014	45.5	35.0	0.011	34.8	19.9	0.005	19.8	14.4	0.005	14.6

Building:	Multi-Family High-rise		rise	City:	NYC		HVAC:	Chiller an	d Boiler v	with FPFC	;	Measure:		Roof Insu	llation
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	279.9	0.114	285.9												
19	315.5	0.149	333.4	35.6	0.035	47.5									
30	335.8	0.175	361.7	55.9	0.061	75.8	20.3	0.026	28.3						
38	343.6	0.184	373.5	63.7	0.070	87.7	28.1	0.035	40.1	7.8	0.009	11.8			
49	350.4	0.193	382.9	70.5	0.079	97.0	34.9	0.044	49.5	14.6	0.018	21.2	6.7	0.009	9.4
60	354.8	0.202	390.3	74.9	0.088	104.4	39.3	0.053	56.9	18.9	0.026	28.6	11.1	0.018	16.7

Building:	Multi-Fa	mily High-	rise	City:	NYC		HVAC:	Steam Bo	oiler Only	r		Measure:	Wall Insu	ulation	
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/			kWh/		therm/
Measure	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	therm/ kSF	kSF	kW/ kSF	kSF
11	0.0	0.0	39.6												
13	0.0	0.0	51.5	0.0	0.0	11.9									
17	0.0	0.0	68.2	0.0	0.0	28.6	0.0	0.0	16.8						
19	0.0	0.0	74.1	0.0	0.0	34.5	0.0	0.0	22.6	0.0	0.0	5.8			
21	0.0	0.0	79.2	0.0	0.0	39.6	0.0	0.0	27.7	0.0	0.0	10.9	0.0	0.0	5.1
25	0.0	0.0	87.3	0.0	0.0	47.7	0.0	0.0	35.8	0.0	0.0	19.0	0.0	0.0	13.2
27	0.0	0.0	90.3	0.0	0.0	50.7	0.0	0.0	38.8	0.0	0.0	22.1	0.0	0.0	16.2

Building:	Multi-Family High-rise			City:	NYC		HVAC:	Steam Bo	oiler Only			Measure:		Roof Insu	ulation
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	0.0	0.0	318.5	_			_					-	_		
19	0.0	0.0	371.5	0.0	0.0	52.9									
30	0.0	0.0	403.0	0.0	0.0	84.5	0.0	0.0	31.5						
38	0.0	0.0	416.2	0.0	0.0	97.7	0.0	0.0	44.7	0.0	0.0	13.2			
49	0.0	0.0	426.6	0.0	0.0	108.1	0.0	0.0	55.2	0.0	0.0	23.6	0.0	0.0	10.5
60	0.0	0.0	434.9	0.0	0.0	116.3	0.0	0.0	63.4	0.0	0.0	31.8	0.0	0.0	18.7

Building:	Multi-Family High-rise		gh-rise	City:	Syra	cuse	HVAC:	Chill	er and Bo	iler with	FPFC	Mea	sure:	Wall Ins	sulation
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	16.1	0.014	50.6												
13	20.9	0.019	66.1	4.8	0.005	15.5									
17	27.4	0.024	87.7	11.2	0.011	37.1	6.5	0.005	21.6						
19	29.6	0.027	95.5	13.5	0.014	44.9	8.8	0.008	29.4	2.3	0.003	7.8			
21	31.5	0.030	102.0	15.4	0.016	51.4	10.6	0.011	35.9	4.2	0.005	14.3	1.9	0.003	6.4
25	34.4	0.033	112.5	18.3	0.019	61.8	13.5	0.014	46.3	7.0	0.008	24.7	4.8	0.005	16.9
27	35.5	0.033	116.8	19.4	0.019	66.2	14.7	0.014	50.7	8.2	0.008	29.1	5.9	0.005	21.3

Building:	Multi-Family High-rise		rise	City:	Syracuse		HVAC:	Chiller ar	nd Boiler v	with FPFC		Measure:		Roof Insu	llation
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	153.8	0.289	403.0												
19	166.6	0.359	466.0	12.8	0.070	63.0									
30	172.8	0.403	503.8	18.9	0.114	100.8	6.1	0.044	37.8						
38	174.8	0.421	519.9	21.0	0.131	116.9	8.2	0.061	53.9	2.0	0.018	16.1			
49	176.5	0.447	534.9	22.6	0.158	131.9	9.8	0.088	68.9	3.7	0.044	31.1	1.7	0.026	15.0
60	177.5	0.456	543.7	23.7	0.167	140.7	10.9	0.096	77.7	4.7	0.053	39.9	2.7	0.035	23.8

Building:	Multi-Fa	mily High-	rise	City:	Syracuse	•	HVAC:	Steam Bo	oiler Only			Measure:	Wall Inst	ulation	
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF
11	0.0	0.0	56.4												
13	0.0	0.0	73.7	0.0	0.0	17.3									
17	0.0	0.0	97.7	0.0	0.0	41.3	0.0	0.0	24.1						
19	0.0	0.0	106.5	0.0	0.0	50.1	0.0	0.0	32.8	0.0	0.0	8.7			
21	0.0	0.0	113.6	0.0	0.0	57.2	0.0	0.0	40.0	0.0	0.0	15.9	0.0	0.0	7.2
25	0.0	0.0	125.3	0.0	0.0	68.9	0.0	0.0	51.6	0.0	0.0	27.6	0.0	0.0	18.8
27	0.0	0.0	130.2	0.0	0.0	73.8	0.0	0.0	56.5	0.0	0.0	32.4	0.0	0.0	23.7

Building:	Multi-Family High-rise		rise	City:	Syracuse	•	HVAC:	Steam Bo	oiler Only			Measure:		Roof Insu	lation
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	0.0	0.0	449.0												
19	0.0	0.0	519.2	0.0	0.0	70.2									
30	0.0	0.0	561.3	0.0	0.0	112.3	0.0	0.0	42.1						
38	0.0	0.0	579.3	0.0	0.0	130.3	0.0	0.0	60.1	0.0	0.0	18.0			
49	0.0	0.0	596.0	0.0	0.0	147.0	0.0	0.0	76.8	0.0	0.0	34.7	0.0	0.0	16.7
60	0.0	0.0	605.8	0.0	0.0	156.8	0.0	0.0	86.5	0.0	0.0	44.4	0.0	0.0	26.5

Building:	Multi-Far	nily High-ı	rise	City:	Bingham	ton	HVAC:	Chiller an	d Boiler v	with FPFC)	Measure:		Wall Insu	lation
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	9.7	0.005	55.6												
13	12.5	0.005	72.8	2.8	0.000	17.2									
17	16.2	0.008	96.9	6.4	0.003	41.3	3.7	0.003	24.1						
19	17.5	0.008	105.5	7.7	0.003	49.9	4.9	0.003	32.7	1.3	0.000	8.6			
21	18.5	0.011	112.7	8.7	0.005	57.1	6.0	0.005	39.9	2.3	0.003	15.8	1.0	0.003	7.2
25	20.0	0.011	123.8	10.3	0.005	68.2	7.5	0.005	51.0	3.9	0.003	26.9	2.6	0.003	18.3
27	20.6	0.011	128.4	10.9	0.005	72.8	8.1	0.005	55.6	4.5	0.003	31.5	3.2	0.003	22.9

Building:	Multi-Far	Multi-Family High-rise		City:	Bingham	ton	HVAC:	Chiller an	d Boiler v	with FPFC	;	Measure:		Roof Insu	llation
Base		0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	140.8	0.088	420.9												
19	152.9	0.096	489.0	12.1	0.009	68.1									
30	158.9	0.123	531.7	18.1	0.035	110.8	6.0	0.026	42.7						
38	161.0	0.131	548.0	20.2	0.044	127.1	8.2	0.035	59.0	2.1	0.009	16.3			
49	162.8	0.140	562.9	22.0	0.053	142.0	9.9	0.044	73.9	3.9	0.018	31.2	1.8	0.009	14.9
60	163.7	0.140	572.7	23.0	0.053	151.7	10.9	0.044	83.6	4.8	0.018	40.9	2.7	0.009	24.6

Building:	Multi-Fa	mily High-	rise	City:	Bingham	ton	HVAC:	Steam Bo	oiler Only			Measure:	Wall Insu	ulation	
Base		0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/			kWh/		therm/
Measure	kSF	kW/kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	therm/ kSF	kSF	kW/ kSF	kSF
11	0.0	0.0	62.0												
13	0.0	0.0	81.1	0.0	0.0	19.2									
17	0.0	0.0	108.0	0.0	0.0	46.0	0.0	0.0	26.9						
19	0.0	0.0	117.6	0.0	0.0	55.6	0.0	0.0	36.4	0.0	0.0	9.6			
21	0.0	0.0	125.6	0.0	0.0	63.6	0.0	0.0	44.4	0.0	0.0	17.6	0.0	0.0	8.0
25	0.0	0.0	137.9	0.0	0.0	76.0	0.0	0.0	56.8	0.0	0.0	30.0	0.0	0.0	20.4
27	0.0	0.0	143.0	0.0	0.0	81.1	0.0	0.0	61.9	0.0	0.0	35.1	0.0	0.0	25.5

Building:	Multi-Family High-rise		rise	City:	Bingham	ton	HVAC:	Steam Bo	oiler Only			Measure:		Roof Insu	ulation
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	0.0	0.0	469.0												
19	0.0	0.0	544.9	0.0	0.0	75.9									
30	0.0	0.0	592.5	0.0	0.0	123.5	0.0	0.0	47.6						
38	0.0	0.0	610.7	0.0	0.0	141.6	0.0	0.0	65.7	0.0	0.0	18.2			
49	0.0	0.0	627.3	0.0	0.0	158.2	0.0	0.0	82.3	0.0	0.0	34.8	0.0	0.0	16.6
60	0.0	0.0	638.1	0.0	0.0	169.1	0.0	0.0	93.2	0.0	0.0	45.6	0.0	0.0	27.4

Building:	Multi-Family High-rise			City:	Poughke	epsie	HVAC:	Chiller an	nd Boiler v	with FPFC	2	Measure:		Wall Insu	lation
Base		0			11			13			17			19	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	12.6	0.008	40.5												
13	16.2	0.011	53.5	3.6	0.003	13.0									
17	20.9	0.014	71.9	8.3	0.005	31.4	4.7	0.003	18.4						
19	22.5	0.014	78.6	9.9	0.005	38.1	6.3	0.003	25.1	1.6	0.000	6.7			
21	23.8	0.016	83.8	11.2	0.008	43.4	7.6	0.005	30.3	2.9	0.003	11.9	1.3	0.003	5.2
25	25.7	0.016	92.0	13.1	0.008	51.5	9.5	0.005	38.5	4.8	0.003	20.1	3.2	0.003	13.4
27	26.5	0.016	95.1	13.9	0.008	54.6	10.3	0.005	41.6	5.6	0.003	23.2	4.0	0.003	16.5

Building:	Multi-Family High-rise		rise	City:	Poughkee	epsie	HVAC:	Chiller an	d Boiler v	with FPFC)	Measure:		Roof Insu	lation
Base		0			11			19			30			38	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	107.4	0.105	393.0												
19	109.9	0.149	456.3	2.5	0.044	63.4									
30	109.7	0.167	495.1	2.3	0.061	102.1	-0.3	0.018	38.7						
38	109.0	0.175	512.0	1.6	0.070	119.0	-1.0	0.026	55.7	-0.7	0.009	16.9			
49	108.1	0.184	525.4	0.7	0.079	132.5	-1.8	0.035	69.1	-1.6	0.018	30.3	-0.9	0.009	13.4
60	107.3	0.193	533.8	-0.1	0.088	140.9	-2.6	0.044	77.5	-2.4	0.026	38.7	-1.7	0.018	21.8

Building:	Multi-Fa	mily High-	rise	City:	Poughke	epsie	HVAC:	Steam Bo	oiler Only			Measure:	Wall Insu	ulation	
Base	è	0			11			13			17			19	
	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/	kWh/		therm/
Measure	kSF	kW/kSF	kSF	kSF	kW/kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF	kSF	kW/ kSF	kSF
11	0.0	0.0	45.1												
13	0.0	0.0	59.6	0.0	0.0	14.5									
17	0.0	0.0	80.1	0.0	0.0	35.0	0.0	0.0	20.5						
19	0.0	0.0	87.6	0.0	0.0	42.5	0.0	0.0	28.0	0.0	0.0	7.5			
21	0.0	0.0	93.4	0.0	0.0	48.3	0.0	0.0	33.8	0.0	0.0	13.3	0.0	0.0	5.8
25	0.0	0.0	102.5	0.0	0.0	57.4	0.0	0.0	42.9	0.0	0.0	22.4	0.0	0.0	14.9
27	0.0	0.0	105.9	0.0	0.0	60.9	0.0	0.0	46.3	0.0	0.0	25.9	0.0	0.0	18.4

Building:	uilding: Multi-Family High-rise		rise	City:	Poughke	epsie	HVAC:	Steam Bo	oiler Only			Measure:	:	Roof Insu	ulation
Base	è	0			11			19			30			38	
Measure	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF	kWh/ kSF	kW/ kSF	therm/ kSF
11	0.0	0.0	437.9												
19	0.0	0.0	508.5	0.0	0.0	70.6									
30	0.0	0.0	551.7	0.0	0.0	113.8	0.0	0.0	43.2						
38	0.0	0.0	570.5	0.0	0.0	132.6	0.0	0.0	62.0	0.0	0.0	18.9			
49	0.0	0.0	585.5	0.0	0.0	147.6	0.0	0.0	77.0	0.0	0.0	33.8	0.0	0.0	14.9
60	0.0	0.0	594.8	0.0	0.0	157.0	0.0	0.0	86.3	0.0	0.0	43.2	0.0	0.0	24.3

Single-family Residential Infiltration Reduction

		AC Gas H	eat	Heat F	Pump	AC Elect	ric Heat	(Gas Heat O	nly	Electric H	eat Only
	kWh/cf											
City	m	kW/cfm	Therm/cfm	kWh/cfm	kW/cfm	kWh/cfm	kW/cfm	kWh/cfm	kW/cfm	Therm/cfm	kWh/cfm	kW/cfm
Albany	1.8	0.006	2.2	34.0	0.002	50.8	0.006	1.1	0.000	2.2	50.1	0.000
Buffalo	1.6	0.004	2.4	38.8	0.005	55.6	0.004	1.3	0.000	2.4	55.2	0.000
Messina	1.5	0.001	2.7	46.4	0.001	63.0	0.001	1.4	0.000	2.7	62.8	0.000
NYC	2.3	0.004	1.7	21.0	0.003	39.8	0.004	0.8	0.000	1.7	38.4	0.000
Syracuse	1.8	0.003	2.4	37.3	0.003	55.1	0.003	1.2	0.000	2.4	54.6	0.000
Binghamton	1.3	0.004	2.2	35.0	0.002	49.8	0.004	1.1	0.000	2.2	49.5	0.000
Poughkeepsie	1.9	0.004	1.9	24.8	0.003	43.5	0.004	1.0	0.000	1.9	42.7	0.000

Multi-Family Low-rise Infiltration Reduction

		AC Gas H	eat	Heat F	Pump	AC Elect	ric Heat	(Gas Heat O	nly	Electric H	eat Only
	kWh/cf											
City	m	m kW/cfm Therm/cfm 1.5 0.004 2.4		kWh/cfm	kW/cfm	kWh/cfm	kW/cfm	kWh/cfm	kW/cfm	Therm/cfm	kWh/cfm	kW/cfm
Albany	1.5	0.004	2.4	33.5	0.004	40.0	0.004	1.4	0.000	2.4	39.9	0.000
Buffalo	1.0	0.003	2.3	31.2	0.002	36.6	0.003	1.1	0.000	2.3	36.7	0.000
Messina	1.3	0.001	2.7	44.5	0.001	44.6	0.001	1.2	0.000	2.7	44.5	0.000
NYC	1.5	0.003	1.9	21.2	0.003	29.6	0.003	1.1	0.000	1.9	29.2	0.000
Syracuse	1.6	0.004	2.5	34.1	0.004	42.2	0.004	1.6	0.000	2.5	42.2	0.000
Binghamton	1.5	0.003	2.5	32.7	0.003	40.2	0.003	1.6	0.000	2.5	40.3	0.000
Poughkeepsie	1.5	0.002	2.2	24.7	0.003	29.8	0.002	1.1	0.000	2.2	29.5	0.000

Multi-Family High-rise Infiltration Reduction

City	kWh/cfm	kW/cfm	Therm/cfm
Albany	-1.1	0.002	7.0
Buffalo	-1.1	0.002	6.5
Messina	-0.6	0.002	8.6
NYC	0.0	0.003	5.5
Syracuse	-1.2	0.006	7.2
Binghamton	-1.2	0.000	7.1
Poughkeepsi			
e	-1.2	0.005	5.6

Impact per unit of infiltration reduction (cfm)

Impact per kSF square foot

		kWh/ 1000	kW/	Therm/
City	Vintage	SF	1,000SF	1,000SF
Albany	Old	73	0.128	30
Albany	Average	22	0.099	16
Binghamton	Old	64	0.116	33
Binghamton	Average	11	0.085	17
Buffalo	Old	68	0.101	34
Buffalo	Average	20	0.079	19
Massena	Old	66	0.127	30
Massena	Average	20	0.098	17
NYC	Old	118	0.119	29
NYC	Average	56	0.098	17
Syracuse	Old	73	0.195	29
Syracuse	Average	23	0.092	16

Baseline infiltration rate for old building is 1.0 ACH. Baseline infiltration rate for average building is 0.5 ACH. Energy savings based on a 15% reduction.

Commercial Roof Insulation Upgrade

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	994	0.000	0.0
	AC with gas heat	34	0.018	43.2
	Air source heat pump	768	0.000	0.1
	Electric heat only	979	0.032	0.1
	Gas heat only	11	0.000	43.3
Binghamton	AC with electric heat	964	0.009	0.1
	AC with gas heat	30	0.038	43.3

Roof Insulation - Assembly

Climate	System	kWh/unit	Summer kW/unit	therm/unit
	Air source heat pump	843	0.009	0.0
	Electric heat only	961	0.091	0.1
	Gas heat only	13	0.000	44.2
Buffalo	AC with electric heat	920	0.032	0.0
	AC with gas heat	25	0.035	41.5
	Air source heat pump	674	0.032	0.1
	Electric heat only	916	0.221	0.1
	Gas heat only	11	0.000	42.0
Massena	AC with electric heat	1,823	0.050	0.0
	AC with gas heat	54	0.053	82.1
	Air source heat pump	1,442	0.050	0.1
	Electric heat only	1,842	0.103	0.1
	Gas heat only	35	0.000	84.3
NYC	AC with electric heat	425	0.000	0.0
	AC with gas heat	37	0.026	18.4
	Air source heat pump	248	0.000	0.0
	Electric heat only	405	0.021	0.1
	Gas heat only	0	0.000	20.4
Poughkeepsie	AC with electric heat	1,005	0.047	0.1
	AC with gas heat	36	0.050	44.3
	Air source heat pump	778	0.047	0.0
	Electric heat only	991	0.012	0.1
	Gas heat only	15	0.000	44.7
Syracuse	AC with electric heat	789	0.021	0.0
	AC with gas heat	30	0.044	35.1
	Air source heat pump	789	0.021	0.1
	Electric heat only	778	0.024	0.1
	Gas heat only	6	0.000	36.1

Roof Insulation - Auto Repair

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
	AC with electric heat	564	0.000	0.2
	AC with gas heat	32	0.000	25.2
	Air source heat pump	407	0.000	0.0
	Electric heat only	524	0.019	0.0
Albany	Gas heat only	16	0.000	24.1
	AC with electric heat	489	0.039	0.2
	AC with gas heat	24	0.000	21.7
	Air source heat pump	316	0.000	0.0
	Electric heat only	441	0.039	0.2
Binghamton	Gas heat only	12	0.000	20.0
Buffalo	AC with electric heat	500	0.000	0.0

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
	AC with gas heat	23	0.000	20.8
	Air source heat pump	315	0.000	0.0
	Electric heat only	490	0.019	0.0
	Gas heat only	13	0.000	20.6
	AC with electric heat	585	0.000	0.0
	AC with gas heat	32	0.000	25.8
	Air source heat pump	377	0.000	0.2
	Electric heat only	564	0.000	0.0
Massena	Gas heat only	18	0.000	25.6
	AC with electric heat	915	0.000	0.0
	AC with gas heat	56	0.000	41.2
	Air source heat pump	431	0.000	0.0
	Electric heat only	882	0.000	0.0
N YC	Gas heat only	33	0.000	40.6
	AC with electric heat	754	0.019	0.2
	AC with gas heat	41	0.019	33.4
	Air source heat pump	532	0.019	0.0
	Electric heat only	748	0.019	0.2
Poughkeepsie	Gas heat only	23	0.000	33.8
	AC with electric heat	584	0.000	0.0
	AC with gas heat	34	0.000	26.4
	Air source heat pump	423	0.000	0.0
	Electric heat only	593	0.019	0.0
Syracuse	Gas heat only	18	0.000	27.6

Roof Insulation - Big Box Retail

			Summer	
Climate	System	kWh/unit	kW/unit	therm/unit
	AC with electric heat	847	0.045	0.0
	AC with gas heat	-19	0.047	42.5
	Air source heat pump	682	0.045	0.0
	Electric heat only	895	0.011	0.0
Albany	Gas heat only	2	0.000	43.5
	AC with electric heat	740	0.023	0.0
	AC with gas heat	-33	0.023	38.2
	Air source heat pump	604	0.022	0.0
	Electric heat only	800	0.022	0.0
Binghamton	Gas heat only	-3	0.000	40.1
	AC with electric heat	707	0.025	0.0
	AC with gas heat	-31	0.025	36.3
	Air source heat pump	509	0.025	0.0
	Electric heat only	774	0.009	0.0
Buffalo	Gas heat only	-5	0.000	38.2

	AC with electric heat	1213	0.043	0.0
	AC with gas heat	2	0.044	59.2
	Air source heat pump	1072	0.043	0.0
	Electric heat only	1263	-0.022	0.0
Massena	Gas heat only	18	0.000	60.7
	AC with electric heat	290	0.027	0.0
	AC with gas heat	-41	0.030	17.1
	Air source heat pump	141	0.027	0.0
	Electric heat only	341	0.008	0.0
NYC	Gas heat only	-32	0.000	19.0
	AC with electric heat	615	0.030	0.0
	AC with gas heat	-33	0.030	32.2
	Air source heat pump	536	0.030	0.0
	Electric heat only	680	0.014	0.0
Poughkeepsie	Gas heat only	-7	0.000	33.9
	AC with electric heat	751	0.034	0.0
	AC with gas heat	-19	0.034	38.1
	Air source heat pump	534	0.034	0.0
	Electric heat only	810	0.014	0.0
Syracuse	Gas heat only	-2	0.000	40.3

Roof Insulation - Fast Food Restaurant

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with electric heat	1009	0.000	0.5
	AC with gas heat	38	0.000	45.5
	Electric heat only	993	0.000	0.5
	Gas heat only	22	0.000	46.0
Binghamton	AC with electric heat	999	0.000	0.5
	AC with gas heat	30	0.000	45.5
	Electric heat only	1023	0.000	0.5
	Gas heat only	24	0.000	47.0
Buffalo	AC with electric heat	1066	0.000	0.5
	AC with gas heat	36	0.000	48.0
	Electric heat only	1036	0.000	0.5
	Gas heat only	22	0.000	47.0
Massena	AC with electric heat	1055	0.000	0.5
	AC with gas heat	33	0.000	47.0
	Electric heat only	1074	0.000	0.5
	Gas heat only	26	0.000	49.5
NYC	AC with electric heat	755	0.000	0.5
	AC with gas heat	61	0.000	34.0
	Electric heat only	988	0.000	0.5
	Gas heat only	24	0.000	46.5
Poughkeepsie	AC with electric heat	994	0.050	0.0

Climate	System	kWh/unit	Summer kW/unit	therm/unit
	AC with gas heat	47	0.000	45.5
	Electric heat only	994	0.000	0.5
	Gas heat only	24	0.000	46.0
Syracuse	AC with electric heat	1023	0.000	0.5
	AC with gas heat	43	0.050	46.5
	Electric heat only	1097	0.000	0.5
	Gas heat only	27	0.000	50.5

Roof Insulation - Full Service Restaurant

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with electric heat	946	0.025	0.3
	AC with gas heat	51	0.050	42.8
	Electric heat only	941	0.000	0.3
	Gas heat only	36	0.000	43.3
Binghamton	AC with electric heat	789	0.025	0.0
	AC with gas heat	42	0.025	35.0
	Electric heat only	790	0.100	0.3
	Gas heat only	32	0.000	35.5
Buffalo	AC with electric heat	832	0.025	0.3
	AC with gas heat	43	0.025	37.8
	Electric heat only	797	0.000	0.3
	Gas heat only	31	0.000	36.8
Massena	AC with electric heat	944	0.050	0.3
	AC with gas heat	54	0.050	42.5
	Electric heat only	926	0.225	0.0
	Gas heat only	37	0.000	42.5
NYC	AC with electric heat	698	0.000	0.0
	AC with gas heat	53	0.000	32.0
	Electric heat only	688	0.000	0.0
	Gas heat only	29	0.000	32.3
Poughkeepsie	AC with electric heat	852	0.050	0.3
	AC with gas heat	57	0.025	39.5
	Electric heat only	841	0.000	0.3
	Gas heat only	40	0.000	39.8
Syracuse	AC with electric heat	915	0.025	0.3
	AC with gas heat	55	0.025	41.5
	Electric heat only	930	0.025	0.0
	Gas heat only	39	0.000	43.0

Roof Insulation – Grocery

			Summer	
Climate	System	kWh/unit	kW/unit	therm/unit
	AC with electric heat	847	0.045	0.0
	AC with gas heat	-19	0.047	42.5
	Air source heat pump	682	0.045	0.0
	Electric heat only	895	0.011	0.0
Albany	Gas heat only	2	0.000	43.5
	AC with electric heat	740	0.023	0.0
	AC with gas heat	-33	0.023	38.2
	Air source heat pump	604	0.022	0.0
	Electric heat only	800	0.022	0.0
Binghamton	Gas heat only	-3	0.000	40.1
	AC with electric heat	707	0.025	0.0
	AC with gas heat	-31	0.025	36.3
	Air source heat pump	509	0.025	0.0
	Electric heat only	774	0.009	0.0
Buffalo	Gas heat only	-5	0.000	38.2
	AC with electric heat	1213	0.043	0.0
	AC with gas heat	2	0.044	59.2
	Air source heat pump	1072	0.043	0.0
	Electric heat only	1263	-0.022	0.0
Massena	Gas heat only	18	0.000	60.7
	AC with electric heat	290	0.027	0.0
	AC with gas heat	-41	0.030	17.1
	Air source heat pump	141	0.027	0.0
	Electric heat only	341	0.008	0.0
NYC	Gas heat only	-32	0.000	19.0
	AC with electric heat	615	0.030	0.0
	AC with gas heat	-33	0.030	32.2
	Air source heat pump	536	0.030	0.0
	Electric heat only	680	0.014	0.0
Poughkeepsie	Gas heat only	-7	0.000	33.9
	AC with electric heat	751	0.034	0.0
	AC with gas heat	-19	0.034	38.1
	Air source heat pump	534	0.034	0.0
	Electric heat only	810	0.014	0.0
Syracuse	Gas heat only	-2	0.000	40.3

Roof Insulation – Light Industrial

			Summer	
Climate	System	kWh/unit	kW/unit	therm/unit
	AC with electric heat	929.2	0.023	0.0
	AC with gas heat	44.6	0.024	44.1
	Air source heat pump	585.4	0.023	0.0
Albany	Electric heat only	937.3	0.000	0.0

			Summer	
Climate	System	kWh/unit	kW/unit	therm/unit
	Gas heat only	51.2	0.000	44.1
	AC with electric heat	968.31	0.015	0
	AC with gas heat	46.13	0.016	45.89
	Air source heat pump	601.99	0.016	0.01
	Electric heat only	976.42	0	0.01
Binghamton	Gas heat only	54.68	0	45.86
Buffalo	AC with electric heat	929.55	0.017	0
	AC with gas heat	43.78	0.017	44.23
	Air source heat pump	570.1	0.018	0.01
	Electric heat only	939.85	0	0.02
Buffalo	Gas heat only	54.07	0	44.2
	AC with electric heat	1079.08	0.025	0.01
	AC with gas heat	48	0.026	50.82
	Air source heat pump	724.88	0.025	0
	Electric heat only	1087.71	0	0.01
Massena	Gas heat only	54.87	0	50.86
	AC with electric heat	654.92	0.011	0.01
	AC with gas heat	54.62	0.012	30.9
	Air source heat pump	344.94	0.01	0.01
	Electric heat only	647.28	0	0.01
NYC	Gas heat only	49.87	0	30.63
	AC with electric heat	828.65	0.016	0
	AC with gas heat	48.18	0.016	39.47
	Air source heat pump	504.04	0.016	0.01
	Electric heat only	833.7	0	0.02
Poughkeepsie	Gas heat only	53.81	0	39.46
	AC with electric heat	922.95	0.018	0
	AC with gas heat	49.54	0.018	43.6
	Air source heat pump	579.35	0.018	0
	Electric heat only	926.66	0	0.01
Syracuse	Gas heat only	54.2	0	43.54

Roof Insulation – Motel

			Summer	
Climate	System	kWh/unit	kW/unit	therm/unit
	AC with gas heat	-4.3	0.073	12.9
	AC with electric heat	264.3	0.073	0.0
	Air source heat pump	235.0	0.073	0.0
	Electric heat only	272.9	0.000	0.0
Albany	Gas heat only	0.3	0.000	13.1
	AC with gas heat	-10.7	-0.007	13.2
	AC with electric heat	264.8	-0.007	0.0
Buffalo	Air source heat pump	235.2	-0.007	0.0

			Summer	
Climate	System	kWh/unit	kW/unit	therm/unit
	Electric heat only	277.7	0.000	0.0
	Gas heat only	0.5	0.000	13.2
	AC with gas heat	-5.9	0.067	15.3
	AC with electric heat	314.8	0.067	0.0
	Air source heat pump	292.9	0.067	0.0
	Electric heat only	322.8	0.000	0.0
Massena	Gas heat only	0.5	0.000	15.3
	AC with gas heat	-1.8	0.027	8.6
	AC with electric heat	175.6	0.027	0.0
	Air source heat pump	139.9	0.027	0.0
	Electric heat only	182.6	0.000	0.0
NYC	Gas heat only	0.1	0.000	8.8
	AC with gas heat	-0.4	0.060	12.7
	AC with electric heat	267.5	0.060	0.0
	Air source heat pump	242.0	0.060	0.0
	Electric heat only	270.5	0.000	0.0
Syracuse	Gas heat only	0.3	0.000	12.9
	AC with gas heat	-8.9	-0.013	13.6
	AC with electric heat	276.1	-0.013	0.0
	Air source heat pump	245.4	-0.013	0.0
	Electric heat only	289.3	0.033	0.0
Binghamton	Gas heat only	1.1	0.000	13.9
	AC with gas heat	-4.8	-0.033	10.9
	AC with electric heat	220.8	-0.033	0.0
	Air source heat pump	188.2	-0.033	0.0
	Electric heat only	230.2	0.000	0.0
Poughkeepsie	Gas heat only	0.5	0.000	11.1

Roof Insulation - Elementary School

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with electric heat	1456	0.130	0.1
	AC with gas heat	121	0.134	59.9
	Air source heat pump	916	0.130	0.1
	Electric heat only	1411	0.006	0.1
	Gas heat only	86	0.000	59.8
Binghamton	AC with electric heat	1369	0.030	0.0
	AC with gas heat	110	0.030	56.6
	Air source heat pump	813	0.030	0.0
	Electric heat only	1337	0.006	0.1
	Gas heat only	85	0.000	56.4
Buffalo	AC with electric heat	1366	0.360	0.0
	AC with gas heat	107	0.360	56.7

	Air source heat pump	831	0.360	0.0
	Electric heat only	1345	0.012	0.1
	Gas heat only	85	0.044	56.8
Massena	AC with electric heat	1560	0.134	0.0
	AC with gas heat	121	0.052	64.1
	Air source heat pump	1030	0.134	0.0
	Electric heat only	1519	-0.002	0.1
	Gas heat only	83	0.000	64.0
NYC	AC with electric heat	1072	0.206	0.0
	AC with gas heat	146	0.204	43.1
	Air source heat pump	550	0.208	0.0
	Electric heat only	1,000	0.046	0.1
	Gas heat only	86	0.098	42.5
Poughkeepsie	AC with electric heat	1371	0.352	0.0
	AC with gas heat	142	0.352	56.1
	Air source heat pump	842	0.350	0.0
	Electric heat only	1332	0.000	0.1
	Gas heat only	95	0.000	56.5
Syracuse	AC with electric heat	1326	0.056	0.1
	AC with gas heat	123	0.054	54.3
	Air source heat pump	799	0.056	0.1
	Electric heat only	1267	-0.014	0.1
	Gas heat only	79	0.000	53.6

Roof Insulation – Religious Worship

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with electric heat	994	0.000	0.0
	AC with gas heat	34	0.018	43.2
	Air source heat pump	768	0.000	0.1
	Electric heat only	979	0.032	0.1
	Gas heat only	11	0.000	43.3
Binghamton	AC with electric heat	964	0.009	0.1
	AC with gas heat	30	0.038	43.3
	Air source heat pump	843	0.009	0.0
	Electric heat only	961	0.091	0.1
	Gas heat only	13	0.000	44.2
Buffalo	AC with electric heat	920	0.032	0.0
	AC with gas heat	25	0.035	41.5
	Air source heat pump	674	0.032	0.1
	Electric heat only	916	0.221	0.1
	Gas heat only	11	0.000	42.0
Massena	AC with electric heat	1,823	0.050	0.0
	AC with gas heat	54	0.053	82.1
	Air source heat pump	1,442	0.050	0.1

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
	Electric heat only	1,842	0.103	0.1
	Gas heat only	35	0.000	84.3
NYC	AC with electric heat	425	0.000	0.0
	AC with gas heat	37	0.026	18.4
	Air source heat pump	248	0.000	0.0
	Electric heat only	405	0.021	0.1
	Gas heat only	-5	0.000	20.4
Poughkeepsie	AC with electric heat	1,005	0.047	0.1
	AC with gas heat	36	0.050	44.3
	Air source heat pump	778	0.047	0.0
	Electric heat only	991	0.012	0.1
	Gas heat only	15	0.000	44.7
Syracuse	AC with electric heat	789	0.021	0.0
	AC with gas heat	30	0.044	35.1
	Air source heat pump	789	0.021	0.1
	Electric heat only	778	0.024	0.1
	Gas heat only	6	0.000	36.1

Roof Insulation – Small Office

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with electric heat	649	0.04	0
1 nouny	AC with gas heat	28.2	0.04	31
	Air source heat pump	412	0.04	0
	Electric heat only	631.4	0	0
	Gas heat only	13.6	0	30.4
Binghamton	AC with electric heat	670.2	0.02	0
	AC with gas heat	24.8	0.02	32
	Air source heat pump	415.6	0.02	0
	Electric heat only	651.8	0	0.2
	Gas heat only	17.2	0	31.2
Buffalo	AC with electric heat	652.4	0	0
	AC with gas heat	24.8	0.02	31.2
	Air source heat pump	402.2	0.02	0
	Electric heat only	644.4	0	0
	Gas heat only	17.4	0	31
Massena	AC with electric heat	787.8	0.04	0
	AC with gas heat	33.6	0.02	36.8
	Air source heat pump	551.4	0.02	0
	Electric heat only	776.8	0	0
	Gas heat only	18.4	0	37.2
NYC	AC with electric heat	429.6	0.04	0
	AC with gas heat	36.8	0.04	20

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
	Air source heat pump	226.6	0.04	0
	Electric heat only	384.2	0	0
	Gas heat only	-1.6	0	19.6
Poughkeepsie	AC with electric heat	554.8	0.02	0
	AC with gas heat	31	0.02	26.4
	Air source heat pump	346.6	0.02	0
	Electric heat only	539.4	0	0
	Gas heat only	14.4	0	26.2
Syracuse	AC with electric heat	640.4	0.02	0
	AC with gas heat	33.2	0.04	30.2
	Air source heat pump	401.4	0.04	0
	Electric heat only	622.8	0	0
	Gas heat only	16.2	0	30

Roof Insulation – Small Retail

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	1013	0.063	0.2
J	AC with gas heat	60	0.063	47.2
	Air source heat pump	671	0.063	0.2
	Electric heat only	977	0.000	0.2
	Gas heat only	38	0.000	46.4
Binghamton	AC with electric heat	1005	0.031	0.2
	AC with gas heat	50	0.031	47.3
	Air source heat pump	659	0.047	0.2
	Electric heat only	987	0.016	0.2
	Gas heat only	40	0.000	46.9
Buffalo	AC with electric heat	998	0.031	0.2
	AC with gas heat	53	0.031	46.9
	Air source heat pump	602	0.047	0.2
	Electric heat only	982	0.000	0.2
	Gas heat only	42	0.000	46.9
Massena	AC with electric heat	1174	0.063	0.2
	AC with gas heat	63	0.063	54.5
	Air source heat pump	792	0.047	0.0
	Electric heat only	1152	0.000	0.2
	Gas heat only	45	0.000	54.1
NYC	AC with electric heat	678	0.016	0.2
	AC with gas heat	66	0.031	31.6
	Air source heat pump	362	0.031	0.2
	Electric heat only	625	0.000	0.2
	Gas heat only	24	0.000	30.6
Poughkeepsie	AC with electric heat	836	0.063	0.0

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
	AC with gas heat	54	0.047	39.4
	Air source heat pump	511	0.047	0.0
	Electric heat only	800	0.000	0.2
	Gas heat only	32	0.000	38.4
Syracuse	AC with electric heat	1026	0.047	0.0
	AC with gas heat	65	0.047	48.0
	Air source heat pump	660	0.047	0.0
	Electric heat only	1006	0.000	0.2
	Gas heat only	46	0.000	47.8

Roof Insulation – Warehouse

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	1631	0.001	0.0
	AC with gas heat	13	0.001	65.6
	Air source heat pump	1215	0.001	0.0
	Electric heat only	1614	0.000	0.0
	Gas heat only	0	0.000	65.3
Binghamton	AC with electric heat	1656	0.037	0.0
	AC with gas heat	5	0.058	66.7
	Air source heat pump	1228	0.037	0.0
	Electric heat only	1650	0.000	0.0
	Gas heat only	0	0.000	66.7
Buffalo	AC with electric heat	1584	0.069	0.0
	AC with gas heat	0	0.084	64.2
	Air source heat pump	1141	0.069	0.0
	Electric heat only	1585	0.000	0.0
	Gas heat only	0	0.000	64.2
Massena	AC with electric heat	1522	0.001	0.0
	AC with gas heat	22	0.000	60.4
	Air source heat pump	1083	0.002	0.0
	Electric heat only	1501	0.000	0.0
	Gas heat only	0	0.000	60.5
NYC	AC with electric heat	1468	0.076	0.0
	AC with gas heat	48	0.121	60.3
	Air source heat pump	925	0.076	0.0
	Electric heat only	1416	0.000	0.0
	Gas heat only	0	0.000	60.1
Poughkeepsie	AC with electric heat	1612	0.129	0.0
	AC with gas heat	26	0.132	65.8
	Air source heat pump	1004	0.129	0.0
	Electric heat only	1586	0.000	0.0
	Gas heat only	0	0.000	65.8

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Syracuse	AC with electric heat	1817	0.039	0.0
	AC with gas heat	21	0.074	72.4
	Air source heat pump	1409	0.040	0.0
	Electric heat only	1796	0.000	0.0
	Gas heat only	0	0.000	72.5

Roof Insulation – Community College

Climate	System	kWh/unit	Summer kW/unit	therm/unit
	CV reheat no econ with Air			
	Cooled Chiller	-33	-0.001	4.5
	CV reheat no econ with Water			
	Cooled Chiller	-30	0.000	4.5
	CV reheat econ with Air Cooled			
	Chiller	0	-0.001	4.0
	CV reheat econ with Water			
	Cooled Chiller	-5	0.000	4.0
	VAV reheat econ with Air Cooled			
	Chiller	-6	0.042	2.1
	VAV reheat econ with Water			
Albany	Cooled Chiller	-8	0.043	2.1
	CV reheat no econ with Air			
	Cooled Chiller	-32	0.001	4.1
	CV reheat no econ with Water			
	Cooled Chiller	-33	0.011	4.1
	CV reheat econ with Air Cooled			
	Chiller	-1	0.001	3.7
	CV reheat econ with Water			
	Cooled Chiller	-5	0.011	3.7
	VAV reheat econ with Air Cooled			
	Chiller	9	0.034	4.5
	VAV reheat econ with Water			
Buffalo	Cooled Chiller	8	0.026	4.5
	CV reheat no econ with Air	2.5	0.001	
	Cooled Chiller	-36	0.001	4.6
	CV reheat no econ with Water	24	0.001	1.5
	Cooled Chiller	-34	0.001	4.6
	CV reheat econ with Air Cooled	1	0.001	1.0
	Chiller	-1	0.001	4.0
	CV reheat econ with Water	-	0.001	4.0
	Cooled Chiller	-6	0.001	4.0
	VAV reheat econ with Air Cooled	4	0.077	
Massena	Chiller	-1	0.067	2.4

Climate	System	kWh/unit	Summer kW/unit	therm/unit
	VAV reheat econ with Water		R ((/ unit	
	Cooled Chiller	-2	0.046	2.4
	CV reheat no econ with Air			
	Cooled Chiller	-39	0.001	5.8
	CV reheat no econ with Water			
	Cooled Chiller	-30	0.000	5.9
	CV reheat econ with Air Cooled		0.000	0.12
	Chiller	12	0.001	4.1
	CV reheat econ with Water			
	Cooled Chiller	2	0.000	4.1
	VAV reheat econ with Air Cooled		0.000	
	Chiller	24	0.049	47
	VAV reheat econ with Water	21	0.017	1.7
NYC	Cooled Chiller	20	0.032	4.7
	CV reheat no econ with Air	20	0.032	1.7
	Cooled Chiller	-33	0.000	4.8
	CV reheat no econ with Water		0.000	1.0
	Cooled Chiller	-32	0.001	48
	CV reheat econ with Air Cooled	52	0.001	1.0
	Chiller	2	0.000	39
	CV reheat econ with Water		0.000	5.5
	Cooled Chiller	-3	0.001	3.9
	VAV reheat econ with Air Cooled		01001	0.7
	Chiller	7	0.043	3.6
	VAV reheat econ with Water			
Svracuse	Cooled Chiller	5	0.030	3.6
	CV reheat no econ with Air			
	Cooled Chiller	-32	0.001	3.3
	CV reheat no econ with Water			
	Cooled Chiller	-30	0.001	3.3
	CV reheat econ with Air Cooled		01001	
	Chiller	-2	0.001	3.3
	CV reheat econ with Water	_	01001	
	Cooled Chiller	-6	0.001	3.2
	VAV reheat econ with Air Cooled			
	Chiller	-3	0.031	2.4
	VAV reheat econ with Water		01001	
Binghamton	Cooled Chiller	-5	0.026	2.4
6	CV reheat no econ with Air	-		
	Cooled Chiller	-42	0.000	6.4
	CV reheat no econ with Water			
	Cooled Chiller	-27	0.001	6.5
	CV reheat econ with Air Cooled		5.001	
Poughkeepsie	Chiller	5	0.000	4.8

Climate	System	kWh/unit	Summer kW/unit	therm/unit
	CV reheat econ with Water			
	Cooled Chiller	1	0.001	4.8
	VAV reheat econ with Air Cooled			
	Chiller	22	0.008	9.5
	VAV reheat econ with Water			
	Cooled Chiller	17	0.018	9.5

Roof Insulation – University

Climate	System	kWh/unit	Summer	therm/unit
4.11			kW/unit	
Albany	CV No Econ Air Cooled			
	CV No Econ Water Cooled	-18	0.003	5.6
	CV Econ Air Cooled	-3	0.003	3.3
	CV Econ Water Cooled	-1	0.003	3.3
	VAV Econ Air Cooled	5	0.003	3.0
	VAV Econ Water Cooled	8	0.003	2.8
Buffalo	CV No Econ Air Cooled			
	CV No Econ Water Cooled	-18	0.002	5.9
	CV Econ Air Cooled	-2	0.002	3.6
	CV Econ Water Cooled	-1	0.001	3.1
	VAV Econ Air Cooled	-19	0.002	-2.1
	VAV Econ Water Cooled	-20	0.002	-1.9
Massena	CV No Econ Air Cooled			
	CV No Econ Water Cooled	-24	0.001	5.2
	CV Econ Air Cooled	-1	0.002	3.2
	CV Econ Water Cooled	0	0.001	3.2
	VAV Econ Air Cooled	33	0.002	7.7
	VAV Econ Water Cooled	33	0.001	7.7
NYC	CV No Econ Air Cooled			
	CV No Econ Water Cooled	-15	0.002	4.6
	CV Econ Air Cooled	-1	0.003	2.8
	CV Econ Water Cooled	0	0.002	2.8
	VAV Econ Air Cooled	11	0.003	4.0
	VAV Econ Water Cooled	10	0.002	3.9
Syracuse	CV No Econ Air Cooled			
	CV No Econ Water Cooled	-20	0.002	5.0
	CV Econ Air Cooled	-3	0.002	3.0
	CV Econ Water Cooled	-1	0.002	3.0
	VAV Econ Air Cooled	13	0.002	3.0
	VAV Econ Water Cooled	20	0.057	4.5
Binghamton	CV No Econ Air Cooled			
	CV No Econ Water Cooled	-24	0.002	5.9
	CV Econ Air Cooled	-3	0.001	3.6

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
	CV Econ Water Cooled	-1	0.002	3.7
	VAV Econ Air Cooled	0	0.002	1.9
	VAV Econ Water Cooled	6	0.003	2.7
Poughkeepsie	CV No Econ Air Cooled			
	CV No Econ Water Cooled	-16	0.002	5.0
	CV Econ Air Cooled	-2	0.001	2.9
	CV Econ Water Cooled	-1	0.002	2.8
	VAV Econ Air Cooled	3	0.001	3.2
	VAV Econ Water Cooled	4	0.001	3.3

Roof Insulation – High School

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	CV No Econ Air Cooled	-15	0.000	7.7
	CV No Econ Water Cooled	-12	0.000	7.8
	CV Econ Air Cooled	-11	0.000	7.5
	CV Econ Water Cooled	-8	0.000	7.5
	VAV Econ Air Cooled	-11	0.000	7.5
	VAV Econ Water Cooled	-8	0.000	7.5
Buffalo	CV No Econ Air Cooled	-17	0.000	6.1
	CV No Econ Water Cooled	-12	0.000	6.1
	CV Econ Air Cooled	-16	0.000	5.1
	CV Econ Water Cooled	-9	0.000	6.1
	VAV Econ Air Cooled	-16	0.000	5.1
	VAV Econ Water Cooled	-9	0.000	6.1
Massena	CV No Econ Air Cooled	-16	0.000	7.8
	CV No Econ Water Cooled	-13	0.000	7.8
	CV Econ Air Cooled	-12	0.000	7.7
	CV Econ Water Cooled	-9	0.000	7.7
	VAV Econ Air Cooled	-12	0.000	7.7
	VAV Econ Water Cooled	-9	0.000	7.7
NYC	CV No Econ Air Cooled	-14	0.000	4.1
	CV No Econ Water Cooled	-10	0.000	4.1
	CV Econ Air Cooled	-10	0.000	4.2
	CV Econ Water Cooled	-6	0.000	4.2
	VAV Econ Air Cooled	-10	0.000	4.2
	VAV Econ Water Cooled	-6	0.000	4.2
Syracuse	CV No Econ Air Cooled	-11	0.000	8.1
	CV No Econ Water Cooled	-10	0.000	6.7
	CV Econ Air Cooled	-10	0.000	6.7
	CV Econ Water Cooled	-7	0.000	6.7
	VAV Econ Air Cooled	-10	0.000	6.7
	VAV Econ Water Cooled	-7	0.000	6.7

Climate	System	kWh/unit	Summer kW/unit	therm/unit
D: 1		1.5		= -
Binghamton	CV No Econ Air Cooled	-16	0.000	7.2
	CV No Econ Water Cooled	-12	0.000	7.2
	CV Econ Air Cooled	-12	0.000	7.0
	CV Econ Water Cooled	-8	0.000	7.0
	VAV Econ Air Cooled	-12	0.000	7.0
	VAV Econ Water Cooled	-8	0.000	7.0
Poughkeepsie	CV No Econ Air Cooled	-18	0.000	4.3
	CV No Econ Water Cooled	-13	0.000	4.3
	CV Econ Air Cooled	-11	0.000	5.3
	CV Econ Water Cooled	-8	0.000	5.3
	VAV Econ Air Cooled	-11	0.000	5.3
	VAV Econ Water Cooled	-8	0.000	5.3

Roof Insulation – Large Retail

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	CV No Econ Air Cooled	-4	0.013	12.0
	CV No Econ Water Cooled	-2	0.008	12.0
	CV Econ Air Cooled	0	0.013	12.1
	CV Econ Water Cooled	1	0.008	12.1
	VAV Econ Air Cooled	-8	0.010	7.9
	VAV Econ Water Cooled	-9	0.007	7.9
Buffalo	CV No Econ Air Cooled	-5	0.003	11.7
	CV No Econ Water Cooled	-4	0.000	11.7
	CV Econ Air Cooled	-1	0.000	11.8
	CV Econ Water Cooled	-1	0.003	11.8
	VAV Econ Air Cooled	-11	0.003	8.6
	VAV Econ Water Cooled	-11	0.000	8.6
Massena	CV No Econ Air Cooled	-3	0.010	13.6
	CV No Econ Water Cooled	-5	0.003	13.6
	CV Econ Air Cooled	0	0.010	13.4
	CV Econ Water Cooled	-1	0.002	13.4
	VAV Econ Air Cooled	-4	0.013	9.9
	VAV Econ Water Cooled	-5	0.003	9.9
NYC	CV No Econ Air Cooled	-5	0.000	7.5
	CV No Econ Water Cooled	-3	0.000	7.5
	CV Econ Air Cooled	1	0.000	7.4
	CV Econ Water Cooled	-1	0.000	7.4
	VAV Econ Air Cooled	-12	0.008	5.9
	VAV Econ Water Cooled	-11	0.005	5.9
Syracuse	CV No Econ Air Cooled	-4	0.007	11.6
	CV No Econ Water Cooled	-3	0.005	11.6
	CV Econ Air Cooled	1	0.007	11.6

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
	CV Econ Water Cooled	0	0.005	11.6
	VAV Econ Air Cooled	-9	0.010	8.1
	VAV Econ Water Cooled	-7	0.003	8.1
Binghamton	CV No Econ Air Cooled	-8	0.005	11.7
	CV No Econ Water Cooled	-5	0.003	11.7
	CV Econ Air Cooled	-2	0.003	11.7
	CV Econ Water Cooled	-1	0.003	11.7
	VAV Econ Air Cooled	-11	0.005	8.1
	VAV Econ Water Cooled	-13	0.003	8.1
Poughkeepsie	CV No Econ Air Cooled	-3	0.005	10.2
	CV No Econ Water Cooled	-4	0.003	10.2
	CV Econ Air Cooled	0	0.005	10.3
	CV Econ Water Cooled	1	0.003	10.3
	VAV Econ Air Cooled	-13	0.005	5.7
	VAV Econ Water Cooled	-12	0.003	5.7

Roof Insulation – Hospital

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	CV No Econ Air Cooled	-51	0.034	9.2
	CV No Econ Water Cooled	-40	0.023	9.2
	CV Econ Air Cooled	11	0.034	7.4
	CV Econ Water Cooled	7	0.023	7.4
	VAV Econ Air Cooled	12	0.044	25.6
	VAV Econ Water Cooled	12	0.028	25.6
Buffalo	CV No Econ Air Cooled	-58	0.012	9.0
	CV No Econ Water Cooled	-45	0.007	9.0
	CV Econ Air Cooled	4	0.012	7.4
	CV Econ Water Cooled	5	0.007	7.4
	VAV Econ Air Cooled	0	0.017	19.2
	VAV Econ Water Cooled	2	0.011	19.2
Massena	CV No Econ Air Cooled	-59	0.035	11.5
	CV No Econ Water Cooled	-39	0.018	11.5
	CV Econ Air Cooled	10	0.035	9.4
	CV Econ Water Cooled	10	0.017	9.4
	VAV Econ Air Cooled	8	0.043	23.9
	VAV Econ Water Cooled	7	0.019	22.1
NYC	CV No Econ Air Cooled	-40	0.040	5.2
	CV No Econ Water Cooled	-25	0.018	5.2
	CV Econ Air Cooled	19	0.040	4.2
	CV Econ Water Cooled	17	0.018	4.2
	VAV Econ Air Cooled	4	0.047	12.5
	VAV Econ Water Cooled	3	0.019	12.5

Syracuse	CV No Econ Air Cooled	-60	0.030	8.7
	CV No Econ Water Cooled	-46	0.018	8.7
	CV Econ Air Cooled	13	0.029	6.8
	CV Econ Water Cooled	9	0.019	6.8
	VAV Econ Air Cooled	10	0.037	22.3
	VAV Econ Water Cooled	5	0.023	22.3
Binghamton	CV No Econ Air Cooled	-61	0.017	8.9
	CV No Econ Water Cooled	-56	0.010	8.9
	CV Econ Air Cooled	8	0.017	7.3
	CV Econ Water Cooled	7	0.008	7.4
	VAV Econ Air Cooled	-4	0.023	20.8
	VAV Econ Water Cooled	-4	0.010	20.8
Poughkeepsie	CV No Econ Air Cooled	-47	0.016	7.4
	CV No Econ Water Cooled	-35	0.004	7.4
	CV Econ Air Cooled	15	0.016	6.4
	CV Econ Water Cooled	11	0.004	6.4
	VAV Econ Air Cooled	1	-0.065	12.2
	VAV Econ Water Cooled	4	0.014	12.2

Roof Insulation – Hotel

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	CV No Econ Air Cooled	-220	0.042	4.0
	CV No Econ Water Cooled	-221	0.036	4.0
	CV Econ Air Cooled	-207	0.042	4.1
	CV Econ Water Cooled	-207	0.036	4.1
	VAV Econ Air Cooled	-215	0.036	4.5
	VAV Econ Water Cooled	-215	0.036	4.5
Buffalo	CV No Econ Air Cooled	-334	0.031	3.8
	CV No Econ Water Cooled	-335	0.036	3.8
	CV Econ Air Cooled	-350	0.031	4.0
	CV Econ Water Cooled	-350	0.036	4.0
	VAV Econ Air Cooled	-359	0.031	4.3
	VAV Econ Water Cooled	-358	0.036	4.3
Massena	CV No Econ Air Cooled	-127	0.057	5.1
	CV No Econ Water Cooled	-132	0.057	5.1
	CV Econ Air Cooled	-105	0.057	5.3
	CV Econ Water Cooled	-105	0.057	5.3
	VAV Econ Air Cooled	-111	0.057	6.1
	VAV Econ Water Cooled	-111	0.057	6.1
NYC	CV No Econ Air Cooled	-215	0.062	2.7
	CV No Econ Water Cooled	-215	0.062	2.7
	CV Econ Air Cooled	-201	0.062	2.8
	CV Econ Water Cooled	-202	0.062	2.8
	VAV Econ Air Cooled	-207	0.062	2.0

	VAV Econ Water Cooled	-207	0.062	2.0
Syracuse	CV No Econ Air Cooled	-147	0.047	4.0
	CV No Econ Water Cooled	-149	0.047	4.0
	CV Econ Air Cooled	-131	0.047	4.1
	CV Econ Water Cooled	-131	0.047	4.1
	VAV Econ Air Cooled	-138	0.047	4.4
	VAV Econ Water Cooled	-138	0.052	4.4
Binghamton	CV No Econ Air Cooled	-380	0.031	4.2
	CV No Econ Water Cooled	-382	0.031	4.3
	CV Econ Air Cooled	-362	0.031	4.3
	CV Econ Water Cooled	-362	0.031	4.3
	VAV Econ Air Cooled	-370	0.031	4.5
	VAV Econ Water Cooled	-370	0.031	4.5
Poughkeepsie	CV No Econ Air Cooled	-397	0.042	3.7
	CV No Econ Water Cooled	-400	0.042	3.7
	CV Econ Air Cooled	-379	0.042	3.8
	CV Econ Water Cooled	-379	0.042	3.8
	VAV Econ Air Cooled	-385	0.036	3.5
	VAV Econ Water Cooled	-385	0.036	3.5

Roof Insulation – Large Office

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	CV No Econ Water Cooled	155	0.034	45.7
	CV Econ Air Cooled	260	0.040	52.8
	CV Econ Water Cooled	256	0.000	52.5
	VAV Econ Air Cooled	140	0.057	45.1
	VAV Econ Water Cooled	148	0.017	45.1
Buffalo	CV No Econ Air Cooled	106	0.023	35.1
	CV No Econ Water Cooled	75	0.017	35.2
	CV Econ Air Cooled	146	0.000	34.0
	CV Econ Water Cooled	131	0.000	34.1
	VAV Econ Air Cooled	83	0.000	37.3
	VAV Econ Water Cooled	85	0.000	37.3
Massena	CV No Econ Air Cooled	148	0.040	42.3
	CV No Econ Water Cooled	113	0.029	42.4
	CV Econ Air Cooled	153	0.000	34.6
	CV Econ Water Cooled	143	0.000	34.5
	VAV Econ Air Cooled	206	0.000	54.4
	VAV Econ Water Cooled	205	0.000	54.4
NYC	CV No Econ Air Cooled	153	0.046	34.3
	CV No Econ Water Cooled	45	0.023	34.2
	CV Econ Air Cooled	194	0.046	45.2
	CV Econ Water Cooled	178	0.000	45.2
	VAV Econ Air Cooled	23	0.000	10.7

Climate	System	kWh/unit	Summer kW/unit	therm/unit
	VAV Econ Water Cooled	39	0.006	10.7
Syracuse	CV No Econ Air Cooled	326	0.046	52.5
	CV No Econ Water Cooled	234	0.023	52.6
	CV Econ Air Cooled	311	0.040	59.5
	CV Econ Water Cooled	298	0.000	59.1
	VAV Econ Air Cooled	134	0.051	44.9
	VAV Econ Water Cooled	147	0.029	45.0
Binghamton	CV No Econ Air Cooled	198	0.023	42.6
	CV No Econ Water Cooled	194	0.011	42.6
	CV Econ Air Cooled	128	0.029	32.3
	CV Econ Water Cooled	127	0.000	32.4
	VAV Econ Air Cooled	90	0.000	37.4
	VAV Econ Water Cooled	95	0.006	37.4
Poughkeepsie	CV No Econ Air Cooled	31	0.051	25.0
	CV No Econ Water Cooled	121	0.006	24.9
	CV Econ Air Cooled	161	0.000	35.7
	CV Econ Water Cooled	153	0.000	35.6
	VAV Econ Air Cooled	125	0.006	32.6
	VAV Econ Water Cooled	124	0.006	32.6

Roof Insulation – Dormitory

Climate	·		Summer	
	System	kWh/unit	kW/unit	therm/unit
Albany	Fan coil with Air Cooled Chiller	70.3	0.064	11.8
	Fan coil with Water Cooled			
	Chiller	91.4	0.058	11.8
	Heat only	16.1	0.004	11.2
Buffalo	Fan coil with Air Cooled Chiller	62.2	0.044	12.5
	Fan coil with Water Cooled			
	Chiller	79.1	0.052	12.5
	Heat only	15.4	0.004	12.2
Massena	Fan coil with Air Cooled Chiller	68.2	0.054	14.4
	Fan coil with Water Cooled			
	Chiller	90.7	0.262	14.4
	Heat only	16.5	0.006	14.0
NYC	Fan coil with Air Cooled Chiller	13.0	0.036	10.4
	Fan coil with Water Cooled			
	Chiller	15.3	-0.028	10.4
	Heat only	3.7	0.000	10.3
Syracuse	Fan coil with Air Cooled Chiller	72.8	0.060	12.1
	Fan coil with Water Cooled			
	Chiller	94.9	0.066	12.1
	Heat only	16.5	0.004	11.5

Climate			Summer	
	System	kWh/unit	kW/unit	therm/unit
Binghamton	Fan coil with Air Cooled Chiller	56.3	0.042	12.4
	Fan coil with Water Cooled			
	Chiller	71.8	0.054	12.4
	Heat only	15.2	0.004	11.9
Poughkeepsie	Fan coil with Air Cooled Chiller	69.7	0.044	10.5
	Fan coil with Water Cooled			
	Chiller	93.7	0.062	10.5
	Heat only	17.1	0.004	10.1

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
7-13-24	7/31/2013
7-13-25	7/31/2013
7-13-26	7/31/2013

Return to Table of Contents

APPENDIX F

WINDOW AND HIGH PERFORMANCE GLAZING

SINGLE-FAMILY RESIDENTIAL ENERGY STAR WINDOWS

Albany

	AC Gas Heat			Heat	Pump	AC Electric Heat			Gas Heat O	Electric Heat Only		
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	96.4	0.127	17.0	386.8	0.124	481.6	0.127	7.7	0.000	16.9	393.0	0.000
2 pane	47.7	0.067	5.2	147.3	0.074	167.5	0.067	2.1	0.000	5.2	122.0	0.000
Code	1.3	0.003	3.7	49.3	0.003	81.1	0.003	1.8	0.000	3.7	81.5	0.000

Buffalo

	AC Gas Heat			Heat Pump		AC Electric Heat		Gas Heat Only			Electric Heat Only	
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	86.5	0.107	20.4	440.2	0.104	553.0	0.107	9.8	0.000	20.4	476.3	0.000
2 pane	43.7	0.060	7.2	176.4	0.057	210.2	0.060	3.4	0.000	7.2	169.9	0.000
Code	1.7	0.003	3.8	54.0	0.003	85.0	0.003	1.9	0.000	3.8	85.1	0.000

Massena

	AC Gas Heat		Heat Pump		AC Electric Heat		Gas Heat Only			Electric I	Heat Only	
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	84.4	0.111	21.0	490.9	0.117	566.9	0.111	9.6	0.000	20.9	492.0	0.000
2 pane	40.9	0.057	6.5	183.2	0.064	194.4	0.057	2.7	0.000	6.5	156.1	0.000
Code	2.0	0.000	4.4	68.2	0.000	98.5	0.000	2.2	0.000	4.4	98.6	0.000

NYC

	AC Gas Heat			Heat Pump AC Electric H			tric Heat		Gas Heat Or	nly	Electric Heat Only	
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	125.5	0.117	9.2	252.7	0.124	336.0	0.117	4.0	0.000	9.1	214.6	0.000
2 pane	64.5	0.060	1.6	98.7	0.060	106.3	0.060	0.5	0.000	1.5	42.4	0.000
Code	1.1	0.003	2.7	27.4	0.003	59.9	0.003	1.3	0.000	2.7	60.2	0.000

Syracuse

		AC Gas He	eat	Heat Pump		AC Electric Heat		Gas Heat Only			Electric Heat Only	
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	94.5	0.091	18.4	396.4	0.101	510.4	0.091	8.7	0.000	18.3	424.6	0.000
2 pane	47.6	0.064	6.0	153.9	0.067	185.3	0.064	2.6	0.000	5.9	140.4	0.000
Code	1.1	0.003	3.7	48.6	0.000	81.0	0.003	1.8	0.000	3.7	81.8	0.000

Binghamton

		AC Gas He	eat	Heat Pump		AC Electric Heat		Gas Heat Only			Electric Heat Only	
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	75.7	0.104	19.3	420.4	0.107	517.5	0.104	9.3	0.000	19.2	451.1	0.000
2 pane	36.2	0.054	6.1	156.3	0.054	177.3	0.054	2.6	0.000	6.0	143.8	0.000
Code	1.6	0.003	3.9	56.8	0.003	88.2	0.003	2.1	0.000	3.9	88.6	0.000

Poughkeepsie

		AC Gas He	at	Heat Pump		AC Electric Heat		Gas Heat Only			Electric Heat Only	
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	86.6	0.104	11.9	277.1	0.117	359.1	0.104	5.5	0.000	11.8	277.8	0.000
2 pane	44.0	0.054	3.2	109.2	0.060	121.1	0.054	1.3	0.000	3.1	78.4	0.000
Code	1.4	0.000	3.4	38.8	0.000	72.3	0.000	1.6	0.000	3.4	72.6	0.000

MULTI-FAMILY LOW-RISE ENERGY STAR WINDOWS

Albany												
		AC Gas Hea	at	Heat P	ump	AC Electr	ric Heat		Gas Heat Or	nly	Electric H	eat Only
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	148.4	0.228	87.9	1269.5	0.221	1668.6	0.228	69.3	0.057	87.9	1589.5	0.057
2 pane	72.1	0.117	36.3	531.0	0.114	716.9	0.117	31.5	0.057	36.3	676.2	0.057
Code	6.4	0.003	11.3	134.3	0.007	173.4	0.003	6.7	0.003	11.3	173.5	0.003

Buffalo

		AC Gas Hea	at	Heat P	ump	AC Electr	ric Heat	Gas Heat G	Dnly		Electric He	eat Only
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	121.1	0.164	90.8	1315.5	0.158	1688.8	0.164	55.1	0.030	90.8	1622.9	0.030
2 pane	56.3	0.084	37.3	543.2	0.084	701.6	0.084	21.9	0.007	37.3	667.2	0.007
Code	5.6	0.003	12.0	134.9	0.003	173.7	0.003	6.2	0.000	12.0	174.4	0.000

Massena

		AC Gas Hea	ıt	Heat Pump		AC Electric Heat		Gas Heat Only			Electric Heat Only	
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	132.4	0.171	100.4	1389.5	0.168	1939.0	0.171	63.2	0.027	100.4	1869.9	0.027
2 pane	62.6	0.091	41.5	538.2	0.091	833.7	0.091	26.0	0.017	41.5	797.0	0.017
Code	5.7	0.003	12.9	170.2	0.003	195.6	0.003	7.3	0.000	12.9	197.0	0.000

NYC

		AC Gas Hea	ıt	Heat Pump		AC Electric Heat		Gas Heat Only			Electric Heat Only	
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	184.9	0.188	56.6	830.1	0.184	1163.5	0.188	61.7	0.000	56.6	1040.4	0.000
2 pane	94.1	0.097	21.7	347.3	0.094	482.7	0.097	28.2	0.000	21.7	416.8	0.000
Code	4.6	0.003	8.7	84.5	0.003	125.1	0.003	4.3	0.000	8.7	124.8	0.000

Syracuse

		AC Gas Hea	ıt	Heat Pump		AC Electric Heat		Gas Heat Only			Electric Heat Only	
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	147.7	0.225	90.1	1330.8	0.218	1689.9	0.225	67.1	0.050	90.1	1609.5	0.050
2 pane	71.2	0.117	38.1	567.5	0.114	723.8	0.117	29.5	0.034	38.1	682.1	0.034
Code	6.6	0.007	11.7	134.6	0.007	174.6	0.007	7.2	0.000	11.7	175.2	0.000

Binghamton

		AC Gas Hea	ıt	Heat Pump		AC Electric Heat		Gas Heat Only			Electric Heat Only	
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	122.3	0.174	99.3	1426.3	0.168	1832.4	0.174	61.0	0.007	99.3	1771.0	0.007
2 pane	57.3	0.091	42.1	605.1	0.087	793.6	0.091	26.0	0.003	42.1	762.2	0.003
Code	6.8	0.003	12.1	137.8	0.003	177.9	0.003	7.3	0.003	12.1	178.3	0.003

Poughkeepsie

		AC Gas Hea	ıt	Heat P	ump	AC Electr	ric Heat		Gas Heat Or	nly	Electric He	eat Only
Baseline	kWh	kW	Therm	kWh	kW	kWh	kW	kWh	kW	Therm	kWh	kW
1 pane	147.8	0.158	74.3	1015.5	0.154	1345.2	0.158	65.1	0.030	74.3	1262.5	0.030
2 pane	74.1	0.077	30.3	434.3	0.077	589.0	0.077	29.4	0.013	30.3	544.4	0.013
Code	5.8	0.000	11.8	114.4	0.000	147.9	0.000	6.2	0.000	11.8	148.4	0.000

COMMERCIAL HIGH PERFORMANCE WINDOWS

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	2222	0.156	0.0
-	AC with gas heat	270	0.156	86.5
	Air source heat pump	1951	0.156	0.0
	Electric heat only	1992	0.000	0.0
	Gas heat only	0	0.000	86.5
Binghamton	AC with electric heat	2345	0.156	0.0
	AC with gas heat	220	0.156	96.6
	Air source heat pump	2278	0.156	0.0
	Electric heat only	2163	0.000	0.0
	Gas heat only	0	0.000	96.6
Buffalo	AC with electric heat	2169	0.156	0.0
	AC with gas heat	235	0.156	88.2
	Air source heat pump	1703	0.156	0.0
	Electric heat only	1985	0.000	0.0
	Gas heat only	0	0.000	88.2
Massena	AC with electric heat	4296	0.156	0.0
	AC with gas heat	304	0.156	182.9
	Air source heat pump	3878	0.156	0.0
	Electric heat only	4083	0.000	0.0
	Gas heat only	0	0.000	182.9
NYC	AC with electric heat	1048	0.156	0.0
	AC with gas heat	389	0.156	30.1
	Air source heat pump	825	0.156	0.0
	Electric heat only	714	0.000	0.0
	Gas heat only	0	0.000	30.1
Poughkeepsie	AC with electric heat	2053	0.156	0.0
-	AC with gas heat	262	0.156	83.4
	Air source heat pump	1861	0.156	0.0
	Electric heat only	1843	0.000	0.0
	Gas heat only	0	0.000	83.4
Syracuse	AC with electric heat	1775	0.156	0.0
	AC with gas heat	267	0.156	68.7
	Air source heat pump	1852	0.156	0.0
	Electric heat only	1541	0.000	0.0
	Gas heat only	0	0.000	68.7

High-Performance Windows – Assembly

High-Performance Windows - Big Box Retail

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	1714	0.156	0.0
	AC with gas heat	294	0.156	68.9
	Air source heat pump	1520	0.156	0.0
	Electric heat only	1563	0.000	0.0
	Gas heat only	0	0.000	68.9
Binghamton	AC with electric heat	1493	0.156	0.0
	AC with gas heat	223	0.156	60.4
	Air source heat pump	1596	0.156	0.0
	Electric heat only	1324	0.000	0.0
	Gas heat only	0	0.000	60.4
Buffalo	AC with electric heat	1794	0.156	0.0
	AC with gas heat	250	0.156	72.5

Climate	System	kWh/unit	Summer kW/unit	therm/unit
	Air source heat pump	1454	0.156	0.0
	Electric heat only	1594	0.000	0.0
	Gas heat only	0	0.000	72.5
Massena	AC with electric heat	1934	0.156	0.0
	AC with gas heat	284	0.156	78.0
	Air source heat pump	1750	0.156	0.0
	Electric heat only	1751	0.000	0.0
	Gas heat only	0	0.000	78.0
NYC	AC with electric heat	860	0.156	0.0
	AC with gas heat	353	0.156	25.0
	Air source heat pump	735	0.156	0.0
	Electric heat only	561	0.000	0.0
	Gas heat only	0	0.000	25.0
Poughkeepsie	AC with electric heat	1137	0.156	0.0
	AC with gas heat	273	0.156	41.0
	Air source heat pump	916	0.156	0.0
	Electric heat only	959	0.000	0.0
	Gas heat only	0	0.000	41.0
Syracuse	AC with electric heat	1433	0.156	0.0
	AC with gas heat	281	0.156	54.0
	Air source heat pump	1361	0.156	0.0
	Electric heat only	1292	0.000	0.0
	Gas heat only	0	0.000	54.0

High-Performance Windows -Fast Food Restaurant

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	2032	0.156	0.0
	AC with gas heat	298	0.156	81.2
	Air source heat pump	1504	0.156	0.0
	Electric heat only	1810	0.000	0.0
	Gas heat only	0	0.000	81.2
Binghamton	AC with electric heat	2086	0.156	0.0
	AC with gas heat	257	0.156	86.0
	Air source heat pump	1544	0.156	0.0
	Electric heat only	1814	0.000	0.0
	Gas heat only	0	0.000	86.0
Buffalo	AC with electric heat	2302	0.156	0.0
	AC with gas heat	281	0.156	94.8
	Air source heat pump	1703	0.156	0.0
	Electric heat only	1789	0.000	0.0
	Gas heat only	0	0.000	94.8
Massena	AC with electric heat	2158	0.156	0.0
	AC with gas heat	284	0.156	87.1
	Air source heat pump	1597	0.156	0.0
	Electric heat only	1845	0.000	0.0
	Gas heat only	0	0.000	87.1
NYC	AC with electric heat	1694	0.156	0.2
	AC with gas heat	382	0.156	64.0
	Air source heat pump	1254	0.156	0.0
	Electric heat only	1905	0.000	0.0
	Gas heat only	0	0.000	64.0
Poughkeepsie	AC with electric heat	1801	0.156	0.0
	AC with gas heat	308	0.156	71.9
	Air source heat pump	1333	0.156	0.0

Climate	System	kWh/unit	Summer kW/unit	therm/unit
	Electric heat only	1927	0.000	0.0
	Gas heat only	0	0.000	71.9
Syracuse	AC with electric heat	2066	0.156	0.2
	AC with gas heat	303	0.156	83.1
	Air source heat pump	1529	0.156	0.0
	Electric heat only	1867	0.000	0.0
	Gas heat only	0	0.000	83.1

High-Performance Windows -Full Service Restaurant

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	2670	0.156	0.0
	AC with gas heat	380	0.156	108.6
	Air source heat pump	1976	0.156	0.0
	Electric heat only	2426	0.000	0.0
	Gas heat only	0	0.000	108.6
Binghamton	AC with electric heat	2778	0.156	0.0
	AC with gas heat	338	0.156	115.2
	Air source heat pump	2056	0.156	0.0
	Electric heat only	2614	0.000	0.0
	Gas heat only	0	0.000	115.2
Buffalo	AC with electric heat	2977	0.156	0.0
	AC with gas heat	352	0.156	124.3
	Air source heat pump	2203	0.156	0.0
	Electric heat only	2751	0.000	0.0
	Gas heat only	0	0.000	124.3
Massena	AC with electric heat	2812	0.156	0.0
	AC with gas heat	372	0.156	115.5
	Air source heat pump	2081	0.156	0.0
	Electric heat only	2618	0.000	0.0
	Gas heat only	0	0.000	115.5
NYC	AC with electric heat	2325	0.156	0.0
	AC with gas heat	449	0.156	91.7
	Air source heat pump	1721	0.156	0.0
	Electric heat only	2068	0.000	0.0
	Gas heat only	0	0.000	91.7
Poughkeepsie	AC with electric heat	2161	0.156	0.0
	AC with gas heat	373	0.156	87.6
	Air source heat pump	1599	0.156	0.0
	Electric heat only	1921	0.000	0.0
	Gas heat only	0	0.000	87.6
Syracuse	AC with electric heat	3060	0.156	0.0
	AC with gas heat	407	0.156	127.3
	Air source heat pump	2264	0.156	0.0
	Electric heat only	2874	0.000	0.0
	Gas heat only	0	0.000	127.3

High-Performance Windows – Grocery

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with electric heat	1714	0.156	0.0
	AC with gas heat	294	0.156	68.9
	Air source heat pump	1520	0.156	0.0
	Electric heat only	1563	0.000	0.0
	Gas heat only	0	0.000	68.9
Binghamton	AC with electric heat	1493	0.156	0.0
	AC with gas heat	223	0.156	60.4
Climate	System	kWh/unit	Summer kW/unit	therm/unit
--------------	-----------------------	----------	-------------------	------------
	Air source heat pump	1596	0.156	0.0
	Electric heat only	1324	0.000	0.0
	Gas heat only	0	0.000	60.4
Buffalo	AC with electric heat	1794	0.156	0.0
	AC with gas heat	250	0.156	72.5
	Air source heat pump	1454	0.156	0.0
	Electric heat only	1594	0.000	0.0
	Gas heat only	0	0.000	72.5
Massena	AC with electric heat	1934	0.156	0.0
	AC with gas heat	284	0.156	78.0
	Air source heat pump	1750	0.156	0.0
	Electric heat only	1751	0.000	0.0
	Gas heat only	0	0.000	78.0
NYC	AC with electric heat	860	0.156	0.0
	AC with gas heat	353	0.156	25.0
	Air source heat pump	735	0.156	0.0
	Electric heat only	561	0.000	0.0
	Gas heat only	0	0.000	25.0
Poughkeepsie	AC with electric heat	1137	0.156	0.0
	AC with gas heat	273	0.156	41.0
	Air source heat pump	916	0.156	0.0
	Electric heat only	959	0.000	0.0
	Gas heat only	0	0.000	41.0
Syracuse	AC with electric heat	1433	0.156	0.0
	AC with gas heat	281	0.156	54.0
	Air source heat pump	1361	0.156	0.0
	Electric heat only	1292	0.000	0.0
	Gas heat only	0	0.000	54.0

High-Performance Windows – Light Industrial

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	967	0.156	0.0
	AC with gas heat	239	0.156	34.6
	Air source heat pump	838	0.156	0.0
	Electric heat only	764	0.000	0.0
	Gas heat only	0	0.000	34.6
Binghamton	AC with electric heat	1092	0.156	0.0
	AC with gas heat	200	0.156	40.4
	Air source heat pump	875	0.156	0.0
	Electric heat only	922	0.000	0.0
	Gas heat only	0	0.000	40.4
Buffalo	AC with electric heat	1202	0.156	0.0
	AC with gas heat	233	0.156	48.3
	Air source heat pump	923	0.156	0.0
	Electric heat only	1050	0.000	0.0
	Gas heat only	0	0.000	48.3
Massena	AC with electric heat	1138	0.156	0.0
	AC with gas heat	219	0.156	43.6
	Air source heat pump	980	0.156	0.0
	Electric heat only	943	0.000	0.0
	Gas heat only	0	0.000	43.6
NYC	AC with electric heat	717	0.156	0.0
	AC with gas heat	318	0.156	19.6
	Air source heat pump	613	0.156	0.0

Climate	System	kWh/unit	Summer kW/unit	therm/unit
	Electric heat only	442	0.000	0.0
	Gas heat only	0	0.000	19.6
Poughkeepsie	AC with electric heat	636	0.156	0.0
	AC with gas heat	216	0.156	19.6
	Air source heat pump	521	0.156	0.0
	Electric heat only	450	0.000	0.0
	Gas heat only	0	0.000	19.6
Syracuse	AC with electric heat	974	0.156	0.0
	AC with gas heat	219	0.156	35.2
	Air source heat pump	837	0.156	0.0
	Electric heat only	781	0.000	0.0
	Gas heat only	0	0.000	35.2

High-Performance Windows – Motel

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	1828	0.156	0.0
	AC with gas heat	326	0.156	70.1
	Air source heat pump	1478	0.156	0.0
	Electric heat only	1572	0.000	0.0
	Gas heat only	0	0.000	70.1
Binghamton	AC with electric heat	1863	0.156	0.0
	AC with gas heat	273	0.156	74.2
	Air source heat pump	1580	0.156	0.0
	Electric heat only	1636	0.000	0.0
	Gas heat only	0	0.000	74.2
Buffalo	AC with electric heat	1977	0.156	0.0
	AC with gas heat	298	0.156	78.9
	Air source heat pump	1489	0.156	0.0
	Electric heat only	1714	0.000	0.0
	Gas heat only	0	0.000	78.9
Massena	AC with electric heat	2382	0.156	0.0
	AC with gas heat	319	0.156	95.9
	Air source heat pump	2000	0.156	0.0
	Electric heat only	2130	0.000	0.0
	Gas heat only	0	0.000	95.9
NYC	AC with electric heat	1243	0.156	0.0
	AC with gas heat	413	0.156	40.0
	Air source heat pump	941	0.156	0.0
	Electric heat only	953	0.000	0.0
	Gas heat only	0	0.000	40.0
Poughkeepsie	AC with electric heat	1430	0.156	0.0
-	AC with gas heat	312	0.156	53.0
	Air source heat pump	1159	0.156	0.0
	Electric heat only	1202	0.000	0.0
	Gas heat only	0	0.000	53.0
Syracuse	AC with electric heat	1748	0.156	0.0
	AC with gas heat	326	0.156	66.9
	Air source heat pump	1468	0.156	0.0
	Electric heat only	1507	0.000	0.0
	Gas heat only	0	0.000	66.9

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	1863	0.000	0.0
	AC with gas heat	554	0.000	57.6
	Air source heat pump	1429	0.000	0.0
	Electric heat only	1332	0.000	0.0
	Gas heat only	0	0.000	57.6
Binghamton	AC with electric heat	1971	0.000	0.0
-	AC with gas heat	470	0.000	66.3
	Air source heat pump	1440	0.000	0.0
	Electric heat only	1529	0.000	0.0
	Gas heat only	0	0.000	66.3
Buffalo	AC with electric heat	2195	0.000	0.0
	AC with gas heat	531	0.000	74.0
	Air source heat pump	1556	0.000	0.0
	Electric heat only	1737	0.000	0.0
	Gas heat only	0	0.000	74.0
Massena	AC with electric heat	2072	0.000	0.0
	AC with gas heat	518	0.000	67.7
	Air source heat pump	1636	0.000	0.0
	Electric heat only	1578	0.000	0.0
	Gas heat only	0	0.000	67.7
NYC	AC with electric heat	1671	0.000	0.0
	AC with gas heat	692	0.000	44.4
	Air source heat pump	1174	0.000	0.0
	Electric heat only	1050	0.000	0.0
	Gas heat only	0	0.000	44.4
Poughkeepsie	AC with electric heat	1380	0.000	0.0
-	AC with gas heat	570	0.000	35.9
	Air source heat pump	1125	0.000	0.0
	Electric heat only	780	0.000	0.0
	Gas heat only	0	0.000	35.9
Syracuse	AC with electric heat	1958	0.000	0.0
	AC with gas heat	550	0.000	62.3
	Air source heat pump	1468	0.000	0.0
	Electric heat only	1438	0.000	0.0
	Gas heat only	0	0.000	62.3

High-Performance Windows -Primary School

High-Performance Windows -Religious Worship

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	2222	0.156	0.0
	AC with gas heat	270	0.156	86.5
	Air source heat pump	1951	0.156	0.0
	Electric heat only	1992	0.000	0.0
	Gas heat only	0	0.000	86.5
Binghamton	AC with electric heat	2345	0.156	0.0
	AC with gas heat	220	0.156	96.6
	Air source heat pump	2278	0.156	0.0
	Electric heat only	2163	0.000	0.0
	Gas heat only	0	0.000	96.6
Buffalo	AC with electric heat	2169	0.156	0.0
	AC with gas heat	235	0.156	88.2
	Air source heat pump	1703	0.156	0.0
	Electric heat only	1985	0.000	0.0
	Gas heat only	0	0.000	88.2

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Massena	AC with electric heat	4296	0.156	0.0
	AC with gas heat	304	0.156	182.9
	Air source heat pump	3878	0.156	0.0
	Electric heat only	4083	0.000	0.0
	Gas heat only	0	0.000	182.9
NYC	AC with electric heat	1048	0.156	0.0
	AC with gas heat	389	0.156	30.1
	Air source heat pump	825	0.156	0.0
	Electric heat only	714	0.000	0.0
	Gas heat only	0	0.000	30.1
Poughkeepsie	AC with electric heat	2053	0.156	0.0
	AC with gas heat	262	0.156	83.4
	Air source heat pump	1861	0.156	0.0
	Electric heat only	1843	0.000	0.0
	Gas heat only	0	0.000	83.4
Syracuse	AC with electric heat	1775	0.156	0.0
	AC with gas heat	267	0.156	68.7
	Air source heat pump	1852	0.156	0.0
	Electric heat only	1541	0.000	0.0
	Gas heat only	0	0.000	68.7

High-Performance Windows -Small Office

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	1169	0.156	0.0
	AC with gas heat	303	0.156	43.1
	Air source heat pump	829	0.156	0.0
	Electric heat only	855	0.000	0.0
	Gas heat only	0	0.000	43.1
Binghamton	AC with electric heat	1225	0.156	0.0
	AC with gas heat	260	0.156	48.2
	Air source heat pump	842	0.156	0.0
	Electric heat only	948	0.000	0.0
	Gas heat only	0	0.000	48.2
Buffalo	AC with electric heat	1300	0.156	0.0
	AC with gas heat	281	0.156	51.0
	Air source heat pump	877	0.156	0.0
	Electric heat only	1024	0.000	0.0
	Gas heat only	0	0.000	51.0
Massena	AC with electric heat	1349	0.156	0.0
	AC with gas heat	290	0.156	51.8
	Air source heat pump	1021	0.156	0.0
	Electric heat only	1052	0.000	0.0
	Gas heat only	0	0.000	51.8
NYC	AC with electric heat	942	0.156	0.0
	AC with gas heat	366	0.156	29.7
	Air source heat pump	639	0.156	0.0
	Electric heat only	581	0.000	0.0
	Gas heat only	0	0.000	29.7
Poughkeepsie	AC with electric heat	860	0.156	0.0
	AC with gas heat	282	0.156	29.0
	Air source heat pump	636	0.156	0.0
	Electric heat only	517	0.000	0.0
	Gas heat only	0	0.000	29.0
Syracuse	AC with electric heat	1201	0.156	0.0

Climate	System	kWh/unit	Summer kW/unit	therm/unit
	AC with gas heat	310	0.156	44.7
	Air source heat pump	834	0.156	0.0
	Electric heat only	893	0.000	0.0
	Gas heat only	0	0.000	44.7

High-Performance Windows -Small Retail

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with electric heat	1704	0.156	0.0
	AC with gas heat	357	0.156	65.4
	Air source heat pump	1259	0.156	0.0
	Electric heat only	1421	0.000	0.0
	Gas heat only	0	0.000	65.4
Binghamton	AC with electric heat	1797	0.156	0.0
	AC with gas heat	320	0.156	72.2
	Air source heat pump	1294	0.156	0.0
	Electric heat only	1559	0.000	0.0
	Gas heat only	0	0.000	72.2
Buffalo	AC with electric heat	1872	0.156	0.0
	AC with gas heat	327	0.156	75.2
	Air source heat pump	1309	0.156	0.0
	Electric heat only	1635	0.000	0.0
	Gas heat only	0	0.000	75.2
Massena	AC with electric heat	1828	0.156	0.0
	AC with gas heat	329	0.156	71.9
	Air source heat pump	1433	0.156	0.0
	Electric heat only	1597	0.000	0.0
	Gas heat only	0	0.000	71.9
NYC	AC with electric heat	1260	0.156	0.0
	AC with gas heat	437	0.156	40.8
	Air source heat pump	886	0.156	0.0
	Electric heat only	929	0.000	0.0
	Gas heat only	0	0.000	40.8
Poughkeepsie	AC with electric heat	1085	0.156	0.0
	AC with gas heat	305	0.156	37.4
	Air source heat pump	821	0.156	0.0
	Electric heat only	819	0.000	0.0
	Gas heat only	0	0.000	37.4
Syracuse	AC with electric heat	1810	0.156	0.0
	AC with gas heat	370	0.156	70.8
	Air source heat pump	1321	0.156	0.0
	Electric heat only	1546	0.000	0.0
	Gas heat only	0	0.000	70.8

High-Performance Windows -Warehouse

Climate			Summer	
	System	kWh/unit	kW/unit	therm/unit
Albany	AC with electric heat	1828	0.156	0.0
	AC with gas heat	326	0.156	70.1
	Air source heat pump	1478	0.156	0.0
	Electric heat only	1572	0.000	0.0
	Gas heat only	0	0.000	70.1
Binghamton	AC with electric heat	1863	0.156	0.0
	AC with gas heat	273	0.156	74.2
	Air source heat pump	1580	0.156	0.0

Climate			Summer	
	System	kWh/unit	kW/unit	therm/unit
	Electric heat only	1636	0.000	0.0
	Gas heat only	0	0.000	74.2
Buffalo	AC with electric heat	1977	0.156	0.0
	AC with gas heat	298	0.156	78.9
	Air source heat pump	1489	0.156	0.0
	Electric heat only	1714	0.000	0.0
	Gas heat only	0	0.000	78.9
Massena	AC with electric heat	2382	0.156	0.0
	AC with gas heat	319	0.156	95.9
	Air source heat pump	2000	0.156	0.0
	Electric heat only	2130	0.000	0.0
	Gas heat only	0	0.000	95.9
NYC	AC with electric heat	1243	0.156	0.0
	AC with gas heat	413	0.156	40.0
	Air source heat pump	941	0.156	0.0
	Electric heat only	953	0.000	0.0
	Gas heat only	0	0.000	40.0
Poughkeepsie	AC with electric heat	1430	0.156	0.0
	AC with gas heat	312	0.156	53.0
	Air source heat pump	1159	0.156	0.0
	Electric heat only	1202	0.000	0.0
	Gas heat only	0	0.000	53.0
Syracuse	AC with electric heat	1748	0.156	0.0
	AC with gas heat	326	0.156	66.9
	Air source heat pump	1468	0.156	0.0
	Electric heat only	1507	0.000	0.0
	Gas heat only	0	0.000	66.9

WINDOW FILM

Window Film - Assembly

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with gas heat	388	0.178	-84.0
Binghamton	AC with gas heat	333	0.178	-93.2
Buffalo	AC with gas heat	358	0.178	-82.0
Massena	AC with gas heat	346	0.178	-100.6
NYC	AC with gas heat	592	0.178	-58.3
Poughkeepsie	AC with gas heat	379	0.178	-92.2
Syracuse	AC with gas heat	426	0.178	-66.0

Window Film - Auto Repair

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with gas heat	167	0.178	-72.4
Binghamton	AC with gas heat	138	0.178	-63.0
buffalo	AC with gas heat	159	0.178	-67.7
Massena	AC with gas heat	155	0.178	-74.0
N YC	AC with gas heat	271	0.178	-77.2
Poughkeepsie	AC with gas heat	164	0.178	-84.3
Syracuse	AC with gas heat	169	0.178	-83.5

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with gas heat	407	0.178	-54.1
Binghamton	AC with gas heat	357	0.178	-57.5
Buffalo	AC with gas heat	378	0.178	-46.4
Massena	AC with gas heat	370	0.178	-58.5
NYC	AC with gas heat	538	0.178	-38.6
Poughkeepsie	AC with gas heat	402	0.178	-47.9
Syracuse	AC with gas heat	402	0.178	-53.6

Window Film - Big Box Retail

Window Film - Fast Food Restaurant

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with gas heat	290	0.178	-82.9
Binghamton	AC with gas heat	241	0.178	-84.5
Buffalo	AC with gas heat	263	0.178	-77.3
Massena	AC with gas heat	268	0.178	-85.2
NYC	AC with gas heat	393	0.178	-72.3
Poughkeepsie	AC with gas heat	282	0.178	-85.0
Syracuse	AC with gas heat	297	0.178	-75.9

Window Film - Full Service Restaurant

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with gas heat	296	0.178	-109.1
Binghamton	AC with gas heat	249	0.178	-111.0
Buffalo	AC with gas heat	265	0.178	-98.9
Massena	AC with gas heat	273	0.178	-109.4
NYC	AC with gas heat	403	0.178	-94.8
Poughkeepsie	AC with gas heat	297	0.178	-110.2
Syracuse	AC with gas heat	309	0.178	-98.3

Window Film - Grocery

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with gas heat	407	0.178	-54.1
Binghamton	AC with gas heat	357	0.178	-57.5
Buffalo	AC with gas heat	378	0.178	-46.4
Massena	AC with gas heat	370	0.178	-58.5
NYC	AC with gas heat	538	0.178	-38.6
Poughkeepsie	AC with gas heat	402	0.178	-47.9
Syracuse	AC with gas heat	402	0.178	-53.6

Window Film – Light Industrial

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with gas heat	232	0.178	-71.6
Binghamton	AC with gas heat	175	0.178	-74.1
Buffalo	AC with gas heat	226	0.178	-62.1
Massena	AC with gas heat	189	0.178	-76.6
NYC	AC with gas heat	251	0.178	-68.4
Poughkeepsie	AC with gas heat	211	0.178	-67.5
Syracuse	AC with gas heat	211	0.178	-65.7

Window Film - Motel	
---------------------	--

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with gas heat	445	0.178	-29.0
Binghamton	AC with gas heat	396	0.178	-30.0
Buffalo	AC with gas heat	399	0.178	-27.5
Massena	AC with gas heat	411	0.178	-32.4
NYC	AC with gas heat	523	0.178	-19.8
Poughkeepsie	AC with gas heat	455	0.178	-23.7
Syracuse	AC with gas heat	426	0.178	-27.1

Window Film - Primary School

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with gas heat	437	0.000	-105.6
Binghamton	AC with gas heat	300	0.000	-108.8
Buffalo	AC with gas heat	382	0.000	-96.8
Massena	AC with gas heat	383	0.000	-108.7
NYC	AC with gas heat	555	0.000	-98.0
Poughkeepsie	AC with gas heat	437	0.000	-107.6
Syracuse	AC with gas heat	415	0.000	-99.9

Window Film - Small Office

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with gas heat	388	0.178	-84.0
Binghamton	AC with gas heat	333	0.178	-93.2
Buffalo	AC with gas heat	358	0.178	-82.0
Massena	AC with gas heat	346	0.178	-100.6
NYC	AC with gas heat	592	0.178	-58.3
Poughkeepsie	AC with gas heat	379	0.178	-92.2
Syracuse	AC with gas heat	426	0.178	-66.0

Window Film - Small Retail

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with gas heat	342	0.178	-73.6
Binghamton	AC with gas heat	307	0.178	-73.9
Buffalo	AC with gas heat	307	0.178	-67.7
Massena	AC with gas heat	290	0.178	-83.6
NYC	AC with gas heat	448	0.178	-62.5
Poughkeepsie	AC with gas heat	319	0.178	-70.8
Syracuse	AC with gas heat	347	0.178	-69.6

Window Film - Warehouse

Climate	System	kWh/unit	Summer	therm/unit
			kW/unit	
Albany	AC with gas heat	516	0.178	-88.3
Binghamton	AC with gas heat	421	0.178	-93.5
Buffalo	AC with gas heat	444	0.178	-80.6
Massena	AC with gas heat	462	0.178	-82.0
NYC	AC with gas heat	613	0.178	-83.8
Poughkeepsie	AC with gas heat	509	0.178	-93.1
Syracuse	AC with gas heat	525	0.178	-86.1

Window Film - Other

Climate	System	kWh/unit	Summer kW/unit	therm/unit
Albany	AC with gas heat	360	0.178	-75.7
Binghamton	AC with gas heat	301	0.178	-78.4
Buffalo	AC with gas heat	326	0.178	-69.6
Massena	AC with gas heat	322	0.178	-80.8
NYC	AC with gas heat	476	0.178	-64.2
Poughkeepsie	AC with gas heat	353	0.178	-76.9
Syracuse	AC with gas heat	363	0.178	-70.4

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

APPENDIX G

EQUIVALENT FULL-LOAD HOURS (EFLH), FOR HEATING AND COOLING

Analysis used to develop parameters for the energy and demand savings calculations are based on DOE-2.2 simulations of a set of prototypical residential buildings. The prototypical simulation models were derived from the residential building prototypes used in the California Database for Energy Efficiency Resources (DEER)⁴⁹⁸ study, with adjustments made for local building practices and climate.

Four separate models were created to represent general vintages of buildings:

- 1. Built prior to 1940, uninsulated masonry buildings. This vintage is referred to as "Prewar uninsulated brick "
- 2. Built prior to 1979 when the NYS Energy Code (known as the Energy Conservation Construction Code of New York State ECCCNYS) went into effect, poorly insulated wood-frame buildings This vintage is referred to as "Prior to 1979"
- 3. Built from 1979 through 2006, with insulation conforming to 1980s era building codes (1979 ECCCNYS.) This vintage is referred to as "From 1979 through 2006."
- 4. Built from 2007 through the present, new construction with insulation conforming to the 2007 ECCCNYS for residential buildings and the New York City Energy Conservative Construction Code (if applicable.) This vintage is referred to as "From 2007 through the present."

Heating equivalent full-load hours for residential buildings were originally calculated from a DOE-2.2 simulation of prototypical residential buildings. The prototype building characteristics are described in <u>Appendix A</u>. The revised heating EFLH are shown below:⁴⁹⁹

City	Old	Average	New
Albany	322	310	279
Binghamton	199	197	158
Buffalo	334	322	276
Massena	258	250	210
Poughkeepsie	496	470	464
NYC	670	649	630
Syracuse	310	296	268

SINGLE-FAMILY DETACHED COOLING EFLH BY VINTAGE AND CITY

MULTI-FAMILY LOW-RISE COOLING EFLH BY VINTAGE AND CITY

⁴⁹⁸ 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study, Final Report, Itron, Inc. Vancouver, WA. December 2005. Available at

www.calmac.org/publications/2004-05_DEER_Update_Final_Report-Wo.pdf

⁴⁹⁹ The original EFLH numbers have been adjusted according to the recommendations contained in the statewide evaluation performed by Opinion Dynamics, New York Statewide Residential Gas High-Efficiency Heating Equipment Programs – Evaluation of 2009-2011 Programs, August 2014. Recommendations regarding EFLH hours located on page 81.

		From 1979 Through	From 2007 Through the
City	Prior to 1979	2006	Present
Albany	286	295	279
Binghamton	217	219	210
Buffalo	270	274	256
Massena	230	228	218
NYC	507	550	562
Poughkeepsie	397	423	421
Syracuse	265	284	297

MULTI-FAMILY HIGH-RISE COOLING EFLH BY VINTAGE AND CITY⁵⁰⁰

City	Prior to 1979	From 1979 Through 2006	From 2007 Through the Present
Albany	594	647	782
Binghamton	479	539	684
Buffalo	572	637	773
Massena	532	571	668
NYC	793	843	954
Poughkeepsie	626	669	812
Syracuse	592	665	845

SINGLE-FAMILY DETACHED HEATING EFLH BY VINTAGE AND CITY

City	Old	Average	New
Albany	1,042	978	925
Binghamton	1,086	1,029	963
Buffalo	1,072	1,032	957
Massena	1,125	1,061	1,009
NYC	867	786	725
Poughkeepsie	931	862	807
Syracuse	1,098	1,042	972

 $^{^{500}}$ Note, there are no cooling values for the "Pre-war uninsulated brick vintage, due to a typical lack of any central cooling. This vintage assumes one room air conditioner (RAC) within the unit. For the savings calculation method, see the Air Conditioner – Room (RAC) measure listed in the Single and Multi-family Residential Measures section of this manual.

City	Pre-war uninsulated brick	Prior to 1979	From 1979 Through 2006	From 2007 Through the Present
Albany	1,111	1,030	1,012	729
Binghamton	1,397	1,320	1,245	899
Buffalo	1,281	1,219	1,215	883
Massena	1,433	1,306	1,326	964
NYC ⁵⁰¹	999	757	723	503
Poughkeepsie	857	894	868	616
Syracuse	1,395	1,175	1,206	845

MULTI-FAMILY LOW-RISE HEATING EFLH BY VINTAGE AND CITY

MULTI-FAMILY HIGH-RISE HEATING EFLH BY VINTAGE AND CITY

City	Pre-war uninsulated brick	Prior to 1979	From 1979 Through 2006	From 2007 Through the Present
Albany	975	786	626	363
Binghamton	1,102	1,006	831	484
Buffalo	1,181	966	813	471
Massena	1,111	1,016	873	552
NYC ⁵⁰²	1,012	526	395	219
Poughkeepsie	922	656	510	291
Syracuse	1,063	889	787	474

⁵⁰¹ NYC building only incorporates a higher thermostatic set point of 73°F instead of 70 °F based on reported data. The other cities listed use the thermostatic set-point of 7070° F. Overheating in Hot Water and Steam-Heated Multifamily Buildings, U.S. Dept. of Energy, Jordan Dentz, Kapil Varshney and Hugh Henderson, October 2013. ⁵⁰² IBID

Building	Albany	Binghamton	Buffalo	Massena	NYC	Poughkeepsie	Syracuse
Assembly	478	436	497	415	669	574	506
Auto Repair	272	244	264	223	426	302	298
Big Box Retail	769	760	826	688	1279	1024	831
Fast Food Restaurant	512	501	519	436	645	579	544
Full Service Restaurant	437	514	460	389	574	506	466
Grocery	769	760	826	688	1279	1024	831
Light Industrial	400	435	423	370	549	475	429
Motel	734	959	1084	997	1233	1143	1072
Primary School	297	264	244	257	394	346	274
Religious Worship	227	1006	190	204	279	230	246
Small Office	742	714	745	671	955	849	768
Small Retail	642	644	666	599	882	762	678
Warehouse	234	194	212	228	400	284	243
Other	501	572	535	474	736	623	553

SMALL COMMERCIAL COOLING EFLH

LARGE COMMERCIAL COOLING EFLH

Building	System	Albany	Binghamton	Buffalo	Massena	NYC	Poughkeepsie	Syracuse
Community	CAV econ	585	433	520	509	846	706	609
College	CAV noecon	773	586	693	692	1,128	997	811
	VAV econ	470	376	456	353	658	532	455
Dormitory ⁵⁰³	Fan Coil*	736	657	752	693	800	760	763
High School	CAV econ	348	304	323	318	466	407	388
	CAV noecon	713	727	741	727	861	787	764
	VAV econ	237	203	215	215	341	289	256
Hospital	CAV econ	1,038	918	1,114	1,038	1,424	1,231	1,147
	CAV noecon	1,728	1,662	1,908	1,730	2,237	1,983	1,906
	VAV econ	961	855	1,026	962	1,217	1,089	1,050
Hotel	CAV econ	2,744	3,078	2,744	2,807	2,918	3,039	3,471
	CAV noecon	2,945	3,270	2,945	3,021	3,108	3,253	3,653
	VAV econ	2,702	3,046	2,702	2,745	2,929	2,937	3,437
Large Office	CAV econ	706	534	587	610	720	713	667
-	CAV noecon	1,894	1,786	2,016	1,827	2,250	2,072	2,156
	VAV econ	623	519	504	505	716	670	572
Large Retail	CAV econ	858	721	849	753	1,068	920	858
-	CAV noecon	1,656	1,613	1,763	1,545	1,751	1,670	1,656

⁵⁰³ Dormitories consist of individual rooms with small heating/cooling coils. Constant Air Volume (CAV) or Variable Air Volume (VAV) with Economizers (econ) are not typically used.

Building	System	Albany	Binghamton	Buffalo	Massena	NYC	Poughkeepsie	Syracuse
	VAV econ	704	594	713	611	886	757	704
University	CAV econ	680	496	610	567	882	706	699
	CAV noecon	936	723	870	811	1,208	1,030	951
	VAV econ	526	432	518	413	690	568	523

SMALL COMMERCIAL HEATING EFLH

Building	Albany	Binghamton	Buffalo	Massena	NYC	Poughkeepsie	Syracuse
Assembly	961	1006	990	1158	603	782	903
Auto Repair	3325	3455	3331	3649	1910	2642	3271
Big Box Retail	554	509	557	620	191	373	522
Fast Food Restaurant	1426	1526	1491	1690	813	1120	1351
Full Service Restaurant	1502	1602	1567	1746	821	1162	1419
Grocery	554	509	557	620	191	373	522
Light Industrial	1278	1320	1188	1286	714	996	1200
Motel	1037	787	789	832	619	603	778
Primary School	1300	1290	1357	1311	840	1070	1236
Religious Worship	954	202	978	1015	722	802	962
Small Office	747	793	760	861	431	589	750
Small Retail	984	1006	1020	1134	545	765	969
Warehouse	916	1023	940	1094	452	642	888
Other	1195	1156	1194	1309	681	917	1136

LARGE COMMERCIAL HEATING EFLH

Building	System	Albany	Binghamton	Buffalo	Massena	NYC	Poughkeepsie	Syracuse
Community	CAV econ	1,111	1,072	1,047	1,301	1,431	1,171	1,259
College	CAV noecon	1,052	1,042	1,006	1,177	1,268	1,050	1,177
	VAV econ	607	1,161	1,040	606	434	389	554
Dormitory*	Fan Coil*	594	678	753	687	465	507	673
High School	CAV econ	776	782	808	822	901	898	960
	CAV noecon	701	725	741	759	840	829	902
	VAV econ	326	300	384	382	268	303	395
Hospital	CAV econ	3,084	2,847	2,897	2,782	3,366	2,886	3,062
	CAV noecon	2,733	2,423	2,516	2,353	3,137	2,514	2,704
	VAV econ	763	766	642	739	296	481	771
Hotel	CAV econ	1,230	1,177	1,220	1,239	1,077	1,054	1,175
	CAV noecon	962	907	941	1,032	753	794	919
	VAV econ	552	482	518	661	229	376	464
Large Office	CAV econ	2,136	2,047	2,020	2,349	2,034	2,142	2,218
	CAV noecon	2,097	1,965	1,976	2,307	2,072	2,133	2,219

Building	System	Albany	Binghamton	Buffalo	Massena	NYC	Poughkeepsie	Syracuse
	VAV econ	484	476	485	544	291	367	441
Large Retail	CAV econ	2,167	2,148	2,147	2,243	2,101	2,030	2,144
-	CAV noecon	2,057	1,983	2,015	2,106	2,033	1,913	2,030
	VAV econ	859	735	777	927	664	632	783
University	CAV econ	1,464	1,573	1,531	1,589	1,191	1,352	1,390
	CAV noecon	1,439	1,438	1,461	1,456	1,104	1,308	1,356
	VAV econ	1,060	569	1,206	1,224	684	761	624

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
6-15-8	6/1/2015
1-16-9	12/31/2015

APPENDIX H

HVAC DISTRIBUTION EFFICIENCIES

Single-family Distribution System Efficiency in Heating Mode, Ducts Located in Unconditioned Basement

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.951	0.946	0.947	0.949	0.957	0.949
15%	Uninsulated	0.941	0.936	0.939	0.940	0.946	0.941
20%	Uninsulated	0.936	0.931	0.932	0.933	0.939	0.934
25%	Uninsulated	0.929	0.924	0.925	0.928	0.934	0.929
30%	Uninsulated	0.924	0.919	0.920	0.922	0.926	0.922
8%	R-6	0.980	0.979	0.978	0.978	0.980	0.979
15%	R-6	0.968	0.967	0.967	0.967	0.969	0.967
20%	R-6	0.959	0.959	0.959	0.960	0.962	0.960
25%	R-6	0.953	0.952	0.952	0.951	0.954	0.951
30%	R-6	0.946	0.944	0.944	0.944	0.946	0.944

Single-family Distribution System Efficiency in Cooling Mode, Ducts Located in Unconditioned Basement

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.969	0.964	0.958	0.974	0.973	0.975
15%	Uninsulated	0.959	0.952	0.952	0.974	0.967	0.967
20%	Uninsulated	0.956	0.945	0.946	0.968	0.959	0.961
25%	Uninsulated	0.948	0.939	0.938	0.966	0.955	0.956
30%	Uninsulated	0.946	0.938	0.934	0.960	0.948	0.950
8%	R-6	0.985	0.987	0.982	0.985	0.987	0.987
15%	R-6	0.972	0.976	0.968	0.976	0.976	0.977
20%	R-6	0.966	0.964	0.959	0.965	0.970	0.972
25%	R-6	0.960	0.961	0.954	0.959	0.967	0.966
30%	R-6	0.956	0.957	0.948	0.965	0.958	0.960

Residential Distribution System Efficiency in Heating Mode (Attic Ducts)

Duct total leakag e (%)	Duct system R- value (supply and return)	Alban y	Binghamto n	Buffal o	Massen a	NYC	Syracus e	Poughkeepsi e
8%	Uninsulate d	0.777	0.754	0.770	0.759	0.81 8	0.778	0.779
15%	Uninsulate d	0.715	0.692	0.708	0.693	0.76 1	0.716	0.717
20%	Uninsulate d	0.668	0.646	0.662	0.644	0.71 7	0.670	0.671
25%	Uninsulate d	0.619	0.599	0.614	0.592	0.67 3	0.622	0.623
30%	Uninsulate d	0.568	0.549	0.564	0.539	0.62 6	0.571	0.573

8%	R-6	0.910	0.907	0.910	0.905	0.92 0	0.911	0.911
15%	R-6	0.851	0.848	0.851	0.843	0.86 5	0.852	0.851
20%	R-6	0.806	0.804	0.807	0.796	0.82 3	0.808	0.807
25%	R-6	0.760	0.759	0.762	0.748	0.78 0	0.762	0.761
30%	R-6	0.712	0.711	0.715	0.698	0.73 5	0.714	0.714

Residential Distribution System Efficiency in Cooling Mode (Attic Ducts)

Duct total leakag e (%)	Duct system R- value (supply and return)	Alban y	Binghamto n	Buffal o	Massen a	NYC	Syracus e	Poughkeepsi e
8%	Uninsulate d	0.813	0.793	0.820	0.809	0.83 4	0.811	0.810
15%	Uninsulate d	0.755	0.737	0.768	0.753	0.77 7	0.758	0.753
20%	Uninsulate d	0.716	0.698	0.732	0.715	0.73 7	0.717	0.713
25%	Uninsulate d	0.676	0.660	0.694	0.673	0.69 6	0.677	0.672
30%	Uninsulate d	0.637	0.621	0.656	0.634	0.65 7	0.637	0.632
8%	R-6	0.916	0.914	0.922	0.916	0.91 9	0.918	0.916
15%	R-6	0.860	0.860	0.870	0.859	0.86 1	0.862	0.861
20%	R-6	0.821	0.820	0.833	0.819	0.82 3	0.821	0.821
25%	R-6	0.780	0.780	0.795	0.781	0.78 2	0.783	0.780
30%	R-6	0.740	0.740	0.761	0.739	0.74 1	0.742	0.739

Multi-family Distribution System Efficiency in Heating Mode

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.821	0.817	0.819	0.813	0.843	0.822
15%	Uninsulated	0.794	0.791	0.793	0.785	0.816	0.795
20%	Uninsulated	0.774	0.773	0.774	0.765	0.797	0.775
25%	Uninsulated	0.754	0.754	0.755	0.744	0.778	0.756
30%	Uninsulated	0.735	0.736	0.735	0.724	0.758	0.736
8%	R-6	0.943	0.944	0.944	0.941	0.949	0.944
15%	R-6	0.913	0.915	0.915	0.909	0.920	0.914
20%	R-6	0.892	0.895	0.894	0.887	0.900	0.893
25%	R-6	0.870	0.874	0.873	0.864	0.879	0.871
30%	R-6	0.848	0.853	0.852	0.841	0.858	0.849

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.814	0.797	0.821	0.805	0.859	0.808
15%	Uninsulated	0.792	0.774	0.799	0.776	0.838	0.782
20%	Uninsulated	0.770	0.750	0.781	0.759	0.824	0.767
25%	Uninsulated	0.757	0.739	0.762	0.744	0.810	0.752
30%	Uninsulated	0.738	0.720	0.748	0.726	0.795	0.734
8%	R-6	0.941	0.936	0.945	0.938	0.951	0.939
15%	R-6	0.912	0.909	0.916	0.913	0.929	0.910
20%	R-6	0.893	0.890	0.899	0.889	0.911	0.888
25%	R-6	0.871	0.870	0.879	0.870	0.894	0.870
30%	R-6	0.852	0.851	0.863	0.849	0.876	0.851

Multi-family Distribution System Efficiency in Cooling Mode

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.909	0.923	0.918	0.925	0.857	0.881
15%	Uninsulated	0.879	0.890	0.889	0.890	0.829	0.851
20%	Uninsulated	0.858	0.868	0.867	0.869	0.810	0.831
25%	Uninsulated	0.835	0.848	0.846	0.849	0.793	0.812
30%	Uninsulated	0.816	0.829	0.828	0.829	0.776	0.795
8%	R-6	0.951	0.961	0.959	0.956	0.896	0.915
15%	R-6	0.917	0.930	0.926	0.923	0.863	0.883
20%	R-6	0.895	0.906	0.902	0.901	0.841	0.861
25%	R-6	0.871	0.884	0.879	0.881	0.821	0.840
30%	R-6	0.849	0.862	0.860	0.862	0.801	0.819

Assembly Building Distribution Efficiency Heating

Assembly Building Distribution Efficiency Cooling

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.870	0.845	0.857	0.869	0.922	0.898
15%	Uninsulated	0.859	0.835	0.846	0.858	0.908	0.887
20%	Uninsulated	0.850	0.825	0.838	0.850	0.897	0.878
25%	Uninsulated	0.840	0.815	0.828	0.840	0.886	0.867
30%	Uninsulated	0.829	0.805	0.817	0.829	0.873	0.856
8%	R-6	0.948	0.930	0.936	0.951	0.986	0.980
15%	R-6	0.932	0.916	0.921	0.936	0.967	0.964
20%	R-6	0.920	0.904	0.909	0.924	0.954	0.951
25%	R-6	0.906	0.891	0.896	0.910	0.939	0.938
30%	R-6	0.892	0.877	0.882	0.896	0.924	0.923

Fast Food Restaurant Distribution Efficiency Heating

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.809	0.807	0.804	0.820	0.766	0.805
15%	Uninsulated	0.784	0.784	0.781	0.797	0.734	0.778
20%	Uninsulated	0.766	0.768	0.765	0.780	0.714	0.759
25%	Uninsulated	0.750	0.753	0.749	0.765	0.693	0.742
30%	Uninsulated	0.734	0.739	0.734	0.750	0.675	0.725
8%	R-6	0.901	0.904	0.901	0.905	0.875	0.898
15%	R-6	0.862	0.867	0.864	0.867	0.825	0.858
20%	R-6	0.836	0.844	0.840	0.844	0.794	0.831
25%	R-6	0.813	0.822	0.817	0.822	0.765	0.806
30%	R-6	0.791	0.801	0.796	0.801	0.739	0.783

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.853	0.843	0.853	0.845	0.866	0.848
15%	Uninsulated	0.843	0.834	0.843	0.837	0.853	0.839
20%	Uninsulated	0.836	0.827	0.835	0.830	0.844	0.831
25%	Uninsulated	0.827	0.819	0.827	0.822	0.834	0.823
30%	Uninsulated	0.818	0.810	0.817	0.814	0.823	0.814
8%	R-6	0.950	0.950	0.953	0.948	0.945	0.947
15%	R-6	0.933	0.935	0.937	0.932	0.925	0.930
20%	R-6	0.921	0.924	0.925	0.919	0.911	0.917
25%	R-6	0.908	0.912	0.912	0.907	0.896	0.904
30%	R-6	0.895	0.899	0.898	0.894	0.881	0.891

Fast Food Restaurant Distribution Efficiency Cooling

Full Service Restaurant Distribution Efficiency Heating

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.816	0.821	0.816	0.819	0.797	0.810
15%	Uninsulated	0.789	0.797	0.791	0.794	0.765	0.782
20%	Uninsulated	0.770	0.781	0.775	0.776	0.743	0.763
25%	Uninsulated	0.753	0.765	0.760	0.759	0.721	0.745
30%	Uninsulated	0.736	0.750	0.745	0.744	0.701	0.728
8%	R-6	0.904	0.910	0.905	0.902	0.893	0.901
15%	R-6	0.866	0.876	0.869	0.866	0.848	0.861
20%	R-6	0.840	0.853	0.847	0.841	0.818	0.834
25%	R-6	0.816	0.832	0.825	0.818	0.789	0.809
30%	R-6	0.794	0.812	0.805	0.797	0.763	0.786

Full Service Restaurant Distribution Efficiency Cooling

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.827	0.827	0.840	0.814	0.854	0.821
15%	Uninsulated	0.825	0.826	0.839	0.813	0.845	0.819
20%	Uninsulated	0.821	0.824	0.836	0.811	0.837	0.815
25%	Uninsulated	0.818	0.821	0.832	0.808	0.829	0.812
30%	Uninsulated	0.813	0.817	0.827	0.804	0.820	0.807
8%	R-6	0.959	0.968	0.975	0.955	0.954	0.957
15%	R-6	0.955	0.970	0.975	0.953	0.941	0.952
20%	R-6	0.950	0.968	0.971	0.948	0.931	0.947
25%	R-6	0.943	0.963	0.966	0.942	0.919	0.940
30%	R-6	0.934	0.957	0.958	0.934	0.907	0.931

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.657	0.646	0.648	0.670	0.614	0.656
15%	Uninsulated	0.624	0.614	0.617	0.637	0.581	0.623
20%	Uninsulated	0.602	0.594	0.596	0.615	0.559	0.601
25%	Uninsulated	0.582	0.574	0.577	0.594	0.538	0.581
30%	Uninsulated	0.563	0.556	0.559	0.575	0.520	0.562
8%	R-6	0.792	0.787	0.788	0.798	0.767	0.789
15%	R-6	0.742	0.736	0.739	0.748	0.714	0.738
20%	R-6	0.710	0.704	0.707	0.716	0.679	0.705
25%	R-6	0.680	0.674	0.678	0.686	0.648	0.676
30%	R-6	0.652	0.646	0.652	0.659	0.619	0.648

Small Retail Distribution Efficiency Heating

Small Retail Distribution Efficiency Cooling

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.825	0.822	0.825	0.816	0.838	0.817
15%	Uninsulated	0.818	0.817	0.819	0.809	0.827	0.810
20%	Uninsulated	0.812	0.812	0.813	0.804	0.818	0.804
25%	Uninsulated	0.805	0.806	0.807	0.798	0.809	0.797
30%	Uninsulated	0.798	0.800	0.800	0.791	0.799	0.790
8%	R-6	0.932	0.934	0.935	0.927	0.931	0.928
15%	R-6	0.921	0.926	0.924	0.917	0.915	0.916
20%	R-6	0.912	0.918	0.916	0.908	0.904	0.907
25%	R-6	0.903	0.910	0.907	0.899	0.891	0.897
30%	R-6	0.892	0.902	0.897	0.889	0.879	0.887

Other Building Distribution Efficiency Heating

Duct total leakage (%)	Duct system R-value (supply and return)	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
8%	Uninsulated	0.798	0.799	0.797	0.809	0.759	0.788
15%	Uninsulated	0.769	0.771	0.770	0.780	0.727	0.759
20%	Uninsulated	0.749	0.753	0.751	0.760	0.707	0.739
25%	Uninsulated	0.730	0.735	0.733	0.742	0.686	0.720
30%	Uninsulated	0.712	0.719	0.717	0.725	0.668	0.703
8%	R-6	0.887	0.891	0.888	0.890	0.858	0.876
15%	R-6	0.847	0.852	0.850	0.851	0.813	0.835
20%	R-6	0.820	0.827	0.824	0.826	0.783	0.808
25%	R-6	0.795	0.803	0.800	0.802	0.756	0.783
30%	R-6	0.772	0.780	0.778	0.780	0.731	0.759

Duct total	Duct system	Albany	Binghamton	Buffalo	Massena	NYC	Syracuse
leakage	R-value						
(%)	(supply and						
	return)						
8%	Uninsulated	0.844	0.834	0.844	0.836	0.870	0.846
15%	Uninsulated	0.836	0.828	0.837	0.829	0.858	0.839
20%	Uninsulated	0.830	0.822	0.831	0.824	0.849	0.832
25%	Uninsulated	0.823	0.815	0.824	0.817	0.840	0.825
30%	Uninsulated	0.815	0.808	0.815	0.810	0.829	0.817
8%	R-6	0.947	0.946	0.950	0.945	0.954	0.953
15%	R-6	0.935	0.937	0.939	0.935	0.937	0.941
20%	R-6	0.926	0.929	0.930	0.925	0.925	0.931
25%	R-6	0.915	0.919	0.920	0.915	0.911	0.920
30%	R-6	0.903	0.909	0.909	0.903	0.898	0.908

Other Building Distribution Efficiency Cooling

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
7-13-27	7/31/2013

APPENDIX I

COOL ROOF

Building Type	City	Unit	KWh/unit	KW/unit	Therm/unit
	Albany	1,000 sq ft roof area	138	0.128	-16.0
	Binghamton	1,000 sq ft roof area	123	0.128	-16.0
	Buffalo	1,000 sq ft roof area	119	0.128	-16.0
Assembly	Massena	1,000 sq ft roof area	135	0.128	-19.0
	NYC	1,000 sq ft roof area	168	0.128	-11.0
	Poughkeepsie	1,000 sq ft roof area	163	0.128	-13.5
	Syracuse	1,000 sq ft roof area	150	0.128	-18.0
	Albany	1,000 sq ft roof area	77	0.128	-23.0
	Binghamton	1,000 sq ft roof area	66	0.128	-20.2
	Buffalo	1,000 sq ft roof area	65	0.128	-20.0
Auto Repair	Massena	1,000 sq ft roof area	78	0.128	-23.3
	NYC	1,000 sq ft roof area	116	0.128	-20.8
	Poughkeepsie	1,000 sq ft roof area	95	0.128	-21.9
	Syracuse	1,000 sq ft roof area	89	0.128	-21.9
	Albany	1,000 sq ft roof area	155	0.128	-11.0
	Binghamton	1,000 sq ft roof area	146	0.128	-10.5
	Buffalo	1,000 sq ft roof area	132	0.128	-10.0
Big Box Retail	Massena	1,000 sq ft roof area	150	0.128	-14.0
	NYC	1,000 sq ft roof area	187	0.128	-6.0
	Poughkeepsie	1,000 sq ft roof area	183	0.128	-8.5
	Syracuse	1,000 sq ft roof area	165	0.128	-12.0
	Albany	1,000 sq ft roof area	117	0.128	-28.0
	Binghamton	1,000 sq ft roof area	101	0.128	-26.0
	Buffalo	1,000 sq ft roof area	101	0.128	-24.0
Fast Food	Massena	1,000 sq ft roof area	124	0.128	-25.0
	NYC	1,000 sq ft roof area	170	0.128	-19.0
	Poughkeepsie	1,000 sq ft roof area	143	0.128	-23.5
	Syracuse	1,000 sq ft roof area	131	0.128	-28.0
	Albany	1,000 sq ft roof area	279	0.128	-47.0
	Binghamton	1,000 sq ft roof area	112	0.128	-43.5
Full Service	Buffalo	1,000 sq ft roof area	233	0.128	-40.0
Restaurant	Massena	1,000 sq ft roof area	282	0.128	-47.0
Restaurant	NYC	1,000 sq ft roof area	344	0.128	-30.0
	Poughkeepsie	1,000 sq ft roof area	160	0.128	-38.5
	Syracuse	1,000 sq ft roof area	307	0.128	-47.0
	Albany	1,000 sq ft roof area	155	0.128	-11.0
	Binghamton	1,000 sq ft roof area	146	0.128	-10.5
	Buffalo	1,000 sq ft roof area	132	0.128	-10.0
Grocery	Massena	1,000 sq ft roof area	150	0.128	-14.0
	NYC	1,000 sq ft roof area	187	0.128	-6.0
	Poughkeepsie	1,000 sq ft roof area	183	0.128	-8.5
	Syracuse	1,000 sq ft roof area	165	0.128	-12.0

Building Type	City	Unit	KWh/unit	KW/unit	Therm/unit
	Albany	1,000 sq ft roof area	90	0.128	-20.0
	Binghamton	1,000 sq ft roof area	62	0.128	-19.0
-	Buffalo	1,000 sq ft roof area	74	0.128	-18.0
Light Industrial	Massena	1,000 sq ft roof area	87	0.128	-21.0
	NYC	1,000 sq ft roof area	118	0.128	-14.0
	Poughkeepsie	1,000 sq ft roof area	94	0.128	-17.0
	Syracuse	1,000 sq ft roof area	102	0.128	-20.0
	Albany	1,000 sq ft roof area	225	0.128	-10.0
	Binghamton	1,000 sq ft roof area	196	0.128	-8.8
	Buffalo	1,000 sq ft roof area	224	0.128	-11.3
Motel	Massena	1,000 sq ft roof area	238	0.128	-6.3
	NYC	1,000 sq ft roof area	232	0.128	-10.9
	Poughkeepsie	1,000 sq ft roof area	207	0.128	-11.1
	Syracuse	1,000 sq ft roof area	250	0.128	-11.0
	Albany	1,000 sq ft roof area	196	0.624	-29.0
	Binghamton	1,000 sq ft roof area	145	0.086	-28.0
	Buffalo	1,000 sq ft roof area	152	0.426	-27.0
Primary School	Massena	1,000 sq ft roof area	191	0.116	-32.0
	NYC	1,000 sq ft roof area	270	0.652	-22.0
	Poughkeepsie	1,000 sq ft roof area	225	0.474	-25.5
	Syracuse	1,000 sq ft roof area	202	0.506	-33.0
	Albany	1,000 sq ft roof area	138	0.128	-16.0
	Binghamton	1,000 sq ft roof area	123	0.128	-18.0
	Buffalo	1,000 sq ft roof area	120	0.128	-15.6
Religious	Massena	1,000 sq ft roof area	135	0.128	-19.5
	NYC	1,000 sq ft roof area	168	0.128	-10.3
	Poughkeepsie	1,000 sq ft roof area	163	0.128	-19.7
	Syracuse	1,000 sq ft roof area	150	0.128	-18.8
	Albany	1,000 sq ft roof area	151	0.128	-12.0
	Binghamton	1,000 sq ft roof area	128	0.128	-11.5
	Buffalo	1,000 sq ft roof area	130	0.128	-11.0
Small Office	Massena	1,000 sq ft roof area	152	0.128	-14.0
	NYC	1,000 sq ft roof area	169	0.128	-8.0
-	oughkeepsie	1,000 sq ft roof area	164	0.128	-10.0
	Syracuse	1,000 sq ft roof area	157	0.128	-14.0
-	Albany	1,000 sq ft roof area	175	0.128	-17.0
-	Bingnamton	1,000 sq ft roof area	160	0.128	-16.0
Cmall Datail	Builaio	1,000 sq it roof area	143	0.128	-15.0
Small Retail	Massena	1,000 sq ft roof area	164	0.128	-21.0
		1,000 sq ft roof area	203	0.128	-12.0
-	Surroquaa	1,000 sq ft roof area	195	0.120	-14.5
	Albony	1,000 sq ft roof area	104	0.120	-10.0
-	Ringhamton	1,000 sq ft roof area	393	0.120	-40.4
-	Buffalo	1,000 sq ft roof area	324	0.120	-30.4
Warehouse	Massana	1,000 sq it roof area	300	0.120	-44.1
VALEIIUUSE	NVC	1,000 sq ft roof area	402	0.120	-41.4
	Poughkeensie	1 000 sq ft roof area	464	0.120	-63.7
	Svracuse	1.000 sq ft roof area	440	0.128	-52.2

Building Type	City	Unit	KWh/unit	KW/unit	Therm/unit
Other	Albany	1,000 sq ft roof area	188	0.128	-25.0
	Binghamton	1,000 sq ft roof area	142	0.128	-21.9
	Buffalo	1,000 sq ft roof area	149	0.128	-20.2
	Massena	1,000 sq ft roof area	175	0.128	-23.0
	NYC	1,000 sq ft roof area	211	0.128	-16.7
	Poughkeepsie	1,000 sq ft roof area	188	0.128	-21.0
	Syracuse	1,000 sq ft roof area	193	0.128	-23.3

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

APPENDIX J

COMMERCIAL HVAC UNIT SAVINGS

AIR SIDE ECONOMIZER

Building Type	City	System Type	Unit	KWh/unit
	Albany	Air-Side Economizer	ton	39
	Binghamton	Air-Side Economizer	ton	36
	Buffalo	Air-Side Economizer	ton	45
Assembly	Massena	Air-Side Economizer	ton	33
	NYC	Air-Side Economizer	ton	27
	Syracuse	Air-Side Economizer	ton	42
	Poughkeepsie	Air-Side Economizer	ton	33
	Albany	Air-Side Economizer	ton	165
Big Box Retail	Binghamton	Air-Side Economizer	ton	152
	Buffalo	Air-Side Economizer	ton	167
	Massena	Air-Side Economizer	ton	138
	NYC	Air-Side Economizer	ton	152
	Syracuse	Air-Side Economizer	ton	165
	Poughkeepsie	Air-Side Economizer	ton	159
	Albany	Air-Side Economizer	ton	49
	Binghamton	Air-Side Economizer	ton	47
	Buffalo	Air-Side Economizer	ton	53
Fast Food	Massena	Air-Side Economizer	ton	44
	NYC	Air-Side Economizer	ton	39
	Syracuse	Air-Side Economizer	ton	49
	Poughkeepsie	Air-Side Economizer	ton	44
	Albany	Air-Side Economizer	ton	38
	Binghamton	Air-Side Economizer	ton	35
	Buffalo	Air-Side Economizer	ton	41
Full Service	Massena	Air-Side Economizer	ton	32
Restaurant	NYC	Air-Side Economizer	ton	31
	Syracuse	Air-Side Economizer	ton	38
	Poughkeepsie	Air-Side Economizer	ton	35
	Albany	Air-Side Economizer	ton	45
	Binghamton	Air-Side Economizer	ton	39
	Buffalo	Air-Side Economizer	ton	38
Light Industrial	Massena	Air-Side Economizer	ton	33
	NYC	Air-Side Economizer	ton	25
	Syracuse	Air-Side Economizer	ton	54
	Poughkeepsie	Air-Side Economizer	ton	35
	Albany	Air-Side Economizer	ton	49
	Binghamton	Air-Side Economizer	ton	44
	Buffalo	Air-Side Economizer	ton	52
Primary School	Massena	Air-Side Economizer	ton	38
	NYC	Air-Side Economizer	ton	42
	Syracuse	Air-Side Economizer	ton	41
	Poughkeepsie	Air-Side Economizer	ton	46
	Albany	Air-Side Economizer	ton	202
Small Office	Binghamton	Air-Side Economizer	ton	195
	Buffalo	Air-Side Economizer	ton	195

Building Type	City	System Type	KWh/unit	
	Massena	Air-Side Economizer	ton	188
	NYC	Air-Side Economizer	ton	186
	Syracuse	Air-Side Economizer	ton	186
	Poughkeepsie	Air-Side Economizer	ton	194
	Albany	Air-Side Economizer	ton	107
	Binghamton	Air-Side Economizer	ton	101
Small Retail	Buffalo	Air-Side Economizer	ton	113
	Massena	Air-Side Economizer	ton	95
	NYC	Air-Side Economizer	ton	95
	Syracuse	Air-Side Economizer	ton	111
	Poughkeepsie	Air-Side Economizer	ton	101
	Albany	Air-Side Economizer	ton	9
	Binghamton	Air-Side Economizer	ton	10
	Buffalo	Air-Side Economizer	ton	7
Religious	Massena	Air-Side Economizer	ton	6
	NYC	Air-Side Economizer	ton	6
	Syracuse	Air-Side Economizer	ton	6
	Poughkeepsie	Air-Side Economizer	ton	7
	Albany	Air-Side Economizer	ton	3
	Binghamton	Air-Side Economizer	ton	5
	Buffalo	Air-Side Economizer	ton	2
Warehouse	Massena	Air-Side Economizer	ton	4
	NYC	Air-Side Economizer	ton	2
	Syracuse	Air-Side Economizer	ton	7
	Poughkeepsie	Air-Side Economizer	ton	4
	Albany	Air-Side Economizer	ton	71
	Binghamton	Air-Side Economizer	ton	66
	Buffalo	Air-Side Economizer	ton	71
Other	Massena	Air-Side Economizer	ton	61
	NYC	Air-Side Economizer	ton	61
	Syracuse	Air-Side Economizer	ton	70
	Poughkeepsie	Air-Side Economizer	ton	66

CLOSE APPROACH COOLING TOWERS

Building Type	City	System Type	kWh/ton	kW/ton
	Albany	Fan coil with Water Cooled Chiller	6.7	0.003
	Buffalo	Fan coil with Water Cooled Chiller	5.6	0.004
	Massena	Fan coil with Water Cooled Chiller	5.9	0.047
Dormitory	NYC	Fan coil with Water Cooled Chiller	7.7	-0.006
	Syracuse	Fan coil with Water Cooled Chiller	6.8	0.003
	Binghamton	Fan coil with Water Cooled Chiller	5.5	0.003
	Poughkeepsie	Fan coil with Water Cooled Chiller	8.0	0.003

ECONOMIZER

Building Type	City	System type	kWh/ton	kW/ton
		CV no econ	5.7	0
	Albany	CV econ	1.8	0
	-	VAV econ	2.3	0
High School		CV no econ	5.9	0
	Binghamton	CV econ	2.2	0
		VAV econ	2.4	0
		CV no econ	5.6	0
	Buffalo	CV econ	1.8	0
		VAV econ	1.8	0
		CV no econ	5.9	0
	Massena	CV econ	1.8	0
		VAV econ	1.8	0
		CV no econ	6.3	0
	NYC	CV econ	2.3	0
		VAV econ	3.2	0
		CV no econ	5.9	0
	Syracuse	CV econ	2.2	0
		VAV econ	2.4	0
	Poughkeepsie	CV no econ	5.9	0
		CV econ	2.2	0
		VAV econ	2.4	0
		CV no econ	11.8	0
	Albany	CV econ	2.8	0
		VAV econ	3.5	0
		CV no econ	12.4	0
	Binghamton	CV econ	3.0	0
		VAV econ	3.5	0
	Buffalo	CV no econ	14.0	0
		CV econ	3.4	0
		VAV econ	3.6	0
		CV no econ	10.4	0
Hotel	Massena	CV econ	3.1	0
		VAV econ	3.9	0
		CV no econ	10.4	0
	NYC	CV econ	3.1	0
		VAV econ	3.9	0
		CV no econ	12.9	0
	Syracuse	CV econ	3.1	0
		VAV econ	3.6	0
		CV no econ	11.1	0
	Poughkeepsie	CV econ	3.0	0
		VAV econ	11.8	0

Building Type	City	System type	kWh/ton	kW/ton
		CV no econ	12.0	0
	Albany	CV econ	5.0	0
	-	VAV econ	7.0	0
		CV no econ	11.0	0
	Binghamton	CV econ	5.0	0
		VAV econ	5.0	0
		CV no econ	11.0	0
	Buffalo	CV econ	5.0	0
		VAV econ	6.0	0
		CV no econ	12.0	0
	Massena	CV econ	5.0	0
		VAV econ	5.0	0
		CV no econ	14.0	0
	NYC	CV econ	5.0	0
		VAV econ	7.0	0
		CV no econ	11.0	0
	Syracuse	CV econ	5.0	0
		VAV econ	7.0	0
	Poughkeepsie	CV no econ	13.0	0
		CV econ	5.0	0
		VAV econ	7.0	0
Large Onice		CV no econ	14.0	0
	Albany	CV econ	9.0	0
		VAV econ	7.0	0
		CV no econ	14.0	0
	Binghamton	CV econ	8.0	0
		VAV econ	6.0	0
		CV no econ	14.0	0
	Buffalo	CV econ	8.0	0
		VAV econ	6.0	0
		CV no econ	13.0	0
	Massena	CV econ	8.0	0
		VAV econ	6.0	0
		CV no econ	16.0	0
	NYC	CV econ	10.0	0
		VAV econ	7.0	0
		CV no econ	14.0	0
	Syracuse	CV econ	9.0	0
		VAV econ	6.0	0
		CV no econ	15.0	0
	Poughkeepsie	CV econ	9.5	0
		VAV econ	7.0	0

Building Type	City	System type	kWh/ton	kW/ton
Large Retail		CV no econ	9.3	0
	Albany	CV econ	4.2	0
		VAV econ	6.3	0
		CV no econ	9.6	0
	Binghamton	CV econ	3.8	0
		VAV econ	4.9	0
		CV no econ	9.5	0
	Buffalo	CV econ	4.3	0
		VAV econ	5.6	0
		CV no econ	9.1	0
	Massena	CV econ	3.8	0
		VAV econ	6.0	0
		CV no econ	10.9	0
	NYC	CV econ	4.8	0
		VAV econ	8.6	0
		CV no econ	9.1	0
	Syracuse	CV econ	4.0	0
		VAV econ	7.3	0
		CV no econ	9.8	0
	Poughkeepsie	CV econ	4.2	0
		VAV econ	7.1	0
		CV no econ	5.6	0
	Albany	CV econ	3.6	0
		VAV econ	4.1	0
		CV no econ	5.0	0
	Binghamton	CV econ	3.2	0
		VAV econ	3.3	0
	Buffalo	CV no econ	5.0	0
		CV econ	3.1	0
		VAV econ	3.8	0
		CV no econ	5.1	0
University	Massena	CV econ	3.0	0
		VAV econ	3.8	0
		CV no econ	6.6	0
	NYC	CV econ	3.9	0
		VAV econ	5.7	0
		CV no econ	5.4	0
	Syracuse	CV econ	3.5	0
		VAV econ	4.1	0
		CV no econ	6.7	0
	Poughkeepsie	CV econ	3.6	0
		VAV econ	4.5	0

Building Type	City	System type	kWh/ton	kW/ton
		CV no econ	9.7	0
	Albany	CV econ	4.4	0
		VAV econ	5.0	0
		CV no econ	9.6	0
	Binghamton	CV econ	4.2	0
		VAV econ	4.2	0
		CV no econ	9.9	0
	Buffalo	CV econ	4.3	0
Other		VAV econ	4.5	0
	Massena	CV no econ	9.3	0
		CV econ	4.1	0
		VAV econ	4.4	0
	NYC	CV no econ	10.7	0
		CV econ	4.9	0
		VAV econ	5.9	0
		CV no econ	9.7	0
	Syracuse	CV econ	4.5	0
		VAV econ	5.1	0
		CV no econ	10.3	0
	Poughkeepsie	CV econ	4.6	0
		VAV econ	5.3	0

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

APPENDIX K

VARIABLE FREQUENCY DRIVES

Unit energy (kWh) savings for VFDs were estimated by building type, HVAC type and city using DOE-2.2 simulations of the prototype buildings with built-up HVAC systems. The simulations were run for each of the three built-up system types (CV no economizer, CV with economizer, and VAV with economizer) and the results were weighted according to the HVAC system weights shown in <u>Appendix B</u>. The results for each prototype are shown by measure and location below:

Hotel						
	Measure Unit Savings (kWh/hp)					
Climate	CW Pump	CHW Pump	HW Pump	Return Fan	Supply Fan	Tower Fan
Albany	73	1740	6559	326	250	1571
Binghamton	73	1745	6554	284	211	1423
Buffalo	75	1764	6551	321	247	1583
Massena	72	1802	6499	284	188	1377
NYC	75	1925	6603	332	242	1525
Poughkeepsie	73	2198	6563	286	201	1475
Syracuse	74	1854	6556	295	209	1497

Office

	Measure Unit Savings (kWh/hp)					
Climate	CW Pump	CHW Pump	HW Pump	Return Fan	Supply Fan	Tower Fan
Albany	1334	1231	981	1286	1646	269
Binghamton	1315	1195	905	1156	1463	233
Buffalo	1299	1196	938	1154	1467	255
Massena	1382	1258	981	1315	1625	248
NYC	1183	1176	845	1258	1605	407
Poughkeepsie	1208	1165	742	1240	1606	344
Syracuse	1295	1213	1005	1236	1578	292

Hospital

	Measure Unit Savings (kWh/hp)						
Climate	CW Pump	CHW Pump	HW Pump	Return Fan	Supply Fan	Tower Fan	
Albany	2053	1665	1142	1645	1860	413	
Binghamton	2053	1687	1142	1549	1681	380	
Buffalo	2053	1678	1142	1591	1731	416	
Massena	2053	1689	1142	1537	1588	395	
NYC	2053	1713	1142	1801	2137	574	
Poughkeepsie	2053	1718	1142	1694	1977	487	
Syracuse	2053	1671	1142	1618	1796	415	

Community College

	Measure Unit Savings (kWh/hp)						
Climate	CW Pump	CHW Pump	HW Pump	Return Fan	Supply Fan	Tower Fan	
Albany	606	683	497	429	452	216	
Binghamton	716	682	496	510	534	256	
Buffalo	663	631	460	471	495	237	
Massena	553	835	383	390	412	197	
NYC	419	399	290	293	312	150	
Poughkeepsie	464	441	321	325	346	165	
Syracuse	539	513	373	380	402	193	

High School

	Measure Unit Savings (kWh/hp)						
Climate	CW Pump	CHW Pump	HW Pump	Return Fan	Supply Fan	Tower Fan	
Albany	350	232	60	513	674	203	
Binghamton	359	234	58	509	661	169	
Buffalo	358	233	53	511	660	176	
Massena	357	238	65	518	663	187	
NYC	327	231	44	531	707	241	
Poughkeepsie	348	232	54	522	699	209	
Syracuse	346	236	59	527	692	210	

Large Retail

	Measure Unit Savings (kWh/hp)					
Climate	CW Pump	CHW Pump	HW Pump	Return Fan	Supply Fan	Tower Fan
Albany	1049	3421	3287	1085	1282	280
Binghamton	1059	3481	3241	1074	1266	217
Buffalo	1062	3462	3270	1082	1272	240
Massena	1053	3448	3246	1080	1257	251
NYC	1020	3310	3411	1091	1310	396
Poughkeepsie	1036	3385	3361	1093	1306	341
Syracuse	1054	3429	3298	1089	1289	296

Dormitory

	Measure Unit Savings (kWh/hp)						
Climate	CW Pump	CHW Pump	HW Pump	Tower Fan			
Albany	961	453	386	190			
Binghamton	963	453	386	143			
Buffalo	964	453	386	152			
Massena	966	451	388	166			
NYC	965	453	393	266			
Poughkeepsie	962	450	387	244			
Syracuse	966	452	388	204			

University

	Measure Unit Savings (kWh/hp)						
Climate	CW Pump	CHW Pump	HW Pump	Return Fan	Supply Fan	Tower Fan	
Albany	687	767	570	669	747	231	
Binghamton	701	757	571	591	621	185	
Buffalo	696	760	573	623	642	216	
Massena	705	754	579	673	718	195	
NYC	668	802	550	850	1038	308	
Poughkeepsie	683	775	558	789	959	261	
Syracuse	680	771	572	685	738	251	

For the city, measure, and building type combinations not addressed above, use data supplied by National Grid shown below. The unit savings estimates are based on data developed by NSTAR for the Massachusetts TRM⁵⁰⁴. These values were trued up to National Grid evaluation studies by computing the ratio of the savings by VFD application from the National Grid Massachusetts Energy Initiative program evaluation to the average value by application across the NSTAR data.

⁵⁰⁴ NSTAR VFD savings taken from Chan, T. Formulation of a Prescriptive Incentive for the VFD and Motors and VFD Impact Tables at NSTAR, June, 2010

This adjustment factor was then applied to each of the NSTAR values. The adjusted savings are shown below.

Building	Exh fan	CT fan	CHW pump	Boiler FW	HW pump	MAF	Return fan	Supply fan	WLHP circ
			• •	pump	• •				pump
University/College	2,011			1,788		1,976			1,594
Elm/HSchool	1,968			1,492		2,088			1,334
Multi-Family	1,768			1,806		1,892	902	1,025	1,934
Hotel/Motel	1,740			1694		2,067			1,788
Health	1,863			1812		1,842			1,912
Warehouse	1,828	195	199	1,545	934	1,982	823	936	1,468
Restaurant	1,899	424	381	1,526	916	1,613	936	1,059	1,845
Retail	1,707			1,504		1,469			1,561
Grocery	1,726	392	398	1,275	752	1,368	924	1,007	1,711
Offices	1,840			1440		2,054			1,685

Measure Unit Savings (kWh/hp)

Peak demand savings were taken from the NSTAR data, as shown below:

Building	Exh	CT fan	CHW	Boiler	HW	MAF	Return	Supply	WLHP
	fan		pump	FW	pump		fan	fan	circ
				pump					pump
University/College	0.119	-0.025	0.061	0.498	0.498	0.119	0.111	0.07	0.061
Elm/HSchool	0.411	-0.025	0.061	0.498	0.498	0.119	0.111	0.07	0.3
Multi-Family	0.119	-0.025	0.061	0.498	0.498	0.119	0.111	0.07	0.061
Hotel/Motel	0.119	-0.025	0.061	0.498	0.498	0.119	0.111	0.07	0.061
Health	0.119	-0.025	0.061	0.498	0.498	0.119	0.111	0.07	0.061
Warehouse	0.119	-0.025	0.061	0.498	0.498	0.284	0.111	0.07	0.061
Restaurant	0.284	-0.025	0.061	0.498	0.498	0.119	0.111	0.07	0.194
Retail	0.119	-0.025	0.061	0.498	0.498	0.119	0.111	0.07	0.061
Grocery	0.284	-0.025	0.061	0.498	0.498	0.119	0.111	0.07	0.194
Offices	0.119	-0.025	0.061	0.498	0.498	0.119	0.111	0.07	0.061

Measure Unit Demand Savings (kW/hp)

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

APPENDIX L

MINIMUM MOTOR EFFICIENCY – EISA STANDARD

The Energy Independence and Security Act (EISA) of 2007 established NEMA Premium as the new standard for electric motor efficiency, effective December 2010. The energy savings baseline efficiency for all normal replacement motors rebated after the new standards take effect is shown below:

	Nominal Full-Load Efficiency						
Motor		Open Motors	6	Er	nclosed Mot	ors	
norsepower	2 Pole	4 Pole	6 Pole	2 Pole	4 Pole	6 Pole	
1	77.0	85.5	82.5	77.0	85.5	82.5	
1.5	84.0	86.5	86.5	84.0	86.5	87.5	
2	85.5	86.5	87.5	85.5	86.5	88.5	
3	85.5	89.5	88.5	86.5	89.5	89.5	
5	86.5	89.5	89.5	88.5	89.5	89.5	
7.5	88.5	91.0	90.2	89.5	91.7	91.0	
10	89.5	91.7	91.7	90.2	91.7	91.0	
15	90.2	93.0	91.7	91.0	92.4	91.7	
20	91.0	93.0	92.4	91.0	93.0	91.7	
25	91.7	93.6	93.0	91.7	93.6	93.0	
30	91.7	94.1	93.6	91.7	93.6	93.0	
40	92.4	94.1	94.1	92.4	94.1	94.1	
50	93.0	94.5	94.1	93.0	94.5	94.1	
60	93.6	95.0	94.5	93.6	95.0	94.5	
75	93.6	95.0	94.5	93.6	95.4	94.5	
100	93.6	95.4	95.0	94.1	95.4	95.0	
125	94.1	95.4	95.0	95.0	95.4	95.0	
150	94.1	95.8	95.4	95.0	95.8	95.8	
200	95.0	95.8	95.4	95.4	96.2	95.8	
250	95.0	95.8	95.4	95.8	96.2	95.8	
300	95.4	95.8	95.4	95.8	96.2	95.8	
350	95.4	95.8	95.4	95.8	96.2	95.8	
400	95.8	95.8	95.8	95.8	96.2	95.8	
450	95.8	96.2	96.2	95.8	96.2	95.8	
500	95.8	96.2	96.2	95.8	96.2	95.8	

NEMA MG-1 Table 12-12 Full-Load Efficiencies for 60 Hz NEMA Premium[®] Efficient Electric Motors Rated 600 Volts or less (Random Wound)

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

APPENDIX M

GUIDELINES FOR EARLY REPLACEMENT CONDITION Getting Started

The full manual, beginning in Section 2, explains the concepts of the tables and their use, and the choices offered to PAs. It also contains various instructions on such matters as data retention and the tracking database. This first section contains the immediate directions to get a quick start on the simplest case. These tables can only be used regarding the proposed replacement of equipment that has not reached its prescribed Effective Useful Life (EUL). Two other conditions are pertinent to use of this page:

The PA accepts agrees to use the assumptions for each measure regarding the typical relationship between incremental costs and savings and the full costs and savings of replacing the older (but pre-EUL) equipment with the high efficiency equipment promoted by the program. The measures in question are listed in Table M-1 *without* an "a" or a "b" superscript.

If these conditions are met, the fundamental steps for calculation would be as follows:

- Calculate the full costs of replacing the old equipment with the program measure, including labor.
- Calculate the full first year savings of the program measure using the existing equipment as the baseline, assume such savings through the EUL of the new equipment, monetize the savings per the prescribed annual Long Run Avoided Costs (LRACs) estimates, and calculate the present value of this stream of monetized savings using Staff's discount rate. This present value is referred to herein as the Inflated Benefits.⁵⁰⁵
- Estimate the remaining useful life (RUL) of the old equipment in place.
- Turn to the measure-specific costs and savings tables of the measure in question (the measures are grouped by the EUL on Table M-1).
- Go down each table to the row for the estimated RUL and find the percentage adjustment factor in the column for the measure.
- Multiply the Inflated Benefits by the benefits factor.
- Multiply the full costs by the costs factor.
- For Total Resources Cost (TRC) analysis, use the two products from steps 6 and 7.
- For first year savings to report against approved program goals, use the full savings.

Introduction

In the EEPS Order issued on October 18, 2010 (p.9),⁵⁰⁶ the Commission stated, regarding TRC analysis of early replacements in individual projects, that it was ". . . directing Staff to develop a new approach, based on the dual baseline approach, which provides consistency between the treatment of savings and costs. The Director of the Office of Energy Efficiency and Environment is directed to compile and provide simplifying lookup tables, which provide early

⁵⁰⁵ "Inflated Benefits" is simply a concept designed to be an intermediate step in the computation of estimated dual baseline benefits, using the tables in this Appendix. It does not imply an assumption that the old equipment, absent the program, would have continued in use through the life of the new equipment.

⁵⁰⁶ Case 07-M-0548, <u>Order Approving Consolidation and Revision of Technical Manuals</u> (issued October 18, 2010).
replacement method energy savings consistent with the dual baseline concept as an attachment to the consolidated Technical Manual (TM)." Staff was also directed "to develop a consistent cost estimation approach which reflects the concept that the costs of making a high efficiency early replacement will avoid an end-of useful-life replacement with minimally code compliant equipment."

Early Replacement vs. Normal Replacement

Early replacement is defined in the Order as the replacement of equipment before it reaches its Effective Useful Life (EUL), whereas end-of-life or normal replacement refers to the replacement of equipment that has reached or passed the end of its measure-prescribed EUL. The crucial difference between end-of-life replacement and early replacement is that end-of-life/normal uses "incremental" costs and savings while early replacement uses "full" values:

- *Incremental savings* is defined as the annual energy use of the currently-on-the-market standard, minimally compliant equipment minus the annual energy use of the high efficiency equipment subsidized by the program.
- *Full savings* is defined as the annual energy use of the old equipment in place minus the annual energy use of the high efficiency equipment subsidized by the program.
- *Incremental cost* is defined as the full cost of new efficient equipment minus the cost of the currently-on-the-market standard, minimally-compliant equipment, plus the time value penalty (the present value cost of a dollar amount increases with earlier spending, see below).
- *Full cost* is simply the cost (including installation) of the new efficient equipment.

Early replacement not only accelerates savings to the electric grid but also allows PAs to claim greater first-year annual savings toward their annual energy goals because full savings are reported as the first-year savings. *If a PA cannot substantiate that the age of the equipment in place is less than its EUL and therefore a case of early replacement,* the replacement must be screened as normal (end of life) replacement, with the incremental savings reported as the first-year savings toward approved program goals.

In both normal and early replacement conditions, the establishment of the correct baseline is critical in accurately estimating gross energy and demand impacts. However, while the TM addresses the establishment of the baseline for normal replacement conditions, it rarely addresses the establishment of baselines for early replacement conditions. This <u>Appendix M</u> provides two sets of lookup tables and guidance designed to simplify the complex mathematical analysis of dual-baseline cases and reduce PA data needs. The first set of tables, for *typical* early replacement measure conditions as developed by TecMarket Works, reflects data, discussed below, that PAs might find it difficult to obtain. The second set of tables requires PAs to provide these data but still simplifies the calculations.

The standard early replacement condition, illustrated in Figure 1, involves a customer who replaces equipment before it reaches the end of its EUL. That is, the equipment is fully functioning and would continue to function for some period of time; referred to as the remaining useful life (RUL). However, the customer is induced by the program to replace this existing equipment with more efficient equipment. It is assumed that at the end of the RUL, absent the program, the customer would have installed equipment that would meet the existing efficiency

code or appliance standard, i.e., equipment that represents the market average efficiency or the efficiency that had become the industry standard (referred to as the *code/standard equipment*).

Energy savings in this example would consist of two portions. The customer would have experienced the full savings defined by Area X (energy use C-A for the RUL period T2-T1). At the end of the RUL, the savings for the period T3-T2 would be reduced to incremental savings defined by area Y. To carry out these calculations, information on two (dual) baselines is required, the energy use of the pre-existing equipment and the energy use of code/standard equipment. Information on energy use for the high efficiency equipment provided through the program will also be required.

The cost would also have to be calculated in a manner consistent with early replacement. In normal replacement situations, one would use the incremental cost that is defined as the cost of the new efficient equipment minus the cost of the code/standard equipment. In the early replacement case, the incremental cost is calculated in a slightly different manner. This calculation recognizes that, while the customer purchased efficient equipment with the assistance of the program, it would have purchased code/standard equipment at some time in the future, i.e., at the end of the RUL, had the program not existed.

Thus, one would first have to determine the full cost of the new efficient equipment (including the installation labor) at T1 *and* the full cost of the code/standard equipment (including the installation labor) at T2. The incremental costs would then be calculated as the cost of the new efficient equipment minus the present value (PV) of the cost that is avoided in the future for the code/standard equipment. Figure 2 presents a case in which the RUL is 4 years and, absent the

program, the code/standard equipment would have been installed in the fifth year. This calculation differs from the normal/end of life replacement incremental cost in adding the time value of money for spending earlier.

Figure 1. Incremental Cost Calculation for an Early Replacement of Equipment with an RUL of Four Years

Year	PV with Program	PV without Program
1	Full cost of high efficient equipment	0
2	0	0
3	0	0
4	0	0
5	0	Full cost of Code/Standard Equipment

The two key inputs necessary for these calculations, the energy use and the cost of the code/standard equipment, may not be readily available to PA field staff and are subject to change before the end of the equipment's RUL in the absence of a program. Note that the first set of tables in this <u>Appendix M</u> is based on current codes and standards. If a PA can document the needed energy use and cost data, it can choose to use the second set of tables. Both sets of tables are based on a "ratio approach".

The Ratio Approach to the Dual Baseline with the Lookup Tables

This approach focuses on the ratio of incremental savings to full savings⁵⁰⁷ and the ratio of incremental costs to full costs. These ratios, shown at the top of the attached tables, determine the factors that PAs can use to adjust the savings and cost data they do have. The first set of tables, the measure-specific set, allows the early replacement calculations to be performed in a manner that only requires the program administrator to have the Remaining Useful Life (RUL) of the equipment in place and the full savings and costs of the project. The ratios in the first set of tables (M-2 through M-19) were developed by TecMarket Works. The second set of tables (M-29 through M-38), the non-measure-specific set, requires the program administrators to provide their own incremental costs and savings ratios (based on the code/standard equipment). To use the second set of tables, PAs must match ratios that they have calculated to corresponding ratios in the tables.

The source of these two ratios for the first set of tables is the Database for Energy Efficient Resources (DEER), most recently updated by Itron for the California Public Utility Commission in 2009. Among other things, DEER contains energy use and costs for selected energy-efficient technologies and equipment in the residential and nonresidential sectors. DEER also contains the same information for typical equipment, those commonly installed in the marketplace.

To use either set of tables PAs will need to calculate the first-year annual savings as the annual energy use of the old equipment in place minus the annual energy use of the high efficiency equipment (the full savings). These full savings are then counted for each year of the EUL as is

⁵⁰⁷ The savings values ratios are not lifecycle present values but are rather the line segments in Figure 1 on the vertical axis: (B - A) divided by (C - A).

represented as area X in Figure 3. For each year of the EUL (T3 - T1) of the new equipment, the full kWh or therm savings are converted to dollar benefits by multiplying them by the Commission's avoided costs estimates for that year. As a preliminary step in using the tables, the PAs will calculate this "inflated lifecycle benefits" as the present value of the stream of full savings benefits for the EUL of the new equipment.

In cases of early replacement under the ratio approach, it is these inflated lifecycle benefits that must be adjusted using the appropriate *inflated lifecycle benefits adjustment factor*. For a given measure with a given EUL, RUL and ratio of incremental savings to full savings, the inflated lifecycle benefits adjustment factor is the ratio (presented as a percentage) of the present value of the dual baseline lifecycle benefits (X+Y) illustrated in Figure 1 to the present value of the inflated lifecycle benefits illustrated in Figure 3.

PAs can obtain these factors from either the set of DEER-based tables or from the set of PAbased tables if a PA can calculate its own incremental savings to full savings ratios.

Under the Commission requirement of consistent treatment of savings and costs, the full costs⁵⁰⁸ must also be adjusted downward. PAs can obtain the *full cost adjustment factors* from either the DEER-based Tables based on typical ratios of incremental cost to full cost or from the PA-based Tables if a PA can calculate its own incremental cost to full cost ratios. The DEER-based set of lookup tables runs from M-2 through M-28. Of these, M-2 through M-10 cover benefits, M-11 through M-19 costs, and M-20 through M-28 adjusted EULs. The PA-based set of lookup tables

⁵⁰⁸ Full costs include the capital cost of the new efficient equipment plus installation cost.

runs from M-29 through M-47. Of these, M-29 through M-37 cover benefits, M-38 all costs (only the RUL matters, not the EUL), and M-39 through M-47adjusted EULs. **DEER-Based Look-Up Tables**

The first set of tables includes look-up tables M-2 through M-10, which present the *Inflated Lifecycle Benefit Adjustment Factors*. The tables are based primarily on data contained in the California 2009 DEER. For each qualified equipment type, the median ratio of incremental savings to the full savings was calculated. These ratios along with the RULs, ranging from 1 year to the EUL minus 1 year, are shown in the look-up tables and are used to derive the factors needed to adjust the inflated lifecycle benefits.

Tables M-11 through M-19 present the *full cost adjustment factors*, for the same equipment addressed in Tables M-2 through M-10, for the same RUL ranges. For each qualified equipment type, the median ratio of incremental costs to the full costs was calculated.

To use these tables of typical ratios, a PA must have gathered the following four pieces of information:

- the EUL of the new efficient equipment,
- the RUL of the old equipment in place,
- the full savings of the equipment (annual energy use of the old equipment in place minus the annual energy of the high efficiency equipment supported by the program), and
- the full costs (including installation)

The EUL for a given measure is obtained from Table M-1, which is a compilation of the EULs for all the relevant measures in the consolidated Technical Manual effective January 1, 2011 that could qualify for early replacement⁵⁰⁹. The RUL⁵¹⁰, the full savings, and the full costs are provided by the program implementer. Note that documentation for PA estimates of these data must be retained for possible Staff review. Table M-1 also presents the normal replacement baseline equipment against which each of the 29 measures covered in this table is compared. Note that the lookup tables apply only to the 23 measures without an *a* or *b* designation in Table M-1.

Table M-1. Early Replacement Measures, EULs, and Baselines

⁵⁰⁹ Early replacement is inappropriate for such equipment as wall insulation, right sizing, setback thermostats, and sub-metering since nothing is being replaced. Lighting equipment has also been excluded since it is expected to be treated as pre-qualified.

⁵¹⁰ Upon request, Staff will provide a suggested questionnaire to assist in the determination of the RUL.

Measures	EUL	Normal Replacement Baseline
Heat Pump Water Heater: Residential	10	Code Electric Storage Water Heater
Room Air Conditioner: Residential	10	EPACT Room Air Conditioner
Clothes Washer: Single Family: Residential	11	EPACT Clothes Washer
ENERGY STAR Dishwashers: Residential	11	EPACT Dishwasher
Water Heater: Gas: Residential	11	Code Gas Storage Water Heater
Energy Star Dehumidifier: Residential ^a	12	Standard Efficiency Dehumidifier
Refrigerators: Nonresidential	12	EPACT Refrigerator
Indirect Water Heaters: Residential	13	Code Gas Storage Water Heater
Water Heater: Electric: Residential	13	Code Electric Storage Water Heater
Clothes Washer: Multi-Family Residential	14	EPACT Clothes Washer
Air Compressor Upgrade: Nonresidential	15	Standard Efficiency Rotary Screw Compressor
Central Air Conditioning: Residential	15	Code Central AC with gas heat
Central Air Source Heat Pumps: Residential	15	Code Central Air Source Heat Pump
Cool Roof: Nonresidential ^a	15	Standard Roof
Cooling Tower: Nonresidential ^a	15	Standard Efficiency Cooling Tower
Efficient Air-Cooled Refrigeration Condenser: Nonresidential ^a	15	Standard Efficiency Refrigeration Condenser
Indirect Water Heaters: Nonresidential	15	Code Gas Storage Water Heater
Motors: Nonresidential ^b	15	EISA Minimum Efficiency Motor
Packaged Air Conditioners (Central AC): Nonresidential	15	Code Packaged Air Conditioner
Packaged Air Source Heat Pumps (CAC Cooling Only): Nonresidenti	15	Code Packaged Air Source Heat Pump
Water Heaters: Nonresidential (Gas & Electric)	15	Code Storage Water Heater
Refrigerators: Residential	17	EPACT Refrigerator
Chillers: Nonresidential	20	Code Chiller
Gas Furnaces and Boilers: Nonresidential	20	Code Furnace and Boiler
High Efficiency Gas Furnaces: Residential	20	Code Furnace
High Performance Glazing: Nonresidential ^b	20	Code Glazing
High Performance Windows (Gas Heating Only): Residential	20	Code Window
Instantaneous Water Heater: Residential	20	Code Storage Water Heater
Gas Boilers: Residential	25	Code Boiler

EPACT refers to efficiency standards promulgated by the Energy Policy and Conservation Act of 2005

EISA refers to efficiency standards promulgated by the Energy Independence and Security Act of 2007

Code refers to New York State Construction codes, which reference ASHRAE standards.

For measures assigned an **a**, the efficiency of the old in place unit is still the common practice or no new standards have been adopted, i.e., the baseline for the full savings and the incremental savings are the same. As a result, the ratio of incremental to full savings is near 1.0, meaning that a PA can claim the full savings for the entire EUL of the new equipment (areas X and Y in Figure 4). Therefore, the lookup tables do not apply.

For these measures assigned a **b**, the high efficiency equipment subsidized by the program is consistent with current code or standards. For these measures, the incremental savings are zero and thus the ratio of incremental to full savings is 0.0.This means that a PA can claim full savings for only the RUL (area X in Figure 5), after which the high-efficiency replacement would have occurred anyway. Therefore, the lookup tables do not apply.

After obtaining the four pieces of information listed above, the program implementer can determine the appropriate inflated lifecycle benefits adjustment factor by which to multiply the inflated lifecycle benefits and the full cost adjustment factor by which to multiply the full costs. These adjusted inflated lifecycle benefits and adjusted full costs are to be used in the TRC ratio in the screening of measures in specific projects.

4.1.1 Table Organization

The DEER-Based Tables are divided into two groups:

- Inflated Lifecycle Benefit Adjustment Factors (Tables M-2 through M-10)
- Full-Cost Adjustment Factor (Tables M-11 through M-19)

Each set of tables addresses the same 23 measures or varieties of measures grouped by the EUL.

In each table, the left *column* contains the RULs from 1 year through the EUL minus 1 year. For example, Table M-5 presents Inflated Lifecycle Benefit Adjustment Factors for measures with an EUL of 15 years. Therefore, Table M-5 contains RULs from 1 through 14.

- The *first row* of each table contains the names of each measure addressed in the table.
- The *second row* of each table indicates whether the measure is residential, non-residential or both.
- The *third row* of each table lists the median ratio associated with each measure. For Tables M-2 through M-10 and Tables M-20 through M-28, the ratio is the ratio of the incremental savings to the full savings for each measure. For Tables M-11 through M-19, the ratio is the ratio of the incremental costs to the full costs for each measure.

The remaining *cells* in the matrix contain:

- For Tables M-2 through M-10, the cells contain the Inflated Lifecycle Benefit Adjustment Factors
- For Tables M-11 through M-19, the cells contain the Full-Cost Adjustment Factors

4.1.2 Example

Consider the following example for a group of five measures, residential and non-residential air conditioners (central ACs/packaged units) covering four levels of efficiency, each with an EUL of 15 years:

- non-residential domestic electric water heaters (service hot water),
- non-residential domestic gas water heaters,
- non-residential indirect water heaters, and
- non-residential air compressors.

Table M-5 presents the inflated lifecycle benefits adjustment factors for these five measures. For central air conditioners, the program implementer must determine the SEER of the new efficient unit, estimate the RUL for the old unit in place, and select the appropriate lifecycle benefits adjustment factor. For example, if the SEER of the new efficient unit is 17 and the estimated RUL is 4 years, Table M-5 shows that the *inflated lifecycle benefits adjustment factor* is 0.63. Thus, the inflated lifecycle benefits should be multiplied by 0.63.

For a central air conditioner with a SEER of 17 and an estimated RUL of 4 years, Table M-14 shows that the *full-cost adjustment factor* is 0.44. Thus, the full cost of the new efficient central air conditioner should be multiplied by the full-cost adjustment factor of 0.44.

4.1.3 Trends on the Lookup Tables and Calculation of Ratios

This section discusses the directions in which RULs and the savings and costs ratios affect the adjustment factors, and illustrates how the ratios are calculated.

- *Tables M-2 through M-10*: The longer the RUL is, the larger the share of the inflated lifecycle benefits that a PA can claim. Also, the greater the ratio of incremental savings to full savings; the larger the share of the inflated lifecycle benefits that a PA can claim. Consider the following example of equipment with an EUL of 10 years and annual kWh use of 2,000 kWh that is removed in its 6th year (RUL=4 years) and replaced with an energy efficient version of the equipment with an annual kWh use of 1,400 kWh. The full savings are 600 kWh (2,000 1,400). It is assumed that in four years the customer would have installed equipment that, at a minimum, met the current efficiency code of annual energy use. The ratio will change depending on the efficiency of the code/standard equipment:
 - If the kWh use associated with code/standard is 1,600 kWh, then the incremental savings = (1,600 1,400) or 200 and the ratio = (200/600) or 0.33.
 - If the kWh use associated with code/standard is 1800 kWh, then the incremental savings = (1,800 1,400) or 400 and the ratio = (400/600) or 0.67.

A less strict code (one that allows higher consumption) allows a PA to claim a larger share of the inflated lifecycle benefits. In other words, the higher the kWh use associated with the code/standard equipment, the more the program is accomplishing in avoiding standard equipment.

- *Tables M-11 through M-19*: The longer the RUL is, the larger the share of the unadjusted costs for a PA to include (larger time value penalty). Also, the greater the ratio of incremental costs to full costs is, the larger the share of the unadjusted costs for a PA to include. Continuing with the above example, assume that the full cost of the energy efficient equipment is \$2,000. It is assumed that in four years the customer would have installed code/standard equipment. The ratio will change depending on the cost of the code/standard equipment:
 - If the full cost of the minimally compliant equipment is 1,400, then the incremental cost = 600 and the ratio = 600/2,000 or 0.30.
 - If the full cost of the minimally compliant equipment is \$1,800, then the incremental cost = \$200 and the ratio = (\$200/\$2,000) or 0.10.
- The higher cost of the minimally compliant equipment, which lowers the incremental cost, allows a PA to take into account a smaller portion of the full cost of the efficient measure when calculating a TRC. In other words, the higher the cost of the minimally compliant equipment that the customer would have incurred without the program, the lower the cost of the program.

4.2. PA-Based Look-Up Tables

If a PA is able to calculate its own ratio of the incremental savings to full savings and/or the ratio of incremental costs to full cost, then they may choose to use the second set of tables. If a PA chooses to use its own savings ratio and/or cost ratio, it should identify the ratio in the appropriate tables (M-29 through M-47) that is closest to the one(s) it developed. These 19 tables are for the most part organized and interpreted in the same manner as Tables M-2 through M-28. The only exceptions are that the ratios range⁵¹¹ from 0.95 to .05 in increments of 0.05, and there are no measure designations. To use these tables, a PA will still need to gather the same four pieces of information needed to use the first set of tables:

- the EUL of the new efficient equipment,
- the RUL of the old equipment in place,
- the full savings of the equipment (annual energy use of the old equipment in place minus the annual energy of the high efficiency equipment supported by the program), and
- the full costs (including installation)

Additionally, the PA will need documented estimates of incremental costs and savings in order to calculate:

- The ratio of incremental savings to full savings, and/or
- The ratio of incremental costs to full cost

⁵¹¹ The lookup tables do not apply to measures that have a ratio of *incremental savings to full savings* or a ratio of *incremental costs to full costs* of 1.0 or 0.0 for the same reasons provided earlier in Section 2.1.

Note that all documentation for PA estimates of this data must be retained for Staff review, in accordance with Guidance Document EE-08, dated March 31, 2014. This guidance document can be found at:

www3.dps.ny.gov/W/PSCWeb.nsf/All/31D14D1DDC55FB2185257B240062B398?OpenDocum ent

Program-Tracking Database Requirements

The program tracking databases are maintained by the PAs for the purposes of current reporting and future impact evaluations. The Impact Evaluation section has many fields not used for current reporting. The Department of Public Service hereby adds, for cases of early replacement, six additional required variables.

Type of Installation (TRC Approach)⁵¹²,

- The Adjusted Full Savings (full savings multiplied by the full-savings adjustment factor),
- The Adjusted Full Cost (full cost multiplied by the full-cost adjustment factor),
- The Ratio of Incremental Savings to Full Savings,
- The Ratio of Incremental Costs to Full Costs, and
- The *Adjusted EUL* (discussed below)

The Adjusted EUL is defined as that period of years over which the full savings would be claimed such that it matches the present value dollar benefits of the underlying dual baseline. That is, the EUL of the new equipment in Figure 6 below, represented by Tx - T1, is adjusted so that the present value of lifecycle benefits represented by area X in Figure 6 is equivalent to the present value of the lifecycle benefits represented by the sum of areas X and Y in Figure 1.

The longer the RUL is, the larger the adjusted EUL. This follows the same logic as the case of the *inflated lifecycle benefit adjustment factors* except that the result is an adjusted EUL (that

⁵¹² ER=Early Replacement; NR=Normal Replacement; SC=Special Circumstance; AO=Add On. Add on refers to adding something, which replaces nothing. Examples include adding controls to a boiler that had none, or adding insulation where there was none or some. Add-on measures are modeled at full costs and full savings for the length of their EULs. The full savings are reported toward first-year goals.

portion of the EUL for which the PV of using the full savings would equal the PV of the dual baseline savings).

PAs can obtain the adjusted EULs from the DEER-Based Tables based on typical ratios of incremental savings to full savings or from the PA-Based Tables if a PA can calculate its own savings ratios. The adjusted EUL is not used for TRC screening, but for the program's tracking database. The tables are organized in the same way as the earlier tables. The only difference is that the cells in the matrix contain adjusted EULs in years. Tables M-20 through M-28 contain DEER-Based adjusted EULs while Tables M-39 through M-47 contain PA-Based adjusted EULs.

	Boiler-G
	Res
	Median Ratio of Incremental Savings to Full Savings
	0.15
	Artificial Lifecycle Benefit
RUL	Adjustment Factors
1	20%
2	26%
3	32%
4	37%
5	42%
6	47%
7	52%
8	56%
9	60%
10	64%
11	68%
12	68%
13	71%
14	75%
15	78%
16	81%
17	84%
18	86%
19	89%
20	91%
21	94%
22	94%
23	96%
24	98%
EUL =	25

Table M-3. Inflated Lifecycle Benefit Adjustment Factors: Chillers, Furnaces, Non-Res Boilers, and High Performance Windows

	Chiller: Air Cooled Recip and Screw	Chiller: Water Cooled Recip	Chiller: Water Cooled Screw < 150 ton	Chiller: Water Cooled Screw 150-300 ton	Chiller: Water Cooled Screw > 300 ton	Chiller: Water Cooled Centrifugal < 150 ton	Chiller: Water Cooled Centrifugal 150- 300 ton	Chiller: Water Cooled Centrifugal > 300 ton	Boiler-G	Furnace-G (AFUE 90)	Furnace-G (AFUE 92)	Furnace-G (AFUE 94)	Furnace-G (AFUE 96)	High Performance Windows-G
	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res
	Median Ratio of Incremental Savings to Full Savings													
	0.50	0.15	0.37	0.31	0.69	0.58	0.38	0.31	0.27	0.44	0.48	0.51	0.54	0.63
RUL	Artificial Lifecycle Benefit Adjustment Factors													
1	53%	23%	42%	36%	72%	63%	42%	36%	35%	47%	53%	53%	58%	68%
2	58%	29%	47%	42%	72%	63%	47%	42%	35%	53%	58%	58%	63%	68%
3	63%	36%	53%	47%	76%	67%	53%	47%	41%	58%	58%	63%	63%	72%
4	63%	42%	58%	53%	76%	72%	58%	53%	47%	63%	63%	68%	68%	72%
5	67%	47%	58%	58%	80%	72%	58%	58%	53%	63%	68%	68%	72%	76%
6	72%	53%	63%	58%	80%	76%	63%	58%	58%	68%	68%	72%	72%	80%
7	72%	53%	67%	63%	84%	76%	67%	63%	63%	72%	72%	76%	76%	80%
8	76%	58%	72%	67%	84%	80%	72%	67%	68%	72%	76%	76%	80%	84%
9	80%	63%	72%	72%	87%	84%	72%	72%	68%	76%	76%	80%	80%	84%
10	80%	67%	76%	76%	87%	84%	76%	76%	72%	80%	80%	80%	84%	87%
11	84%	72%	80%	76%	91%	87%	80%	76%	76%	80%	84%	84%	84%	87%
12	87%	76%	84%	80%	91%	87%	84%	80%	80%	84%	84%	87%	87%	91%
13	87%	80%	84%	84%	94%	91%	84%	84%	84%	87%	87%	87%	87%	91%
14	91%	84%	87%	87%	94%	91%	87%	87%	84%	87%	91%	91%	91%	94%
15	91%	87%	91%	87%	94%	94%	91%	87%	87%	91%	91%	91%	94%	94%
16	94%	91%	91%	91%	97%	94%	91%	91%	91%	94%	94%	94%	94%	94%
17	94%	91%	94%	94%	97%	97%	94%	94%	94%	94%	94%	94%	97%	97%
18	97%	94%	97%	97%	97%	97%	97%	97%	97%	97%	97%	97%	97%	97%
19	100%	97%	97%	97%	100%	100%	97%	97%	97%	97%	97%	100%	100%	100%
EUL =	20													

	Refrigerator-E
	Res
	Median Ratio of Incremental
	Savings to Full Savings
	0.11
	Artificial Lifecycle Benefit
RUL	Adjustment Factors
1	17%
2	25%
3	32%
4	39%
5	46%
6	52%
7	58%
8	64%
9	69%
10	74%
11	79%
12	79%
13	84%
14	88%
15	92%
16	96%
EUL =	17

Table M-4. Inflated Lifecycle Benefit Adjustment Factors: Residential Refrigerators

Table M-5. Inflated Lifecycle Benefit Adjustment Factors: Central Air Conditioners, Air Source Heat Pumps, Non-Res Water Heaters, Indirect Water Heaters, and Air Compressor Upgrades

	Central Air conditioner (SEER 14)	Central Air conditioner (SEER 15)	Central Air conditioner (SEER 16)	Central Air conditioner (SEER 17)	Central Air conditioner (SEER 18)	DHW-E	DHW-G	Indirect Water Heater-G	Air Compressor Upgrade-E
	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Non-Res	Non-Res	Non-Res	Non-Res
			Med	ian Ratio of Inc	cremental Savi	ngs to Full Sav	vings		
	0.19	0.31	0.38	0.44	0.48	0.60	0.21	0.34	0.48
RUL			A	rtificial Lifecyc	le Benefit Adju	ustment Factor	S		
1	27%	35%	50%	50%	56%	63%	35%	42%	50%
2	35%	43%	50%	56%	56%	69%	35%	49%	56%
3	43%	50%	56%	56%	63%	69%	42%	49%	63%
4	50%	56%	56%	63%	69%	75%	49%	56%	69%
5	56%	63%	63%	69%	69%	75%	56%	63%	69%
6	56%	63%	69%	69%	75%	80%	63%	69%	75%
7	63%	69%	75%	75%	75%	80%	63%	69%	75%
8	69%	75%	75%	80%	80%	86%	69%	75%	80%
9	75%	80%	80%	80%	86%	86%	75%	80%	86%
10	80%	80%	86%	86%	86%	91%	80%	86%	86%
11	86%	86%	86%	91%	91%	91%	86%	86%	91%
12	91%	91%	91%	91%	91%	95%	91%	91%	91%
13	91%	95%	95%	95%	95%	95%	91%	96%	95%
14	95%	95%	95%	95%	95%	100%	96%	96%	95%
EUL =	15								

	Clothes Washer-G			
	MF Res			
	Median Ratio of Incremental Savings to Full Savings			
0.39				
	Artificial Lifecycle Benefit			
RUL	Aujustine ill Factors			
1	45%			
2	52%			
3	59%			
4	59%			
5	66%			
6	72%			
7	72%			
8	78%			
9	84%			
10	84%			
11	90%			
12	95%			
13	95%			
EUL =	14			

Table M-6. Inflated Lifecycle Benefit Adjustment Factors: Multi-Family Clothes Washers

 Table M-7. Inflated Lifecycle Benefit Adjustment Factors: Residential Electric and Indirect Water Heaters

	DHW-E	Indirect Water Heater-G					
	Res	Res					
	Median Ratio of Incremental Savings to Full Savings						
	0.60	0.34					
RUL	Artificial Lifecycle Benefit Adjustment Factors						
1	69%	46%					
2	69%	46%					
3	69%	54%					
4	76%	62%					
5	76%	62%					
6	83%	69%					
7	83%	76%					
8	89%	82%					
9	89%	82%					
10	94%	89%					
11	94%	94%					
12	100%	94%					
EUL =	13						

Refrigerator-E
Non-Res
Median Ratio of Incremental
Savings to Full Savings
0.34
Artificial Lifecvcle Benefit
Adjustment Eactors
Aujustment Factors
41%
50%
58%
58%
66%
73%
81%
81%
87%
94%
94%
12

Table M-8. Inflated Lifecycle Benefit Adjustment Factors: Non-Res Refrigerators

 Table M-9. Inflated Lifecycle Benefit Adjustment Factors: Clothes Washers, Dishwashers, and Residential Gas Water Heaters

	Clothes Washer-E	Dishwasher-E	DHW-G					
	Res	Res	Res					
	Median Ratio of Incremental Savings to Full Savings							
	0.39	0.33	0.21					
RUL	Artific	Artificial Lifecycle Benefit Adjustment Factors						
1	43%	43%	33%					
2	53%	53%	43%					
3	62%	53%	43%					
4	62%	62%	52%					
5	70%	70%	61%					
6	78%	78%	70%					
7	78%	78%	78%					
8	86%	86%	86%					
9	93%	93%	86%					
10	93%	93%	93%					
EUL =	11							

Table M-10. Inflated Lifecycle Benefit Adjustment Factors: Heat Pump Water Heaters and Room A/C

	Heat Pump Water Heater-E	Room Air Conditioner-E					
	Res	Res					
	Median Ratio of Incremental Savings to Full Savings						
	0.87	0.25					
RUL	Artificial Lifecycle Bene	efit Adjustment Factors					
1	92%	36%					
2	92%	47%					
3	92%	57%					
4	92%	57%					
5	92%	66%					
6	92%	75%					
7	100%	84%					
8	100%	84%					
9	100%	92%					
EUL =	10						

	Boiler-G
	Res
	Median Ratio of Incremental
	Cost to Full Cost
	0.16
	Full Cost Adjustment Festers
RUL	Full Cost Adjustment Factors
1	20%
2	25%
3	28%
4	32%
5	36%
6	39%
7	42%
8	45%
9	48%
10	51%
11	53%
12	56%
13	58%
14	60%
15	62%
16	64%
17	66%
18	68%
19	70%
20	71%
21	73%
22	74%
23	75%
24	77%
EUL =	25

Table M-11. Full-Cost Adjustment Factors: Residential Boilers

	Chiller: Air Cooled Recip and Screw	Chiller: Water Cooled Recip	Chiller: Water Cooled Screw < 150 ton	Chiller: Water Cooled Screw 150- 300 ton	Chiller: Water Cooled Screw > 300 ton	Chiller: Water Cooled Centrifugal < 150 ton	Chiller: Water Cooled Centrifugal 150- 300 ton	Chiller: Water Cooled Centrifugal > 300 ton	Boiler-G	Furnace-G (AFUE 90)	Furnace-G (AFUE 92)	Furnace-G (AFUE 94)	Furnace-G (AFUE 96)	High Performance Windows-G
	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res
	Median Ratio of Incremental Cost to Full Cost													
	0.18	0.03	0.16	0.13	0.12	0.21	0.24	0.33	0.48	0.28	0.31	0.34	0.36	0.10
						Full Co	st Adiustment	Factors						
RUL				1	1									
1	22%	8%	20%	18%	17%	25%	28%	36%	51%	32%	35%	37%	39%	15%
2	26%	13%	25%	22%	21%	29%	32%	40%	53%	35%	38%	41%	42%	19%
3	30%	17%	28%	26%	25%	33%	35%	43%	56%	39%	41%	44%	45%	23%
4	34%	22%	32%	30%	29%	36%	39%	46%	58%	42%	44%	47%	48%	27%
5	37%	26%	36%	33%	33%	40%	42%	49%	60%	45%	47%	50%	51%	31%
6	41%	30%	39%	37%	36%	43%	45%	51%	62%	48%	50%	52%	54%	35%
7	44%	33%	42%	40%	40%	46%	48%	54%	64%	51%	53%	55%	56%	38%
8	47%	37%	45%	43%	43%	49%	50%	56%	66%	53%	55%	57%	58%	41%
9	49%	40%	48%	46%	46%	51%	53%	59%	68%	56%	57%	59%	60%	44%
10	52%	43%	51%	49%	48%	54%	56%	61%	70%	58%	60%	61%	63%	47%
11	54%	46%	53%	52%	51%	56%	58%	63%	71%	60%	62%	63%	64%	50%
12	57%	49%	56%	54%	54%	58%	60%	65%	73%	62%	64%	65%	66%	53%
13	59%	52%	58%	57%	56%	61%	62%	67%	74%	64%	66%	67%	68%	55%
14	61%	54%	60%	59%	58%	63%	64%	68%	75%	66%	67%	69%	70%	57%
15	63%	57%	62%	61%	61%	65%	66%	70%	77%	68%	69%	70%	71%	60%
16	65%	59%	64%	63%	63%	66%	68%	72%	78%	69%	71%	72%	73%	62%
17	67%	61%	66%	65%	65%	68%	69%	73%	79%	71%	72%	73%	74%	64%
18	69%	63%	68%	67%	66%	70%	71%	74%	80%	73%	74%	75%	76%	66%
19	70%	65%	70%	69%	68%	71%	73%	76%	81%	74%	75%	76%	77%	67%
EUL =	20													

Table M-12. Full-Cost Adjustment Factors: Chillers, Furnaces, Non-Res Boilers, and High Performance Windows

Table M-13.	Full-Cost	Adjustment	Factors:	Residential	Refrigerators

	Refrigerator-E
	Res
	Median Ratio of Incremental Cost to Full Cost
	0.12
RUL	Full Cost Adjustment Factors
1	17%
2	21%
3	25%
4	29%
5	33%
6	36%
7	40%
8	43%
9	46%
10	48%
11	51%
12	54%
13	56%
14	58%
15	61%
16	63%
EUL =	17

Table M-14. Full-Cost Adjustment Factors: Central Air Conditioners, Air Source Heat Pumps, Non-Res Water Heaters,Indirect Water Heaters, and Air Compressor Upgrades

	Central Air Conditioner/Air Source Heat Pumps (SEER 14)	Central Air Conditioner/Air Source Heat Pumps (SEER 15)	Central Air Conditioner/Air Source Heat Pumps (SEER 16)	Central Air Conditioner/Air Source Heat Pumps (SEER 17)	Central Air Conditioner/Air Source Heat Pumps (SEER 18)	DHW-E	DHW-G	Indirect Water Heater-G	Air Compressor Upgrade-E		
	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Non-Res	Non-Res	Non-Res	Non-Res		
	Median Ratio of Incremental Cost to Full Cost										
	0.10	0.20	0.26	0.31	0.37	0.25	0.22	0.93	0.46		
	Full Cost Adjustment Factors										
RUL			1		· · · · · · · · · · · ·	I					
1	15%	24%	30%	35%	40%	29%	26%	93%	49%		
2	19%	28%	34%	38%	43%	33%	30%	94%	51%		
3	23%	32%	37%	41%	46%	36%	34%	94%	54%		
4	27%	35%	40%	44%	49%	39%	37%	94%	56%		
5	31%	39%	43%	47%	52%	43%	40%	95%	59%		
6	35%	42%	46%	50%	54%	46%	43%	95%	61%		
7	38%	45%	49%	53%	57%	48%	46%	95%	63%		
8	41%	48%	52%	55%	59%	51%	49%	95%	65%		
9	44%	51%	54%	57%	61%	54%	52%	96%	67%		
10	47%	53%	57%	60%	63%	56%	54%	96%	68%		
11	50%	56%	59%	62%	65%	58%	57%	96%	70%		
12	53%	58%	61%	64%	67%	61%	59%	96%	72%		
13	55%	60%	63%	66%	69%	63%	61%	97%	73%		
14	57%	62%	65%	67%	70%	65%	63%	97%	74%		
EUL =	15										

	Clothes Washer-G
	MF Res
	Median Ratio of Incremental
	Cost to Full Cost
	0.24
RUL	Full Cost Adjustment Factors
1	28%
2	32%
3	35%
4	39%
5	42%
6	45%
7	48%
8	50%
9	53%
10	56%
11	58%
12	60%
13	62%
EUL =	14

Table M-15. Full-Cost Adjustment Factors: Multi-Family Clothes Washers

Table M-16. Full-Cost Adjustment Factors: Residential Electric and Indirect Water Heaters

	DHW-E	Indirect Water Heater-G								
	Res	Res								
	Median Ratio of Incremental Cost to Full Cost									
	0.25 0.93									
RUL	Full Cost Adju	stment Factors								
1	29%	93%								
2	33%	94%								
3	36%	94%								
4	39%	94%								
5	43%	95%								
6	46%	95%								
7	48%	95%								
8	51%	95%								
9	54%	96%								
10	56%	96%								
11	58%	96%								
12	61%	96%								
EUL =	13									

Table M-17. Full-Cost Adjustment Factors: Non-Residential Refrigerators

	Refrigerator-E										
	Non-Res										
	Median Ratio of Incremental										
	Cost to Full Cost										
	0.05										
	Full Cost Adjustment Factors										
RUL	Tuli Cost Aujustment Tactors										
1	10%										
2	15%										
3	19%										
4	23%										
5	27%										
6	31%										
7	35%										
8	38%										
9	41%										
10	44%										
11	47%										
EUL =	12										

Table M-18. Full-Cost Adjustment Factors: Clothes Washers, Dishwashers, and Residential Gas Water Heaters

	Clothes Washer-E	Dishwasher-E	DHW-G
	Res	Res	Res
	Media	ll Cost	
	0.24	0.06	0.22
RUL		Full Cost Adjustment Factors	
1	28%	11%	26%
2	32%	16%	30%
3	35%	20%	34%
4	39%	24%	37%
5	42%	28%	40%
6	45%	32%	43%
7	48%	35%	46%
8	50%	39%	49%
9	53%	42%	52%
10	56%	45%	54%
EUL =	11		

Table M-19. Full-Cost Adjustment Factors: Heat Pump Water Heaters and Room A/C

	Heat Pump Water Heater-E	Room Air Conditioner-E								
	Res	Res								
	Median Ratio of Incremental Cost to Full Cost									
	0.77	0.23								
RUL	Full Cost Adjus	stment Factors								
1	78%	27%								
2	79%	31%								
3	80%	34%								
4	81%	38%								
5	82%	41%								
6	83%	44%								
7	84%	47%								
8	85%	50%								
9	86%	52%								
EUL =	10									

Table M-20. Adjusted EULs: Residential Boilers

	Boiler-G
	Res
	Median Ratio of Incremental
	Savings to Full Savings
	0.15
	Adjusted EUL s in Years
RUL	Aujusted EOLS III fears
1	3
2	4
3	5
4	6
5	7
6	8
7	9
8	10
9	11
10	12
11	13
12	13
13	14
14	15
15	16
16	17
17	18
18	19
19	20
20	21
21	22
22	22
23	23
24	24
EUL =	25

	Chiller: Air Cooled Recip and Screw	Chiller: Water Cooled Recip	Chiller: Water Cooled Screw < 150 ton	Chiller: Water Cooled Screw 150-300 ton	Chiller: Water Cooled Screw > 300 ton	Chiller: Water Cooled Centrifugal < 150 ton	Chiller: Water Cooled Centrifugal 150 300 ton	Chiller: Water Cooled Centrifugal > 300 ton	Boiler-G	Furnace-G (AFUE 90)	Furnace-G (AFUE 92)	Furnace-G (AFUE 94)	Furnace-G (AFUE 96)	High Performance Windows-G
	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res
	Median Ratio of Incremental Savings to Full Savings													
	0.50	0.15	0.37	0.31	0.69	0.58	0.38	0.31	0.27	0.44	0.48	0.51	0.54	0.63
						Ad	iusted EULs in	Years						
RUL			1	1	I.	,								1
1	8	3	6	5	12	10	6	5	5	7	8	8	9	11
2	9	4	7	6	12	10	7	6	5	8	9	9	10	11
3	10	5	8	7	13	11	8	7	6	9	9	10	10	12
4	10	6	9	8	13	12	9	8	7	10	10	11	11	12
5	11	7	9	9	14	12	9	9	8	10	11	11	12	13
6	12	8	10	9	14	13	10	9	9	11	11	12	12	14
7	12	8	11	10	15	13	11	10	10	12	12	13	13	14
8	13	9	12	11	15	14	12	11	11	12	13	13	14	15
9	14	10	12	12	16	15	12	12	11	13	13	14	14	15
10	14	11	13	13	16	15	13	13	12	14	14	14	15	16
11	15	12	14	13	17	16	14	13	13	14	15	15	15	16
12	16	13	15	14	17	16	15	14	14	15	15	16	16	17
13	16	14	15	15	18	17	15	15	15	16	16	16	16	17
14	17	15	16	16	18	17	16	16	15	16	17	17	17	18
15	17	16	17	16	18	18	17	16	16	17	17	17	18	18
16	18	17	17	17	19	18	17	17	17	18	18	18	18	18
17	18	17	18	18	19	19	18	18	18	18	18	18	19	19
18	19	18	19	19	19	19	19	19	19	19	19	19	19	19
19	20	19	19	19	20	20	19	19	19	19	19	20	20	20
EUL =	20													

Table M -21. Adjusted EULs: Chillers, Furnaces, Non-Residential Boilers, and High Performance Windows

Table M-22.	Adjusted	EULs:	Residential	Refrigerators
-------------	----------	--------------	-------------	---------------

	Refrigerator-E
	Res
	Median Ratio of Incremental Savings to Full Savings
	0.11
RUL	Adjusted EULs in Years
1	2
2	3
3	4
4	5
5	6
6	7
7	8
8	9
9	10
10	11
11	12
12	12
13	13
14	14
15	15
16	16
EUL =	17

January 1, 2019

Table M-23. Adjusted EULs: Central Air Conditioners, Air Source Heat Pumps, Non-Res Water Heaters, Indirect Water Heaters, and Air Compressor Upgrades

	Central Air Conditioner/Air Source Heat Pumps (SEER 14)	Central Air Conditioner/Air Source Heat Pumps (SEER 15)	Central Air Conditioner/Air Source Heat Pumps (SEER 16)	Central Air Conditioner/Air Source Heat Pumps (SEER 17)	Central Air Conditioner/Air Source Heat Pumps (SEER 18)	DHW-E	DHW-G	Indirect Water Heater-G	Air Compressor Upgrade-E
	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Res/Non-Res	Non-Res	Non-Res	Non-Res	Non-Res
			Media	an Ratio of Increi	mental Savings to	o Full Savings			
	0.19	0.31	0.38	0.44	0.48	0.60	0.21	0.34	0.48
				Δdiuste	d FUILs in Years				
RUL		r			-				
1	3	4	6	6	7	8	4	5	6
2	4	5	6	7	7	9	4	6	7
3	5	6	7	7	8	9	5	6	8
4	6	7	7	8	9	10	6	7	9
5	7	8	8	9	9	10	7	8	9
6	7	8	9	9	10	11	8	9	10
7	8	9	10	10	10	11	8	9	10
8	9	10	10	11	11	12	9	10	11
9	10	11	11	11	12	12	10	11	12
10	11	11	12	12	12	13	11	12	12
11	12	12	12	13	13	13	12	12	13
12	13	13	13	13	13	14	13	13	13
13	13	14	14	14	14	14	13	14	14
14	14	14	14	14	14	15	14	14	14
FUI -	15		•		•	•		·	

TABLE M-24. ADJUSTED EULS: MULTI-FAMILY CLOTHES WASHERS

	Clothes Washer-G
	MF Res
	Median Ratio of Incremental
	Savings to Full Savings
	0.39
	Adjusted ELILs in Vears
RUL	Aujusted EOES III Tears
1	5
2	6
3	7
4	7
5	8
6	9
7	9
8	10
9	11
10	11
11	12
12	13
13	13
EUL =	14

TABLE M-25. ADJUSTED EULS: RESIDENTIAL ELECTRIC AND GAS INDIRECT WATER HEATERS

	DHW-E	Indirect Water Heater-G							
	Res	Res							
	Median Ratio of Increment	tal Savings to Full Savings							
	0.60	0.34							
RUL	Adjusted EL	JLs in Years							
1	8	5							
2	8	5							
3	8	6							
4	9	7							
5	9	7							
6	10	8							
7	10	9							
8	11	10							
9	11	10							
10	12	11							
11	12	12							
12	13	12							
EUL =	13								

	Refrigerator-E
	Non-Res
	Median Ratio of Incremental
	Savings to Full Savings
	0.34
	Adjusted FUL s in Years
RUL	Aujusted LOES III Tears
1	4
2	5
3	6
4	6
5	7
6	8
7	9
8	9
9	10
10	11
11	11
EUL =	12

TABLE M-26. ADJUSTED EULS: NON-RESIDENTIAL REFRIGERATORS

Table M-27. Adjusted EULs: Clothes Washers, Dishwashers, and Residential Gas Water Heaters

	Clothes Washer-E	Dishwasher-E	DHW-G
	Res	Res	Res
	Median I	Ratio of Incremental Savings to Fu	II Savings
	0.39	0.33	0.21
RUL		Adjusted EULs in Years	
1	4	4	3
2	5	5	4
3	6	5	4
4	6	6	5
5	7	7	6
6	8	8	7
7	8	8	8
8	9	9	9
9	10	10	9
10	10	10	10
EUL =	11		

	Heat Pump Water Heater-E	Room Air Conditioner-E							
	Res	Res							
	Median Ratio of Increment	ental Savings to Full Savings							
	0.87	0.25							
RUL	Adjusted EU	ILs in Years							
1	9	3							
2	9	4							
3	9	5							
4	9	5							
5	9	6							
6	9	7							
7	10	8							
8	10	8							
9	10	9							
EUL =	10								

Table M-28. Adjusted EULs: Heat Pump Water Heaters and Room A/C

Table M-29. Inflated Lifecycle Benefit Adjustment Factors for PA-Supplied Ratios of Incremental Savings to Full Savings for a 25 Year EUL

1		Savings																	
RII	0.0	01	01	0.2	0.2	0.3	0.3	04	04	0.5	0.5	0.6	0.6	07	07	0.8	0.8	0.9	0.9
1	14	14	20	26	32	37	42	42	47	52	60	64	68	71	78	81	86	91	96
2	20	20	20	32	37	42	42	42	52	56	60	64	71	71	70	8/	86	91	96
2	26	20	32	37	47	42	42	52	56	60	64	68	71	75	81	84	89	91	96
	32	32	37	12	42	42	52	56	60	64	68	71	75	78	81 81	86	80	91	96
5	37	37	42	42	47	52	56	60	64	68	68	71	75	81	84	86	89	94	96
6	42	42	42	52		56	60	64	64	68	71	75	78	81	84	86	91	94	96
7	47	42	52	52	56	60	64	64	68	71	75	78	81	84	86	89	91	94	98
8	52	52	56	56	60	64	64	68	71	75	75	78	81	84	86	89	91	94	98
9	56	56	60	60	64	68	68	71	75	75	78	81	84	86	89	91	94	96	98
1	60	60	64	64	68	68	71	75	75	78	81	84	84	86	89	91	94	96	98
1	64	64	68	68	71	71	75	75	78	81	81	84	86	89	89	91	94	96	98
1	64	68	68	71	75	75	78	78	81	81	84	86	86	89	91	94	94	96	98
1	68	71	71	75	75	78	78	81	81	84	86	86	89	91	91	94	96	96	98
1	71	75	75	78	78	81	81	84	84	86	86	89	89	91	94	94	96	98	98
1	75	78	78	81	81	81	84	84	86	86	89	89	91	91	94	96	96	98	98
1	78	81	81	81	84	84	86	86	89	89	89	91	91	94	94	96	96	98	98
1	81	84	84	84	86	86	86	89	89	91	91	91	94	94	96	96	98	98	100
1	84	86	86	86	89	89	89	91	91	91	94	94	94	96	96	96	98	98	100
1	86	89	89	89	89	91	91	91	91	94	94	94	96	96	96	98	98	98	100
2	89	89	91	91	91	91	94	94	94	94	96	96	96	96	98	98	98	98	100
2	91	91	94	94	94	94	94	96	96	96	96	96	98	98	98	98	98	100	100
2	94	94	94	96	96	96	96	96	96	96	98	98	98	98	98	98	100	100	100
2	96	96	96	96	96	98	98	98	98	98	98	98	98	98	98	100	100	100	100
2	98	98	98	98	98	98	98	98	98	100	100	100	100	100	100	100	100	100	100
EUL	2																		

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	16%	16%	23%	29%	29%	36%	42%	47%	47%	53%	58%	63%	67%	72%	76%	80%	87%	91%	94%
2	23%	23%	29%	29%	36%	42%	47%	47%	53%	58%	63%	67%	72%	76%	80%	84%	87%	91%	97%
3	29%	29%	36%	36%	42%	47%	47%	53%	58%	63%	67%	67%	72%	76%	80%	84%	87%	91%	97%
4	36%	36%	42%	42%	47%	53%	53%	58%	63%	63%	67%	72%	76%	80%	84%	87%	91%	94%	97%
5	42%	42%	47%	47%	53%	53%	58%	63%	63%	67%	72%	76%	76%	80%	84%	87%	91%	94%	97%
6	47%	47%	53%	53%	58%	58%	63%	63%	67%	72%	72%	76%	80%	84%	84%	87%	91%	94%	97%
7	47%	53%	53%	58%	63%	63%	67%	67%	72%	72%	76%	80%	80%	84%	87%	91%	91%	94%	97%
8	53%	58%	58%	63%	63%	67%	67%	72%	76%	76%	80%	80%	84%	87%	87%	91%	94%	94%	97%
9	58%	63%	63%	67%	67%	72%	72%	76%	76%	80%	80%	84%	84%	87%	91%	91%	94%	97%	97%
10	63%	67%	67%	72%	72%	72%	76%	76%	80%	80%	84%	84%	87%	87%	91%	94%	94%	97%	97%
11	67%	72%	72%	72%	76%	76%	80%	80%	84%	84%	84%	87%	87%	91%	91%	94%	94%	97%	97%
12	72%	76%	76%	76%	80%	80%	80%	84%	84%	87%	87%	87%	91%	91%	94%	94%	97%	97%	100%
13	76%	80%	80%	80%	84%	84%	84%	87%	87%	87%	91%	91%	91%	94%	94%	94%	97%	97%	100%
14	80%	84%	84%	84%	84%	87%	87%	87%	87%	91%	91%	91%	94%	94%	94%	97%	97%	97%	100%
15	84%	84%	87%	87%	87%	87%	91%	91%	91%	91%	94%	94%	94%	94%	97%	97%	97%	97%	100%
16	87%	87%	91%	91%	91%	91%	91%	94%	94%	94%	94%	94%	97%	97%	97%	97%	97%	100%	100%
17	91%	91%	91%	94%	94%	94%	94%	94%	94%	94%	97%	97%	97%	97%	97%	97%	100%	100%	100%
18	94%	94%	94%	94%	94%	97%	97%	97%	97%	97%	97%	97%	97%	97%	97%	100%	100%	100%	100%
19	97%	97%	97%	97%	97%	97%	97%	97%	97%	97%	100%	100%	100%	100%	100%	100%	100%	100%	100%
EUL =	20																		

 Table M-30. Inflated Lifecycle Benefit Adjustment Factors for PA-Supplied Ratios of Incremental Savings to Full Savings for a 20 Year EUL

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	17%	17%	25%	25%	32%	39%	39%	46%	52%	52%	58%	64%	69%	74%	79%	84%	88%	92%	96%
2	25%	25%	32%	32%	39%	39%	46%	52%	52%	58%	64%	69%	69%	74%	79%	84%	88%	92%	96%
3	32%	32%	39%	39%	46%	46%	52%	52%	58%	64%	64%	69%	74%	79%	79%	84%	88%	92%	96%
4	32%	39%	39%	46%	52%	52%	58%	58%	64%	64%	69%	74%	74%	79%	84%	88%	88%	92%	96%
5	39%	46%	46%	52%	52%	58%	58%	64%	69%	69%	74%	74%	79%	84%	84%	88%	92%	92%	96%
6	46%	52%	52%	58%	58%	64%	64%	69%	69%	74%	74%	79%	79%	84%	88%	88%	92%	96%	96%
7	52%	58%	58%	64%	64%	69%	69%	69%	74%	74%	79%	79%	84%	84%	88%	92%	92%	96%	96%
8	58%	64%	64%	69%	69%	69%	74%	74%	79%	79%	79%	84%	84%	88%	88%	92%	92%	96%	96%
9	64%	69%	69%	69%	74%	74%	74%	79%	79%	84%	84%	84%	88%	88%	92%	92%	96%	96%	100%
10	69%	74%	74%	74%	79%	79%	79%	84%	84%	84%	88%	88%	88%	92%	92%	92%	96%	96%	100%
11	74%	79%	79%	79%	79%	84%	84%	84%	84%	88%	88%	88%	92%	92%	92%	96%	96%	96%	100%
12	79%	79%	84%	84%	84%	84%	88%	88%	88%	88%	92%	92%	92%	92%	96%	96%	96%	96%	100%
13	84%	84%	88%	88%	88%	88%	88%	92%	92%	92%	92%	92%	96%	96%	96%	96%	96%	100%	100%
14	88%	88%	88%	92%	92%	92%	92%	92%	92%	92%	96%	96%	96%	96%	96%	96%	100%	100%	100%
15	92%	92%	92%	92%	92%	96%	96%	96%	96%	96%	96%	96%	96%	96%	96%	100%	100%	100%	100%
16	96%	96%	96%	96%	96%	96%	96%	96%	96%	96%	100%	100%	100%	100%	100%	100%	100%	100%	100%
EUL =	17																		

 Table M-31. Inflated Lifecycle Benefit Adjustment Factors for PA-Supplied Ratios of Incremental Savings to Full Savings for a 17 Year EUL

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	19%	19%	27%	27%	35%	35%	43%	43%	50%	56%	56%	63%	69%	75%	75%	80%	86%	91%	95%
2	19%	27%	27%	35%	43%	43%	50%	50%	56%	56%	63%	69%	69%	75%	80%	86%	86%	91%	95%
3	27%	35%	35%	43%	43%	50%	50%	56%	63%	63%	69%	69%	75%	80%	80%	86%	91%	91%	95%
4	35%	43%	43%	50%	50%	56%	56%	63%	63%	69%	69%	75%	75%	80%	86%	86%	91%	95%	95%
5	43%	50%	50%	56%	56%	63%	63%	63%	69%	69%	75%	75%	80%	80%	86%	91%	91%	95%	95%
6	50%	56%	56%	63%	63%	63%	69%	69%	75%	75%	75%	80%	80%	86%	86%	91%	91%	95%	95%
7	56%	63%	63%	63%	69%	69%	69%	75%	75%	80%	80%	80%	86%	86%	91%	91%	95%	95%	100%
8	63%	69%	69%	69%	75%	75%	75%	80%	80%	80%	86%	86%	86%	91%	91%	91%	95%	95%	100%
9	69%	75%	75%	75%	75%	80%	80%	80%	80%	86%	86%	86%	91%	91%	91%	95%	95%	95%	100%
10	75%	75%	80%	80%	80%	80%	86%	86%	86%	86%	91%	91%	91%	91%	95%	95%	95%	95%	100%
11	80%	80%	86%	86%	86%	86%	86%	91%	91%	91%	91%	91%	95%	95%	95%	95%	95%	100%	100%
12	86%	86%	86%	91%	91%	91%	91%	91%	91%	91%	95%	95%	95%	95%	95%	95%	100%	100%	100%
13	91%	91%	91%	91%	91%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	100%	100%	100%	100%
14	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	100%	100%	100%	100%	100%	100%	100%	100%	100%
EUL =	15																		

 Table M-32. Inflated Lifecycle Benefit Adjustment Factors for PA-Supplied Ratios of Incremental Savings to Full Savings for a 15 Year EUL

		Savings Ratio																	
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	10%	19%	19%	28%	37%	37%	45%	45%	52%	52%	59%	66%	66%	72%	78%	84%	84%	90%	95%
2	19%	28%	28%	37%	37%	45%	45%	52%	59%	59%	66%	66%	72%	78%	78%	84%	90%	90%	95%
3	28%	37%	37%	45%	45%	52%	52%	59%	59%	66%	66%	72%	72%	78%	84%	84%	90%	95%	95%
4	37%	45%	45%	52%	52%	59%	59%	59%	66%	66%	72%	72%	78%	78%	84%	90%	90%	95%	95%
5	45%	52%	52%	59%	59%	59%	66%	66%	72%	72%	72%	78%	78%	84%	84%	90%	90%	95%	95%
6	52%	59%	59%	59%	66%	66%	66%	72%	72%	78%	78%	78%	84%	84%	90%	90%	95%	95%	100%
7	59%	66%	66%	66%	72%	72%	72%	78%	78%	78%	84%	84%	84%	90%	90%	90%	95%	95%	100%
8	66%	72%	72%	72%	72%	78%	78%	78%	78%	84%	84%	84%	90%	90%	90%	95%	95%	95%	100%
9	72%	72%	78%	78%	78%	78%	84%	84%	84%	84%	90%	90%	90%	90%	95%	95%	95%	95%	100%
10	78%	78%	84%	84%	84%	84%	84%	90%	90%	90%	90%	90%	95%	95%	95%	95%	95%	100%	100%
11	84%	84%	84%	90%	90%	90%	90%	90%	90%	90%	95%	95%	95%	95%	95%	95%	100%	100%	100%
12	90%	90%	90%	90%	90%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	100%	100%	100%	100%
13	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	100%	100%	100%	100%	100%	100%	100%	100%	100%
EUL =	14																		

Table M-33. Inflated Lifecycle Benefit Adjustment Factors for PA-Supplied Ratios of Incremental Savings to Full Savings fora 14 Year EUL
									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	11%	20%	20%	30%	30%	39%	39%	47%	55%	55%	62%	62%	69%	76%	76%	83%	89%	89%	94%
2	20%	30%	30%	39%	39%	47%	47%	55%	55%	62%	62%	69%	69%	76%	83%	83%	89%	94%	94%
3	30%	39%	39%	47%	47%	55%	55%	55%	62%	62%	69%	69%	76%	76%	83%	89%	89%	94%	94%
4	39%	47%	47%	55%	55%	55%	62%	62%	69%	69%	69%	76%	76%	83%	83%	89%	89%	94%	94%
5	47%	55%	55%	55%	62%	62%	62%	69%	69%	76%	76%	76%	83%	83%	89%	89%	94%	94%	100%
6	55%	62%	62%	62%	69%	69%	69%	76%	76%	76%	83%	83%	83%	89%	89%	89%	94%	94%	100%
7	62%	69%	69%	69%	69%	76%	76%	76%	76%	83%	83%	83%	89%	89%	89%	94%	94%	94%	100%
8	69%	69%	76%	76%	76%	76%	83%	83%	83%	83%	89%	89%	89%	89%	94%	94%	94%	94%	100%
9	76%	76%	83%	83%	83%	83%	83%	89%	89%	89%	89%	89%	94%	94%	94%	94%	94%	100%	100%
10	83%	83%	83%	89%	89%	89%	89%	89%	89%	89%	94%	94%	94%	94%	94%	94%	100%	100%	100%
11	89%	89%	89%	89%	89%	94%	94%	94%	94%	94%	94%	94%	94%	94%	94%	100%	100%	100%	100%
12	94%	94%	94%	94%	94%	94%	94%	94%	94%	94%	100%	100%	100%	100%	100%	100%	100%	100%	100%
EUL =	13																		

Table M-34. Inflated Lifecycle Benefit Adjustment Factors for PA-Supplied Ratios of Incremental Savings to Full Savings fora 13 Year EUL

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	11%	22%	22%	32%	32%	41%	41%	50%	50%	58%	58%	66%	66%	73%	81%	81%	87%	94%	94%
2	22%	32%	32%	41%	41%	41%	50%	50%	58%	58%	66%	66%	73%	73%	81%	87%	87%	94%	94%
3	32%	41%	41%	41%	50%	50%	58%	58%	66%	66%	66%	73%	73%	81%	81%	87%	87%	94%	94%
4	41%	50%	50%	50%	58%	58%	58%	66%	66%	73%	73%	73%	81%	81%	87%	87%	94%	94%	100%
5	50%	58%	58%	58%	66%	66%	66%	73%	73%	73%	81%	81%	81%	87%	87%	87%	94%	94%	100%
6	58%	66%	66%	66%	66%	73%	73%	73%	73%	81%	81%	81%	87%	87%	87%	94%	94%	94%	100%
7	66%	66%	73%	73%	73%	73%	81%	81%	81%	81%	87%	87%	87%	87%	94%	94%	94%	94%	100%
8	73%	73%	81%	81%	81%	81%	81%	87%	87%	87%	87%	87%	94%	94%	94%	94%	94%	100%	100%
9	81%	81%	81%	87%	87%	87%	87%	87%	87%	87%	94%	94%	94%	94%	94%	94%	100%	100%	100%
10	87%	87%	87%	87%	87%	94%	94%	94%	94%	94%	94%	94%	94%	94%	94%	100%	100%	100%	100%
11	94%	94%	94%	94%	94%	94%	94%	94%	94%	94%	100%	100%	100%	100%	100%	100%	100%	100%	100%
EUL =	12																		

Table M-35.	Inflated Lifecycle Benefit	Adjustment Factors for	PA-Supplied Ratios	of Incremental Sa	vings to Full S	avings for
a 12 Year El	JL					

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	12%	23%	23%	34%	34%	34%	43%	43%	53%	53%	62%	62%	70%	70%	78%	86%	86%	93%	93%
2	23%	34%	34%	34%	43%	43%	53%	53%	62%	62%	62%	70%	70%	78%	78%	86%	86%	93%	93%
3	34%	43%	43%	43%	53%	53%	53%	62%	62%	70%	70%	70%	78%	78%	86%	86%	93%	93%	100%
4	43%	53%	53%	53%	62%	62%	62%	70%	70%	70%	78%	78%	78%	86%	86%	86%	93%	93%	100%
5	53%	62%	62%	62%	62%	70%	70%	70%	70%	78%	78%	78%	86%	86%	86%	93%	93%	93%	100%
6	62%	62%	70%	70%	70%	70%	78%	78%	78%	78%	86%	86%	86%	86%	93%	93%	93%	93%	100%
7	70%	70%	78%	78%	78%	78%	78%	86%	86%	86%	86%	86%	93%	93%	93%	93%	93%	100%	100%
8	78%	78%	78%	86%	86%	86%	86%	86%	86%	86%	93%	93%	93%	93%	93%	93%	100%	100%	100%
9	86%	86%	86%	86%	86%	93%	93%	93%	93%	93%	93%	93%	93%	93%	93%	100%	100%	100%	100%
10	93%	93%	93%	93%	93%	93%	93%	93%	93%	93%	100%	100%	100%	100%	100%	100%	100%	100%	100%
EUL =	11																		

Table M-36. Inflated Lifecycle Benefit Adjustment Factors for PA-Supplied Ratios of Incremental Savings to Full Savings foran 11 Year EUL

January 1, 2019

i i																			
_									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	13%	25%	25%	25%	36%	36%	47%	47%	57%	57%	57%	66%	66%	75%	75%	84%	84%	92%	92%
2	25%	36%	36%	36%	47%	47%	47%	57%	57%	66%	66%	66%	75%	75%	84%	84%	92%	92%	100%
3	36%	47%	47%	47%	57%	57%	57%	66%	66%	66%	75%	75%	75%	84%	84%	84%	92%	92%	100%
4	47%	57%	57%	57%	57%	66%	66%	66%	66%	75%	75%	75%	84%	84%	84%	92%	92%	92%	100%
5	57%	57%	66%	66%	66%	66%	75%	75%	75%	75%	84%	84%	84%	84%	92%	92%	92%	92%	100%
6	66%	66%	75%	75%	75%	75%	75%	84%	84%	84%	84%	84%	92%	92%	92%	92%	92%	100%	100%
7	75%	75%	75%	84%	84%	84%	84%	84%	84%	84%	92%	92%	92%	92%	92%	92%	100%	100%	100%
8	84%	84%	84%	84%	84%	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%	100%	100%	100%	100%
9	92%	92%	92%	92%	92%	92%	92%	92%	92%	92%	100%	100%	100%	100%	100%	100%	100%	100%	100%
EUL =	10																		

Table M-37. Inflated Lifecycle Benefit Adjustment Factors for PA-Supplied Ratios of Incremental Savings to Full Savings fora 10 Year EUL

Table M-38. Full Cost Adjustment Factors

										Cost Ratio									
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	10%	15%	19%	24%	29%	34%	38%	43%	48%	53%	57%	62%	67%	72%	76%	81%	86%	91%	95%
2	15%	19%	24%	28%	33%	37%	42%	46%	51%	55%	60%	64%	69%	73%	78%	82%	87%	91%	96%
3	19%	23%	28%	32%	36%	40%	45%	49%	53%	57%	62%	66%	70%	74%	79%	83%	87%	91%	96%
4	23%	27%	31%	35%	39%	43%	48%	52%	56%	60%	64%	68%	72%	76%	80%	84%	88%	92%	96%
5	27%	31%	35%	39%	43%	46%	50%	54%	58%	62%	66%	69%	73%	77%	81%	85%	89%	92%	96%
6	31%	35%	38%	42%	46%	49%	53%	56%	60%	64%	67%	71%	75%	78%	82%	85%	89%	93%	96%
7	35%	38%	42%	45%	48%	52%	55%	59%	62%	66%	69%	73%	76%	79%	83%	86%	90%	93%	97%
8	38%	41%	45%	48%	51%	54%	58%	61%	64%	67%	71%	74%	77%	80%	84%	87%	90%	93%	97%
9	41%	44%	48%	51%	54%	57%	60%	63%	66%	69%	72%	75%	78%	81%	85%	88%	91%	94%	97%
10	44%	47%	50%	53%	56%	59%	62%	65%	68%	71%	74%	77%	80%	82%	85%	88%	91%	94%	97%
11	47%	50%	53%	56%	58%	61%	64%	67%	69%	72%	75%	78%	81%	83%	86%	89%	92%	94%	97%
12	50%	53%	55%	58%	61%	63%	66%	68%	71%	74%	76%	79%	82%	84%	87%	89%	92%	95%	97%
13	53%	55%	58%	60%	63%	65%	68%	70%	73%	75%	78%	80%	83%	85%	88%	90%	93%	95%	98%
14	55%	57%	60%	62%	65%	67%	69%	72%	74%	76%	79%	81%	83%	86%	88%	91%	93%	95%	98%
15	57%	60%	62%	64%	66%	69%	71%	73%	75%	78%	80%	82%	84%	87%	89%	91%	93%	96%	98%
16	60%	62%	64%	66%	68%	70%	72%	75%	77%	79%	81%	83%	85%	87%	89%	92%	94%	96%	98%
17	62%	64%	66%	68%	70%	72%	74%	76%	78%	80%	82%	84%	86%	88%	90%	92%	94%	96%	98%
18	64%	66%	68%	69%	71%	73%	75%	77%	79%	81%	83%	85%	87%	89%	90%	92%	94%	96%	98%
19	66%	67%	69%	71%	73%	75%	76%	78%	80%	82%	84%	86%	87%	89%	91%	93%	95%	96%	98%
20	67%	69%	71%	73%	74%	76%	78%	79%	81%	83%	85%	86%	88%	90%	91%	93%	95%	97%	98%
21	69%	71%	72%	74%	76%	77%	79%	81%	82%	84%	85%	87%	89%	90%	92%	94%	95%	97%	98%
22	71%	72%	74%	75%	77%	78%	80%	82%	83%	85%	86%	88%	89%	91%	92%	94%	95%	97%	98%
23	72%	74%	75%	77%	78%	80%	81%	82%	84%	85%	87%	88%	90%	91%	93%	94%	96%	97%	99%
24	74%	75%	76%	78%	79%	81%	82%	83%	85%	86%	88%	89%	90%	92%	93%	94%	96%	97%	99%
EUL =	25																		

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	2	2	3	4	5	6	7	7	8	9	11	12	13	14	16	17	19	21	23
2	3	3	4	5	6	7	7	8	9	10	11	12	14	15	16	18	19	21	23
3	4	4	5	6	7	7	8	9	10	11	12	13	14	15	17	18	20	21	23
4	5	5	6	7	8	8	9	10	11	12	13	14	15	16	17	19	20	22	23
5	6	6	7	8	8	9	10	11	12	13	13	14	15	17	18	19	20	22	23
6	7	7	8	9	9	10	11	12	12	13	14	15	16	17	18	19	21	22	23
7	8	8	9	9	10	11	12	12	13	14	15	16	17	18	19	20	21	22	24
8	9	9	10	10	11	12	12	13	14	15	15	16	17	18	19	20	21	22	24
9	10	10	11	11	12	13	13	14	15	15	16	17	18	19	20	21	22	23	24
10	11	11	12	12	13	13	14	15	15	16	17	18	18	19	20	21	22	23	24
11	12	12	13	13	14	14	15	15	16	17	17	18	19	20	20	21	22	23	24
12	12	13	13	14	15	15	16	16	17	17	18	19	19	20	21	22	22	23	24
13	13	14	14	15	15	16	16	17	17	18	19	19	20	21	21	22	23	23	24
14	14	15	15	16	16	17	17	18	18	19	19	20	20	21	22	22	23	24	24
15	15	16	16	17	17	17	18	18	19	19	20	20	21	21	22	23	23	24	24
16	16	17	17	17	18	18	19	19	20	20	20	21	21	22	22	23	23	24	24
17	17	18	18	18	19	19	19	20	20	21	21	21	22	22	23	23	24	24	25
18	18	19	19	19	20	20	20	21	21	21	22	22	22	23	23	23	24	24	25
19	19	20	20	20	20	21	21	21	21	22	22	22	23	23	23	24	24	24	25
20	20	20	21	21	21	21	22	22	22	22	23	23	23	23	24	24	24	24	25
21	21	21	22	22	22	22	22	23	23	23	23	23	24	24	24	24	24	25	25
22	22	22	22	23	23	23	23	23	23	23	24	24	24	24	24	24	25	25	25
23	23	23	23	23	23	24	24	24	24	24	24	24	24	24	24	25	25	25	25
24	24	24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25	25	25
EUL =	25																		

Table M-39. Adjusted EULs for a 25 Year EUL

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	2	2	3	4	4	5	6	7	7	8	9	10	11	12	13	14	16	17	18
2	3	3	4	4	5	6	7	7	8	9	10	11	12	13	14	15	16	17	19
3	4	4	5	5	6	7	7	8	9	10	11	11	12	13	14	15	16	17	19
4	5	5	6	6	7	8	8	9	10	10	11	12	13	14	15	16	17	18	19
5	6	6	7	7	8	8	9	10	10	11	12	13	13	14	15	16	17	18	19
6	7	7	8	8	9	9	10	10	11	12	12	13	14	15	15	16	17	18	19
7	7	8	8	9	10	10	11	11	12	12	13	14	14	15	16	17	17	18	19
8	8	9	9	10	10	11	11	12	13	13	14	14	15	16	16	17	18	18	19
9	9	10	10	11	11	12	12	13	13	14	14	15	15	16	17	17	18	19	19
10	10	11	11	12	12	12	13	13	14	14	15	15	16	16	17	18	18	19	19
11	11	12	12	12	13	13	14	14	15	15	15	16	16	17	17	18	18	19	19
12	12	13	13	13	14	14	14	15	15	16	16	16	17	17	18	18	19	19	20
13	13	14	14	14	15	15	15	16	16	16	17	17	17	18	18	18	19	19	20
14	14	15	15	15	15	16	16	16	16	17	17	17	18	18	18	19	19	19	20
15	15	15	16	16	16	16	17	17	17	17	18	18	18	18	19	19	19	19	20
16	16	16	17	17	17	17	17	18	18	18	18	18	19	19	19	19	19	20	20
17	17	17	17	18	18	18	18	18	18	18	19	19	19	19	19	19	20	20	20
18	18	18	18	18	18	19	19	19	19	19	19	19	19	19	19	20	20	20	20
19	19	19	19	19	19	19	19	19	19	19	20	20	20	20	20	20	20	20	20
EUL =	20																		

Table M-40. Adjusted EULs for a 20 Year EUL

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	2	2	3	3	4	5	5	6	7	7	8	9	10	11	12	13	14	15	16
2	3	3	4	4	5	5	6	7	7	8	9	10	10	11	12	13	14	15	16
3	4	4	5	5	6	6	7	7	8	9	9	10	11	12	12	13	14	15	16
4	4	5	5	6	7	7	8	8	9	9	10	11	11	12	13	14	14	15	16
5	5	6	6	7	7	8	8	9	10	10	11	11	12	13	13	14	15	15	16
6	6	7	7	8	8	9	9	10	10	11	11	12	12	13	14	14	15	16	16
7	7	8	8	9	9	10	10	10	11	11	12	12	13	13	14	15	15	16	16
8	8	9	9	10	10	10	11	11	12	12	12	13	13	14	14	15	15	16	16
9	9	10	10	10	11	11	11	12	12	13	13	13	14	14	15	15	16	16	17
10	10	11	11	11	12	12	12	13	13	13	14	14	14	15	15	15	16	16	17
11	11	12	12	12	12	13	13	13	13	14	14	14	15	15	15	16	16	16	17
12	12	12	13	13	13	13	14	14	14	14	15	15	15	15	16	16	16	16	17
13	13	13	14	14	14	14	14	15	15	15	15	15	16	16	16	16	16	17	17
14	14	14	14	15	15	15	15	15	15	15	16	16	16	16	16	16	17	17	17
15	15	15	15	15	15	16	16	16	16	16	16	16	16	16	16	17	17	17	17
16	16	16	16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17	17
EUL =	17																		

Table M-41. Adjusted EULs for a 17 Year EUL

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	2	2	3	3	4	4	5	5	6	7	7	8	9	10	10	11	12	13	14
2	2	3	3	4	5	5	6	6	7	7	8	9	9	10	11	12	12	13	14
3	3	4	4	5	5	6	6	7	8	8	9	9	10	11	11	12	13	13	14
4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	12	12	13	14	14
5	5	6	6	7	7	8	8	8	9	9	10	10	11	11	12	13	13	14	14
6	6	7	7	8	8	8	9	9	10	10	10	11	11	12	12	13	13	14	14
7	7	8	8	8	9	9	9	10	10	11	11	11	12	12	13	13	14	14	15
8	8	9	9	9	10	10	10	11	11	11	12	12	12	13	13	13	14	14	15
9	9	10	10	10	10	11	11	11	11	12	12	12	13	13	13	14	14	14	15
10	10	10	11	11	11	11	12	12	12	12	13	13	13	13	14	14	14	14	15
11	11	11	12	12	12	12	12	13	13	13	13	13	14	14	14	14	14	15	15
12	12	12	12	13	13	13	13	13	13	13	14	14	14	14	14	14	15	15	15
13	13	13	13	13	13	14	14	14	14	14	14	14	14	14	14	15	15	15	15
14	14	14	14	14	14	14	14	14	14	14	15	15	15	15	15	15	15	15	15
EUL =	15																		

Table M-42. Adjusted EULs for a 15 Year EUL

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	1	2	2	3	4	4	5	5	6	6	7	8	8	9	10	11	11	12	13
2	2	3	3	4	4	5	5	6	7	7	8	8	9	10	10	11	12	12	13
3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	11	11	12	13	13
4	4	5	5	6	6	7	7	7	8	8	9	9	10	10	11	12	12	13	13
5	5	6	6	7	7	7	8	8	9	9	9	10	10	11	11	12	12	13	13
6	6	7	7	7	8	8	8	9	9	10	10	10	11	11	12	12	13	13	14
7	7	8	8	8	9	9	9	10	10	10	11	11	11	12	12	12	13	13	14
8	8	9	9	9	9	10	10	10	10	11	11	11	12	12	12	13	13	13	14
9	9	9	10	10	10	10	11	11	11	11	12	12	12	12	13	13	13	13	14
10	10	10	11	11	11	11	11	12	12	12	12	12	13	13	13	13	13	14	14
11	11	11	11	12	12	12	12	12	12	12	13	13	13	13	13	13	14	14	14
12	12	12	12	12	12	13	13	13	13	13	13	13	13	13	13	14	14	14	14
13	13	13	13	13	13	13	13	13	13	13	14	14	14	14	14	14	14	14	14
EUL =	14																		

Table M-43. Adjusted EULs for a 14 Year EUL

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	1	2	2	3	3	4	4	5	6	6	7	7	8	9	9	10	11	11	12
2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	10	10	11	12	12
3	3	4	4	5	5	6	6	6	7	7	8	8	9	9	10	11	11	12	12
4	4	5	5	6	6	6	7	7	8	8	8	9	9	10	10	11	11	12	12
5	5	6	6	6	7	7	7	8	8	9	9	9	10	10	11	11	12	12	13
6	6	7	7	7	8	8	8	9	9	9	10	10	10	11	11	11	12	12	13
7	7	8	8	8	8	9	9	9	9	10	10	10	11	11	11	12	12	12	13
8	8	8	9	9	9	9	10	10	10	10	11	11	11	11	12	12	12	12	13
9	9	9	10	10	10	10	10	11	11	11	11	11	12	12	12	12	12	13	13
10	10	10	10	11	11	11	11	11	11	11	12	12	12	12	12	12	13	13	13
11	11	11	11	11	11	12	12	12	12	12	12	12	12	12	12	13	13	13	13
12	12	12	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	13
EUL =	13																		

Table M-44. Adjusted EULs for a 13 Year EUL

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	9	9	10	11	11
2	2	3	3	4	4	4	5	5	6	6	7	7	8	8	9	10	10	11	11
3	3	4	4	4	5	5	6	6	7	7	7	8	8	9	9	10	10	11	11
4	4	5	5	5	6	6	6	7	7	8	8	8	9	9	10	10	11	11	12
5	5	6	6	6	7	7	7	8	8	8	9	9	9	10	10	10	11	11	12
6	6	7	7	7	7	8	8	8	8	9	9	9	10	10	10	11	11	11	12
7	7	7	8	8	8	8	9	9	9	9	10	10	10	10	11	11	11	11	12
8	8	8	9	9	9	9	9	10	10	10	10	10	11	11	11	11	11	12	12
9	9	9	9	10	10	10	10	10	10	10	11	11	11	11	11	11	12	12	12
10	10	10	10	10	10	11	11	11	11	11	11	11	11	11	11	12	12	12	12
11	11	11	11	11	11	11	11	11	11	11	12	12	12	12	12	12	12	12	12
EUL =	12																		

Table M-45. Adjusted EULs for a 12 Year EUL

									S	avings Rati	0								
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
1	1	2	2	3	3	3	4	4	5	5	6	6	7	7	8	9	9	10	10
2	2	3	3	3	4	4	5	5	6	6	6	7	7	8	8	9	9	10	10
3	3	4	. 4	4	5	5	5	6	6	7	7	7	8	8	9	9	10	10	11
4	4	5	5	5	6	6	6	7	7	7	8	8	8	9	9	9	10	10	11
5	5	6	6	6	6	7	7	7	7	8	8	8	9	9	9	10	10	10	11
6	6	6	7	7	7	7	8	8	8	8	9	9	9	9	10	10	10	10	11
7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	10	10	10	11	11
8	8	8	8	9	9	9	9	9	9	9	10	10	10	10	10	10	11	11	11
9	9	9	9	9	9	10	10	10	10	10	10	10	10	10	10	11	11	11	11
10	10	10	10	10	10	10	10	10	10	10	11	11	11	11	11	11	11	11	11
EUL =	11																		

Table M-46. Adjusted EULs for a 11 Year EUL

Table M-47.	Adjusted	EULs for a	a 10	Year	EUL
-------------	----------	------------	------	------	-----

									S	avings Rati	0									
RUL	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	
1	1	2	2	2	3	3	4	4	5	5	5	6	6	7	7	8	8	9	9	
2	2	3	3	3	4	4	4	5	5	6	6	6	7	7	8	8	9	9	10	
3	3	4	4	4	5	5	5	6	6	6	7	7	7	8	8	8	9	9	10	
4	4	5	5	5	5	6	6	6	6	7	7	7	8	8	8	9	9	9	10	
5	5	5	6	6	6	6	7	7	7	7	8	8	8	8	9	9	9	9	10	
6	6	6	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	10	10	
7	7	7	7	8	8	8	8	8	8	8	9	9	9	9	9	9	10	10	10	
8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	9	10	10	10	10	
9	9	9	9	9	9	9	9	9	9	9	10	10	10	10	10	10	10	10	10	
EUL =	10																			
Record	l of Re	vision																		
	Record of Revision Number										Issue Date									

Record of Revision Number	Issue Date
0	10/15/2010
5-11-1	5/6/2011

Return to Table of Contents

APPENDIX N

SPECIAL CIRCUMSTANCE Introduction

In its October 18, 2010 order⁵¹³, the Commission defined early replacement as replacement of equipment prior to the end of its prescribed effective-useful life and directed Staff to develop a dual baseline method for estimating the benefits and costs of early replacement that provides consistency between the treatment of savings and costs. The order also directed Staff to provide simplifying lookup tables for early replacement energy savings consistent with the dual baseline concept. The dual baseline methods and lookup tables have been developed and are provided in Appendix M of the Technical Manual.

The October 18, 2010 Order also introduced the concept of "special circumstance" replacements: the replacement of equipment operated by customers who are influenced by initial costs more than by life cycle economics. These customers include those with insufficient capital, a split incentive (such as a landlord incurring cost to provide a tenant benefit), short time horizons, and/or other factors which tend to prevent long range economic decision-making regarding the installation of high efficiency equipment. The Commission applied the concept of special circumstance replacements only to commercial and industrial machinery and multi-family central systems,⁵¹⁴ and only to equipment well past its prescribed effective useful life. The order specifically excluded lighting equipment from special circumstance replacement.

The Commission established a general outline for determining eligibility for special circumstance replacement treatment including:

Equipment age significantly exceeds its effective useful-life; Energy consumption significantly exceeds that of current high efficiency models; There is a history of significant repair or replacement with used equipment; The prospective next repair or replacement is likely to be much less expensive than replacement with new higher efficiency machinery.

The order directed Staff to develop more detailed criteria and a method for adapting dual baseline screening for early replacement to special circumstance replacements, with consultation with the Evaluation Advisory Group (EAG) that includes the program administrators (PAs). In dual baseline analysis, the savings for the first baseline are calculated against the replaced equipment, while the savings for the second baseline are calculated against the current standards/codes minimums or, in the absence of such, common practice.

⁵¹³ Case 07-M-0548, Energy Efficiency Portfolio Standard (EEPS), <u>Order Approving Consolidation and Revision of</u> <u>Technical Manuals</u> (issued October 18, 2010).

⁵¹⁴ What "multi-family central systems" includes is clarified in detail in the Case 07-M-0548, Energy Efficiency Portfolio Standard (EEPS), <u>Order Approving Modifications to the Technical Manual</u> (issued July 18, 2011), pp 15 - 16.

In the July 18, 2011 order,⁵¹⁵ the Commission approved Staff's proposals regarding detailing the first two criteria for eligibility:⁵¹⁶

Age Rule: The equipment to be replaced must be aged at least 125% of it is prescribed effective-useful life in cases where the age of the equipment can be determined to this extent.⁵¹⁷ If the equipment is determined to be less than 125% of its EUL, it's not eligible for SC treatment regardless of consumption or any other factor

Energy Use Rule: Applies **only** in cases in which the age of the existing equipment cannot be determined relative to 125%; existing equipment of most types must consume at least 20% more energy than the new high efficiency equipment to do the same amount of work, and at least 35% more for chillers.

In the July 18 Order, the Commission also approved Staff's proposal to define the first baseline, the hypothetical period for which the old equipment in place would have continued in use absent the program (the Default Functional Period or DFP) as 25% of the program efficient measure's EUL.⁵¹⁸

The July 18, 2011 order also directed Staff to post directions and lookup tables for Special Circumstance replacement as a counterpart to those in <u>Appendix M</u> for early replacement. For the interim period, PAs were permitted to use the tables in <u>Appendix M</u> for Special Circumstances for costs. ⁵¹⁹ However, Appendix N includes tables for special circumstance replacement that PAs must now use.

For equipment that qualifies as special circumstance, the dual baseline method described in <u>Appendix M</u> will be applied for special circumstance TRC screening. The dual baseline situation that characterizes the special circumstance situation, illustrated in Figure 1, involves a customer who replaces fully functioning equipment aged at least 25% beyond its official EUL. The equipment hypothetically would have continued to function for some period of time, the DFP. However, the customer is induced by the program to replace this existing equipment with more efficient equipment. It is assumed that at the end of the DFP, absent the program, the customer would have installed equipment that would meet the existing efficiency code or appliance standard, or common practice (referred to as the *code/standard equipment*). **Figure 2. The Special Circumstance Condition**

⁵¹⁵ Ibid.

¹¹⁴ While the first two require definition of "significant," the third and fourth do not require or lend themselves to additional detail. The Commission also approved Staff's proposed relationship between the first two, i.e., energy consumption is considered only if age relative to 125% cannot be determined.

⁵¹⁷ It is not necessary to determine the exact age of the equipment as long as it can be determined to be at least 125% of the effective-useful life.

⁵¹⁸ The Order also included a comprehensive list of measures and associated EULs that should be used in cases where the special circumstance measure matches a measure in the Order. In cases where there is no match, PAs must propose and document the EUL.

⁵¹⁹ Program administrators were required to research and calculate their own savings ratios and to use the second set of tables (not the DEER-based tables), as consumption of the old equipment in place may differ between early and special circumstance replacement -- the baseline existing equipment is pre EUL versus 125% past it, potentially with widely varying efficiency. For costs, the comparison is between current high efficiency versus standards/code or common practice in any case.

Energy savings in this example would consist of two portions. The customer would have experienced the *full* savings represented by the line segment C-A for the DFP period T2-T1, Area **X**. At the end of the DFP, the savings for the period T3-T2 would be reduced to *incremental* savings represented by the line segment B - A, area **Y**. To carry out these calculations, information on the energy use of code/standard equipment is required. Information on energy use of the existing equipment and the high efficiency equipment provided through the program is also required, but much more available and routinely needed.

The costs also have to be calculated in a manner consistent with the special circumstance case. In normal replacement situations, one would use the incremental cost that is defined as the cost of the new efficient equipment minus the cost of the code/standard equipment. In the special circumstance case, the incremental cost is calculated in a slightly different manner, which recognizes, in the absence of the program, the customer would not have purchased any equipment until the future end of the DFP.

Thus, one would first have to determine the full cost of the new efficient equipment at T1 *and* the full cost of the code/standard equipment (both including the installation labor) at T2 (assuming no change in real costs). The incremental costs would then be calculated as the cost of the new efficient equipment installed now (left column in Figure 2) minus the present value (PV) of the cost that is avoided in the future for the code/standard equipment (right column Figure 2). Figure 2 presents a case in which the DFP is 4 years and, absent the program, the code/standard equipment would have been installed in the fifth year. This calculation differs from the normal/end of life replacement incremental cost in adding the time value of money for spending the money earlier.

Figure 3. Incremental Cost Calculation for Special Circumstance Cases with a DFP of Four Years

Year	PV With Program	PV Without Program
1	Full Cost of High Efficient Equipment	0
2	0	0
3	0	0
4	0	0
5	0	Full Cost of Code/Standard Equipment

The Ratio Approach to the Dual Baseline with the Lookup Tables

As in <u>Appendix M</u>, this approach focuses on the ratio of incremental energy savings to full energy savings⁵²⁰ and the ratio of incremental costs to full costs. These ratios, shown at the top of the columns in Tables N-1 through N-2, determine the factors that PAs can use to adjust the savings and cost data. These first two tables require the program administrators to provide their own incremental costs and savings ratios (based on the code/standard equipment). To use these tables, PAs must match the ratios that they have calculated to the nearest corresponding ratios in these tables

To use Table N-1 for benefits, PAs will need to calculate the full annual savings as the annual energy use of the old equipment in place minus the annual energy use of the high efficiency equipment. These full savings are then counted for each year of the EUL as is represented as area X in Figure 3. For each year of the EUL (T3 - T1) of the new equipment, the full kWh or therm savings are converted to dollar benefits by multiplying them by the Commission's avoided costs estimates for that year⁵²¹.

Figure 5. Inflated Lifecycle Benefits

⁵²⁰ The savings values ratios are not area present values but are rather the line segments in Figure 1 on the vertical axis: (B - A) divided by (C - A).

⁵²¹ The tables are not territory-specific, but statewide. This is because only the LRAC growth rates matter, not the absolute values, and the growth rates for the various zones are almost identical in the LRACs in use.

As a preliminary step in using Table N-1, and valid only for that purpose, the PAs will calculate this "inflated lifecycle benefits" for kWh, peak kW, and/or therms as the present value of the stream of full savings benefits for the EUL of the new equipment.⁵²²

In cases of special circumstance under the ratio approach, it is these inflated lifecycle benefits that must be adjusted using the appropriate *inflated lifecycle benefits adjustment factor*. For a given measure with a given EUL/DFP and ratio of incremental savings to full savings, the inflated lifecycle benefits adjustment factor is the ratio (presented as a percentage) of the present value of the dual baseline lifecycle benefits (X+Y) illustrated in Figure 1 to the present value of the inflated lifecycle benefits illustrated in Figure 3.

Under the Commission requirement of consistent treatment of savings and costs, the full costs⁵²³ must also be adjusted downward. Using research on the costs of standard/code equipment, a PA can calculate the ratios of incremental costs to full costs and obtain the *full cost adjustment factors* from Table N-2. If a PA cannot obtain or chooses not to seek the data necessary to calculate the cost ratios, it can use the ratios and adjustment factors from Tables M-11 through M-19 in Appendix M in cases in which the measures match.

Note that all documentation for PA costs and savings estimates and ratios must be retained for possible Staff or ex post evaluator review.

Look-Up Tables

Tables N-1 and N-2 have been prepared so that PAs can obtain the Inflated Lifecycle Benefit and the Full Cost adjustment factors. For Inflated Lifecycle Benefits Adjustment Factors, PAs must calculate their own savings ratios. If PAs are able to calculate their own ratios of incremental

⁵²² Usually, the ratio of incremental kWh savings to full kWh saving would be the same as the ratio of incremental peak kW demand reduction to full peak kW demand reduction, which implies using the same ratio and adjustment factor for both. However, with some measure types, such as cooling, PAs may benefit from calculating different ratios of incremental to full for kWh and kW. A PA can choose to use higher 0.05 increment kW ratios if it can calculate and document them with retention.

⁵²³ Full costs include the capital cost of the new efficient equipment plus installation cost.

costs to full costs, they may prefer to use Table N-2. However, as discussed above, in some cases PAs may use the tables in <u>Appendix M</u> to obtain cost ratios and adjustment factors.

For Tables N-1 and N-2, a PA should identify the 0.05 increment ratios that are closest to those it developed. The ratios range from 0.95 to .05 in increments of 0.05, and there are no measure designations.

Note that ratios of 1.0 and 0.0 are not included in the tables. For some measures, the efficiency of the old in place unit is still the common practice or no new standards have been adopted, i.e., the baseline for the full savings and the incremental savings are the same. As a result, the ratio of incremental to full savings is near 1.0, meaning that a PA can claim the full savings for the entire EUL of the new equipment (areas X and Y in Figure 4). Therefore, the lookup tables do not apply. For other measures, the high efficiency equipment subsidized by the program is consistent with current code or standards. For these measures, the incremental savings are zero and thus the ratio of incremental to full savings is 0.0. This means that a PA can claim full savings for only the RUL (area X in Figure 5), after which the high-efficiency replacement would have occurred anyway. Therefore, the lookup tables do not apply.

To use the tables, a PA must gather the following four pieces of information:

- the EUL of the type of equipment,
- the DFP of the old equipment in place (just 25% of the EUL),
- the full savings of the equipment (annual energy use of the old equipment in place minus the annual energy of the high efficiency equipment supported by the program), and
- the full costs (including installation)

Additionally, a PA will need documented estimates, based on equipment minimally compliant with standards/codes or common practice, of incremental savings and costs in order to calculate:

- The ratio of incremental savings to full savings, and
- The ratio of incremental costs to full cost

Again, note that for the costs, PAs can use the Tables in <u>Appendix M</u> where measures match. Table Organization

Table N-1 contains the Inflated Lifecycle Benefit Adjustment Factors while Table N-2 contains the Full-Cost Adjustment Factors.

In Table N-1, the first row is the ratio of incremental savings to full savings while in Table N-2 the first row is the ratio of incremental to full cost. In both tables, the first two columns identify the EULs and corresponding DFPs:

- 25 Years/6
- 20 Years/5
- 14 to 17 Years/4
- 10 to 13 Years/3

The remaining columns present the respective adjustment factors by ratio of

- Table 1: Incremental savings to full savings
- Table 2: Incremental costs to full costs

Program-Tracking Database Requirements

The program tracking databases contain information for each measure installation which the PAs are required to maintain for the purposes of current reporting and future impact evaluation, the latter requiring many fields not used for current reporting. The following seven additional required variables, as were first required in <u>Appendix M</u>,⁵²⁴ are being added by Staff through the Evaluation Advisory Group process⁵²⁵:

- Type of Installation (TRC Approach)⁵²⁶,
- The Full Savings (kWh or therms),
- If electric, the on-peak demand reductions associated with the Full Savings,
- The Adjusted Full Cost (full cost multiplied by the full-cost adjustment factor),
- The Ratio of Incremental Savings to Full Savings,
- The Ratio of Incremental Costs to Full Costs, and

⁵²⁴ Note that item #2 above is a correction of item #2 in Section 5 of Appendix M. Furthermore, item #3 is now required in addition to those variables listed in Section 5 of Appendix M. Those using Appendix M should take note of these changes.

⁵²⁵ Note that for cases of normal replacement and add-on, the variables 2 through 7 should be coded as "n/a" (not applicable).

⁵²⁶ ER=Early Replacement; NR=Normal Replacement; SC=Special Circumstance; AO=Add On. Add on refers to adding something that replaces nothing. Examples include adding controls to a boiler that had none, or adding insulation where there was none or some. Add-on measures are modeled at full costs and full savings for the length of their EULs. The full savings are reported toward first-year goals.

• The *Adjusted EUL* (discussed below).

The Adjusted EUL is defined as that period of years over which the present value benefits of the full savings would approximate the present value dollar benefits of the underlying dual baseline. Figure 6 shows the Adjusted EUL Tx, reduced from the actual EUL T3 such that the lifecycle savings over the period Tx - T1 approximates the lifecycle savings over the period T3 - T1 in Figure 1 (repeated from above). The longer the DFP is, the longer the adjusted EUL, owing to more years at full savings.

Table N-3 presents the adjusted EULs in years for each possible ratio (in 0.05 increments). In Table N-3, the first row is the incremental to full savings ratio and the first two columns identify the EULs and corresponding DFPs. The adjusted EUL is not used for TRC screening, but only for the program's tracking database. Table N-3 is organized in the same way as the Table N-1. Note that Tables N-1 through N-3 are also available in Excel.

Example

Consider the following example. Suppose a PA finds in place equipment with an EUL of 17 years whose age is determined to be 22 years. The five years over the EUL is greater than 25% of the EUL (17/4 = 4.25 which rounds to 4, which is also the DFP). The equipment is eligible for special circumstance treatment if it also meets criteria #3 and #4. The PA has determined that the ratio of incremental savings to full savings is 0.65 and the ratio of incremental costs to full costs is 0.40. To find the Inflated Lifecycle Benefits Adjustment Factors, the Full Cost Adjustment Factors, and the Adjusted EUL for this measure, the PA must go to Table N-1 and identify the row for measures with an EUL of 17 years and a DFP of 4 years. Next, they must identify the column with an incremental savings to full savings ratio of 0.65. The value in the intersection of this row and this column is 0.75, which is the Inflated Lifecycle Benefits Adjustment Factor. Using Table N-3, the same procedure would be followed to obtain the Adjusted EUL of 10 years.

To find the Full Cost Adjustment Factor, the PA would go to Table N-2, find the row with a 4year DFP and the column with a ratio of 0.40. The value in the cell is 0.52, which is the Full Cost Adjustment Factor. As discussed above, in some cases PAs may use the tables in <u>Appendix M</u> to obtain cost ratios and adjustment factors. The next step is to multiply the inflated benefits by the benefits factor and the full costs by the costs factor. For Total Resources Cost (TRC) analysis, ratio the two products, benefits/costs. For first year savings to report against approved program goals, for special circumstances replacements PAs would use the full savings, the first baseline of the existing equipment versus the high efficiency program measure.

Table N-1.	Inflated Lifecycle Benefit	Adjustment Factor	s for PA-Supplied	Ratios of Incremen	tal Savings to Full	Savings, by DFP, f	for
kWh, kW,	and Therm Savings						

			Median Ratio of Incremental Savings to Full Savings																	
	DFP	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
									Inflated	I Lifecycle	Benefit A	djustment	Factors							
25 Year EUL	6	42%	42%	47%	52%	52%	56%	60%	64%	64%	68%	71%	75%	78%	81%	84%	86%	91%	94%	96%
20 Year EUL	5	42%	42%	47%	47%	53%	53%	58%	63%	63%	67%	72%	76%	76%	80%	84%	87%	91%	94%	97%
17 to 14 Year EUL	4	35%	43%	43%	50%	50%	56%	56%	63%	63%	69%	69%	75%	75%	80%	86%	86%	91%	95%	95%
13 to 10 EUL	3	32%	41%	41%	41%	50%	50%	58%	58%	66%	66%	66%	73%	73%	81%	81%	87%	87%	94%	94%

Table N-2. Full Cost Adjustment Factors for PA-Supplied Ratios of Incremental Cost to Full Cost, by DFP

			Median Ratio of Incremental Cost to Full Cost																	
	DFP	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
			Full Cost Adjustment Factors																	
25 Year EUL	6	31%	35%	38%	42%	46%	49%	53%	56%	60%	64%	67%	71%	75%	78%	82%	85%	89%	93%	96%
20 Year EUL	5	27%	31%	35%	39%	43%	46%	50%	54%	58%	62%	66%	69%	73%	77%	81%	85%	89%	92%	96%
17 to 14 Year EUL	4	23%	27%	31%	35%	39%	43%	48%	52%	56%	60%	64%	68%	72%	76%	80%	84%	88%	92%	96%
13 to 10 EUL	3	19%	23%	28%	32%	36%	40%	45%	49%	53%	57%	62%	66%	70%	74%	79%	83%	87%	91%	96%

Table N-3. Adjusted EULs, by DFP

			Median Ratio of Incremental Savings to Full Savings																	
	DFP	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
										Adjust	ed EULs ir	Years								
25 Year EUL	6	6	7	7	8	8	9	9	10	10	11	11	12	12	13	14	14	15	16	16
20 Year EUL	5	6	6	7	7	8	8	9	10	10	11	12	13	13	14	15	16	17	18	19
17 to 14 Year EUL	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	12	12	13	14	14
13 to 10 EUL	3	3	4	4	4	5	5	6	6	7	7	7	8	8	9	9	10	10	11	11

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010

Return to Table of Contents

APPENDIX O

COMMERCIAL AND INDUSTRIAL LIGHTING POLICY

INTRODUCTION

On January 12, 2011 Staff issued a SAPA Notice, in part on proposals to implement directives in the Commission's October 18, 2010 order in Case 07-M-0548 regarding benefit/cost analysis for Special Circumstance customers in Energy Efficiency Portfolio Standard (EEPS) programs.⁵²⁷ In its 2/28/11 comments, National Grid sought clarification regarding: whether field staff must determine the age of lighting fixtures in place and how to treat lighting replacement where the age of the fixture in place is past its prescribed effective useful life (EUL). With regard to these lighting issues, the Commission in its July 18, 2011 order in the EEPS proceeding directed⁵²⁸

"the Implementation Advisory Group to attempt to resolve the issues of determining the age of lighting equipment and the correct approach for valuing savings from lighting replacements⁵²⁹ under the mechanism we provided for modifying the Consolidated Technical Manual [CTM] in our June 20, 2011 Order in this proceeding."⁵³⁰

Regarding commercial and industrial lighting issues,⁵³¹ the technical manual, effective 1/1/11 [*as modified September 2012*], states: "The baseline condition is assumed to be the existing [*and operational*] lighting fixture in [*all applications other than new construction or extensive renovations which trigger the building code*]." This makes the savings baseline and costs for TRC analysis independent of the age of the operational fixture. This approach reflects the frequent impracticality of determining the age of lighting fixtures

Absent this provision, replacement of fixtures in place which are either (1) irreparable (unusable and not economic to repair) or, (2) operating and not demonstrably younger than their EUL (in short, broken or past EUL) would be treated as normal/end of life replacement: modeled with incremental costs and with incremental savings for the full EUL of the new measure, including for first year scorecard reporting.⁵³² Fixtures in place in working order and demonstrably aged below their EUL would get early replacement treatment which, for most non-lighting measures, would mean dual baseline treatment per <u>Appendix M</u>. <u>Appendix M</u>, however, excludes lighting from such treatment.⁵³³ Therefore, the conventional early replacement modeling of full costs and full savings would still apply, with the full savings against the old fixture in place modeled for the full EUL of the new equipment and reported as first year scorecard savings.

⁵²⁷ SAPA 07-M-0548SP30 - Proceeding on Motion of the Commission Regarding an Energy Efficiency Portfolio Standard.

⁵²⁸ Case 07-M-0548, Order Approving Modifications to the Technical Manual, pp. 16-17.

⁵²⁹ Savings are related to the type of lamp used in the fixture.

⁵³⁰ <u>New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs</u>, October 15, 2010, p. 109, www.dps.ny.gov/Tech ManualNYRevised10-15-10.pdf

⁵³¹ C&I lighting includes multi-family building common areas for the purposes of this paper.

⁵³² Incremental means the costs and consumption of the high efficiency model promoted by the program minus the costs and consumption of the standard efficiency level alternative – Federal minimum appliance standards, State building codes or, in the absence of codes and standards, the common practice.

⁵³³ Appendix M, posted with Technical Manual, see footnote #5, p. 10.

In compliance with instructions stated in the July 18, 2011 Order, this appendix prescribes principles for C&I lighting replacements, both replacements of operational fixtures and irreparable fixtures, addressing:

- Replacements for which incentive funding is precluded, as a practical matter of presumptive TRC failure by definition,
- Inputs for TRC ratio calculations,
- Age determination requirements (none), and
- Values for reporting as first year annualized savings against targets approved in orders (the same as the first year savings modeled in the TRC analysis).

THE OVERALL PRINCIPLES

If a lighting fixture of any age is operational, replacement is early replacement. The full savings against the fixture in place⁵³⁴, will be reported as first year savings and modeled for the full EUL of the replacement measure in TRC screening. Costs will be full costs, the total costs of the replacement, as is usual for early replacement analysis outside <u>Appendix M</u>.⁵³⁵

For irreparable lighting fixtures, normal/end of life rules apply: incremental savings and costs between the common practice and the high efficiency measures promoted by EEPS are used for TRC analysis; incremental savings are used for first year scorecard savings; and no age determination is required.

DISCUSSION BY TYPE OF EQUIPMENT REPLACED

The lighting upgrades considered here are; screw-in incandescent fixtures (which will evolve toward use of halogen lamps)⁵³⁶ replaced with CFL or LED fixtures. Linear fluorescent T12 or standard T8 replaced with Super T8s, T5s or LEDs.⁵³⁷ The fixtures in place may be either in good working order (early replacement) or irreparable (normal replacement).

Baselines: Screw-In Fixtures

Screw-in fixtures are expected to continue to accommodate the least efficient lamp types which still meet the national lighting standards established under the Energy Independence and Security Act of 2007 (EISA). Therefore, the baseline choice for early or normal replacement with any pin-based fixtures remains screw-in fixtures: either to keep a working fixture in place or to replace an irreparable one with a new screw-in fixture. Once the EISA standard is phased-in for a particular lamp size the least efficient lamp technology meeting the standard would normally be considered the baseline. Incandescent lamps, however, are expected to remain in inventories for sale and are reportedly being stockpiled. A screw-in fixture can house, for baseline consumption relative to CFLs, either incandescent or halogen

⁵³⁴ The full savings differs from incremental savings in subtracting the consumption of the fixture supported by the program from the consumption of the fixture in place, not from the consumption of the current common alternative. ⁵³⁵ If passing the TRC, however, is a concern, PAs may choose to document an age past the EUL to be able to

⁵³⁶ If passing the TRC, however, is a concern, PAs may choose to document an age past the EUL to be able to model the incremental costs used re: normal replacement as opposed to the full costs usual for early replacement. ⁵³⁶ Halogen lamps consume approximately 72% as much as incandescent lamps. Whereas the TRM reports a delta of watts consumption of 2.53 between CFLs and incandescent lamps, the delta would be approximately 1.55 for CFLs against halogen lamps. This means that 1.55 times the CFL wattage is the savings delta against a halogen lamp.

⁵³⁷ Speaking only of the types whose replacement are usual subjects of EEPS programs, thus not including high intensity discharge (HID) fixtures, metal halide, high pressure sodium, mercury vapor, *or CFLs or LEDs yet*. Perhaps at some point it will be cost effective to replace CFLs with LED lamps.

lamps. Therefore, baselines will be based upon deemed years, for each wattage range, in which installation of the new common practice technology, halogen lamps, is more likely than installation of stockpiled incandescent lamps.⁵³⁸ Until reconsideration (based on studies in progress and program experience) in March 2015, incandescent lamps will remain the baseline.

For fixtures compatible with incandescent and halogen lamps, TRC analysis of a measure or project may be occurring before the deemed switch year or after it. Analysis done before the estimated switch year will entail two baselines of consumption during the EUL of the screw-in alternative to CFL.⁵³⁹ The first baseline will be incandescent lamp consumption until the beginning of the deemed switch year,⁵⁴⁰ the second baseline being halogen lamp consumption. In future TRC analysis after the deemed switch dates, the baseline for incremental savings will be halogen lamps against CFLs throughout.

Baselines: Linear Fluorescent Fixtures

For early replacement of an operational T12 fixture, the baseline relative to super T8s is simply the consumption of the T12 lamp. For normal replacement of an irreparable T12 fixture, the baseline, until reconsideration (based on studies in progress and program experience) in March 2015, is the consumption of a T12. At some point, customers will no longer be installing relatively inefficient T12 fixtures in significant numbers as lamp availability decreases⁵⁴¹ and therefore standard T8s will be the common practice and thus the suitable linear fluorescent baseline for consideration of appropriate super T8s and T5s.

ELIGIBILITY FOR REBATES

The next issue is potential cost-effectiveness and thus measures' eligibility for rebates. Incentives for CFL (and potentially for LED lamp) pin fixtures, as needed and if cost- effective, may continue to be appropriate for some years to come.⁵⁴² Incandescent/halogen fixtures may remain in use indefinitely, with halogens being less expensive upfront as well as more familiar looking than CFLs or LED lamps. Replacement of screw-in fixtures with new screw-in fixtures may continue, and thus incentives for replacement with higher efficiency technologies make sense.

Turning to rebate-eligibility of linear fluorescent fixtures, since installation of T12 fixtures will be unlikely at some point and replacement of a standard T8 fixture with a standard T8 fixture would yield no savings. At that point, savings will exist and cost-effective incentives will be payable only for installation of super T8s (or T5s) in watts-saving configurations. Super T8s produce more lumens per watt and have improved color rendering and a longer rated life, but since ratepayers should not pay for extra lumens, incentives should be paid only for projects which reduce the overall wattage of fixtures relative to standard T8s.

COSTS TO BE MODELED

⁵³⁸ While in reality the technology mixes will shift gradually, the baselines as executed here will require selection of the year in which the probable majority choice will switch.

⁵³⁹ Screw-in LEDs are unlikely in the C&I context in which quality concerns require LED fixtures.

⁵⁴⁰ While incandescent lamps installed before the switch year may remain in use during it, this would probably be for a short time given the usual heavy C&I usage. Additionally, fractional year modeling is not practical.

⁵⁴¹ This will not happen often enough to justify ratepayer subsidy of all replacements to avoid the occasional instance. Retrogression from T8 to T12 is particularly unlikely.

⁵⁴² This is also applicable for screw-in CFLs for incandescent/halogen fixtures.

The last issue is costs to be modeled in TRC screening. For early replacement of operational, screw-in incandescent/halogen fixtures, the TRC screening would as usual include the full *costs* of the replacement, additionally owing to the indefinite remaining life of the fixture in place, and to the continued availability of inexpensive screw-in fixtures usable for halogen. Since most equipment replaced will be in working order, the full-costs case will be the most common, but with incremental costs for normal replacement of irreparable fixtures.

Turning to costs to be modeled for linear fluorescent fixtures, operational standard T8s can remain in place for some years, and therefore full costs for early replacement are fully appropriate. If age past the EUL is documented, however, PAs may model incremental costs for normal replacement. Also as a case of normal replacement, since irreparable standard T8 fixtures can be replaced with like, the modeling of incremental costs for super T8 fixtures is justified.

Record of Revision

Record of Revision Number	Issue Date
0	10/15/2010
3-3-1	3/14/2013

Return to Table of Contents

APPENDIX P

EFFECTIVE USEFUL LIFE (EUL)

SINGLE AND MULTI-FAMILY RESIDENTIAL MEASURES

Category	Single and Multi-family Residential Measures	Sector	EUL (years)	Source
	Advanced Power Strips	D 11 11	0	DEER 2014
		Residential	8	EUL ID: Plug-
				DEEP 2014
	Clothes Washer	Residential	11	FUL ID: Appl-
	ciones washer	Residential	11	EffCW
				ESTAR M&I
Appliance	Clothes Dryer	Residential	14	Scoping
				Report ⁵⁴³
	Dehumidifier	Residential	12	ESTAR Calc ⁵⁴⁴
	Air Purifier (Cleaner)	Residential	9	ESTAR Calc ⁵⁴⁵
	Dishwasher	Residential	11	DEER
				DEER 2014
	Refrigerator Replacement	Residential	14	EUL ID: Appl-
				ESRefg
	Air Conditioner - Room (RAC), Recycling	D 11 11	2	DEER 2014
		Residential	3	EUL ID: HV-
				RAC-RUL
Appliance	Refrigerator Recycling	Desidential	5	DEEK 2014
Recycling		Residential		EUL ID. Appi- RecRef
				DEER 2014
	Freezer Recycling	Residential	4	EUL ID: Appl-
				RecFrzr
	Air Leakage sealing	Residential	15	GDS ⁵⁴⁶
Building Shell	Hot Water Pipe Insulation	Residential	13 – Electric 11 – Gas	DEER
	<u> </u>		30	Energy Trust of
	Opaque Shell Insulation	Residential		Oregon and
				CEC ⁵⁴⁷
	Window & Through the wall AC cover and Gap Sealer	Residential	5	See note
				below ⁵⁴⁸
	Window Replacement	Residential	20	DEER 2014
	······			EUL ID: BS-Win

 ⁵⁴³ ENERGY STAR Market & Industry Scoping Report: Residential Clothes Dryer, November 2011.
 ⁵⁴⁴ ENERGY STAR Dehumidifier Calculator

www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerDehumidifier.xls ⁵⁴⁵ Savings Calculator for ENERGY STAR® Qualified Appliances (last updated October 2016)

Available from: <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/save-energy/purchase-energy-saving-products</u> ⁵⁴⁶ GDS Associates, Inc., Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC

⁵⁴⁶ GDS Associates, Inc., Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007, Table 1 – Residential Measures

⁵⁴⁷ http://energytrust.org/library/reports/resource_assesment/gasrptfinal_ss103103.pdf

⁵⁴⁸ At least one manufactures warranty period. www.gss-ee.com/products.html

Category	Single and Multi-family Residential Measures	Sector	EUL (years)	Source
Domestic Hot Water	Domestic Hot Water Tank Blanket	Residential	10	NYSERDA ⁵⁴⁹
	Heat Pump Water Heater – Air Source (HPWH) ⁵⁵⁰	Residential	10	DEER 2014 EUL ID: WtrHt- HtPmp
	Indirect Water Heater	Residential	11	DEER 2014 EUL ID: WtrHt- Res-Gas
	Storage Water Heater - Gas	Residential	11	DEER 2014 EUL ID: WtrHt- Res-Gas
	Storage Water Heater - Electric	Residential	13	DEER 2014 EUL ID: WtrHt- Res-Elec
	Instantaneous Water Heater	Residential	20	DEER 2014 EUL ID: WtrHt- Instant-Res
	Faucet – Low Flow Aerator	Residential	10	DEER 2014 EUL ID: WtrHt- WH-Aertr
Domestic Hot Water Control	Shower Restriction Valve	Residential	10	UPC ⁵⁵¹
Water - Control	Shower Head – Low Flow	Residential	10	DEER 2014 EUL ID: WtrHt- WH-Shrhd
	Air Conditioner and Heat pump – Refrigerant charge correction	Residential	10	DEER
	Air Conditioner and Heat pump – Right sizing	Residential	15	DEER ⁵⁵²
	Air Conditioner, Central (CAC)	Residential	15	DEER 2014 EUL ID: HV- ResAC
Heating, Vontilation and	Air Conditioner – Room (RAC)	Residential	12	GDS ⁵⁵³
Air	Boiler, Hot Water – Steel Water Tube	Residential	24	ASHRAE Handbook, 2015
(HVAC)	Boiler, Hot Water – Steel Fire Tube	Residential	25	ASHRAE Handbook, 2015
	Boiler, Hot Water – Cast Iron	Residential	35	ASHRAE Handbook, 2015
	Boiler, Steam – Steel Water Tube	Residential	30	ASHRAE Handbook, 2015
	Boiler, Steam – Steel Fire Tube	Residential	25	ASHRAE Handbook, 2015

 $^{^{549}}$ NYSERDA Energy Smart Program Deemed Savings Database. Rev 9-062006

⁵⁵⁰ Electric heat pump used for service hot water heating

⁵⁵¹ UPC certification under the International Association of Plumbing and Mechanical Officials standard IGC 244-2007a. A standard that includes a lifecycle test consisting of 10,000 cycles without fail. 10,000 cycles is the equivalent of three users showering daily for more than nine years.

⁵⁵² Savings assumed to persist over EUL of air conditioner or heat pump

⁵⁵³ GDS Associates, Inc., Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures, June 2007, Table 1 – Residential Measures

Category	Single and Multi-family Residential Measures	Sector	EUL (years)	Source
	Boiler, Steam – Cast Iron	Residential	30	ASHRAE Handbook, 2015
	Circulator – with Electronically Commuted Motor (ECM) for Hydronic distribution	Residential	15	DEER ⁵⁵⁴
	Duct sealing and Insulation	Residential	18	DEER
	Fan Motor – with Electronically			DEER 2014
Heating,	Commuted Motor (ECM) for	Residential	15	EUL ID: Motors-
Ventilation and	Furnace Distribution			fan
Air	Furnace, Gas Fired	Residential	22	DOE ^{555,556}
Conditioning (HVAC)	Furnace Tune-Up	Residential	5	DEER 2014 EUL ID: BlrTuneup
	Heat Pump - Air Source	Residential	15	DEER 2014 EUL ID: HV-Res HP
	Heat Pump – Ground Source	Residential	25	ASHRAE ⁵⁵⁷
	Unit Heater, Gas Fired	Residential	13	ASHRAE Handbook, 2015
	Outdoor Reset Control for Hydronic Boiler	Residential	15	ACEEE558
HVAC - Control	Thermostat – Programmable; Thermostat – Wi-Fi Communicating Thermostat – Learning	Residential	11	DEER 2014 EUL ID: HVAC- ProgTStats
	Thermostatic Radiator Valve	Multifamily	15	DOE ⁵⁵⁹

⁵⁵⁶ U.S. DOE. "Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Commercial Warm Air Furnaces." December 30, 2015. Available from: <u>https://www.regulations.gov/document?D=EERE-2013-BT-STD-0021-0050</u>

⁵⁵⁴ Based on DEER value for furnace fans

⁵⁵⁵ U.S. DOE. "Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Furnaces" and "Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Commercial Warm Air Furnaces." August 30, 2016. Available from: <u>https://www.regulations.gov/document?D=EERE-2014-BT-STD-0031-0217</u>

⁵⁵⁷ ASHRAE: Owning and Operating Cost Database, Equipment Life/Maintenance Cost Survey: <u>https://energy.gov/energysaver/geothermal-heat-pumps</u>

⁵⁵⁸ Potential for Energy Efficiency, Demand Response and Onsite Solar Energy in Pennsylvania, ACEEE report number E093. April 2009

⁵⁵⁹ U.S. DOE, "Thermostatic Radiator Valve Evaluation", January 2015, Table 4. Cost-Benefit Financial Assumptions, pg. 16

Category	Single and Multi-family Residential Measures	Sector	EUL (years)	Source
			Coupon – 5	GDS
		Residential	Direct Inst. – 7	GDS
	Compact Eluorescent Lamp (CEL)		Markdown - 7	GDS
	Compact Photescent Lamp (CFL)	Multifamily	9,000 hrs/	See note
		Common	annual lighting	below ⁵⁶⁰
		area	operating hrs	GDS See note below ⁵⁶⁰ ENERGY STAR Lamps ⁵⁶¹
Lighting	LED Lamps (Directional)	Residential/ Multifamily Common	25,000 hrs/ annual lighting operating hrs or 20 yrs (whichever is less)	ENERGY STAR Lamps ⁵⁶¹
		area	35,000 or 50,000 hours	DLC ⁵⁶²
	LED Lamps (Decorative & Omnidirectional)	Residential/ Multifamily Common area	15,000 hrs/ annual lighting operating hrs or 20 yrs (whichever is less)	ENERGY STAR Lamps

⁵⁶⁰ Multi-family common areas tend to have longer run hours than dwelling units. Default value from C&I lighting table is 7,665 hours per year

⁵⁶¹ ENERGY STAR Program Requirements Product Specification for Lamps (Light Bulbs) V2.0, August 2016, p. 19 (Capped at 20 years).

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2_0%20Revised%20AUG-

^{2016.}pdf ⁵⁶² Placed on the Qualified Products List by the Design Light Consortium (DLC) 35,000 or 50,000 hours, according to the appropriate Application Category as specified in the DLC's Product Qualification Criteria, Technical Requirement Table version 4.0 or higher

Category	Single and Multi-family Residential Measures		Sector	EUL (years)	Source
		LED (Interior)	Residential/ Multifamily	25,000 hrs/ annual lighting operating hrs or 20 yrs (whichever is less)	ENERGY STAR Fixtures ⁵⁶³
Lickting	LED (Exterior) Light Fixture Linear Fluorescent CFL	LED (Exterior)	Residential/ Multifamily Common area	35,000 hrs/ annual lighting operating hrs or 20 yrs (whichever is less)	ENERGY STAR Fixtures
Lighting		Linear Fluorescent	Residential / Multifamily Common area	70,000 hrs / annual lighting operating hrs, or 20 yrs (whichever is less)	DEER 2014 ⁵⁶⁴ EUL ID: ILtg- Lfluor- CommArea
		Residential / Multifamily Common area	22,000 hrs / annual lighting operating hrs, or 20 yrs (whichever is less)	See note below ⁵⁶⁵	
Lighting Control	Stairwell Dimming Light Fixture/Sensor		Multifamily	12	GDS ⁵⁶⁶

⁵⁶³ ENERGY STAR Program Requirements Product Specification for Luminaires (Light Fixtures) V2.0, May 2015, p. 17 (Capped at 20 years).

https://www.energystar.gov/sites/default/files/Luminaires%20V2%200%20Final.pdf

⁵⁶⁴ Basis value 70,000 hours, capped at 20 years, is common given redecoration patterns

⁵⁶⁵ Basis value 22,000 hour ballast life per US EPA. Capped at 20 years as above (2.5 hours per day average lamp operation)

⁵⁶⁶ GDS Associates, Inc. (2007). <u>Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC</u> <u>Measures</u>. Prepared for The New England State Program Working Group

Category	Commercial & Industrial Measures	Sector	EUL (years)	Source
Agricultural	Engine Block Heater Timer	C&I	8	See note below ⁵⁶⁷
	Advanced Power Strips	C&I	8	DEER 2014 EUL ID: Plug- OccSens
	Clothes Dryer	C&I	14	ESTAR M&I Scoping Report ⁵⁶⁸
Appliance	Electric & Gas Cooking Equipment	C&I	12	DEER 2014 EUL IDs: Various
	Room Air Conditioner Recycling	C&I	9	DEER 2014 EUL ID: HV- RAC-ES
	Refrigerator Replacement	C&I	12	DEER
Appliance Control	Vending Machine/Novelty Cooler Time Clock	C&I	5	DEER
	Cool Roof	C&I	15	DEER
	Hot Water Pipe Insulation	C&I	13 – Electric 11 – Natural Gas	DEER
Building Shell	Window - Film	C&I	10	DEER
	Window - Glazing	C&I	20	DEER 2014 EUL ID: BS-Win
	Opaque Shell Insulation	C&I	30	Energy Trust and CEC ⁵⁶⁹
	Air Compressor Upgrade	C&I	13	State TRMs ⁵⁷⁰
Compressed	Refrigerated Air Dryer	C&I	15	Ohio TRM
Air	Engineered Air Nozzle	C&I	15	Wisconsin PSC ⁵⁷¹
	No Air Loss Water Drain	C&I	15	Ohio TRM ⁵⁷²
	Domestic Hot Water Tank Blanket	C&I	7	DEER
Domestic Hot Water (DHW)	Indirect Water Heater	C&I	15	DEER 2014 EUL ID: WtrHt- Com
	Storage Tank Water Heater	C&I	15	DEER 2014 EUL ID: WtrHt- Com
	Tankless Water Heater	C&I	20	DEER
	Heat Pump Water Heater - Air Source (HPWH)	C&I	10	DEER
	Faucet – Low Flow Aerator	C&I	10	DEER

COMMERCIAL AND INDUSTRIAL MEASURES

⁵⁶⁹ Energy Trust uses 30 years for commercial applications.

⁵⁶⁷ Based on EUL's for similar control technology

⁵⁶⁸ ENERGY STAR Market & Industry Scoping Report: Residential Clothes Dryer, November 2011.

http://energytrust.org/library/reports/Residentialource_assesment/gasrptfinal_ss103103.pdf. CEC uses 30 years for insulation in Title 24 analysis

⁵⁷⁰ Based on a review of TRM assumptions from <u>Ohio (August 2010)</u>, <u>Massachusetts (October 2015)</u>, <u>Illinois</u> (February 2017) and <u>Vermont (March 2015)</u>. Estimates range from 10 to 15 years.

⁵⁷¹ PA Consulting Group (2009). *Business Programs: Measure Life Study*. Prepared for State of Wisconsin Public Service Commission

⁵⁷² EUL for this measure not available. Default to air compressor upgrade EUL from Ohio TRM. www.OhioTRM.org

Category	Commercial & Industrial Measures	Sector	EUL (years)	Source
DHW - Control	Showerhead – Low Flow	C&I	10	DEER 2014 EUL ID: WtrHt- WH-Shrhd
	Pre-Rinse Spray Valve	C&I	5	GDS
	Air Conditioner and Heat Pump – Refrigerant Charge Correction	C&I	10	DEER
	Air Conditioner – Unitary	C&I	15	DEER 2014 EUL ID: HVAC- airAC
	Air Conditioner – PTAC	C&I	15	DEER 2014 EUL ID: HVAC- PTAC
	Chiller – Air & Water Cooled	C&I	20	DEER 2014 EUL ID: HVAC- Chlr
	Chiller – Cooling Tower	C&I	15	DEER 2014 EUL ID: ClTwrPkgSys
	Chiller Tune-Up	C&I	5	WI EUL DB ⁵⁷³
Heating,	Combination Boiler and Water Heater	C&I	20	DEER ⁵⁷⁴
and Air	Condensing Gas-Fired Unit Heater for Space Heating	C&I	18	Ecotope ⁵⁷⁵
	Duct Sealing and Insulation	C&I	18	DEER
(IIVAC)	ECM Motors on HVAC Equipment	C&I	15	DEER ⁵⁷⁶
	Economizer – Air Side, with Dual Enthalpy Control	C&I	10	DEER 2014 EUL ID: HVAC- addEcono
	Boiler, Hot Water – Steel Water Tube	C&I	24	ASHRAE Handbook, 2015
	Boiler, Hot Water – Steel Fire Tube	C&I	25	ASHRAE Handbook, 2015
	Boiler, Hot Water – Cast Iron	C&I	35	ASHRAE Handbook, 2015
	Boiler, Steam – Steel Water Tube	C&I	30	ASHRAE Handbook, 2015
	Boiler, Steam – Steel Fire Tube	C&I	25	ASHRAE Handbook, 2015
	Boiler, Steam – Cast Iron	C&I	30	ASHRAE Handbook, 2015

⁵⁷³ Wisconsin Public Service Commission: Equipment Useful Life Database, 2013

Wisconsin Fubic Service Commission. Equipment Oseru Life Database, 2013
 Excerpt available from: https://focusonenergy.com/sites/default/files/bpmeasurelifestudyfinal_evaluationreport.pdf
 ⁵⁷⁴ Based on DEER value for high efficiency boiler
 ⁵⁷⁵ Ecotope Natural Gas Efficiency and Conservation Measure Resource Assessment (2003)
 ⁵⁷⁶ DEER value for HVAC fan motors

Category	Commercial & Industrial Measures	Sector	EUL (years)	Source
	Boiler Tune-Up	C&I	5	DEER 2014 EUL ID: BlrTuneup
	Furnace, Gas Fired	C&I	23	DOE ⁵⁷⁷ , ⁵⁷⁸
Heating, Ventilation and Air Conditioning (HVAC)	Unit Heater, Gas Fired	C&I	13	ASHRAE Handbook, 2015
	Heat Pump – Unitary & Applied	C&I	15	DEER 2014 EUL ID: HVAC- airHP
	Heat Pump – PTHP	C&I	15	DEER 2014 EUL ID: HVAC- PTHP
	Infrared Gas Space Heater	C&I	17	GDS
HVAC -	Thermostat – Programmable Thermostat – Wi-Fi Communicating	C&I	11	DEER 2014 EUL ID: HVAC- ProgTStats
	Boiler Reset Control	C&I	15	See note below ⁵⁷⁹
	Demand Controlled Ventilation	C&I	15	DEER 2014 EUL ID: HVAC- VSD-DCV
Control	Energy Management System	C&I	15	DEER
	Hotel Occupancy Sensors for PTAC and HP Units	C&I	8	DEER ⁵⁸⁰
	Steam Traps Repair/Replace	C&I	6	DEER 2014 EUL ID: HVAC- StmTrp
Lighting	CFL Lamp	C&I	9,000 hours /annual lighting operating hours	See note below ⁵⁸¹
	CFL Light Fixture	C&I	12	DEER 2014 EUL ID: ILtg- CFLfix-Com
	HID	C&I	70,000 hours /annual lighting operating hours or 15 years (whichever is less)	DEER 2014 EUL ID: ILtg- HPS

⁵⁷⁷ U.S. DOE. "Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Furnaces" and "Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Commercial Warm Air Furnaces." August 30, 2016. Available from: <u>https://www.regulations.gov/document?D=EERE-2014-BT-STD-0031-0217</u>

⁵⁷⁸ U.S. DOE. "Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Commercial Warm Air Furnaces." December 30, 2015. Available from: <u>https://www.regulations.gov/document?D=EERE-2013-BT-STD-0021-0050</u>

⁵⁷⁹ Set to 15 years, consistent with Energy Management System (EMS) value in DEER

⁵⁸⁰ DEER value for occupancy sensor controls. Hardwired (not battery powered) controls only

⁵⁸¹ Based on reported annual lighting operating hours; default value by space type in the technical manual (pp. 109-110)
Category	Commercial & Industrial Measures	Sector	EUL (years)	Source
Lighting	Linear Fluorescent	C&I	70,000 hours /annual lighting operating hours or 15 years, (whichever is less)	DEER 2014 ⁵⁸² EUL ID: ILtg- Lfluor-Elec
	LED Fixtures (other than refrigerated case)	C&I	50,000 hours /annual lighting operating hours or 20 years (whichever is less)	DLC ⁵⁸³
			35,000 hours /annual lighting operating hours or 20 years (whichever is less)	Energy Star ⁵⁸⁴
			25,000 hours /annual lighting operating hours or 20 years (whichever is less)	Uncertified
	Refrigerated Case LED	C&I	16	DEER 2014 EUL ID: GrocDisp- FixtLtg-LED
	LED Screw-In Lamps	C&I	15,000 hours (decorative) or 25,000 hours (all other)/ annual lighting operating hours or 20 years (whichever is less)	Energy Star
Lighting - Control	Interior Lighting Control	C&I	8	DEER 2014 EUL IDs: GlazDayIT- Dayltg, ILtg- OccSens
	Stairwell Dimming Light Fixture/Sensor	C&I	12	GDS ⁵⁸⁵
	Plug-Load Occupancy Sensor	C&I	8	DEER ⁵⁸⁶

⁵⁸² Basis Value 70,000 hours, capped at 15 years to reflect C&I redecoration and business type change patterns ⁵⁸³ 50,000 hours per L₇₀ requirements prescribed by the DLC's Product Qualification Criteria, Technical Requirement Table version 4.2

⁵⁸⁴ Placed on the Qualified Fixture List by Energy Star, according to the appropriate luminaire classification as specified in the Energy Star Program requirements for Luminaires, version 2.0. Divided by estimated annual use, but capped at 20 years regardless (consistent with C&I redecoration and business type change patterns ⁵⁸⁵ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC

<u>Measures</u>. Prepared for The New England State Program Working Group ⁵⁸⁶ DEER value for lighting occupancy sensors

Category	Commercial & Industrial Measures	Sector	EUL (years)	Source
Matana and	Motor replacement (with HE motor)	C&I	15	DEER
Motors and Drives	Variable Frequency Drive – Fan and Pump	C&I	15	DEER 2014 EUL ID: HVAC- VSDSupFan
	Air Cooled Refrigeration Condenser	C&I	15	DEER 2014 EUL ID: GrocSys-Cndsr
	Equipment (Condensers, Compressors, and Sub-cooling)	C&I	15	DEER
Refrigeration	Fan Motor – Refrigerated Case and Walk-In Cooler, with ECM	C&I	15	DEER 2014 EUL ID: GrocDisp- FEvapFanMtr
	Refrigerated Case Night Cover	C&I	5	DEER 2014 EUL ID: GrocDisp- DispCvrs
	Auto/Fast Close Door Walk-In Coolers/Freezers	C&I	8	DEER
	Strip Curtains and Door Gaskets for Reach-In or Walk-In Coolers/Freezers	C&I	4	DEER 2014 EUL ID: GrocWlkIn- StripCrtn
	Anti-Condensation Heater Control	C&I	12	DEER 2014 EUL ID: GrocDisp-ASH
Refrigeration - Control	Evaporator Fan Control	C&I	16	DEER 2014 EUL ID: Groc- WalkIn- WEvapFMtrCtrl
	Condenser Pressure and Temperature Controls	C&I	15	DEER

Record of Revision Number	Issue Date
EUL's originally listed in July 18, 2011 Order	7/18/2011
Additional EUL's posted on web site	Subsequent to 7/18/2011 Order
7-13-28	7/31/2013
6-14-1	6/19/2014
6-14-2	6/19/2014
6-15-4	6/1/2015
6-16-2	6/30/2016
1-17-8	12/31/2016
6-17-16	6/30/2017
9-17-11	9/30/2017
12-17-X	12/31/2017
3-18-21	3/29/2018

Record of Revision

Return to Table of Contents

FORMS

TYPICAL MEASURE HEADINGS

Measure Name

Measure Description _____

Method for Calculating Annual Energy and Peak Coincident Demand Savings

Annual Electric Energy Savings

 $\Delta kWh = units \times (savings equation)$

Peak Coincident Demand Savings

 $\Delta kW = units \times (savings equation) \times CF$

Annual Gas Energy Savings

 Δ therms = units × (savings equation)

WHERE:

ΔkWh	= Annual electric energy savings
ΔkW	= Peak coincident demand electric savings
∆therms	= Annual gas energy savings
units	= Number of measures installed under the program
CF	= Coincidence factor
Summary of	Variahlas and Data Sources

Summary of Variables and Data Sources

Variable	Value	Notes

Coincidence Factor (CF)

The recommended value for the coincidence factor is _____ **Baseline Efficiencies from which Savings are Calculated**

Compliance Efficiency from which Incentives are Calculated

Operating Hours

Effective Useful Life (EUL)

Years: _____

Source: _____

Ancillary Fossil Fuel Savings Impacts

Ancillary Electric Savings Impacts

References

1.

Record of Revision (example)

Record of Revision Number	Issue Date
(example) 8-26-2014	(example) 8/29/2014

Record of Revision

Record of Revision Number	Issue Date
0	12/10/2014

Return to Table of Contents

ABBREVIATIONS, ACRONYMS, AND EQUATION VARIABLES Average coefficient of performance COP Energy efficiency (0 - 100%)η Average energy efficiency (0 -100%) η Average temperature difference $\overline{\Delta T}$ Seasonal average energy efficiency ratio over the cooling season BTU/watt-EER hour, (used for a particular climate/building) Peak coincident demand electric savings ΔkW ΔkWh Annual electric energy savings Heat difference/loss ΔQ Temperature difference ΛT Annual gas energy savings Atherms Change, difference, or savings Λ А Amperage AC Air conditioning ACCA Air Conditioning Contractors of America ACEEE American Council for an Energy-Efficient Economy ACL Actual cooling load (Btu/hr) based on Manual J calculation ACH Air change per hour AFUE Annual fuel utilization efficiency, seasonal energy efficiency for fuel heating equipment Association of Home Appliance Manufacturers AHAM Actual heating load (Btu/hr) based on Manual J calculation AHL AHRI Air Conditioning Heating and Refrigeration Institute AHU Air handling unit AIA American Institute of Architects American National Standards Institute ANSI APU Auxiliary power unit Extent of space or surface area Air-Conditioning & Refrigeration Institute ARI ARRA American Recovery and Reinvestment Act of 2009 ASHP Air source heat pump ASHRAE American Society of Heating, Refrigeration, and Air Conditioning Engineers Baseline condition or measure baseline BLDC Brushless DC electric motor BTU **British Thermal Unit** BTUh British Thermal Units per hour CAC Central air conditioner CADR Clean Air Delivery Rate (CFM) Capacity Cooling output rating, in Btu/hr CAV Constant air volume

GLOSSARY

CBECS	Commercial Buildings Energy Consumption Survey
CDD	Cooling degree days - The number of degrees that a day's average
	temperature is above some baseline temperature, which represents the
	temperature above which buildings need to be cooled. The baseline
	temperature is typically 65°F, but may vary based on application.
CEC	State of California Energy Commission
CEE	Consortium for Energy Efficiency
CEF	Combined energy factor (lb/kWh)
CEER	Combined Energy Efficiency Ratio
CF	Coincidence factor
CFL	Compact fluorescent lamp
CFM	Cubic foot per minute
CHW	Chilled water
CHWP	Chilled water pump
CLH	Cooling load hours
СМ	Case motor
CMU	Concrete masonry
Comp _{eff}	Efficiency of the cooler/freezer compressor (kW/Ton)
COP	Coefficient of performance, ratio of output energy/input energy
CV	Constant volume
CW	Condenser water
CWP	Condenser water pump
Cyclesannual	Number of dryer cycles per year
D	Demand
DC	Direct current
DCV	Demand controlled ventilation
DEER	Database for Energy Efficiency Resources, California
DF	Demand diversity factor
DFP	Default functional period
DHW	Domestic hot water
Dia	Diameter
DLC	DesignLights Consortium [®]
DOAS	Dedicated outdoor air system
DOE 2.2	US DOE building energy simulation, and cost calculation tool
DPS	Department of Public Service. New York State
DSF	Demand savings factor
DX	Direct expansion
ECCC NYC	Energy Conservation Construction Code of New York City
ECCC NYS	Energy Conservation Construction Code of New York State
EC	Electronically commutated
Econ	Economizer
Ecotope	Ecotope Consulting, Redlands, CA
ee	Energy efficient condition or measure
55	

Glossary

EER	Energy efficiency ratio under peak conditions
EF	Energy factor
Eff	Efficiency
Ec	Combustion efficiency
Efficiency	State of Vermont Energy and Efficiency Initiatives
Vermont	
Et	Thermal efficiency
EFLH	Equivalent full-load hours
EIA	Energy Information Administration, US
EISA	Energy Independence and Security Act (EISA) of 2007
ElecSF	Electric Savings Factor
ENERGY	U.S. Environmental Protection Agency voluntary program
STAR®	
Energy Trust	Energy Trust of Oregon, Inc.
EPA	Environmental Protection Agency (EPA), US
EPACT	Energy Policy and Conservation Act of 2005
EPDM	Ethylene propylene diene monomer roofing membrane
ERV	Energy recovery ventilation
ESF	Energy savings factor
EUL	Effective useful life
EFan	Evaporator fan
Exh	Exhaust
F	Factor
Felec	Percentage of energy consumed that is derived from electricity
F _{gas}	Percentage of energy consumed that is derived from gas
FEMP	Federal Energy Management Program
FL	Full-load chiller efficiency under peak conditions
FLH	Full-load hours
Flow	Nozzle flow
FPFC	Four pipe fan coil
ft ²	Square foot
GasSF	Gas Savings Factor
GDS	GDS Associates, Marietta, GA
Glazing area	Aperture area of glazing
GPD	Gallons Per Day
GPM	Gallons Per Minute
GSHP	Ground source heat pump
H _v	Heat of vaporization (latent heat), in Btu/lb
H ₂ O _{savings}	Water savings
HDD	Heating degree days - The number of degrees that a day's average
	temperature is below some baseline temperature, which represents the
	temperature below which buildings need to be heated. The baseline
	temperature is typically 65°F, but may vary based on application.
HID	High intensity discharge lamp

hp	Horsepower
HP	High performance
hrs	Hours
hrsoperating	Operating hours
HSPF	Heating seasonal performance factor, BTU/watt-hour, total heating output
	(supply heat) in BTU (including electric heat) during the heating season /
	total electric energy heat pump consumed (in watt-hour)
ht	Height
HVAC	Heating, ventilation, and air conditioning
HVAC _c	HVAC interaction factor for annual electric energy consumption
HVAC _d	HVAC interaction factor at utility summer peak hour
HVACg	HVAC interaction factor for annual natural gas consumption
HW	Hot water
IECC	International Energy Conservation Code
IEER	Integrated energy efficiency ratio
IESNA	Illuminating engineering Society of North America
IPLV	Integrated Part-Load Value, a performance characteristic, typically of a
	chiller capable of capacity modulation.
k	Thermal conductivity
KBTUh _{in}	Gas input rating (kBTU/h)
kBTUh _{out}	Heating output rating (kBTU/h)
kW	kilowatts
L	Length
LBNL	Lawrence Berkeley National Laboratory
leakage	Estimate of percent of units not installed in service territory
LED	Light emitting diode
LEED	Leadership in Energy and Environmental Design
LF	Load Factor
Load	Average total weight (lbs) of clothes per drying cycle
LPD	Lighting power density
LRAC	Long-run avoided cost
LSAF	Load shape adjustment factor
MEC	Metropolitan Energy Center
NAECA	National Appliance Energy Conservation Act of 1987
NBI	New Buildings Institute
NEA	National Energy Alliances
NEAT	National Energy Audit Tool
NEMA	National Electrical Manufacturers Association
NREL	National Renewable Energy Laboratory
NRM	National Resource Management
NSTAR	Operating company of Northeast utilities
NWPPC	Northwest Power Planning Council
NWRTF	Northwest Regional Technical Forum
NY DPS	New York State Department of Public Service

Glossary

NYISO	New York Independent System Operator
NYSERDA	New York State Energy Research and Development Authority
°F	Degrees Fahrenheit
OSA	Outdoor supply air
PA Consulting	PA Consulting Group
PF	Power factor
Phase	Number of phases in a motor (1 or 3) Single Phase is a type of motor with
	low horsepower that operates on 120 or 240 volts, often used in residential
	appliances. Three phase is a motor with a continuous series of three
	overlapping AC cycles offset by 120 degrees. Three-phase is typically used
	in commercial applications.
PLR	Power loss reduction
PNNL	Pacific Northwest National Laboratory
PSC	Public Service Commission, New York State
PSF	Proper sizing factor
psia	Atmospheric pressure (lbs per square inch)
psig	Gauge pressure (lbs per square inch)
PSZ	Packaged single zone
PTAC	Package terminal air conditioner
PTHP	Packaged terminal heat pump
Q	Heat
Qreduced	Reduced heat
Qreject	Total heat rejection
r	Radius
RA	Return air
RAC	Room air conditioner
RE	Recovery efficiency
RECS	Residential Energy Consumption Survey
RESNET	Residential Energy Services Network
RH	Reduced heat
RLF	Rated load factor
RPM	Revolutions per minute
R-value	A measure of thermal resistance particular to each material
S	Savings
SAPA	State Administrative Procedure Act
SBC	System Benefit Charge
SCFM	Standard cubic feet per minute @ 68 °F and 14.7 psi standard condition
SEER	Seasonal average energy efficiency ratio over the cooling season, BTU/watt-
	hour, (used for average U.S. location/region)
SF	Square foot
SHGC	Solar heat gain coefficient
SL	Standby heat loss
Staff	NYS Department of Public Service Staff
standby	Standby Power (watts)

Glossary

Т	Temperature
TAF	Temperature adjustment factor
TDA	Total Display Area (ft ²)
TDEC	Total Daily Energy Consumption
TEFC	Totally enclosed fan cooled
th	Thickness
therm	Unit of heat
THR	Total heat rejection
Throttle _{fac}	Throttle factor
TMY	Typical meteorological year
tons	Tons of air conditioning
tons/unit	Tons of air conditioning per unit, based on nameplate data
TRC	Total Resources Cost
TRM	Technical Resource Manual
UA	Overall heat loss coefficient (BTU/hr-°F)
UEF	Uniform Energy Factor
unit	Measure
units	Number of measures installed under the program
UPC	Uniform Plumbing Code under the International Association of Plumbing
	and Mechanical Officials
US DOE	United States Department of Energy
US EPA	United States Environmental Protection Agency
U-value	Measure of heat loss in a building element/overall heat transfer co-efficient
V	Volt
v	Volume
VAV	Variable air volume
VSD	Variable speed drive
W	watts
W _{ctrl}	Total wattage of controlled lighting (watts)
Wisconsin PSC	State of Wisconsin Public Service Commission

EQUATION CONVERSION FACTORS		
0.000584	Conversion factor used in DOE test procedure	
0.00132	Electric efficient storage type water heater replacing standard storage tank	
	water heater. NAECA referenced as function of storage volume.	
0.0019	Natural gas efficient storage type water heater replacing standard storage	
	tank water heater. NAECA referenced as function of storage volume.	
0.284	Conversion factor, one kW equals 0.284 ton	
0.293	Conversion factor, one BTU/h equals 0.293071 watt	
0.473	Conversion factor (liters/pint)	
0.67	Natural gas water heater Energy Factor	
0.746	Conversion factor (kW/hp), 746 watts equals one electric horsepower	
0.97	Electric resistance water heater Energy Factor	
1.08	Specific heat of air \times density of inlet air @ 70°F \times 60 min/hr	
1.6	Typical refrigeration system kW/ton	
3.412	Conversion factor, one watt-hour equals 3.412142 BTU	
3.517	Conversion factor, one ton equals 3.517 kilowatts	
8.33	Energy required (BTU's), to heat one gallon of water by one degree	
	Fahrenheit	
12	kBTUh/ton of air conditioning capacity	
24	Hours in one day	
67.5	Ambient air temperature °F	
91	Days in winter months	
100	Conversion factor, one therm equals 100 kBTU	
274	Days in non-winter months.	
365	Days in one year	
3,412	Conversion factor, one kWh equals 3,412 BTU	
8,760	Hours in one year	
12,000	Conversion factor, one ton equals 12,000 BTU/h	
1,000	conversion factor, one kW equals 1,000 watts	
100,000	conversion factor, (BTU/therm), one therm equals 100,000 BTU's	

Record of Revision

Record of Revision Number	Issue Date
0	12/10/2014
6-15-4	6/1/2014
1-17-9	12/31/2016
6-17-17	6/30/2017
9-17-12	9/30/2017
12-17-Y	12/31/2017
3-18-22	3/29/2018

Return to Table of Contents