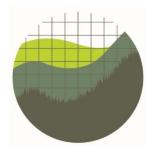


Valuing Air Pollutant Externality Benefits from Distributed Energy Resources

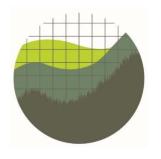
Jeffrey Shrader, Ph.D.


Burcin Unel, Ph.D.

Avi Zevin


Outline

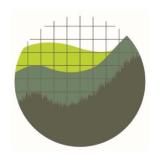
- Basic principles and methodology
- Methods and data needs
- Examples
- Summary


Distributed Energy Resources and Externalities

- Pollution imposes costs on society that are not borne by the polluters themselves
- Internalize environmental externalities
 - Polluter pays a tax based on those damages; or
 - Other resources are paid for the damage that they avoid
- The Commission can increase economic efficiency by directly incorporating the monetary value of avoided emissions into the value stack in the Value of Distributed Energy Resources Proceeding

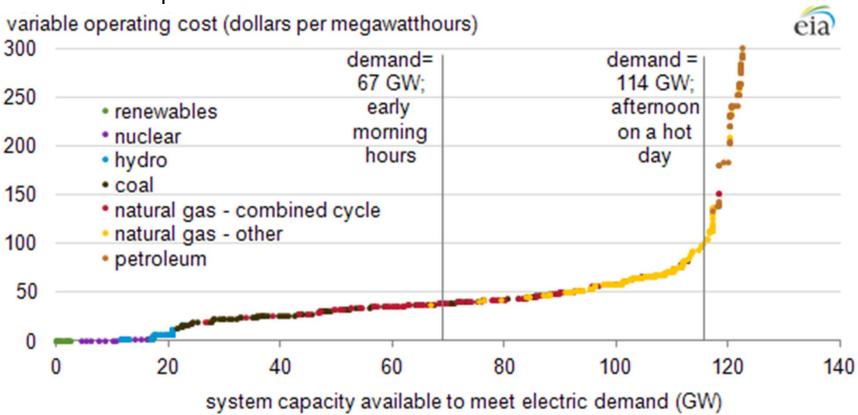
Principles

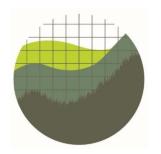
- DERs should be compensated for uninternalized damages they avoid
- "E" value should depend on:
 - Location: DER worth more when avoiding air pollution in areas with high population density and more vulnerable population
 - **Time:** DER worth more when higher emitting generators are on the margin
 - Pollutant: Different pollutants cause different levels of public health and climate damage
- For emitting DERs, "E" value should be reduced based on their emissions and could potentially be negative
- Payment should balance accuracy and administrability



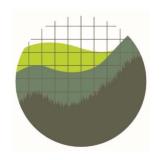
Methodology

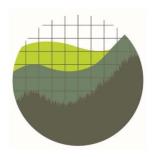
Goal: To calculate environmental value of each kWh of DER generation to be added to DER value stack


Methodology: 5 steps, updated as often as feasible:


- 1. Identify the generator that is displaced by DER
- 2. Calculate emission rates (kg/kWh) of the displaced resource and DER
- 3. Calculate the damage per unit (\$/kg) of avoided emissions and DER emissions (if any)
- Monetize the value of avoided damage from displaced generation (\$/kWh)
- Net the damages avoided by DER and damages from DER itself (if any)

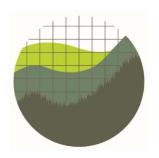
Step 1: Identify the Generation Resource that Is Displaced

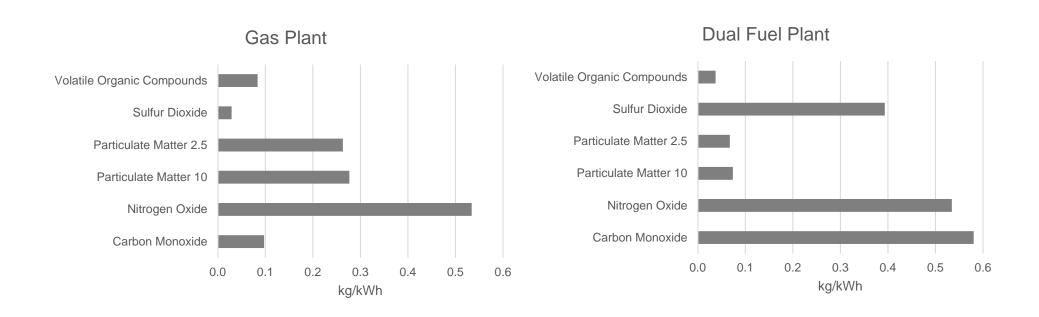

Illustrative Dispatch Curve

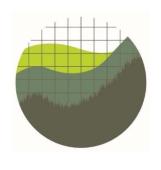

Step 1: Identify the Generation that Is Displaced by DER

- A counterfactual ISO run
- Assume that each kWh of DER displaces a kWh of the marginal resource in a particular geographic region/time
 - Assumption: DERs do not change the marginal resource
 - Regional analysis is important when congestion is high
- Approach to Avoid: Grid Average
 - Misses temporal/regional variation
 - Does not guarantee that DERs truly avoid emissions

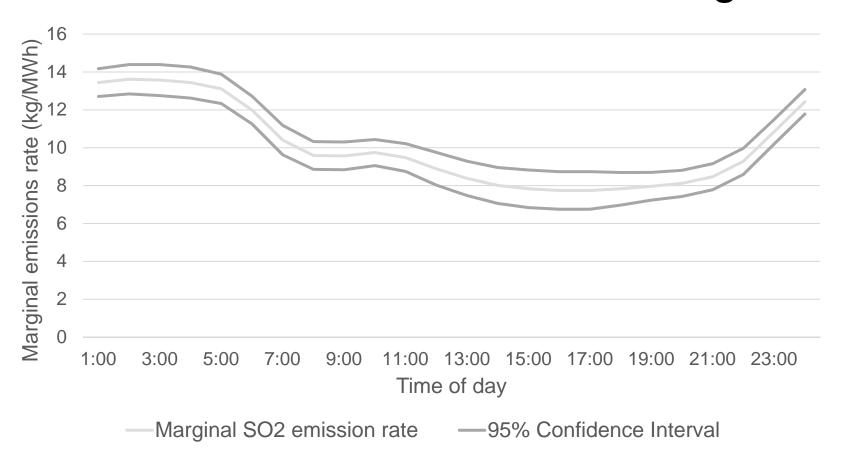
Step 2: Calculate Emission Rates (kg/kWh) for Displaced Generation Resource and DER


- Historical average emission rates readily available from EPA for large generators
 - Updated every 3 years.
 - Greater than 25 MW
- Smaller, newer generators may require assumed rates based on fuel input, design efficiency, existing/use of pollution control equipment
- Emission rates also vary over time, due to equipment aging, capacity factor changes, and weather
 - Engineering estimates
 - Regression estimates like Graff Zivin (2014)

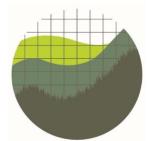

Step 2: Data Needed to Calculate Emission Rates


Potential Emissions Data Sources

Category	Pollutant	Data Source (latest data year)
Criteria Air Pollutants	SO ₂ , NOx	EPA eGrid (2014): plant-level emission rates for steam units > 25MW; CT, CC, & ICE online after 1990
	PM2.5 (direct)	 National Emissions Inventory (2014): plant-level annual emissions National Energy Technology Laboratory (2010): Technology-based emission factors for NGCC AP-42 (2011): estimate of natural gas and petrol steam turbines and combustion turbines. NY DEC
GHGs	CO ₂ , N ₂ O	eGrid (2014)



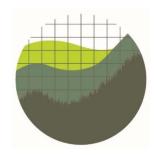
Example: Average Emission Rates Based on Fuel Type



Example: Grid-wide Estimated Hourly Emissions Rate for SO₂ in Eastern Interconnection Region

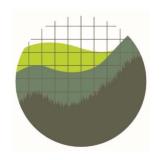
Source: Graff Zivin et. al (2014)

Step 3: Calculate Damage per Unit of Emissions (\$/kg)


- CO₂ is a global pollutant so damage calculation is straightforward by using the Interagency Working Group's Social Cost of Carbon
- For other pollutants, damage per unit of emissions is a function of:
 - Location
 - Air transport
 - Population density
 - Ambient concentration
 - Local population health status

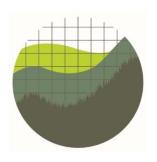
Time

Ozone is a daytime, seasonal pollutant

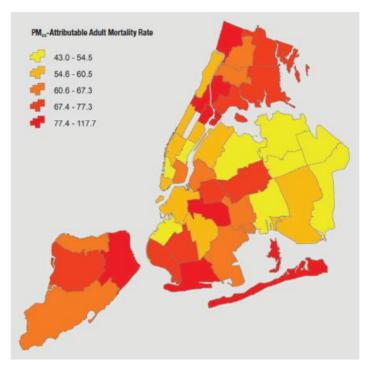

Pollutant

- Each pollutant has a different damage function
- Secondary pollutants (PM_{2.5}, ozone) are formed by combinations of other pollutants

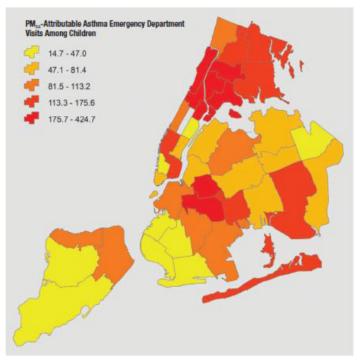
Step 3: Tools to Calculate Damage per Unit of Emissions


Tool	Geographic Granularity	Add'l Data Needed	Pollutants Covered	Notes	Source
Custom model	Variable	High	ozone (NOx,VOC), PM _{2.5} (directly emitted PM _{2.5} , NOx, VOC, SO ₂), air toxics	Geographic-specific damage estimates based on: • Air transport • Ambient concentrations • Population, • Comorbidity	Bay Area Air Quality Management District (2017)
EASIUR	36 km	Low	SO ₂ , NOx, NH ₃ , PM _{2.5}	 Detailed air transport model Easy calculation of location and time specific emission damage Seasonal variation 	Heo, Adams, and Gao (2016)
BenMAP	High (default); Variable (custom)	Medium (default); Varies (custom)	ozone, PM _{2.5}	 Translates all pollutants into secondary PM & ozone; Driven primarily by mortality; Can input own data 	U.S. EPA
AP2	County	Low	SO ₂ , NOx, VOC, NH ₃ , PM _{2.5} , PM ₁₀	Accounts for air transportBroader monetized damage categories	Muller, Mendelsohn, Nordhaus (2011)
COBRA	State or county	Low	PM _{2.5} (directly emitted PM _{2.5} , NOx, VOC, SO ₂)	 Recently updated (2017) Previously used by NY PSC Accounts for air transport Driven primarily by mortality 	U.S. EPA (2017)

Examples of Damage Per Unit of Emissions


Dollar value of average damage per kg

Pollutant	2016 EPA RIA	DPS	Bay Area
SO2	\$40 to \$91 per kg	\$27 per kg	\$39 per kg
NOx	\$10 to \$40 per kg	\$13 per kg	\$8 per kg
PM2.5 (direct)	\$175 to \$400 per kg		\$500 per kg


Example: Locational Variation in Damages

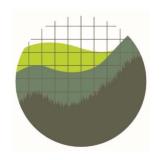
Mortality (Krewski et al 2009)

2.7-fold variation by neighborhood73% of deaths occur in ages 65 and above

ED Visits, Asthma (Ito et al 2007)

30-fold variation by neighborhood

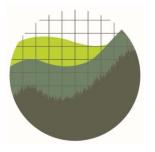
Source: NYC Department and Health of Mental Hygiene Bureau of Environmental Surveillance and Policy (2013)



Step 4: Monetize the Avoided Externality from Displaced Generation (\$/kWh)

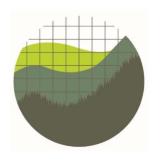
- Take into account any existing policies that partially internalize the damages
 - Carbon charge, RGGI, Cross-state air pollution rule (CSAPR)
- Calculate the monetized value of avoided damages per unit of displaced generation for each pollutant
 - Multiply the results of Step 2 and Step 3

Example: Avoided CO₂ damages per unit of generation from a displaced gas generator

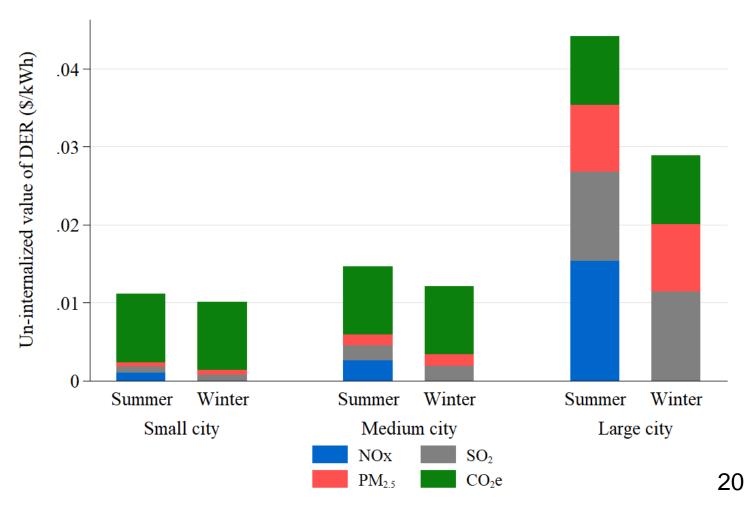

Emissions rate =
$$0.9 \frac{kg \ CO_2 e}{kWh}$$

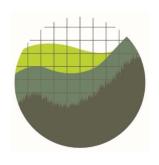
Uninternalized damage rate = $0.035 \frac{\$}{kg \ CO_2 e}$
CO2e monetized value = $0.9 \frac{kg \ CO_2 e}{kWh} \times 0.035 \frac{\$}{kg \ CO_2 e} = 0.032 \frac{\$}{kWh}$

Example: Monetized Values for a Non-emitting DER

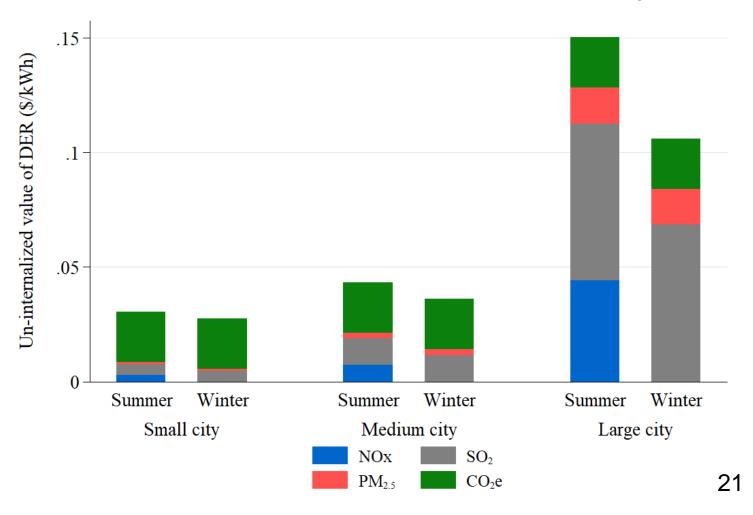

Dollar value of average damage per MWh

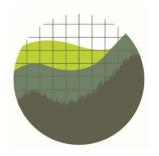
Pollutant	2016 EPA RIA	DPS	Bay Area
SO2	\$76 to \$171 per MWh	\$52 to \$55 per MWh	\$77 per MWh
NOx	\$4 to \$12 per MWh	\$5 per MWh	\$3 per MWh
PM2.5	\$7 to \$16 per MWh		\$22 per MWh


Step 5: Monetize Net Damages

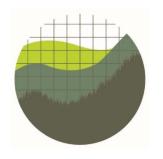

- If the DER does not emit, then the monetized value is given by the previous step
- For emitting DER, monetized value of DER emissions must be subtracted from the amount calculated in Step 4
 - If the DER creates more damage than it avoids, then the "E" value should be negative

Example: Monetized Net Avoided Damage for Non-emitting DER


Example Values for Three Cities: Gas on the Margin



Example: Monetized Net Avoided Damage for Non-emitting DER


Example Values for Three Cities: Dual Fuel on the Margin

Summary of Methods and Necessary Data

- 1. Identify the resource displaced by distributed generation
 - Most granular: Counterfactual generation with and without DERs
 - Alternative: Marginal generator (can vary with zone based on congestion)
- 2. Calculate emission rates
 - Most granular: Real-time emission rates for all pollutants
 - Alternatives: Historical data, engineering or econometric estimates
- 3. Calculate damages per unit of emission
 - Most granular: Pollution transport, affected population, ambient concentration, comorbidity
- 4. Monetize the avoided damage from displaced emissions
 - Existing policies should be taken into account
- 5. Monetize net avoided damage from DERs

Bottom Line

- Externalities should be internalized
- The value of net avoided emissions is not zero
- This value changes with respect to time and location
- We have good, existing research and tools to be able to do this calculation
- The method can get more granular as more tools and data become available