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Executive Summary 
The national network of weather surveillance radars (NEXRAD) detects birds in flight, 

and has proven to be a useful remote-sensing tool for ornithological study. We used data 
collected during Fall 2008 to 2014 by 16 NEXRAD and four terminal Doppler weather radars 
(TDWR) in the northeastern U.S. to map and study the spatial distribution of landbirds shortly 
after they leave daytime stopover sites to embark on nocturnal migratory flights. Given observed 
variability in the precise timing of migratory exodus, we developed a new method to sample the 
onset of migration at the point of maximum rate of increase in bird densities aloft to consistently 
sample exodus across radars and days.  

The mean linear trend in aggregate stopover densities of migrants indicated a 4% decline 
per year from the 2008 baseline density (29% decline over the seven years). Regionally, coastal 
Virginia and Maine had the steepest declines. The steepest increases in migrant densities across 
years occurred within the Delmarva Peninsula and in coastal Connecticut.  

We used NEXRAD observations to develop models to predict potentially important 
stopover sites throughout USFWS Region 5. Observed NEXRAD data were positively correlated 
to observations from TDWR and NASA’s S-Band Dual-Polarimetric Radar (NPOL), though not 
strongly. Predicted densities increased with increasing hardwood cover across multiple scales 
and with vegetation productivity. Contrastingly, predicted densities decreased with increasing 
agricultural, emergent marsh and coniferous land cover, but did not change with fraction of 
urban cover. Stopover density increased closer to bright areas and the Atlantic coast. Moreover, 
interactive effects indicated that migrants were more concentrated in forested areas that were 
both brightly lit and near the Atlantic coast. Large areas of predicted regionally important 
stopover sites were located along the coastlines of Maine, Long Island Sound, New Jersey, the 
lower Delmarva Peninsula, within the Adirondack Mountains, Catskill Mountains, and eastern 
Virginia.  

We also created maps of classified stopover use during bimonthly periods and at multiple-
scales. Migrant densities peaked along the Adirondack Mountains early in September, and along 
the Atlantic coast in late September with the passage of Neotropical migrants. Stopover densities 
peaked in the most northern extent of Maine and New England States in late October with the 
departure of temperate migrants.  

Ground surveys conducted at 48 forested sites within the Delmarva Peninsula and 
Tidewater Virginia during Fall 2013 and 2014 revealed that nocturnal migrant densities pooled 
across species and for 14 individual species, after accounting for temporal phenology in their 
passage timing, were related to factors operating at multiple scales including food resources 
(primarily arthropod abundance in understory) and understory shrub density at a patch scale, and 
latitude and proximity to the Atlantic coast at a regional scale.  

We integrated field survey and radar data to estimate relative stopover duration and to 
identify stopover functional types among 45 sites that included data from a past study near the 
Gulf of Mexico. We identified four functional types spanning the gradient of short rest stops to 
refueling stops with variable duration of stopover in relation to food abundance. The Mid-
Atlantic sites were dominated by rest stops near coastal areas and lacked quick refueling stops 
due to low overall food abundance. The maps and ecological understanding produced can help 
inform conservation planning to protect and enhance stopover sites for migratory landbirds in the 
future.  
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Introduction 
 

Avian migration is a complex and poorly understood phenomenon that occurs biannually 
in a variety of taxa. Over two-thirds of all the landbirds that breed in temperate North America 
migrate to and from nonbreeding areas in Mexico, Central and South America and the islands of 
the Caribbean (Keast and Morton 1980, Rappole 1995). Landbirds stop frequently during their 
migratory journey and spend upwards of 95% of their time resting and refueling at stopover sites 
rather than in actual migratory flight (Hedenström and Alerstam 1997, Alerstam 2003). The 
migratory phase could be a limiting period of the annual cycle in many of these species (Sillett 
and Holmes 2002, Newton 2006, Faaborg et al. 2010a, 2010b). For example, Black-throated 
Blue Warblers (Setophaga caerulescens), a Nearctic-Neotropical migratory species, sustain up to 
85% of their total adult mortality during the migration periods. This loss is disproportionately 
high given that migration generally accounts for only 13 to 17 weeks (25–33%) of a bird’s 
annual cycle (Sillett and Holmes 2002). Thus, identifying important stopover sites is a critical 
step in development of comprehensive conservation plans for migratory landbirds (Hutto 2000, 
Rich et al. 2004, Mehlman et al. 2005, Sheehy et al. 2011). 

Interest and technology to improve our understanding of migration and where birds 
stopover has increased (Bowlin et al. 2010, Bridge et al. 2011, Buler and Dawson 2014). The 
national network of weather surveillance radars (NEXRAD) is one such research tool, detecting 
landbirds as they emerge from terrestrial habitats to initiate nocturnal migratory flights and 
providing comprehensive observations over large spatial extents to allow mapping their stopover 
distributions (e.g., Bonter et al. 2009, Buler and Diehl 2009, O’Neal et al. 2010, Buler and 
Moore 2011, Ruth et al. 2012, Buler and Dawson 2014, LaFleur et al. 2016). We recently 
mapped important migratory landbird stopover areas for the northeastern U.S. (USFWS Region 
5) and assessed stopover use at national wildlife refuges using NEXRAD data (Buler and 
Dawson 2012, 2014). To do this, we developed simple and geographically-weighted linear 
models to predict stopover site use in portions of the region not sampled by the radars, based on 
landscape habitat composition, elevation, and geographic location. These initial maps were the 
first to offer site-specific information on stopover use to inform conservation planning. However, 
continuing to improve radar data processing methods, expanding the amount and robustness of 
processed radar data, and refining models to predict stopover distributions of migrating birds is 
essential for providing more-accurate information for bird conservation purposes. 

One way to externally validate predictive stopover distribution models is to compare 
ancillary radar datasets of observed bird stopover densities with model predictions. The 
Delmarva Peninsula is a particularly important area for migratory birds in North America (Watts 
and Mabey 1994, Buler and Dawson 2014). Most of the lower Delmarva Peninsula is not 
covered by NEXRAD but is sampled by the NPOL radar operated by NASA through their 
Wallops Flight Facility with some overlap of the area sampled by the KDOX NEXRAD station. 
NPOL has finer spatial resolution and greater flexibility in its sampling strategy than NEXRAD 
radars, providing a more precise and accurate discrimination than was previously possible of the 
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sites and habitats from which migrants emerge. Through an agreement between The Nature 
Conservancy and NASA, NASA collected radar data at no cost in a unique opportunity to study 
bird distributions during migration within Lower Delmarva; we had a major role in coordinating 
data collection of NPOL. There are also four Terminal Doppler Weather Radars (TDWR) located 
within Region 5 that provide radar coverage outside that of the NEXRAD network. TDWR data 
are available to use for validating NEXRAD-based predictive models.  

A broad-scale ground survey effort within the Delmarva region also provides data to 
compare the influence of factors operating at different spatial scales in explaining habitat use 
patterns of en route landbirds. Assessing factors at the habitat-patch (e.g., habitat composition 
and structure, food abundance), landscape (e.g., proportion of forest cover), and regional (e.g., 
proximity to ecological barrier) scales complement similar efforts done previously to examine 
multi-scale factors in explaining bird stopover distributions on the Delmarva Peninsula (Watts 
and Mabey 1994) and in other regions: Gulf Coast (Buler et al. 2007, Cohen et al. 2014, LaFleur 
et al. 2016), Great Lakes (Johnson 2013, R. Smith, unpubl. data), and Maine coast (Woodworth 
et al. 2014, McCabe and Olsen 2015).  

Factors operating at multiple spatio-temporal scales can influence where birds stop over 
and how long they stay at individual sites along their journeys. Broad-scale factors, such as 
weather, preferred migratory route, proximity to a large water body, and energetic condition of a 
migrant, are generally extrinsic to habitat characteristics and can constrain access to high quality 
stopover habitats (Moore and Kerlinger 1989, Moore et al. 1990, Gauthreaux and Belser 1999, 
Schaub et al. 2004, Gauthreaux et al. 2005, Schmaljohann and Naef-Daenzer 2011, LaFleur et al. 
2016). Fine-scale factors like habitat physiognomy and floristics, food resource availability, risk 
of predation, and competition will also influence habitat use by migrants (e.g. Moore and Wang 
1991, Cimprich and Moore 1999, Moore and Aborn 2000, Rodewald and Brittingham 2004, 
Rodewald and Matthews 2005, Buler et al. 2007, Woodworth et al. 2014). All of these factors 
interact, resulting in scale-dependent habitat use patterns (Hutto 1985, Moore et al. 2005, Buler 
et al. 2007, Buler and Moore 2011, LaFleur et al. 2016).  

Most research on stopover habitat use by migratory landbirds has focused only on 
localized, patch-scale approaches (Moore and Aborn 2000). At this scale, migrants generally 
partition themselves relative to food availability, suggesting this intrinsic factor is chiefly 
responsible for influencing observed trends in localized use of stopover habitat (Hutto 1985). 
But, even when considering broad, extrinsic factors in addition to patch-scale factors, food 
availability remains the definitive factor in determining migrant distributions at stopover sites 
(Buler et al. 2007). 

Habitat structure is another patch-scale factor shown to influence stopover site selection, 
with migrants preferring structurally diverse habitats such as forest edges, where there is not only 
ample cover to hide, but greater food availability (Moore et al. 1995, Rodewald and Brittingham 
2004). Variation in forest composition and structure can also affect the availability of these food 
resources. Hardwood forests, for example, generally contain a greater abundance and diversity of 
fruiting species than pine-dominated forests (Greenberg et al. 2012), and bottomland hardwood 
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forests in particular support a higher arthropod abundance (Buler et al. 2007). These results 
suggest that hardwoods tend to be a higher quality stopover habitat type than pinelands, at least 
in terms of food availability. While providing important information, patch-scale studies may 
mask broader extrinsic factors that are as influential, if not more, than intrinsic factors in driving 
site use by migratory landbirds. In fact, this bias may consequentially lead to an inaccurate 
conclusion on the overall importance of site-specific variables by overemphasizing local habitat 
variables (Petit 2000, Buler et al. 2007). 

Alternatively, stopover habitat use studies conducted at a more extensive spatial scale, 
and only considering landscape and regional variables, have consistently demonstrated the 
influence of these particular factors on migrant use of stopover sites. Buler et al. (2007) 
determined that proximity to the coast and amount of hardwood forest cover were moderately 
important factors in determining overall migrant densities at the regional and landscape scales, 
respectively. Yet as with many studies not incorporating both fine and broad spatial scale 
variables, results must be interpreted with caution. For example, sites near the coast may appear 
to support more migratory birds, and thus be suggestive of an overall better quality habitat, but 
these increased densities may be an artifact of the “funneling effect” along the coast caused by 
misdirected and inexperienced juvenile migrants (Ralph 1978). When considering individual 
migratory trends across multiple years, inexperience and misdirection may be plausible 
explanations for use of coastal routes and subsequent stopover sites by passerines during their 
first year. While a juvenile’s initial migratory route and wintering destination may be 
unpredictable, those surviving to the following year show high rates of overwintering site fidelity 
(Warkentin and Hernández 1996, Cresswell 2014). 

Other extrinsic factors such as weather and body condition of individual migrants may 
strongly influence their decision to stop and their duration of stay at one stopover site over 
another. Given the stochastic nature of these types of variables, at times it is even possible that 
the proximity of a habitat to the nearest coast is a stronger predictor of migrant abundance than 
any particular patch-level factor (Buler et al. 2007). For example, a migratory bird that crosses an 
oceanic barrier in adverse weather and ends up in poor physical condition from prolonged flight 
may elect to land at a suboptimal habitat patch due to exhaustion rather than search for higher 
quality habitat (Moore and Kerlinger 1987). Alternatively, birds may concentrate in coastal areas 
via morning flights after being drifted over water at sunrise (Van Doren et al. 2016, Archibald et 
al. 2017). Gauthreaux and Belser (1999) demonstrated, via radar technology, that migrants 
landed nearly directly on the coast when faced with adverse weather, regardless of intrinsic 
habitat characteristics. 

Assessing the conservation value of stopover sites from radar-based measures of relative 
migrant use would be enhanced if sites could also be classified by their ecological function 
(Mehlman et al. 2005). Ecological function of stopover spans a spectrum from 1) “fire escape” 
sites that offer a temporary place for migrants to rest with limited food resources during an 
emergency situation, 2) “convenience store” sites that offer a moderately safe place to rest with 
moderate food resources to allow some or prolonged refueling, and 3) “full-service hotel” sites 
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that offer a safe place with plentiful food resources for quick refueling. In addition to collecting 
data on food availability, measuring the mean stopover duration of individual migrants over the 
course of a season can help determine a site’s general functional type.  

Determining stopover duration through traditional mark-recapture or mark-resight 
methods requires intense sampling effort and thus can only be done at a few sites. O’Neal et al. 
(2012) proposed an approach to estimate stopover duration for waterfowl (i.e., days per duck) by 
dividing the total number of ducks counted from frequent aerial surveys (i.e., total days of 
stopover use by ducks) by radar measures of the nightly density of ducks leaving a site over the 
course of a migration season (i.e., total number of ducks that used the site). A similar approach 
combining radar data and ground surveys of migrants can be used to more feasibly determine 
relative stopover duration of landbirds across multiple sites over a broad geographic extent. This 
would aid in mapping stopover functional types and their distribution on the landscape, which is 
important for identifying “geographic areas where stopover habitat is scarce (i.e., holes in the 
stopover safety net), where fire escapes are inadequate or lacking, and where sites that receive 
heavy and consistent use may be lost” (Mehlman et al. 2005). 

Our aim was to provide improved radar-based estimates of the spatial distribution of 
important stopover sites for southbound landbird migrants throughout USFWS Region 5 and a 
better ecological understanding of the relationships of migrants to stopover habitats through field 
surveys focused in the Mid-Atlantic Coastal Plain. Project results and products will allow the 
USFWS and partners to implement Strategic Habitat Conservation, protecting areas and habitats 
where they are likely to be most effective, and can contribute directly to the Bird Conservation 
Region plans of the Atlantic Coast and Appalachian Mountains Joint Ventures, Comprehensive 
Conservation Plans for Region 5 refuges, State Wildlife Action Plans, and broader region-wide 
planning for migratory bird conservation.  

Objectives 
 
1. Map observed autumn stopover incidence of migrating birds around 16 NEXRAD stations 

during seven years (2008 – 2014) and four TDWR stations during six years (2009 – 2014). 
The following are sub-tasks associated with this objective: 

a. Develop an algorithm to determine optimal sampling time of the onset of nocturnal 
migratory flight on a daily basis among radars.  

b. Estimate linear trends in seasonal mean stopover density over seven years among 
individual radar sample volumes with observed NEXRAD data.  

 
2. Improve previously-developed models of migrant stopover incidence within USFWS Region 

5 by incorporating more years of radar data (2010 – 2014) and additional explanatory 
variables within a more sophisticated modeling approach. The following are additional sub-
tasks associated with this objective: 
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a. Validate the predictive statistical models using ancillary radar observations (TDWR 
and NPOL).  

b. Develop locally-classified stopover use of modeled radar data based on moving 
window analyses at various spatial scales.  

c. Run bimonthly predictive models for the entire region.  
 

3. Assess the relative importance of various habitat features, including those at the patch scale 
(e.g. food abundance, habitat composition and vegetative structure), landscape scale (e.g. 
proportion of habitat types within surrounding buffers), and regional scale (e.g. proximity to 
major coastline, latitude); to determine their role in explaining migratory landbird use of 
forested stopover habitats within the Mid-Atlantic Coastal Plain during fall migration.  
 

4. Model variability in relative stopover duration and classify stopover site function among 
selected sites by integrating radar observations with ground-based bird surveys.  

Methods 

Objective 1: Mapping stopover incidence with radar 

Weather Radar Data Processing 
 

From the National Climatic Data Center archive, we downloaded Level-II radar data 
from 16 NEXRAD radars in the northeastern U.S. (Figure 1) for five years (2010-2014) during 
the fall landbird migration period (15 August-7 November). We also downloaded data collected 
during autumn 2010 through 2014 by four TDWRs. Radar data were processed following 
methods of Buler and Dawson (2014) using new and existing software developed by the 
University of Delaware (UD). Data were pooled with the 2-year (2008 & 2009) dataset from 
Buler and Dawson (2014), resulting in a final dataset of seven years for mapping and modeling 
autumn bird stopover. Data from the earlier dataset were reprocessed according to the methods 
developed during the course of this project. 

NEXRAD radars transmit horizontally polarized electromagnetic radiation at a 
wavelength of approximately 10 cm (S band) and a nominal peak power of 750 kW with a half-
power beamwidth (3 dB) of 0.95º (Crum and Alberty 1993). The radars make 360° sweeps of the 
atmosphere every 10 minutes at five beam tilt angles (0.5°, 1.5°, 2.5°, 3.5° and 4.5° above the 
horizon) if operating in clear air, and every four to six minutes at 11 tilt angles from 0.5°  to 19.5° 
when there is precipitation within the radar range; each set of sweeps constitutes a ‘volume scan’. 
We used two data products produced by the radar: radar reflectivity factor, a measure of radar 
echo strength in units of Z (mm6 m-3) that is determined by the density and size of the targets in 
the sampled volume, and mean Doppler radial velocity, a measure of the mean target velocity 
(knots) relative to the radar. Both reflectivity and radial velocity are collected in polar 
coordinates within sample volumes (dimensions 250 m in range by 0.5° in diameter). Radar data 
from the 0.5° tilt angle were screened to identify bird-dominated nights, contaminated nights 
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(e.g., precipitation, sea breeze fronts, and smoke), and anomalous beam propagation (Buler and 
Diehl 2009).  

TDWRs transmit radiation at a wavelength of 5 cm (C band) at a nominal peak power of 
250 kW. We used the Level III long range base reflectivity scan product (a.k.a. TZL) for 
analysis, which has sample volume dimensions of 300 m x 0.5°. TZL sweeps are completed 
every six minutes at a tilt angle of 0.6°. We screened TDWR data to identify bird-dominated 
nights similar to NEXRAD data. However, because we only used one tilt angle sweep of data 
from TDWR, we used vertical profiles of reflectivity and target velocity (discussed below) 
calculated from the NEXRAD station nearest to each TDWR station. This meant that the 
sampling days for a TDWR station were constrained by the sampling days of the nearby 
NEXRAD station.  

We distinguished migrating birds from insects and non-biological targets by quantifying 
the airspeeds of radar targets via vector-subtracting the wind velocity from the target ground 
velocity. We used radial velocity data from the 2.5° tilt angle during the peak of nocturnal 
activity (~ 3 h after sunset) to determine animal flight directions and airspeeds in conjunction 
with data on winds aloft archived by the North American Regional Reanalysis (NARR, Mesinger 
et al. 2006) following Farnsworth et al. (2014). These high resolution modeled wind data are 
available in three-hour composites across the U.S. at approximately 0.3° (or as fine as 32-km) 
resolution. We used these data to determine air speeds (u and v wind components) at nine 
geopotential heights ranging from 650-1000 mb within 100 km of each radar. Mean air speeds 
were then computed by weighting speeds by the relative density of animals at each height 
interval based on vertical profiles of reflectivity (VPR) calculated using methods outlined by 
Buler and Diehl (2009). The VPR is a function describing the ratio of the mean reflectivity of 
animals in the airspace at a given altitude relative to the mean reflectivity of animals aloft from 0 
to 1750 m above the ground. Radar scans with mean animal air speeds greater than or equal to 5 
m per s were considered bird dominated (Larkin 1991, Gauthreaux and Belser 1998). Only bird-
dominated nights were used in the analysis. 

Determining a suitable sampling time of migration exodus 
 
Landbirds initiate nocturnal migratory flights en masse in an abrupt exodus near the end 

of evening civil twilight (Hebrard 1971, Åkesson et al. 1996, Gauthreaux and Belser 1998). 
Buler and Dawson (2014) interpolated migration exodus for all radars and nights to when the sun 
was 5.5° below the horizon using inverse distance weighting of the time differences between the 
radar volume scans collected immediately before and after the target sun elevation time point. 
However, they recognized that spatio-temporal variability in the timing of the onset of migration 
across the region and days could produce temporal sampling bias. So we developed a new 
approach to dynamically determine a suitable sampling time during the onset of migration to 
minimize any bias.   

For this analysis we used data from the Dover, DE (KDOX) and Norfolk, VA (KAKQ) 
radars collected between August 15 and November 7 during the autumns of 2013 and 2014. 
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Concurrently, we conducted bird surveys in 29 forested sites in Delaware, Maryland, and 
Virginia that were stratified in each of three distance bands (10-20 km, 20-50 km, 50-80 km) 
from these two NEXRAD radars, and determined the mean daily migrant bird density at the 
ground along 500-m transects (see methods for Objective 3).  

For each suitable sampling night, we interpolated reflectivity measures from volume 
scans to a series of time points at different sun elevation angles (1.5° to 10° below the horizon at 
0.5° intervals) collected around the time of migrant exodus. We fit a logistic growth curve to the 
change in mean reflectivity through time to determine the sun angle at the inflection point of the 
curve (i.e., at the maximum growth rate) for each radar-sampled night (Figure 2). We then 
interpolated radar data to this empirically determined sun angle.   

For each interpolated scan within a single evening time series, we estimated the 
vertically-integrated reflectivity (VIR) within each sample volume following previously-
established methods (Buler and Diehl 2009, Buler and Dawson 2014). This approach is 
necessary since the radar beam systematically samples increasing heights as it propagates away 
from the radar and the VPR varies among radar scans. Each original reflectivity measure is 
divided by the mean VPR ratio within the sampled volume of airspace to produce an estimate of 
the mean reflectivity of birds aloft from 0 to 1750 m above the ground. We converted original 
reflectivity factor in units of Z to the more biologically-meaningful units of cm2 km-3 (Chilson et 
al. 2012). We then multiplied reflectivity by the height of 1750 m to “flatten” the volumetric 
measure of reflectivity into a two-dimensional measure in units of cm2 ha-1, which represents the 
VIR as the total amount of reflected cross-sectional area of birds per hectare above the 
ground.  

We correlated the mean interpolated radar data at the different static and “inflection 
point” sun elevation angles, averaged across sampling days, to the observed seasonal mean bird 
density on the ground at transect sites. To do this, we first georeferenced center transect lines 
within a geographic information system (GIS) and built 50-m wide buffers around transects to 
represent the area where we sampled birds with ground surveys. We intersected the two-
dimensional boundaries of georeferenced radar sample volumes from around the KDOX and 
KAKQ radars with the buffered transects to identify the portions of radar sample volumes that 
coincided with transects. We extracted area-weighted mean VIR over each transect for 
comparison to ground bird densities. We used Pearson correlation tests and obtained 95% 
confidence intervals for correlation coefficients by bootstrapping the correlations using the 
“boot” package (Canty and Ripley 2014) within R (R Development Core Team 2016). 

The correlation analysis indicated that the empirically-determined sun angle (i.e. the sun 
angle at the point of maximum growth rate in mean reflectivity) was the most-suitable time to 
sample migration exodus rather than using a static sun angle across all night and radars. 
However, we found that fitting of logistic growth curves to reflectivity during flight exodus was 
not easily automated, relied on some amount of subjectivity in winnowing down data points to 
include in fitting curves, and made strict assumptions about the shapes of curves. Therefore, we 
improved automation, reduced subjectivity, relaxed some data assumptions, and simplified the 
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process by fitting piecewise cubic spline functions to the data to determine the point of 
maximum rate of increase in reflectivity. We also restricted the sampling time to be within 15 
minutes of the onset of flight exodus to minimize displacement of birds from their ground 
sources on nights when exodus is protracted. Note that this restriction rarely needed to be 
implemented. 

Mapping and characterizing bird stopover use 
 
Once an instantaneous volume scan for each night was interpolated, we estimated VIR 

for every sample volume within the scan. We averaged nightly VIR for each sample volume 
across all sampling nights and years to derive an overall seasonal mean and coefficient of 
variation in VIR. We also computed averages for four bimonthly (i.e. half month) periods from 1 
September to 31 October across years and across the entire season for each year. We assessed 
linear trends in bird stopover use across years by fitting simple linear regression models to the 
mean annual VIR separately for every individual sample volume.  

We georeferenced and mapped the nightly density of birds emigrating from stopover 
locations across years, characterized by the mean VIR (MN) and the mean coefficient of 
variation of VIR (CV). “Important” stopover sites were ranked from least (1) to most (5) 
important where (1) = MN < 50th percentile, “low emigrant density”, (2) = MN ≥50th percentile 
and < 85th percentile, “moderate emigrant density”, (3) = CV ≥75th percentile and MN ≥85th 
percentile, “high emigrant density with high variability”, (4) = CV > 25th percentile and < 75th 
percentile and MN ≥85th percentile, “high emigrant density with moderate variability”, and (5) = 
CV ≤25th percentile and MN ≥85th percentile, “consistently high density of emigrants”. Observed 
radar data were classified regionally by pooling data across all radars and locally within each 
radar separately. 

Objective 2: Modeling stopover incidence with radar 

Modeling stopover distributions of migrating birds 
 
We modeled bird stopover densities using observed MN and CV across the region. 

Spatially explicit modeling of ecological processes are often confounded by non-linear responses 
to and interactions between predictors, spatial autocorrelation effects, and over-fitting of 
imprecisely measured or non-uniformly sampled data (Valcu and Kempenaers 2010, Li 2016). 
We addressed these concerns using a machine learning approach, which accommodates both 
non-linearity in responses and autocorrelative effects among predictors and, through a process 
called boosting, reduces over-fitting to measured data (Maloney et al. 2012). Boosting is a 
sequential process where fractions of weak ‘learner’ models are added iteratively to reduce 
model variance. We chose generalized additive models (GAMs) as learners, allowing explicit 
quantification of responses to predictor variables. 

We used the MATLAB (The Mathworks 2016) package ‘bgam’ (Mineault 2011), which 
bases boosted iterations on simple learner functions using a single predictor, in this case a step 
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function consisting of a step location (threshold) and response (offset). During each iteration, the 
fit is updated by adding a fraction (known as the learning rate or greed factor) of the learner 
which minimizes the remaining deviance. The model moreover partitions the data randomly into 
an ensemble of several subsets, and the final model is calculated as an ensemble average among 
subsets. Using subsets and fractional learning rates (stochastic gradient boosting) helps reduce 
over-fitting within the boosting process. We chose 20000 iterations, 7 subsets and a learning rate 
of 0.075, which we adjusted slightly if the model failed to converge. The model terminates early 
if subsequent boosts fail to decrease D2 values (the current divided by maximal deviance, an 
equivalent to R2 in GLM models). To speed computation, the package also utilizes MATLAB’s 
parallel computing toolbox. 

We were especially interested in quantifying ‘typical’ as opposed to ‘total’ stopover use 
across the fall season. We therefore quantified mean seasonal stopover use in each sample 
volume using the geometric mean as opposed to arithmetic mean in VIR, and truncated 
measurements with reflectivity values smaller than 0.001 and larger than 100 cm2/ha. We further 
log-transformed mean VIR since the distribution of VIR among nights is typically left-skewed, 
i.e. low-intensity migration nights heavily outweigh intense migration nights. Modeling log-
scaled mean VIR also meant that the additive BGAM factors became multiplicative factors 
determining predicted mean VIR. Variability in stopover was quantified by the coefficient of 
variation, i.e. the arithmetic mean divided by the standard deviation in VIR. Finally, we assessed 
within-season differences in stopover use by modeling bimonthly mean and variability in VIR. 
Bimonthly periods were 1-15 September, 15-30 September, 1-15 October, and 16-31 October. 

We created a sampling grid based on Buler and Dawson (2014) comprised of 637,603 1-
km square cells covering the northeastern U.S. For each cell, we computed mean values of 
spatially explicit predictors, broadly divided among four categories: geographic/regional, coastal, 
landscape, and corrective. Descriptions of predictors included in final models are listed in Table 
1. To relate broad-scale regional patterns in stopover to the general NE-SW coastline along the 
Atlantic seaboard, we rotated the geographic axes (UTM coordinates) clockwise by 42° (see 
Figure 3).  This resulted in two variables: X, southeastwards towards the coastline and Y, 
southwestwards along or down the coast.  Since some biological and ecological processes will 
depend on latitude (e.g. daylight, temperature), we retained latitude as a predictor. Since coastal 
effects are known to act at sub-regional scales (typically within 50-100 km of the coast, Buler 
and Dawson 2014), we created a separate coastal-scale variable, distance to the coast with a 
maximal value of 150 km. Distance to both the Atlantic coast (dAtl) and to the Great Lakes 
(dGtL) were considered.  

Landscape influences on migration and stopover are known to act at multiple scales with 
availability of hardwood forest playing a key role (Buler et al. 2007, Bonter et al. 2009). We 
considered the following landscape scale variables as predictors at 1- to 100-km scales: fraction 
of landscape from hardwood and mixed forest, coniferous forest, agricultural land, emergent 
marsh, and urban development derived from the National Land Cover Dataset (Homer et al. 
2015), and mean and standard deviation of normalized difference vegetative index (NDVI) 
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collected at 16-day intervals at 250-m resolution obtained from the Global Moderate-resolution 
Imaging Spectroradiometer (MODIS, https://modis.gsfc.nasa.gov/) for each season. Since 
migrants are known to be attracted to bright nocturnal light sources, we considered a data set of 
intensity of artificial light at night (hereafter alan), which ranged on a scale from 0 to 63 and was 
computed from cloud-free composites of Defense Meteorological Satellite Program-Operational 
Linescan System (DMSP-OLS, https://ngdc.noaa.gov/eog/sensors/ols.html) 30-arc second grids 
for 2014. In addition to attraction to alan potentially causing enhanced stopover at bright light 
sources, migrants could instead be temporarily diverted towards these sources and choose more 
suitable stopover habitat nearby. We therefore also included a predictor quantifying distance to 
bright light sources (values of 60-63, encompassing 4.1% of values regionally). To account for 
possible measurement biases (despite rigorous processing following Buler and Dawson 2014), 
we included distance to the radar (dRdr) and elevation relative to the radar (relelev) as spatial 
predictors. These responses were not included when making predictions, but as an estimate to 
remove any potential biases. Finally, to ensure magnitude effects did not occur, we normalized 
all of these predictors by their extreme values to produce dimensionless variables ranging from 0 
to 1 (less for interactions). 

Model results were evaluated according to (1) predictor relative influence, defined as the 
number of boosts involving each predictor weighted by the ‘gain’ assigned by the model for each 
boost, (2) estimated responses of mean (MN) and variability (CV) in VIR to predictors, (3) 
predicted regional mean and variability in VIR as proxy for stopover use and (4) classification of 
stopover use following Buler and Dawson (2014). Predicted region-wide stopover density was 
estimated by smoothed responses to predictors, using an rloess MATLAB routine with a span of 
5% of the data for landscape predictors at 1-km and 5-km scales, and 40% of the data for 50-km 
and regional scale predictors (e.g. proximity to the coast). 

Preliminary selection of predictor variables and their appropriate scale followed a four-
stage process. First, we computed spatial averages at each of the 1-km grid points within 10 
distance windows (1, 2, 5, 10, 20, 30, 40, 50, 75 and 100 km) for the six landscape-related 
variables, NDVI mean and standard deviation, and artificial nocturnal light levels. To gauge 
apparent influence of these variables at these scales, we computed Pearson’s correlation 
coefficients between each variable at all scales and the log-transformed geometric mean 
reflectivity (Figure 4). We also computed correlation coefficients between the predictors and 
between scales. From this analysis, and because the reflectivity data are presumably somewhat 
spatio-temporally smoothed around the exodus peak and departure sites, we chose to use 
predictors at 5-km scales. Since hardwood is proposed to act at multiple spatial scales, we also 
incorporated hardwood fraction at 1-km and 50-km scales. Subsequent sensitivity analysis bore 
this out, in that influence of other predictors at 1 km was always found to be less in comparison 
with 5-km levels. Also since urban cover and alan were highly cross-correlated (0.82 to 0.95 at 
scales of 2 km to 100 km, respectively), we decided to retain only distance to bright light as the 
predictor of influence of artificial light (correlation with urban cover: -0.49 to -0.67 between 2- 
and 100-km scales).  
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Since additive models do not automatically account for interactions among predictors, we 
identified potentially important interactions among the 136 possible two-way interactions 
between these 17 pre-selected predictors using boosted regression trees (BRTs) incorporating 
gradient boosting with R packages gbm (Ridgeway 2006) and dismo (Hijmans et al. 2015). 
Interaction terms were then added explicitly as predictors in the BGAM. Regression trees are 
based on nested bifurcations according to predictor values (Elith et al. 2008). We chose not to 
use BRTs exclusively since predicted responses would depend on marginal probabilities of 
predictors, reducing interpretability. We used learning trees of depth 2, i.e. limited to single 
interactions, and a learning rate of 0.075. Based on occurrence among boosts, we selected the 
most important interactions for inclusion in the BGAM models. Compared to BRTs, boosted 
GAMs generally provide a more easily interpretable model, presumably more robust and 
transportable, but also spatially smoothed.  

We classified MN and CV for both the entire fall season and the four bimonthly periods. 
We also summed importance ranks across bimonthly periods to produce a Cumulative Stopover 
Importance Index that ranged from 4 (lowest importance) to 20 (greatest importance). This index 
allowed identification of regional hotspots that were consistently used throughout the season at 
high density. We further classified seasonal mean VIR at 10-, 50- and 150-km radii by 
classifying quantiles within spatial windows of these extents. In this way, sub-regional hotspots 
can be identified.  

We validated our models by comparing predicted reflectivity at non NEXRAD-measured 
locations with measurements of mean VIR at the four TDWR stations and NPOL station. 
Because NPOL and TDWR operate using a different wavelength (C-band) than NEXRAD (S-
band), reflectivity measures from these radars are not directly comparable. Therefore, 
correlations of relative reflectivity values of ancillary radars and NEXRAD model predictions 
were used to validate the models. See Appendix A for details about the analysis of NPOL data. 
We analyzed each of these data sets to identify reasonable cutoffs for mean reflectivity, and 
compared both the mean measured and model-predicted VIR with the parsed NPOL and TDWR 
data. In particular, the relation of this fit to distance from each radar source was examined.  

Finally, we compared our machine-learning approach to the locally defined approach of 
Buler and Dawson (2014) using geographically weighted regression (GWR). Preliminary 
comparison of model fits to spatio-temporal exploratory models (STEM), another machine-
learning approach (Fink et al. 2010), were also performed. 

Objective 3: Explaining migratory landbird use of forests via field surveys 

Bird Surveys 
 
We established transects (500 m long) in 48 hardwood stands in Delaware, Virginia, and 

Maryland across a multi-sponsor collaborative project (Figure 5). Surveys at 24 of these sites 
were directly funded by this project and placed within 80 km of the KDOX or KAKQ NEXRAD 
stations. The other 24 sites were sampled through support from other sponsors (see Appendix B 
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& C). Where possible, transect locations were chosen based on seasonal mean observed 
reflectivity (i.e., relative emigrant bird density) during fall 2008 & 2009 as determined by Buler 
and Dawson (2014). We stratified transects within radar coverage areas into three distance bands 
based on their proximity to the nearest NEXRAD station (10-20 km, 20-50 km, 50-80 km). We 
chose 18 sites in areas with high reflectivity and 18 in areas with moderate to low reflectivity. 
This stratification was designed to allow for assessing any residual bias in radar measures after 
adjusting them for range bias. An additional 12 sites were chosen along Virginia’s Eastern Shore, 
outside of existing NEXRAD coverage, based on predicted abundance (Buler and Dawson 
2014). These 12 sites were partitioned equally among high and low densities, and bay or sea 
sides, and north to south over the lower Delmarva Peninsula. 

All forested sites were at least 4 ha in size and, with the exception of those located at the 
southern tip of Virginia’s Eastern Shore, separated from other sites by a minimum of 10 km. We 
used hardwood forest sites because this habitat type is the most abundant and consistent natural 
habitat type in the region. Most passerine migrants are forest-dwelling species, with previous 
findings showing that forests also are important to en route migrants (e.g., Buler et al. 2007). 
Sites were generally similar in their habitat characteristics, consisting of mostly-flat topography 
and with strong representations of hardwoods such as oaks (Quercus sp.), Sweetgum 
(Liquidambar styraciflua), Red Maple (Acer rubrum), and pines (Pinus sp.), most notably 
Loblolly Pine (P. taeda). See Plate 1 for a visual example of site characteristics. We also 
attempted to select mature forests, as prior research has shown this habitat type supports large 
numbers of migrants and is likely of great importance to conserving migratory species 
(Rodewald and Brittingham 2007). 
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Plate 1. Photograph of a typical hardwood-dominant forest habitat site along the Delmarva Peninsula, USA.  
Photo credit: J. A. Arnold. 

 
Birds were sampled between 15 August and 7 November of 2013 and 2014 along 

transects during a 30-min period (a pace of 1 km per hr) from sunrise to four hours post-sunrise, 
with time of transect surveys and field observers rotated regularly. This schedule allowed for 
each site to be sampled approximately twice per week, although surveying only occurred on days 
with favorable weather conditions (no rain and wind speeds < 24 kph as determined at the site 
prior to surveys). Species, number of individuals, method of detection (visual or aural), and sex 
and/or age (when possible) were recorded. Any birds in aggregate were recorded as a flock. 
Distance measurements were also recorded for all detections, and included: 1) observer location 
along the transect, 2) distance of detection from the observer, 3) perpendicular distance of 
detection from transect, and 4) vertical height of detection. Height and distances were recorded 
in distance classes because there is much measurement error in estimating distances (Alldredge 
et al. 2007): 0-5 m, 5-10 m, 10-15 m, 15-20 m, 20-25 m, 25-50 m, and  >50 m within habitat. 
Flyovers and flythroughs were also recorded, although not included in detection probability 
analyses. 
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Food Availability 
 

To assess the amount of food available at each site across the season, we sampled fruit 
and insect abundance during each site visit. Six 20 m x 20 m plots were placed alongside each 
transect at 75-m intervals. Sampling within the plots alternated each visit so that the 75-m, 225-
m, and 375-m plots were sampled on one visit and the 150-m, 300-m, and 450-m plots on the 
following visit.  

Fruit sampling consisted of recording all species of plants containing fleshy fruit within 
the plots, including their abundance, ripeness, and relative height. Number of fruits was binned 
as follows: 1 (1-10), 2 (11-25), 3 (26-100), 4 (101-250), 5 (251-1000), 6 (1001- 3000), and 7 
(3001-10000). The ripeness was recorded as the percentage of unripe, ripe, and overripe fruits 
for each species and relative height was recorded as the percentage found in the understory, 
midstory, and canopy for each species following the Smith and McWilliams (2009) protocol for 
rapid fruit assessment (Plate 2). Fruit is an important food resource for many migratory bird 
species, and the presence of fruiting species has even been suggested to be more important than 
habitat structure in determining habitat use (Suthers et al. 2000). 

 
Plate 2. Photograph of visual fruit abundance sampling within 20m x 20m plots.  
Photo credit: J. A. Arnold. 

Insect sampling was performed in two ways: 1) visual count of terrestrial arthropods, and 
2) enumeration of arthropods from branch clippings, following established protocols (Cooper 
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and Whitmore 1990, Strong 2000, Buler et al. 2007). On each visit to a 20 
m x 20 m plot, a visual count was conducted within one 0.5 m x 0.5 m 
ground plot within the larger plot. Visual surveys were conducted by 
standing over the ground plot for 3 minutes and recording the size (mm) 
and Order of any arthropod species. One branch clipping was taken from 
within the 20 m x 20 m plot and bagged; each clipping consisted of 
approximately 40 leaves from either the dominant site species or one of 
four common focal species: American Holly (Ilex opaca), Red Maple, 
Sweetgum, or Blueberry (Vaccinium angustifolium). Arthropods on or in 
the branch sample were collected and identified to Order and size (mm), 
and then placed in vials with isopropyl alcohol (Plate 3). Arthropod 
abundance within the understory is presented as a mean number per gram 
of branch and a mean number per m2 for those detected during ground 
surveys. Clipped branches were weighed without drying. 

Vegetation Sampling 
 

Vegetation was sampled at each site once mid-season in 2013 using a modified protocol 
of James and Shugart (1970) within four 11.3-m radius circular plots along the transect 
centerline. Using the same six distances as for food sampling (75 m, 150 m, etc.), four locations 
were randomly selected at each site to place the plots. Tree stems with a diameter at breast height 
(dbh) less than 2.5 cm and with a dbh between 2.5 cm and 8 cm were counted and binned 
according to their respective dbh classes. Species and dbh were recorded for all trees with a dbh 
greater than 8 cm. Canopy height was calculated as the mean of the four tallest trees within each 
plot, measured using a clinometer. Canopy cover was measured using a crown densiometer by 
standing in the center of the plot and facing each cardinal direction. Vegetation coverage 
estimates also were obtained for the ground, shrub (<2 m tall), vine (in canopy), and midstory at 
1-, 2-, 3-, 4-, and 5-m locations in each of the four cardinal directions (for a total of 20 
measurements in each plot); presence or absence of vegetation was assessed via an ocular tube 
reading. Leaf litter depth was recorded to the nearest millimeter at locations 4, 8, and 12 m from 
the plot’s center in each of the four cardinal directions, for a total of 12 litter depth 
measurements. Ground cover was measured within a 5-m radius of the plot center, and included 
percent cover of forbs, ferns, mosses, greenbrier, vines, marsh, downed logs, and shrubs. Within 
each 11.3-m plot, a smaller 5-m radius circle was established and used for shrub density 
measurements: stems less than 0.5 m in height and less than 3 cm diameter were counted and 
identified to species.  

We also considered remotely-sensed patch-scale variables measured within 25 m of 
transects. We included the seasonal mean NDVI aggregated from measurements taken at 16-day 
intervals and 250-m resolution that were used in the radar-based stopover distribution models. To 
quantify attraction to nocturnal light sources, we considered a dataset of zenith artificial sky 
luminance as a ratio to the natural sky brightness as a measure of artificial light at night with a 

Plate 3. Photograph of an 
Arachnid collected via 
branch clipping and 
stored in a vial with 
isopropyl alcohol.  
Photo credit: J. A. 
Arnold 
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spatial resolution of 742 m. The dataset was computed by Falchi et al. (2016) by compiling data 
from the Visible Infrared Imaging Radiometer Suite Day/Night Band sensor on the Suomi 
National Polar-orbiting Partnership satellite over 6 months during 2014. We measured the mean 
sky brightness over each transect. We also measured the distance of each transect to “bright” sky 
areas.  We defined “bright” sky areas as minimally 5 times natural values (~870 μcd/m2), the 
level at which the Milky Way is invisible to the human eye (Falchi et al. 2016).  

 
Regional and Landscape Data 

 
Stopover habitat data at the landscape level were obtained by creating buffers around 

each survey site and generating measurements for land cover types occurring in the surrounding 
landscapes. This was achieved using ‘extract by mask’ in ArcGIS, a tool that provides an output 
of values from a defined spatial area using raster data. Spatially explicit landscape data were 
obtained from the 2011 National Land Cover Database (NLCD 2011). The NLCD 2011 (Homer 
et al. 2015) database separates land cover types into 20 unique classifications; our samples 
included open water, four levels of development, barren land, three forest types, two scrubland 
types, four herbaceous land cover types, two types of agricultural land, and two wetland cover 
classifications. 

Buffers were placed around each transect survey location, using both 1-km and 5-km 
radii to account for habitat variation at differing scales, and the cell values for each land 
classification extracted for analysis (Figure 6). Similar classifications, such as low and medium 
development or pastures and cultivated crops, had their output values combined while some such 
as barren land were not considered at all, resulting in eight land cover categories; the proportion 
of each category within the 1-km and 5-km buffers were used in analyses (Table 2). Note that for 
terrestrial habitats the proportion is that of the total land area (i.e., with water area excluded from 
the total area). 

Regional metrics were obtained through a variety of methods. Survey sites were placed 
into one of four categories based on their location (Delaware, Maryland Eastern Shore, Virginia 
Eastern Shore, Virginia), referred to as ‘Region’ in the dataset, with each region containing 12 
sites. Measurements of both distance to the nearest coast and distance to the Atlantic Ocean were 
obtained for each transect location in ArcGIS via the ‘measure’ tool. Latitude, collected 
manually with a GPS while conducting transect sampling, was also included in the potential 
analysis dataset.  

Data Analysis 
 
We estimated detection probabilities and migrant densities within R (R Development 

Core Team 2016) and the extension package ‘unmarked’ (Fiske and Chandler 2011).  All 
covariates except for observer were scaled before analysis. Temperature, wind and sky 
measurements, and observer were incorporated as covariates. All nocturnal migrant landbirds 
were lumped to ensure adequate sample size. We used detections of nocturnal migrants from all 
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distances within the habitat to fit a detection function. We then tested models using no, single, 
and multiple covariates among half-normal and hazard rate detection functions. We used 
Akaike’s Information Criterion adjusted for small sample sizes (Hurvich and Tsai 1989) to rank 
models based on their ability to explain the data (Akaike 1973).  Using the top-ranked detection 
function model, we computed a mean visit density (birds per hectare per visit) for each transect. 
Subsequent analyses were run using these detection-probability adjusted migrant densities. 

Patch, landscape, and regional habitat variables for each survey site were assessed to 
determine which factors were most influential in determining the use of stopover sites by 
migrants. We hypothesized that food availability, and specifically that of arthropods over ripe 
fruit, would be the best predictors of migrant density. We also hypothesized that, to a slightly 
lesser extent, habitat buffers such as hardwood forest or water at the landscape scale and distance 
to the ocean and latitude at the regional scale would influence densities. Lastly, we predicted that 
these trends in importance, and subsequently the level of influence each variable exhibits, would 
differ between species and be a result of migration phenology, measured as a function of 
sampling period. 

For all analyses, surveys without all covariates recorded (e.g. survey efforts missing fruit 
and invertebrate sampling data) were not considered. Additionally, any predictor variables 
showing unusual discrepancies in their data, and without proper justification, were excluded. For 
example, site-specific features such as midstory cover and canopy height, while both likely very 
valuable habitat metrics to consider, were collected inconsistently, resulting in a measurement 
bias and unusable data. 

A correlation analysis was run on all covariates to identify variables that exhibited high 
multicollinearity (Table 3). Log-transformations were conducted in R on raw data such as food 
measurements that exhibited non-linearity or did not meet Gaussian assumptions. Preliminary 
tests to examine for autocorrelation in the data were run in R using the ‘acf’ function for 
temporal data, and the Moran.I function in the ‘ape’ package for spatial data (Paradis et al. 
2004). Variables exhibiting high autocorrelation were removed from future consideration when 
building models. For example, our summarized variables of density measurements for 
invertebrates detected on branch clippings (InvPerGrBr) were closely correlated with our 
measurements for Arachnid densities (InvBrAR) and thus we excluded InvBrAR from the 
analyses. We included 21-day long sampling periods (Period) to characterize seasonal variation.  

Analyses were conducted in R using boosted regression tree (BRT) techniques within the 
packages ‘gbm’ and ‘dismo’, and the gbm.step function (Ridgeway 2006, Hijmans et al. 2015). 
BRTs allow for the modeling of complex functions, as well as quantifying variable interactions, 
without the need to worry about common analytical issues such as handling different variable 
types (i.e. categorical, continuous), including additional uninformative variables in models that 
lead to a reduction in model power, and considering a priori assumptions regarding variable 
relationships (Ridgeway 2006, De’Ath 2007, Elith et al. 2008, Buston and Elith 2011). We did 
not use BGAM models for the survey data analysis since we were not interested in creating 
smoothed model predictions, only explanatory models. 
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BRT model development requires the adjustment of specific parameters to determine the 
best fitting model with the greatest performance. These parameters included ‘learning rate’ (lr; 
i.e. shrinkage parameter indicating amount each regression tree is contributing to the overall final 
model) and ‘tree complexity’ (tc; interaction depth determining the level of independent variable 
interactions allowed at each split) to identify the optimal ‘number of trees’ (nt; number of 
iterations) required to obtain the greatest model accuracy. Model performance can additionally 
be improved by introducing stochasticity, which in the case of gbm is accomplished by denoting 
a portion of data to randomly select each step via ‘bag fraction’ (Elith et al. 2008, Buston and 
Elith 2011). For all models and analyses, we used a bag fraction of 0.5 and tree complexity of 2 
(i.e. allowing simple two-way interactions among predictor variables). Learning rates were 
adjusted following general guidelines to produce around 1,000 trees in the final ensemble model 
(De’Ath 2007, Elith et al. 2008). A 10-fold cross-validation (CV) was implemented within each 
developing gbm.step model to progressively test for and ensure that the final model’s fit is still 
general enough for use on other data, and thus reducing the chance of overfitting (Elith et al. 
2008, Buston and Elith 2011). 

Our final ensemble of models developed and used in all analyses included 37 predictor 
variables. We fit separate models for five species groups including all nocturnal migrant species, 
Neotropical migrant species (i.e., primarily summer breeders), transient species that only occur 
as passage migrants, species that overwinter in the region, and migrants that are primarily 
frugivorous during fall migration. We also fit models for individual migrant species that were 
detected most frequently. For each analysis conducted, a ranked list of the relative influence of 
each predictor variable was produced, along with partial dependence plots that visually depicted 
the effect of a particular predictor variable on the response variable while controlling for the 
effects of all remaining predictor variables in the models. The sum of these relative influence 
measurements (when scaled) equals 100% for each model and, while all non-zero contributions 
are still considered important variables (Elith et al. 2008), in subsequent discussion of results we 
focus on those variables with 5% or more relative influence. Interactions between predictor 
variables were also automatically calculated for each model, and the most influential interactions 
are also presented as tables. The goal of these analyses was to use these BRT models to assess 
which ecological variables of interest, including temporal trends in localized factors such as food 
availability as well as spatially-explicit metrics such as shrub density at the local scale and 
proportional buffers at the landscape scale, showed the greatest influence on determining the 
density of migratory species at Mid-Atlantic forested stopover sites. 

Objective 4: Classifying stopover site function 
 
We used data across two fall seasons from 27 of the transect sites that fell within the 

KDOX and KAKQ radar ranges (Figure 7) to derive relative stopover duration after O’Neal et al. 
(2012). To get a greater sample size of sites, we added data from 18 forested transect sites near 
the Gulf of Mexico that were sampled using identical methods during autumn 2003 and 2004 and 
were located near the KMOB radar in Mobile, AL, and the KLIX radar in Slidell, LA (data from 
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Buler et al. 2007); radar data were processed using the same methods as well. According to the 
O’Neal et al. (2012) approach, observed bird density at the ground is considered a relative 
measure of bird use days given that individuals can be recounted during repeat visits. The 
quotient of mean daily migrant density on the ground (an index of the total number of migrant 
use days) divided by the mean daily VIR (an index of the total number of unique birds) provides 
a measure of relative stopover duration in units of days per cm2 of reflectivity. This approach 
assumes that the mean daily averages of birds on the ground and birds emigrating measured by 
each technique are unbiased. However, given that not all sample volumes of radar data over 
survey sites were comprised purely of forested habitat, they may reflect aggregate emigrants 
from a mixture of habitats that likely do not harbor the same migrant densities as forests, and 
therefore may introduce measurement bias. We attempted to statistically control for this potential 
bias of emigrants emanating from non-forested habitats by fitting a linear regression between the 
amount of forest cover within radar sample volumes over sites and stopover duration and using 
the residuals of the regression as our measure of relative stopover duration. Relative stopover 
duration is an important metric to aid in evaluating how migrants are using a site. 

We clustered transect sites into three a priori stopover functional groups based on four 
variables: relative stopover duration, amount of forest cover within 5 km, distance of site to the 
nearest coastline, and seasonal mean insect density at the site using the Partitioning Around 
Medoids (PAM) algorithm of Reynolds et al. (2006) and package ‘cluster’ in R (Maechler et al. 
2016). This approach minimizes dissimilarity among members within clusters. Because cluster 
group sizes differed and may have had unequal variances, we used a Games-Howell post hoc test 
(Games and Howell 1976) to determine if there were significant differences in clustering 
variables between functional types. Because initial clustering produced groupings of only two 
classes within each geographic region (Gulf Coast or Mid-Atlantic), we increased the number of 
clusters to four post hoc so that each region had at least three clusters represented. Functional 
types were identified based on the values of clustering variables within each cluster post hoc. 

Results 

Objective 1: Mapping stopover incidence with radar 
 
On average, 18% of all nights were suitable for sampling migrants at exodus for mapping 

stopover distributions (Table 4). However, there was an order of magnitude of variability in the 
number of sampling nights among radar and years. The number of suitable sampling nights for a 
given season ranged from 2 to 30 among the NEXRAD radars. The most common sources of 
contamination of radar data included precipitation (48% of all screened nights), insect-dominated 
flights (14%), and anomalous radar beam propagation (14%).  
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Determining a suitable sampling time of migration exodus 
 

We analyzed the onset of evening flights from the KDOX radar for 12 days during fall 
2013 and 10 days during fall 2014, and from the KAKQ radar for 15 days during fall 2013 and 7 
days during fall 2014. Mean reflectivity increased through the night, indicating an increase in 
abundance of birds in the airspace that generally followed a logistic growth curve (Figure 8). The 
daily average increase in reflectivity started when the sun was 2.5º below the horizon, indicating 
the onset of nocturnal migration. When we modeled logistic growth curves for individual days, 
the inflection points at a given radar and year tended to occur at a later time (lower sun angle) as 
the season progressed (Figure 9). 

We tested correlations between seasonal mean migrant densities at 27 transects during 
2013 and 2014 that were within the KDOX and KAKQ radar ranges and seasonal mean radar 
reflectivity measured at different sun elevation angles. The bootstrapped mean correlations were 
low to moderately positive and did not vary much across the range of sun angles tested (Figure 
10). However, the peak mean correlation occurred at a sun elevation of 6° below the horizon, 
which is the end of civil twilight.  

Inflection points derived from daily exodus curves varied within years and among radars, 
ranging from sun angles of 3.06° to 8.12° (mean = 5.38±0.47) below the horizon in 2013 and 
from 3.28° to 10.16° (mean = 6.41±0.65) in 2014 for KDOX. For KAKQ, the sun angle at the 
inflection point of the curve ranged from 3.01° to 10.03° (mean = 5.45±0.5) in 2013 and from 
3.05° to 8.6° (mean = 5.24±0.7) in 2014. When pooled across radars, the mean correlation of 
mean radar reflectivity at the peak of exodus to ground bird densities was similar to that of radar 
data sampled at the nearest static sun elevation angle across days (5.5°) (Figure 10). However, 
sampling radar data at the time of peak exodus for a given night and radar produced more 
consistent stopover maps of migrant distributions for individual nights compared to maps of 
radar data sampled at the static sun elevation angle of 5.5° below horizon (Figure 11). Thus, 
sampling at a fixed time close to the average peak exodus across nights creates subtle but 
apparent temporal sampling error due to daily variability in nightly flight timing. This was also 
apparent at the radar scale when we compared the range of inflection points determined for 
individual sampling nights for 18 radars in the eastern U.S. (Figure 12). For this we used data 
from 11 radars from this study and 7 radars analyzed in La Puma and Buler (2013). Latitudinal 
differences in timing of flight exodus indicated that some radars were always sampled too early 
in the exodus when using the 5.5° sun angle as in Buler and Dawson (2014). We used the time of 
peak migration exodus when sampling radar data for all subsequent analyses and mapping. 

Mapping observed stopover distributions 
 
We produced classified stopover use maps for each radar (Appendix D) and a map of all 

radars pooled and then classified across the region (Figure 13). Areas of observed consistently-
high bird density occurred within portions of Maine, the Adirondack Mountains, southern New 
Jersey, the Delmarva Peninsula, and the Tidewater region of Virginia. 
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Annual trends in observed bird stopover densities pooled across radars showed that about 
6% of sample volumes exhibited an increasing trend above 0.1 cm2/ha/year, while 17% of 
sample volumes exhibited a decreasing trend below -0.1 cm2/ha/year (Figure 14). The mean 
trend across all radars was -0.030 ± 0.007 cm2/ha/year. This is equivalent to an annual decline of 
4.2 ± 1.0 % per year in bird density (based on mean 2008 bird density), or 29% over the seven 
year period. The most extreme declines occurred in Maine and Virginia. Strong annual increases 
in bird densities occurred along the coast of Connecticut and within New Jersey and the 
Delmarva Peninsula. Maps of annual trends at individual radars are presented in Appendix E. 

Objective 2: Modeling stopover incidence with radar 

Predictor selection and influences 
 
Table 5 lists, for both mean and variability in VIR (MN and CV, respectively), the 11 

interaction terms between the predictors described in Table 1 that were considered significant 
based on the BRT analysis. Interactions were dominated (8 of 11) by regional or coastal scale 
predictors (5 involving X or Y and 5 involving dAtl, dGtL and dBrLt). Among “landscape” 
predictors, fractional hardwood cover at 50 km (hw50) was involved in 6 of 11 interactions. 
Because of the non-linear response of the BGAM factors, and to enhance flexibility in the 
geographic (flyway-scale) pattern, we modeled responses to all four permutations of the spatial 
variables X*Y, X*(1-Y), (1-X)*Y, and (1-X)*(1-Y).  

The BGAM model typically achieved D2 (deviance explained) values of ~0.7 when 
fitting MN and ~0.5 when fitting CV. Convergence and fit depended on the chosen predictors 
and modeling parameters, but improvement in D2 was marginal using more than 5,000 boosts. 
We used 20,000 for the main fits and 10,000 for the bimonthly fits.  

Model results indicated that regional and coastal predictors were most influential to both 
MN and CV (i.e., stopover densities) within 1-km grid cells (Figure 15). Among landscape 
predictors, hw50 was predicted to be most influential to both MN (Figure 16) and CV (Figure 
17). Following the spatial predictors and their interactions, hardwood cover was the most 
influential predictor: the six most influential landscape-based predictors involved fractional 
hardwood at 50-km and 5-km scales.  

For predicted mean stopover density, in addition to geographic-scale effects, there were 
consistent responses to land cover and coastal predictors. Highlights are presented in Figure 18 - 
Figure 22 (note that all predictors have been normalized). MN increased with increasing 
hardwood cover at each scale and also with seasonal mean NDVI. Contrastingly MN decreased 
with agricultural, emergent marsh and coniferous fraction, but did not change with fractional 
urban cover. Instead, the response to distance to bright light indicated increased stopover density 
at moderate and close distances (100 – 0 km). Moreover, the interaction term between hardwood 
fraction at 50 km and distance to bright light indicated that stopover was concentrated in brightly 
lit wooded areas. Stopover was also concentrated within 30 km of the Atlantic coastline, but the 
Great Lakes elicited no clear coastal effect. Notably, the strongest responses involving both 
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distance to bright lights and distance to the Atlantic coast were interaction terms with fractional 
hardwood cover at 50 km. Responses to these interaction terms indicated that above and beyond 
singular effects, stopover was extra concentrated in wooded areas that were both brightly lit and 
near the Atlantic coast.  

Regarding daily variability in VIR, hardwood at 50-km scales was highly influential, 
being involved in 6 of the top 7 landscape predictors (the other being hardwood at 5 km). 
Responses in CV to predictors were typically opposite of responses in MN, i.e. variability was 
predicted to decrease with increasing fractional hardwood, NDVI and proximity to the Atlantic 
coast, and to increase with increasing fractional agricultural and coniferous cover. However, CV 
increased closer to bright light sources similarly to when modeling MN. Also, while response in 
CV to fractional developed (urban) land cover was generally weak, MN spiked sharply near the 
heaviest development.   

Of the two corrective predictors, distance to the radar had a stronger influence and 
exhibited a clearer pattern on observations than relative elevation. These both suggested that 
‘sweet spots’ remained in the configuration of the radar and observations, allowing estimation of 
the ‘true’ vertically integrated (VIR) signal given the observations and location relative to the 
receiving station. 

Influence of and response to predictors in the bimonthly models generally resembled 
those of the seasonal models, e.g. regarding fractional land cover, and proximity to both artificial 
light and to coasts (Figure 23 - Figure 26). Some patterns were less clear and less consistent 
among bimonthly periods, but response to the Atlantic coast became progressively weaker 
through the season and indiscernible during the last bimonthly period.  

Predicted stopover distributions 
 
When mapped onto the entire region, predicted mean VIR (Figure 27) revealed broad 

patterns of reflectivity, with higher stopover densities in the Adirondack, Catskill and Pocono 
Mountains, near the Allegheny National Forest, towards the Atlantic coast and St. Lawrence 
River, and along the northern and southern portions of the Atlantic coast. This contrasts with 
Buler and Dawson (2014), who predicted lower density in the northeastern portions of the region 
and higher densities in the upper Delmarva Peninsula. Here, the lowest densities are predicted in 
interior and coastal New England and to the south of Lake Ontario and eastern Lake Erie. 
Predicted variability in stopover (Figure 28) was highest near urban centers, along much of the 
Atlantic coast and along topographic ridges. 

Classification maps 
 
Regional classification over the entire fall season (Figure 29) identified the NE and SE 

Atlantic coasts; the Adirondack, Catskill, and Pocono Mountains; St. Lawrence lowlands; and 
forested areas of coastal Connecticut as consistent high-use stopover areas. It is interesting to 
note that the highest density areas were rarely highly variable (the yellow-coded regions in the 
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maps), perhaps reflecting adaptation among migrants to congregate in reliably good stopover 
habitat.  

Telescoping into smaller scales, we see that while classification within the 150-km scale 
(Figure 30) generally resembles the regional classification, the 50-km classification identifies 
important areas throughout the region. From this figure, the Atlantic coast stands out in 
particular, possibly reflecting the prevalence of juveniles to drift coastwards. At the 10-km scale, 
classification can reveal local hotspots more evenly stratified within counties (e.g. riparian 
forests throughout the Delmarva Peninsula).  

Bimonthly classifications (Figure 31) were overall similar to the seasonal classifications. 
While stopover use in southeastern portions of the study region gradually decreased through the 
season, there was a gradual increase in stopover densities to the northeast, especially along the 
St. Lawrence River in the last bimonthly period, 16 – 31 October. These changes in bird 
distributions are more easily seen when looking just at predicted mean VIR during the bimonthly 
periods (Figure 32). Migrant densities peaked along the coast of Maine and in eastern Virginia 
during the last half of September. After that there were more migrants arriving in than leaving 
southern portions of the region, and we only sampled departures. Migrant densities close to the 
northernmost borders of the U.S. peaked in the last half of October when a last rush of temperate 
migrants (e.g., White-throated Sparrows, juncos) depart for southerly wintering areas. By 
summing the ranking of stopover use in terms of importance across the four bimonthly periods, 
we were able to resolve those areas that were regionally important throughout the entire autumn 
migration period (Figure 33). Some of these areas included the Adirondack Mountains, the 
eastern coast of Maine, the lower Delmarva Peninsula, and the western shore of the Chesapeake 
Bay in Virginia. 

Validation with independent radar 
 
Observed NEXRAD data were consistent with but not tightly correlated with the 

observed TDWR and NPOL data. Regarding observed mean VIR, the fit between the NPOL and 
the KDOX data was reasonable (R2 = 0.51, Figure 34), but the overlap zone between the NPOL 
and KDOX coverage areas was rather narrow (45-60 km to the south of KDOX). The relation 
between distance to the NEXRAD stations is evident when comparing reflectivity between 
NEXRAD and TDWR data, suggesting a dichotomy between shorter (10-40 km) and longer 
range NEXRAD measurements (Figure 35, R2 = 0.17). Indeed, higher correlations are found 
when limiting these data to within 40 km of the NEXRAD radar (R2 = 0.69). However, fits 
regarding variability in VIR between these radar measurements were rather low (not depicted, R2 
= 0.25 for TDWR and R2 = -0.05 for NPOL data). Effects of distance to NEXRAD when 
correlating NEXRAD data with data from the NPOL and TDWR radars were less apparent (e.g. 
Figure 34 & Figure 35 for mean VIR). Limiting data according to distances to these radar 
stations did not consistently nor significantly improve the fits. 

Validating the BGAM to the independent radar data sets (Figure 36 & Figure 37) 
regarding mean VIR yielded correlations similar to those between observed NEXRAD data and 
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the independent radar data measurements. The correlation coefficient between the BGAM and 
TDWR data was R2 = 0.33 (0.44 for locations greater than 20 km from the radar) and between 
the BGAM and NPOL was R2 = 0.40. Restricting the TDWR data to between 20 and 45 km from 
the radar improved the fit with BGAM predictions to R2 = 0.48 (versus 0.33), but there were 
overall no consistent effects of distance to the TDWR and NPOL radar. Fits regarding variability 
in VIR were more reasonable in comparison to BGAM predictions: R2 = 0.40 with the TDWR 
data and R2 = 0.30 for the NPOL data (versus R2 = 0.25 and R2 = -0.05 with NEXRAD versus 
TDWR and NEXRAD versus NPOL, respectively). 

Objective 3: Explaining migratory landbird use of forests via field surveys 
 
We conducted a total of 1,593 avian transect surveys during the two fall migration 

seasons, 836 in 2013 and 757 in 2014. On average, we visited each survey site 17 times (range 
13-20) in 2013 and 15 times (range 13-18) in 2014 (Table 6). After omitting surveys with 
missing variable measurements, a dataset containing 1,505 transect surveys and accompanying 
habitat and environmental metrics remained (772 in 2013, 733 in 2014) and were used in BRT 
analyses.  

We detected and identified 128 bird species on the surveys (Table 7). Nocturnal migrants 
comprised 74.92% of all migrant birds detected in 2013 and 75.46% in 2014. Seasonal mean 
migrant densities for transects ranged from 1.09 to 5.23 with an overall mean of 2.75±0.13 birds 
per hectare per visit in 2013, while detection probabilities ranged from 0.23 to 0.73 with a mean 
of 0.53±0.02. In 2014, seasonal mean migrant densities for transects ranged from 1.16 to 8.88 
with an overall mean of 2.87±0.24 birds per hectare per visit, while detection probabilities 
ranged from 0.19 to 0.73 with a mean of 0.52±0.02. Neotropical migrant species showed a steady 
decline in detections throughout the autumn, while temperate migrants showed a steep increase 
in detections in early October and peaked in late October (Figure 38). Accordingly, August and 
September were dominated by detections of Neotropical migrants, while October and November 
were dominated by temperate migrant detections. 

Nineteen models of migrant density were developed for five non-exclusive groups of 
nocturnal migrant species and 14 individual nocturnal migrant species with at least 90 detections 
across all surveys (Table 8). The individual species included six breeding species, six 
overwintering species, and two transient (passage) species. Adjustment of model parameters 
resulted in use of learning rates ranging from 0.025 down to 0.001, and number of trees in each 
final optimized model ranged from 1,100 to 1,800. Out of the 37 total predictor variables that 
were included in each BRT model, 25 variables (added across all models) showed a relative 
contribution of 5% or greater, the chosen limit for signifying predictor variables with high 
enough influence to warrant interpreting them in our discussion  for individual species (Table 9) 
and grouped species (Table 10). Model fits were generally moderate based on proportion of 
deviance explained (0.16 to 0.64) and cross-validation correlation (0.30 – 0.64). Sampling period 
was included as one of the most highly influential predictors for all models, and showed strong 
interactions with other variables in each model as well. It should be noted, however, that these 
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observed interactions with “Period” may in many cases simply reflect relationship changes with 
predictors when the avian species of interest was generally absent. 

Nocturnal Migratory Species Groups 
 

Winter migrant density was the greatest during the last half of October and increased 
sharply with proximity to the coast within 15 km of the coast (Figure 39). Winter migrant density 
was best explained by period and distance from the coast. Although these two variables 
accounted for 71% of total relative variable influence of the model, other responses included 
increasing migrant density with increasing abundance, presence of partridge berry (Mitchella 
repens) fruit, increasing stem density and visual cover of the shrub layer, and increasing latitude. 
There were no strong interactions besides those between period and several predictors (Table 
11).    

Transient migrant density peaked during the first half of October, and was best explained 
by period, agriculture cover, shrub cover, abundance of Lepidoptera larvae in understory, 
abundance of arthropods on the ground, urban cover, distance from the coast, and total 
abundance of fruits. It increased with increasing agriculture, shrub cover, Lepidopteran larvae 
abundance, arthropod abundance, urban development, and proximity to the coast (Figure 40). 
Interactions were rather weak (below 1) (Table 12). 

Breeding migrant density was best explained by period, NDVI, arthropod density in the 
understory, shrub cover, and black gum (Nyssa sylvatica) fruit abundance. Breeding migrant 
density declined steadily with period, varied with NDVI (declined steadily with NDVI with a 
spike upwards at NDVI of 9000), declined with increasing arthropod density, increased sharply 
with shrub cover above 80%, and peaked at moderate amount of black gum fruit abundance 
(Figure 41). There were strong interactions between hardwood forest cover and arthropod 
abundance in the understory (Table 13), such that the relationship of migrant density with 
hardwood forest cover went from being positive at low arthropod density to being negative at 
high arthropod abundance. Additionally an interaction between litter depth and NDVI indicated 
that at high NDVI values, migrant density was positively related to litter depth, and at low NDVI 
values, migrant density was negatively related to litter depth.  

Frugivorous migrants were detected primarily during the last half of October. 
Frugivorous migrant density was best explained by period, total fruit abundance, distance from 
the coast, partridge berry fruit, and arthropod abundance on the ground. Their density increased 
with increasing total fruit and partridge berry abundance, proximity to the coast, and declining 
arthropod abundance on the ground (Figure 42). There were no strong interactions besides those 
with period and several predictors (Table 14).    

Total nocturnal migrant density was best explained by period, fruit abundance of 
partridge berry and black gum, distance from the coast, water cover, fruit abundance of holly and 
all fruits, latitude, and shrub cover. Nocturnal migrant density was by far the greatest during the 
last half of October, (Figure 43). Migrant density generally increased with more fruit of partridge 
berry, black gum, all fruit, and variably with holly. It also peaked at the coast, declining sharply 
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until 40 km away from the coast, and then rising again beyond 60 km. Migrant density was also 
greatest with presence of water in the landscape, increasing latitude, and increasing shrub cover. 
Interactions of note include an interaction between water cover and black gum fruit abundance 
(Table 15) such that water cover was stronger where black gum fruit abundance was low. 
Species groups had different responses to two predictors, distance from bright lights and distance 
from the coast, which were of great importance for radar-based stopover density models (Figure 
44). Transient migrant density was greater with proximity to bright lights, peaking at 30 km from 
bright lights. Breeding migrants displayed a mixed reaction with density generally increasing 
with distance, but also showing a small peak in density around 30 km from bright areas. 
Wintering migrant density was greatest at distances farthest from bright lights. Wintering 
migrant density also decreased monotonically with distance from the coast. Breeding and 
transient migrant density within 40 km of the coast also decreased with distance from the coast. 
However, they both increased with distance from the coast beyond 50 km, with breeding 
migrants having the relatively highest densities beyond 60 km.  

Given the overall mixed reaction of breeding migrants, which matched elements of the 
responses of both transients and residents, we conducted a post-hoc analysis for which we 
modeled breeding migrant species densities with data from two sampling periods separately: 
early in the season when breeding migrants were likely dominated by resident individuals 
(Period 1 [Aug. 15 – Sep. 4]) and later in the season when they were likely dominated by 
transient individuals (Period 3 [Sep. 26 – Oct. 16]). The two models produced markedly different 
response functions of note (Figure 45). During period 1, breeding migrant density was positively 
related to hardwood forest cover in the landscape, distance from the Atlantic coast, and distance 
from bright areas, and negatively related to arthropod abundance in the understory. Conversely, 
during period 3, breeding migrant density was negatively related to hardwood forest cover in the 
landscape, distance from the Atlantic coast, and distance from bright areas, and positively related 
to arthropod abundance in the understory. 

Individual species varied in both the direction and magnitude of relationships among 
predictors. Responses to important predictors for each species can be found in Appendix F 
(Figure F.1 - F.14). Additionally, interactions among predictors for individual species models 
were generally weak and dominated by interactions with sampling period (Appendix F; Table 
F.1 – F.14). We do not report on specific results for individual species models here for sake of 
brevity. However, a few consistencies emerged among species with similar migration status that 
bear highlighting.  

The two transient migrant species, American Redstart and Black-throated Blue Warbler, 
were the only individual species to both show strong responses to agriculture and water cover in 
the landscape. Both species increased in density with increasing agriculture cover (sharply when 
agriculture dominated the landscape), and increasing amount of open water cover. Black-
throated Blue Warbler was the only individual species to show strong positive response to urban 
cover and Lepidoptera abundance in the understory, similar to transient species as a whole.  
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All breeding migrant species showed a strong positive relationship with NDVI, similar to 
that of Neotropical migrants as a whole. Most of the breeding migrant species (4 out of 6 
species) showed a negative relationship with arthropod abundance in the understory and a 
positive relationship with latitude. Unique among all individual species assessed, Acadian 
Flycatcher had a negative relationship with litter depth and proximity to bright areas, Wood 
Thrush had a negative relationship with ground vegetation cover, and White-eyed Vireo had a 
positive relationship with shrub habitat cover in the landscape. 

Winter migrant species were the only individual species that showed strong positive 
responses to fruit abundance of American holly (4 out of 6), partridge berry (2 out of 6), and 
Smilax spp. (2 out of 6). They were also the only individual species to show a positive 
relationship with proximity to the Atlantic coastline (2 out of 6 species). Unique among all 
individual species assessed, Golden-crowned Kinglet had a positive relationship with arthropod 
abundance on the ground, Winter Wren had positive relationships with Diptera abundance in the 
understory and tree basal area, and Yellow-shafted Flicker had a positive relationship with fruit 
abundance of black gum.   

Objective 4: Classifying stopover site function 
We used data from 45 sites within the Mid-Atlantic and Gulf Coast regions to assess 

stopover functional types. We identified four well-defined groups from the cluster analysis 
(Figure 46). Based on the values of the four predictor variables (proportion of hardwood forest 
within sample volumes and within 5 km, distance to coast, insect density, Table 16), we assigned 
functional types to each cluster. We ended up with eight coastal fire escapes, 14 inland rest stops, 
10 full service hotels, and 13 convenience stores. On average, coastal fire escapes were 
distinguished by having short stopover duration, were located closest to the coast, had the lowest 
amount of forest cover in the landscape, and the lowest insect density (Figure 47). Inland rest 
stops had moderate stopover duration, low insect density (intermediate but not statistically 
different from fire escapes and convenience stores), were located away from the coast, and had a 
moderate amount of forest cover in the landscape. Convenience store sites had the longest 
stopover duration, were located away from the coast, had moderate forest cover in the landscape, 
and moderate amounts of insects. Hotel sites had short stopover duration (not different from fire 
escapes), the highest amounts of forest cover and insect density, and were located farthest from 
the coast. All hotel sites were located within extensive forested wetlands and inland areas near 
the Gulf Coast (Figure 48). All fire escapes were located in coastal and highly urbanized areas of 
the Mid-Atlantic. Inland rest stops occurred primarily on the Delmarva Peninsula. Convenience 
stores were generally located along inland riparian forests within both Gulf Coast and Mid-
Atlantic regions. 
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Discussion 

Objective 1: Mapping stopover incidence with radar 
 
The use of NEXRAD data to map stopover distributions of migrating birds is a relatively 

new application and new developments and refinements of the approach pioneered by Buler and 
Diehl (2009) continue to be made (e.g., Buler and Dawson 2014). We made two important 
advancements to the data screening and processing algorithms. We improved the objective 
determination of the flight speed and direction of animals at all radars (i.e., not just radars with 
affiliated radiosonde balloons) by using NARR data as a source of wind speed and direction 
aloft. Although coarser in height resolution than radiosonde, NARR provides a more accurate 
temporal match to radar data because it is measured every three hours instead of every twelve 
hours as for radiosonde.  NARR covers the entire U.S. thus allowing us to incorporate wind data 
at radars that have no associated radiosonde.  Additionally, because NARR is modeled at a finer 
spatial scale (approximately every 30 km), we can obtain average wind measures across the 
entire radar domain as opposed to just the point location where the radiosonde is launched. The 
end result is more accurate determination of the air speeds of targets for distinguishing birds 
from insects. 

The second advancement to data processing that we developed during this study is the 
dynamic empirical determination of a suitable sampling time for each radar and night. We 
verified that the precise timing of the onset of migration varies among radars and days and 
represents an important potential source of sampling bias previously alluded to by Buler and 
Dawson (2014). The timing of the onset of migration ranged from roughly 24 to 80 minutes after 
sunset. This range of sampling times may be due to time of year, the species composition of 
migrating landbirds, and on individual departure decisions (Åkesson et al. 1996). Age and 
condition of individuals may also provide insight as to why we see this range of exodus timings. 
Smolinsky et al. (2013) found that the majority of radio-tagged Swainson’s Thrushes (Catharus 
ustulatus) leaving after astronomical twilight were lean, hatch-year birds. Choosing to sample at 
the peak of exodus on a daily basis allows us to capture the variability in timing from day to day, 
yet standardizes the relative sampling time among days. The sampling times from the new 
algorithm are determined automatically, quantitatively, and consistently at the time when the rate 
of increase in the density of birds entering the airspace is greatest, typically about 5-10 minutes 
after the first birds begin to take off. The dynamic nature of the algorithm allows it to sample 
flight exodus at the same relative time point despite any systematic and/or stochastic changes in 
the precise timing of the onset of migratory flight among radars and days. This standardization is 
important since birds in the airspace can double every couple of minutes (Hebrard 1971). As a 
follow-up to this project, we plan to model the variability in the timing of exodus flights to 
improve our understanding of the factors that influence the onset of migration. 

The correlations between radar measures of emigrant density aloft and migrant densities 
at the ground were weak to moderate in strength, likely due to several reasons. These include 
factors contributing to sampling error and differences in the quantification of bird density. 
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Factors contributing to sampling error include inconsistent calibration of NEXRAD sites, and 
spatial and temporal mismatches in sampling days between ground surveys and radar 
observations. By design, NEXRAD radars should be calibrated to produce similar values of 
reflectivity for the same density of birds aloft, but operational parameters can vary by radar 
(Crum and Alberty 1993). Additionally, the radars sample transects at a relatively coarser 
resolution than observers through field surveys. The radars likely enumerate birds that could 
have taken flight from outside the bounds of transects. Observations from radar and field surveys 
were also not temporally matched to the same days. These spatial and temporal mismatches can 
add to noise to the correlations. 

Stopover duration of migratory landbirds is extremely variable and depends largely on 
how quickly birds can refuel (Moore and Kerlinger 1987, Lindström and Alerstam 1992). Since 
we conducted surveys approximately every four days, we may not have captured complete 
turnover of individual migrants since stopovers can last for many days. Thus, the possibility of 
recounting the same individuals on multiple surveys means that ground surveys really provide a 
measure of bird use days and not an explicit measure of unique individuals stopping over. Radar 
measures more explicitly measure individuals leaving stopover sites for flight and presumably 
they do not return to the same stopover sites once they leave. Therefore, the relationship between 
mean radar reflectivity of emigrating individuals and mean daily bird density (index of bird use 
days) on the ground is confounded if stopover length varies within and among sites.  

The seven-year dataset that we used allowed us to quantify linear trends in the changes in 
stopover densities of migrants across years. While there was variability among areas that 
exhibited steep increases to no changes to steep decreases, the overall average trend indicated an 
annual decrease of 4% in stopover densities. When extended over the seven years of the analysis, 
there was a 29% decline in stopover densities of migrants. This is alarming, and must be 
considered seriously as a sign that aggregate populations of landbirds that migrate through 
Region 5 are experiencing rapid declines in their post-breeding population sizes since the radars 
comprehensively measure 25% of the land area within Region 5 in a systematic, consistent, and 
quantitative way. Although we did not find obvious indications of sampling bias, further 
investigation of how differences in the number of sampling nights among years might create bias 
should be pursued.  

Objective 2: Modeling stopover incidence with radar 
 
Validating the output of the NEXRAD-based BGAM models with ancillary radar data 

was not without challenges, mostly stemming from limited observed coverage areas by TDWR 
and NPOL. However, the compatibility of the NEXRAD-based predictive models with the 
observed TDWR data seems quite reasonable given the latter’s lower range and sparser data set. 
The poorer than expected fit of our model results with the NPOL data, which ostensibly has even 
higher spatial resolution than the NEXRAD data, may stem from the limited overlap between the 
NEXRAD and NPOL coverages and clutter issues with the NPOL data (see Appendix A). This 
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highlights another benefit of our modeling approach in that measurement errors can be directly 
estimated and accounted for across regional scales.  

A major strength in choosing an additive approach like BGAMs is the possibility to 
separate prevailing responses to geographic or flyway-scale spatial effects (X, Y) from sub-
regional coastal and hardwood effects. However, sensitivities to edge effects and smoothing of 
the response functions remain to be fully quantified. We have made preliminary comparisons 
between the BGAM and GWR and STEM models. These indicate that the smoothed additive 
approach of the BGAMs slightly underperforms compared to the others within a dense 
observation network, but is more robust and accurate at remote locations, e.g. remote radar sites. 
We are exploring these differences more rigorously using both synthetic and NEXRAD data sets.  

Our predicted patterns of stopover use based on the BGAM models, with lower density in 
New England and near the Great Lakes, is more consistent with recent radar studies focusing on 
airborne densities through the night (La Sorte et al. 2014, Farnsworth et al. 2016). Differences in 
predicted density and classification from Buler and Dawson (2014) are partly attributable to our 
more flexible and precise calculation of exodus peaks (all previous radar studies have considered 
static sun angles). For example, in the northeastern portion of the region, exodus times were 
typically relatively late so stopover densities based on a static sun angle would be under-
predicted. Our models also benefitted from having a deeper dataset compiled across seven years. 

The consistent importance of fractional hardwood forest cover in determining stopover 
density was naturally expected (e.g. Buler et al. 2007, Ktitorov et al. 2008), but the prevalence of 
cover within 50 km versus 1 or 5 km was noteworthy. Hardwood fractions at 5 km and 50 km are 
moderately correlated (0.77), so some caution in interpretation is warranted. However, the 
consistent importance of 50-km over 5-km scales suggests that density-dependence may not be a 
strong factor in determining stopover density, since VIR is then predicted to increase within each 
1-km cell if fractional hardwood increases at 50 km. This further emphasizes the importance of 
conserving largely intact forested areas along migratory flyways.  

The predicted decrease in density with increasing fraction of non-hardwood covers was 
striking (Figure 19). Regarding agricultural land cover, this is consistent with Buler and Dawson 
(2014) using localized linear regression (GWR). This study presents the first evidence that 
stopover density decreases with increasing extent of emergent marsh and coniferous forest. 
These effects could be related to inter-guild effects with lower numbers of birds utilizing these 
habitats compared with those stopping over in deciduous forests. Another possible confounding 
factor is that birds may make several nocturnal “test flights” on different nights during the course 
of a stopover bout at a single location, which may last up to several weeks (e.g. Mills et al. 
2011). A test flight is where a bird flies high into the air but does not engage in a long distance 
flight and, instead, quickly returns near the point of departure.  Lastly, the response to urban 
cover is consistent with the GWR findings in Buler and Dawson (2014), which predicted that 
stopover densities decreased with increasing urban cover in undeveloped regions up to when 
urban cover reaches 10% of the landscape, and then increased with urban cover in heavily 
developed areas where urban cover dominated the landscape (Figure 21). 
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Response in mean VIR to distance to bright lights consistently indicated higher stopover 
densities close to brightly lit (and therefore typically close to highly urbanized) areas. Although 
there is evidence dating back to the early 1800s of birds being attracted to sources of artificial 
lights (Gauthreaux and Belser 2006 and references therein), our study seems to be the first to 
provide evidence consistent with birds being drawn to urban glow. Olsen et al. (2014) estimates 
that the skyglow of large metropolitan areas can be perceived by an observer on the ground from 
up to 300 kilometers, and likely to greater distances for birds aloft. Positive phototaxis of birds 
while aloft has also been suggested as a possible explanation for large altitudinal shifts in 
migrants during flight (Bowlin et al. 2015). The fact that, unlike other landscape-scale variables, 
VIR was more variable with increasing urbanization and proximity to bright light indicates that 
migrants may be more likely to land near brightly-lit areas under certain conditions, e.g. poor 
atmospheric visibility or strong winds. The increased densities closer to brightly lit hardwood 
forests indicate that migrants can and do mitigate any negative effects on availability of suitable 
habitat. It remains to be quantified to what extent migrants might be impacted by broad-scale 
phototaxis. We are continuing to investigate artificial light effects, using higher-resolution light 
data and with fewer interactions between spatial co-ordinates and landscape scale predictors. We 
also have a doctoral student in the Aeroecology Lab at UD who is investigating the extent of 
light pollution along bird migration routes at different scales (worldwide and U.S.-wide), testing 
whether artificial lights at a landscape scale promote stopping over of nocturnal migrants, 
assessing whether migrating birds in active flight react to the presence of experimentally-
controlled artificial lights, and, based on NEXRAD data, analyzing whether moon phase, cloud 
cover, and visibility play a role in modifying stopover concentrations of migrating birds in urban 
areas. 

Objective 3: Explaining migratory landbird use of forests via field surveys 
 
Migratory bird densities during autumn stopover within hardwood-dominated forests of 

the Mid-Atlantic region were associated with ecological data measured at patch, landscape, and 
regional spatial scales. Migrant densities also varied temporally with sampling period as 
breeding species left, transient species passed through, and wintering species arrived in the 
region over the course of the autumn. For most species (57%), sampling period was the most 
influential predictor of their habitat use. Therefore, it is important to view differences in the 
responses of bird habitat use to factors across all spatial scales with sampling period in mind. It is 
also important to keep in mind that since we surveyed unmarked individuals that may have 
stopped over long enough to be detected in more than one survey, that bird density measures 
from ground surveys reflect intensity of bird use rather than a measure of how many individual 
birds passed through a site. As an extreme example, one Wood Thrush detected per survey for 
three successive surveys at one site could reflect three individual thrushes that stopped over for 
short intervals between surveys or three detections of one individual thrush that stopped over for 
the duration of the three surveys. This means that bird density from surveys should be positively 
related to both the number of individuals passing through a site and to mean stopover duration 
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among individuals (i.e. the quantity that allows us to extract a measure of relative stopover 
duration by integrating radar and ground survey data for objective 4). 

At the patch level, both food resources as well as habitat characteristics had an important 
effect on predicting migrant densities, with food resources more commonly identified as highly 
influential predictors. Total arthropod density was generally more important than individual 
arthropod taxa in explaining density for most migrant bird groups and species. The negative 
relationship between arthropod abundance and the density of most individual breeding species 
and breeding migrants as a group may seem counterintuitive. However, a possible explanation 
may reflect carry over effects of territorial breeding site selection earlier in the year. “Migrant” 
density of species known to breed in the region was at its seasonal peak during August and early 
September (period 1) when birds detected during this time were likely dominated by local 
breeders (some “migrants” were detected as singing males during this time) still using habitat 
within their breeding territories (Ryder et al. 2011, Stutchbury et al. 2011, Stanley et al. 2012, 
Mitchell et al. 2012). This sampling period also coincided with the seasonal low in arthropod 
abundance. Birds can suppress arthropod populations over time (Marquis and Whelan 1994). 
Thus, the negative relationship between breeding migrant density and insect abundance early in 
late summer/early fall may reflect depletion of insects within territories used during the breeding 
season.  

Passage migrants (i.e., breeding species in the second half of the season and true 
transients) and wintering migrants, on the other hand,  were positively related to arthropod 
density, consistent with other studies (Hutto 1985, Petit 2000, Buler et al. 2007). Lepidoptera 
larvae abundance was important in explaining total transient migrant density and, among 
individual species, had the greatest relative importance for the two transient migrant species 
analyzed (Black-throated Blue Warbler and American Redstart). Caterpillars are particularly 
important in the diet of these two warblers during stationary periods of the year (Rodenhouse and 
Holmes 1992, Lovette and Holmes 1995). However, numerous migrating warbler species in 
spring have been observed feeding almost exclusively on caterpillars in forests of the midwestern 
U.S. (Graber and Graber 1983). Thus, passage migrants appear to be particularly responsive to 
lepidopteran larva over other arthropod taxa. Wintering migrant species detections likely 
included some passage individuals, but also local residents making initial habitat selection of 
wintering territories and apparently settling in positive relation to arthropod density.  

It is important to bear in mind that due to logistic constraints we only sampled arthropod 
density in the two lower strata of the forest (ground and understory), which does not necessarily 
reflect arthropod availability across all strata (including midstory and canopy). Thus, interpreting 
relationships of bird density with arthropod abundance must be done with caution. Moreover, 
sampling of arthropods was done without discrimination of palatability of arthropods. There is 
uncertainty in the proportion of arthropods sampled that may be consumed by birds. Fruit 
abundance was also important in explaining migrant bird densities, particularly for transient, 
frugivorous, and wintering species. Both transient species examined, American Redstart and 
Black-throated Blue Warbler, showed strong positive relationships with fruit abundance of grape 
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(Vitis spp.) and are frugivorous in late summer and fall (Holmes 2005, Sherry and Holmes 2016). 
Several wintering bird species showed positive relationships with fruit abundance of American 
holly, partridge berry, and/or Smilax spp. Holly and Smilax spp. were among the latest fruits to 
ripen, doing so late in the survey season when wintering migrants began arriving in large 
numbers. These fruits are usually consumed by birds during the fall (partridge berry), in late 
winter (holly), or steadily throughout the winter (Smilax spp.) (McCarty et al. 2002, Greenberg 
and Walter 2010). Further investigation into the relationships of individual bird species and 
fruiting plants is warranted as some of the migrant species associated with ripe fruits are not 
necessarily known to consume those fruit species. Hardwood forests are known to contain a 
higher level of fruiting species abundance and diversity than pine-dominated forests (Greenberg 
et al. 2012). While this may be the case, hardwoods should not be considered the only important 
forest type. There is great diversity in the types of fruiting species found between hardwood and 
pine forests, and preferences for food type must be considered on a species-by-species basis if 
assessments of habitat quality are to accurately represent their true value for migrant species 
(Moore et al. 1995, Greenberg et al. 2011). 

The most common patch-scale habitat structure variables influencing migrant density 
were shrub cover and shrub stem density. Attraction to dense shrub cover was widespread among 
flycatchers, foliage gleaners including warblers, kinglets, and vireos, and a ground-foraging 
thrush (Wood Thrush). Although some researchers have found no or weak relationships between 
habitat structure and bird abundance during migration (Skagen et al. 1998, Somershoe and 
Chandler 2004, Buler et al. 2007), greater migrant abundance is often associated with greater 
understory cover (Deppe and Rotenberry 2008), often typical of tree-fall gaps within hardwood 
forests (Blake and Hoppes 1986, Martin and Karr 1986, Wilson and Twedt 2003, Rodewald and 
Brittingham 2004) where food resources are concentrated (Blake and Hoppes 1986, Martin and 
Karr 1986, Kilgo et al. 1999). Greater understory vegetation also provides cover from predators 
(Lindström 1990, Cimprich et al. 2005, Woodworth et al. 2014). Wood Thrush also responded 
strongly and negatively to forb ground cover, consistent with a preference for open litter for 
foraging (Roth et al. 2011). Winter Wren was unique in being the only species to respond 
strongly and positively to tree basal area. This is consistent with a preference for old growth 
forest where it probes bark and upturned roots of trees (Hejl et al. 2002). 

Breeding migrants showed strong positive relationships to primary productivity (NDVI), 
which was likely driven by their distributions and selection of breeding territories earlier in the 
growing season. NDVI has proven to be a powerful predictor of bird species richness and 
abundance tied to greater rainfall, green vegetation and favorable conditions for insectivorous 
birds (e.g., Seto et al. 2004, Gordo 2007, Saino et al. 2010, Pettorelli et al. 2011 and references 
therein). The only other migrants that responded to NDVI were wintering migrants (Winter Wren 
and Northern Flicker) and their response was negative. NDVI was negatively related to sampling 
period, which may have contributed to the negative relationship with these two wintering 
migrants that peaked in abundance when NDVI was at its lowest. 
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At the landscape scale, landscape composition exhibited strong influence on migrant 
densities, particularly for passage migrants.  Passage migrants’ use of forested stopover sites 
increased when there was less forest in the landscape and more agriculture and urban 
development, similar to Strobl (2010). This is consistent with radar studies that demonstrate 
forest patches in highly developed landscapes support high densities of migrating birds (this 
study, Bonter et al. 2009, Buler and Dawson 2014). Buler and Dawson (2014) suggested the 
greater number of migrants stopping in forest patches may be due to a ‘wicking effect’ in which 
forest patches draw in migrants from the surrounding unsuitable landscape and concentrate them. 
Subsequently, food resources may decline relatively quickly (Moore and Wang 1991) and lead to 
increased stopover duration (Ktitorov et al. 2008). Increased stopover duration would also lead to 
increased observed bird use in ground surveys. The wicking effect of transitory migrants is also 
supported by the change from a positive response of breeding migrants to hardwood forest cover 
while local breeders were still present to a negative response to hardwood forest cover as the 
season progressed and transient individuals of breeding species passed through the region.  

Regional scale variables were highly influential for some species. Latitude showed a 
highly-influential positive relationship with half of the species examined. However, White-eyed 
Vireo is the only species that had greater densities at lower latitudes. Part of this explanation 
could be that migrants tended to be more concentrated into the forests of the Delmarva Peninsula 
and are more diffuse on the mainland of Virginia that contains greater forest cover. Distance to 
the Atlantic Ocean tended to be more important for migrant groups than for individual species. 
Our hypothesis that proximity to the coast would be an influential region-scale factor is 
supported by previous studies that found regional-scale selection and use of near-coastal 
stopover sites within several regions within the eastern U.S. (Diehl et al. 2003, Buler et al. 2007, 
Buler and Dawson 2014, LaFleur et al. 2016, Archibald et al. 2017). This is the first study to 
show that breeding migrants use forests farther from the coast with greater intensity, particularly 
early in the fall migration season. Again, this may reflect the spring selection of breeding 
territories rather than habitat selection of transient migrants, since later in the season the 
relationship of breeding migrant species changed to be negative with distance from the Atlantic 
(similar to transients). Many near-coastal landings arguably result as a consequence of other 
influencing factors on migrants facing overwater crossings, such as adverse weather conditions 
(Gauthreaux and Belser 1999, Schaub et al. 2004), body condition (Moore and Aborn 2000, 
Moore et al. 2005), and even “morning flight” or dawn reorientation of migrants aloft over water 
(Van Doren et al. 2014, 2016, Archibald et al. 2017).  

Although distance to bright areas had a strong influence on migrant distributions based 
on radar data, it usually only had a moderate to weak influence on migrants based on ground 
surveys. However, the density of transient migrants and breeding species late in the season was 
greater with proximity to bright areas, consistent with radar observations. Conversely, locally 
breeding species and wintering migrants (i.e., migrants in residence) tended to avoid bright areas. 
This is an intriguing result that suggests that attraction to light may only affect migrants while in 
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passage and not those that have/are established/ing long-term home ranges during stationary 
periods of the annual cycle.  

Results of our study emphasize how truly variable stopover habitat use by migratory 
landbirds is, and how habitat factors across multiple spatial scales exhibit varying degrees of 
influence on site use (Buler et al. 2007, Deppe and Rotenberry 2008, LaFleur et al. 2016). 
Variability in habitat use is especially evident when considering the different needs and 
preferences of one migratory species versus another, and is apparent in noticeably different 
outcomes for top predictor variables from each density analysis. It, thus, highlights the need for 
using multi-scale approaches when comparing datasets to address ecological questions such as 
those presented here. 

There are also numerous other habitat and individual factors that may be important to 
migrants and their choice of particular stopover sites that were not considered in this study. For 
example, age or sex differences within taxa may play an important role in migratory behavior. 
Juveniles are inexperienced in navigating their migratory route and this naïveté may manifest 
itself by the observation that large numbers of juvenile migrants move along coasts. This 
phenomenon, referred to as the coastal effect, may affect the importance and function of stopover 
sites used largely by juvenile birds (Ralph 1978). Following a coast is disadvantageous, 
generally involving a longer, less direct route that requires more energy expenditure. This 
tendency also may result in misdirected flight offshore, requiring more time or repeated attempts 
to cross an oceanic barrier and likely contributing significantly to annual juvenile mortality rates 
(Ralph 1978). Similarly, the predisposition to move along the coast demonstrates that migrant 
habitat use is constrained at a higher hierarchical level by location, and may not be as strongly 
influenced by fine-scale factors related to habitat quality per se. Although nearly impossible to 
address with an observational study such as this, individual decision-making events are a factor 
influencing stopover habitat use. For example, a Caribbean-bound migrant may choose to travel 
further south along the coast, shortening their overwater flight distance and duration, but 
increasing the length of the entire migratory journey. Other individuals of the same species may 
instead take advantage of conditions such as favorable winds and depart across the ocean earlier, 
the benefit being a much shorter migratory journey (Alerstam 2001). 

Landscape-scale studies are logistically difficult to conduct, but are important for 
conservation planning. Increasing urbanization and habitat fragmentation, for example, reduces 
the availability of stopover habitat. Although fragmented forests in urbanized areas provide 
stopover habitat for migratory birds, they are usually not of the same quality as more extensive 
forests elsewhere (Moore et al. 1995, Faaborg et al. 2010a, Matthews and Rodewald 2010). 
Urbanized forest patches, for example, may have lower arthropod diversity and abundance, as 
well as a higher number of invasive plants, than contiguously forested areas (Matthews and 
Rodewald 2010). Additionally, we found evidence from radar and ground surveys that passage 
migrants appear attracted to bright urban areas due to the skyglow of artificial light at night. 
Thus, the enhanced competition for food in forested stopover sites with more limited resources 
may make the migratory journey even more difficult and dangerous (Askins and Askins 2002). 
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Fragmented urban landscapes also limit the potential for an individual to successfully locate 
more suitable habitats via morning flight, thus possibly extending stopover bouts and leading to 
even more time and energy being consumed (Moore et al. 1995). 

Conducting an accurate and useful assessment of the influence of varying scale-
dependent factors on migratory landbird selection and use of stopover sites requires that factors 
across multiple hierarchical levels are incorporated. Prior multi-scale analysis of stopover habitat 
use showed a positive association between landscape-scale hardwood forest cover and 
understory arthropod abundance, a patch-scale factor considered important to migrant bird use. 
This suggests that nearby surrounding hardwood forest could be an important cue of a high-
quality site and may even convey cues for where to land (Buler et al. 2007). Our results reinforce 
the notion that a multi-scale analytical approach as we have done is paramount to effectively 
understand stopover habitat use by migratory landbirds. 

Objective 4: Classifying stopover site function  
 
Determining relative stopover duration by integrating radar and ground surveys, similar 

to O’Neal et al. (2012), with measures of food resources, proximity to the coast, and the fraction 
of hardwood forest cover in the landscape, allowed us to assess how migrants use specific 
stopover sites and classify sites into four categories similar to the framework outlined by 
Mehlman et al. (2005). Stopover duration varied in accordance with empirical data on the 
relationship between the propensity to leave a site and fuel deposition rate (Schaub et al. 2008). 
Namely, birds exhibited the shortest stopover duration in sites with the least amount of food 
(coastal fire escapes) and the most amount of food (full service hotels), while sites with moderate 
amounts of food (i.e. convenience stores) were associated with the longest stopover duration. 
The explanation of this is that birds that refuel quickly can spend less time at a stopover site. If 
there are only moderate amounts of food, it will take migrants longer to rebuild energy reserves 
to levels suitable for a long-distance migratory flight. This also begs the question as to whether 
convenience stores may be ecological traps and confer negative fitness consequences to migrants 
by delaying departure compared to higher quality (hotel) sites. Perhaps a more appropriate term 
for convenience store is “refueling trap”? 

We could have lumped coastal fire escapes with inland rest stops in the category of “fire 
escape” because they both serve as temporary rest areas where birds likely cannot refuel due to 
low food resources. Collectively, they represented half of all stopover sites surveyed. However, 
the significant difference in their proximity to the coast is an importance distinction. 
Nocturnally-migrating birds will change flight direction to remain over land when approaching 
coastlines (Bruderer and Liechti 1998, Diehl et al. 2003, Horton et al. 2016). Furthermore, the 
phenomenon of redirected flights towards land of nocturnal migrants over water after dawn (i.e., 
morning flight) is widespread and frequent, leading to increased numbers of migrants stopping in 
coastal areas (Diehl et al. 2003, Van Doren et al. 2016, Horton et al. 2016, Archibald et al. 2017). 
Thus, coastal fire escapes offer a safe landing place for landbirds that may have just completed 
or delayed an open water crossing and tend to be used in greater and more consistent densities 
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than inland rest stops. The consistent migrant use of coastal “fire escape” sites runs counter to 
the original general description by Mehlman et al. (2005) that fire escapes are only used 
infrequently by migrants. We suggest relaxing the defining condition that fire escapes are used 
infrequently since the need for “emergency” resting areas near coasts is constant. Alternatively, 
the label of fire escape should be changed to “rest stop”, which removes the connotation of 
infrequent use. 

Conservation Implications 
 
Forests and other natural habitats on or near coastlines are conservation priorities because 

they provide resting or landing sites for birds before or after overwater crossings. Coastal 
habitats are also important for landbirds that migrate along the coast, which may 
disproportionately be juvenile birds on their first migration. Corroboration of the relationship of 
transient migrant attraction to light by radar and ground surveys strengthens the inference that 
migrants are affected by artificial light at night at broad spatial scales. Moreover, broad scale 
attraction of migrants to bright urban areas, particularly during fall, has been shown using eBird 
observations by citizen scientists (La Sorte et al. 2017). Migrants drawn to brightly lit areas in 
and around urban areas, where they may be exposed to various human-associated hazards (e.g. 
towers, cars, windows, cats), rely on forest tracts as well as tree canopy and shrub cover in parks 
and residential communities, so maintaining or enhancing these should be encouraged.  

Maps of predicted stopover densities identify sites throughout the region with high or 
consistent use. Locally classified maps (e.g., 10-km or 50-km window, see Figure 30) could 
guide bird clubs, National Wildlife Refuges, and State or local governments to select sites for 
conservation, while regionally classified predicted stopover use and the mapped Cumulative 
Stopover Importance Index (Figure 33) may be more useful for broader conservation planning. 
The maps also show portions of the region with predicted low use by migrants. Migratory flights 
could be simulated or tracked to see if these areas are bypassed due to their relative location. 
Additionally, these areas could be examined either remotely or directly to determine if few 
suitable stopover sites exist and thus need conservation attention.  

While the bird species composition of NEXRAD data cannot be determined, regionally-
classified predicted bird stopover use mapped during bimonthly periods (Figure 31) can focus 
conservation actions on bird species groups of interest. In general, the two maps for September 
encompass predominantly Neotropical migrants while the October maps are dominated by 
temperate migrants. Banding, eBird or other observational data can be used to identify the 
bimonthly periods that coincide most closely with the migration schedules of species of 
particular conservation concern; overlaying mapped information on their breeding ranges and 
spatial distribution during migration would be an initial step to identify species-specific sites that 
are potentially important, although field surveys would be needed to provide confirmation.  

The maps also can serve as a sampling frame to design field studies of migrants. More 
research is needed to both verify model predictions and better understand how migrants use sites 
in order to further prioritize sites for conservation and to identify ways to enhance habitats to 
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benefit migrants. With the limited conservation funding that typically is available, we suggest 
that it is critical to focus conservation efforts for migrating landbirds on areas where they likely 
will be most effective.   

Finally, the associations of migrants with vegetation data collected in ground surveys 
should be examined further to develop prescriptions to manage forests to benefit fall migrants. 
Particularly in the southern portions of Region 5, managing forest and scrub habitats to improve 
vegetation structure and increase the diversity and abundance of fruit-bearing plants can provide 
benefits beyond the migration season since many temperate migrants winter at these latitudes. 
The strong relationships of overwintering migrants with late-season, long-lasting fruits merits 
further attention from forest managers, as relatively little other food is available in winter, when 
energy demands of birds are high (McCarty et al. 2002). Additionally, increasing understory 
vegetation cover by reducing deer herbivory can also benefit migratory birds outside the 
migratory season (Gill 1992, McShea and Rappole 2000, Fuller 2001, Gill and Fuller 2007).  
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Table 1. Predictor variables included in the final boosted generalized additive model (BGAM) of seasonal mean landbird density 
at migration stopover sites (as measured by vertically integrated reflectivity) across the northeastern U.S. ‘Category’ groups 
variables according to  the scale at which they apply; ‘corrective predictors’ dRdr and relelev were used to fit models but not for 
estimating regional densities.   

 
 
  

Name Category Description (units) Range measured 
hwood Landscape hardwood fraction within 1 km 0 - 1 
hw5km Landscape hardwood fraction within 5 km 0 - 1 
 hw50 Landscape hardwood fraction within 50 km 0.08 - 0.88 

cnf5km Landscape coniferous fraction within 5 km 0 - 0.86 
emmarsh5km Landscape Non-forested wetlands fraction within 5 km 0 – 1 

ag5km Landscape agricultural fraction within 5 km 0 - 0.89 
urb5km Landscape urban fraction within 5 km 0 - 1 

ndvimean Landscape mean fall NDVI  -0.16 - 0.86 
ndvistd Landscape standard deviation NDVI  0 - 0.31 

X Regional distance to seaboard (km) −2.8 105–  1.1 106 
Y Regional distance down seaboard (km) 4.0 106–  5.3 106 

Lat Regional latitude (degrees) 36.5 – 47.4 
dAtl Coastal distance to Atlantic coast (km) 0 - 150  

  dGtL Coastal distance to Great Lakes coast (km) 0 - 150  
dBrL Coastal distance to bright light (km) 0 - 208 
dRdr Corrective distance from radar (km) 6 - 64 

relelev Corrective elevation versus radar (m) -873 - 1660 
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Table 2. Independent variables available for use in boosted regression tree (BRT) analyses of ground survey data to identify site 
or survey characteristics that influence density of landbirds on migratory stopovers. For each variable, the spatial scale (P = 
Patch, L = Landscape, R = Regional) is given as well as a brief description, mean untransformed value of continuous variables, 
range of values, whether it was log transformed (Y= yes, N= no), and if it was included in the ensemble models used for the BRT 
analysis (Y= yes, N= no).  

Variable 
Name Scale Variable Description Mean 

value Value range 
Transf
ormed 
Data  

Used In 
Final 

Models  
Date - Dates of patch-scale data collection - - N N 

Transect P Survey sites; random effect in ALL 
models 

- - N N 

Region R 
a = AKQ , b = ESVA , c = MD , d = 

DE 
- - 

N N 

Year - a = 2013 , b = 2014 - - N Y 

Period - 
21 days each; 1 = 15Aug-4Sept , 2 = 

5Sept-25Sept , 3 = 26Sept-16Oct , 4 = 
17Oct-7Nov 

- - 
N Y 

InvPerGrBr P 
Invertebrates per gram of branch, all 

species  
0.09 0 – 2.02 

Y Y 

InvVism2 P Invertebrates per m2 ground surveyed, 
all species 

10.70 0 – 214.67 Y Y 

InvBrAR P Arachnids per gram of branch 0.06 0 – 1.87 Y N 
InvVisAR P Arachnids per m2 ground surveyed 3.76 0 – 213.33 Y Y 
InvBrLep P Lepidoptera per gram of branch 0.00 0 – 0.65 Y Y 
InvVisLep P Lepidoptera per m2 ground surveyed 0.05 0 – 2.67 Y Y 
InvBrDI P Diptera per gram of branch 0.01 0 – 0.17 Y Y 
InvVisDI P Diptera per m2 ground surveyed 2.32 0 – 20.00 Y Y 
InvBrOR P Orthoptera per gram of branch 1.00 0.99 – 1.16 Y Y 
InvVisOR P Orthoptera per m2 ground surveyed 4.57 0.99 – 785.76 Y Y 
FrtAllm2 P Ripe fruit per m2 for all species 0.68 0 – 16.76 Y Y 
FrtBGum P Ripe Black Gum per m2 0.07 0 – 6.04 Y Y 
FrtHolly P Ripe American Holly per m2 0.16 0 – 10.42 Y Y 
FrtBlueB P Ripe Blueberry per m2 0.00 0 – 0.31 Y Y 
FrtDogw P Ripe Flowering Dogwood per m2 0.00 0 – 0.44 Y Y 
FrtGrape P Ripe Grape per m2 0.09 0 – 8.40 Y Y 
FrtParB P Ripe Partridge Berry per m2 1.00 0.99 – 1.67 Y Y 

FrtSmilax P Ripe Greenbrier per m2 0.04 0 – 3.79 Y Y 
Latitude R Latitude (decimal) 37.88 36.58 – 39.27 N Y 
CanopyC P Average canopy cover (%) 93.1 79.3 – 96 N Y 
LitterDep P Average litter depth 27.8 8.2 – 55.5 N Y 
CtGrLeaf P Ocular tube litter count (out of 20) 19.1 4.3 – 20 N Y 

CtGrVeg P 
Ocular tube ground vegetation count 

(out of 20) 
7.1 0.5 – 16.5 

N Y 

CtMidstory P Ocular tube midstory count (out of 20) 17.6 10.8 – 20 N N 
CtVine P Ocular tube vine count (out of 20) 1.2 0 – 6.5 N Y 

CtGrShrub P Ocular tube shrub count (out of 20) 16.0 4 – 20 N Y 
ShrubStemCt P Count of total shrub stems 278 3 – 2186 N Y 
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ShrubDiv P Number of shrub species 8.7 1 – 17 N N 
BlueBShrub P Blueberry shrubs present (Y/N) - - N N 
PrivetShrub P Privet shrubs present (Y/N) - - N N 
WaxShrub P Wax Myrtle shrubs present (Y/N) - - N N 
LgTreeDiv P Number of tree species (>8cm DBH) - - N N 

LgTreeSp P 
Most abundant tree; a = Holly , b = 

Pine , c = Gum , d = Maple , e = 
Sweetgum , f = Oak , g = Poplar 

- - 
N N 

basalarea P Total basal area for each site 591 332 – 1569 N Y 
skybright P Sky brightness ratio 0.42 0.05 – 4.47 N N 

NDVI P 
Normalized Difference Vegetation 

Index 
7548 2325 - 9402 

N Y 

distcoast R Distance to nearest coast 16.7 0.2 – 71.4 N N 
distatl R Distance to Atlantic Ocean 37.3 1.3 – 115.9 N Y 

dist_sky_5 R Distance to areas of sky brightness > 5 59.5 0 – 120.2 N Y 
impurban1km L Impervious urbanization within buffer 0.05 0.00 – 0.65 N Y 

water1km L Permanent water within buffer 0.06 0 – 0.36 N Y 
ag1km L Agriculture / pasture within buffer 0.24 0 – 0.68 N Y 

hrdwood1km L Deciduous forest within buffer 0.43 0.07 – 0.91 N Y 
pine1km L Evergreen forest within buffer 0.11 0 – 0.53 N N 

shrub1km L Scrub / shrubland within buffer 0.05 0 – 0.24 N Y 
wetlnd1km L Marsh / wetland within buffer 0.04 0 – 0.23 N Y 

grassurb1km L Grassland / urban lawns within buffer 0.08 0 – 0.39 N N 
impurban5km L Impervious urbanization within buffer 0.05 0.00 – 0.65 N N 

water5km L Permanent water within buffer 0.13 0 – 0.61 N N 
ag5km L Agriculture / pasture within buffer 0.35 0 – 0.67 N N 

hrdwood5km L Deciduous forest within buffer 0.31 0.05 – 0.75 N N 
pine5km L Evergreen forest within buffer 0.07 0 – 0.26 N N 

shrub5km L Scrub / shrubland within buffer 0.04 0.00 – 0.19 N N 
wetlnd5km L Marsh / wetland within buffer 0.06 0.00 – 0.44 N N 

grassurb5km L Grassland / urban lawns within buffer 0.07 0.02 – 0.20 N N 
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Table 3. Cross-correlation strength of potential explanatory variables. Values are Pearson correlation coefficients, and only those 
with moderate to strong correlations (strength < -0.7 or >0.7) are presented. 

Variable 1  Variable 2 Correlation 
impurban5km  skybright 0.97369894 

skybright  urban5km 0.962902399 
impurban5km  urban5km 0.961383704 
impurban1km  urban1km 0.937281273 
impurban1km  urban5km 0.919006943 

pine5km  shrub5km 0.90989301 
impurban1km  impurban5km 0.905324636 
impurban1km  skybright 0.898904694 

urban1km  urban5km 0.868620007 
distcoast  distatl 0.861922637 

grassurb1km  urban1km 0.85018663 
water1km  water5km 0.834572192 
pine1km  pine5km 0.823974503 

InvPerGrBr  InvBrAR 0.820847392 
distcoast  shrub5km 0.819132513 

grassurb5km  urban5km 0.818769297 
skybright  urban1km 0.812702184 

distatl  shrub5km 0.810212851 
impurban5km  urban1km 0.792868347 
hrdwood1km  hrdwood5km 0.790221065 
impurban5km  grassurb5km 0.752109572 

ag1km  ag5km 0.736922164 
grassurb5km  skybright 0.734510288 
grassurb5km  urban1km 0.712981486 
CtMidstory  pine1km 0.723955281 
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Table 4. Number of suitable sampling nights for each radar and year for the autumn migration season. The percent of suitable 
nights out of all screened nights by radar across years is also presented. 

 
Radar 

Year  
Total % 

 2008 2009 2010 2011 2012 2013 2014 

NEXRAD 

AKQ 9 9 9 6 5 15 7 60 10 

BGM 13 9 13 2 5 7 16 65 11 

BOX 13 7 11 10 17 24 16 98 16 

BUF 11 7 4 3 4 9 21 59 10 

CBW 7 5 15 11 21 15 11 85 14 

CCX 5 11 18 12 19 17 11 93 16 

DIX 9 2 11 13 6 18 7 66 11 

DOX 13 17 22 8 11 12 10 93 16 

ENX 17 10 12 11 6 16 21 93 16 

FCX 15 10 27 12 16 14 16 110 18 

GYX 16 11 18 18 28 30 18 139 23 

LWX 12 25 21 16 25 25 13 137 23 

OKX 19 7 19 13 7 26 14 105 18 

PBZ 15 22 17 16 13 26 26 135 23 

RLX 14 15 4 5 8 9 13 68 11 

TYX 7 9 17 13 12 12 15 85 14 

TDWR 

TJFK n/a 21 25 12 18 17 32 125 25 

TPHL n/a 30 31 24 29 41 34 189 37 

TBWI n/a 21 14 11 20 22 20 108 21 

TDCA n/a 17 24 16 18 29 23 127 25 

Total  195 265 332 232 288 384 344 2040 18 
 
  



56 

Table 5. Interactions between predictors selected by Boosted Regression Trees for mean and variability in reflectivity (see text 
and Table 1 for names and descriptions of predictors) 

 

 

 

 

 

 

 

 

 

  

Interaction 

X*Y 
X*hw50 
Y*hw50 
Y*dAtl 
Y*dGtL 
dAtl*ndvistd 
dAtl* hw50 
dBrLt* hw50 
cnf5km*hw50 
hw5km*hw50 
ndvimean*std 
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Table 6. List of transect sites, nearby radar (KAKQ = Wakefield, VA; KDOX= Dover, DE; Outside = Outside radar range), State 
(ES = Eastern Shore of Virginia, VA = Inland SE Virginia), number of visits, detection probabilities, and detection-corrected 
migrant bird densities within 50 m of the transect centerline during fall 2013 and 2014. 

Transect Radar 
Location of 

Site 
# of Visits 

(2013 / 2014) 
% detected within 50 m 

(2013 / 2014) 
Density (birds/ha/visit) 

(2013 / 2014) 
CBSN KAKQ VA 19 / 19 0.48 / 0.63 1.6 / 1.41 
CPSP KAKQ VA 20 / 17 0.54 / 0.52 2.38 / 2.47 
CSNA KAKQ VA 19 / 17 0.57 / 0.57 2.92 / 1.87 
GDNW KAKQ VA 14 / 16 0.4 / 0.58 2.35 / 1.16 
GDSE KAKQ VA 19 / 17 0.48 / 0.42 2.21 / 1.26 
GDSW KAKQ VA 13 / - 0.51 / - 1.35 / - 
HCWP KAKQ VA 19 / 17 0.52 / 0.46 2.22 / 1.73 
MSBT KAKQ VA 20 / 17 0.58 / 0.66 2.87 / 1.69 
PACP KAKQ VA 19 / 17 0.23 / 0.31 4.25 / 2.22 
RACP KAKQ VA 19 / 18 0.45 / 0.56 3.43 / 2.06 
SOQU KAKQ VA 15 / 17 0.49 / 0.59 2.78 / 3.07 
WADI KAKQ VA - / 12 - / 0.62 - / 0.97 
ZUNI KAKQ VA 16 / 17 0.48 / 0.52 4.19 / 2.59 
BFLP KDOX DE 17 / 15 0.57 / 0.51 1.85 / 2.54 

BHNW KDOX DE 14 / 15 0.67 / 0.67 3.74 / 2.38 
BLWA KDOX DE 17 / 15 0.72 / 0.69 2.55 / 2.74 
CHSP KDOX DE 18 / 15 0.71 / 0.57 2.54 / 4.57 
FBNP KDOX DE 17 / 15 0.68 / 0.59 2.78 / 3.87 
IDYL KDOX MD 18 / 16 0.62 / 0.41  2.49/ 3.51 
KPSP KDOX MD 17 / 15 0.68 / 0.59 2.57 / 2.84 

MAHO KDOX MD 18 / 16 0.38 / 0.45 3.43 / 3.23 
MASP KDOX DE 18 / 16 0.43 / 0.40 2.55 / 2.30 
MCWS KDOX DE 16 / 15 0.63 / 0.51 1.09 / 3.00 
MNWA KDOX DE 16 / 15 0.57 / 0.63 4.55 / 2.66 
NWWA KDOX DE 17 / 15 0.63 / 0.73 2.86 / 1.17 
PHWA KDOX DE 17 / 15 0.67 / 0.19 2.14 / 8.69 
THWO KDOX DE 16 / 15 0.63 / 0.61 2.62 / 2.91 
TUSP KDOX DE 17 / 15 0.73 / 0.64 3.28 / 2.66 

BROW Outside ES 17 / 16 0.54 / 0.64 1.78 / 2.54 
CACH Outside ES 18 / 16 0.45 / 0.41 2.55 / 2.88 
EAVA Outside MD 17 / 16 0.62 / 0.37 2.09 / 2.36 
FOES Outside MD 17 / 16 0.56 / 0.54 2.29 / 2.51 
KIPT Outside ES 16 / 16 0.55 / 0.37 2.51 / 8.88 

MAFA Outside ES 15 / 15 0.35 / 0.41 3.09 / 3.57 
MARU Outside MD 17 / 16 0.62 / 0.56 1.41 / 1.80 
MILA Outside MD 17 / 16 0.72 / 0.60 1.92 / 1.63 

MUHU Outside ES 18 / 16 0.42 / 0.46 3.17 / 2.32 
NAMI Outside MD 19 / 16 0.46 / 0.57 2.12 / 1.33 
NASS Outside MD 18 / 16 0.60 / 0.57 1.85 / 1.85 
OAGR Outside ES 18 / 15 0.41 / 0.43 3.82 / 6.00 
PHFA Outside ES 17 / 15 0.29 / 0.55 3.51 / 2.63 
PIHA Outside ES 18 / 16 0.48 / 0.37 3.61 / 5.58 
POSF Outside MD 18 / 15 0.54 / 0.53 3.48 / 3.89 
PRAN Outside MD 17 / 15 0.40 / 0.51 4.06 / 1.96 
PUDD Outside ES 18 / 16 0.44 / 0.49 3.17 / 3.34 
QUIN Outside ES 16 / 14 0.60 / 0.51 1.27 / 1.91 
SANE Outside ES 18 / 16 0.39 / 0.52 5.23 / 2.46 
WAIS Outside ES 14 / 14 0.55 / 0.58 3.11 / 1.66 
WICO Outside MD 16 / 16 0.58 / 0.38 1.61 / 3.21 
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Table 7. Complete list of bird species and species groups detected during fall 2013 and fall 2014 among 48 transect locations. 
Migration status classifications (mi – transient, su – summer breeder, wi – winter resident, yr – year-round) and total detections 
are also presented. Species are ordered by declining number of detections. 

Common Name Species Code Scientific Name Migration Status Total Detections 

Carolina Wren CARW Thryothorus ludovicianus yr 1538 

(Eastern) Tufted Titmouse ETTI Baeolophus bicolor yr 1210 

Northern Cardinal NOCA Cardinalis cardinalis yr 1104 

Red-bellied Woodpecker RBWO Melanerpes carolinus yr 1033 

Carolina Chickadee CACH Poecile carolinensis yr 1010 

American Robin AMRO Turdus migratorius yr 861 

Blue Jay BLJA Cyanocitta cristata yr 805 

Downy Woodpecker DOWO Picoides pubescens yr 600 

Unknown Bird      594 

 Yellow-shafted Flicker YSFL Colaptes auratus wi 542 

Golden-crowned Kinglet GCKI Regulus satrapa wi 439 

American Crow AMCR Corvus brachyrhynchos yr 438 

Unknown Warbler      424 

Pileated Woodpecker PIWO Dryocopus pileatus yr 418 

Red-eyed Vireo REVI Vireo olivaceus su 395 

Eastern Wood-Pewee EAWP Contopus virens su 345 

White-breasted Nuthatch WBNU Sitta carolinensis yr 293 

Yellow-rumped Warbler MYWA Setophaga coronata wi 270 

Pine Warbler PIWA Setophaga pinus yr 268 

Acadian Flycatcher ACFL Empidonax virescens su 240 

American Goldfinch AMGO Spinus tristis yr 240 

Hairy Woodpecker HAWO Picoides villosus yr 199 

Hermit Thrush HETH Catharus guttatus wi 193 

Mourning Dove MODO Zenaida macroura yr 140 

Black-throated Blue Warbler BTBW Setophaga caerulescens mi 138 

Common Grackle COGR Quiscalus quiscula yr 132 

Unknown Woodpecker      132 

American Redstart AMRE Setophaga ruticilla mi 127 

Wood Thrush WOTH Hylocichla mustelina su 117 

Ruby-crowned Kinglet RCKI Regulus calendula wi 112 

Great Crested Flycatcher GCFL Myiarchus crinitus su 105 

Winter Wren WIWR Troglodytes hiemalis wi 94 

White-eyed Vireo WEVI Vireo griseus su 90 

Red-shouldered Hawk RSHA Buteo lineatus yr 85 

Eastern Towhee EATO Pipilo erythrophthalmus yr 83 

Yellow-billed Cuckoo YBCU Coccyzus americanus su 80 

Black-and-white Warbler BAWW Mniotilta varia su 76 

Cedar Waxwing CEDW Bombycilla cedrorum yr 74 

Eastern Bluebird EABL Sialia sialis yr 73 
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White-throated Sparrow WTSP Zonotrichia albicollis wi 70 

Veery VEER Catharus fuscescens mi 68 

Brown Creeper BRCR Certhia americana wi 67 

Unknown Blackbird      65 

Gray Catbird GRCA Dumetella carolinensis su 62 

Ovenbird OVEN Seiurus aurocapilla su 59 

Turkey Vulture TUVU Cathartes aura yr 58 

Canada Goose CAGO Branta canadensis yr 54 

Red-winged Blackbird RWBL Agelaius phoeniceus yr 51 

Yellow-throated Vireo YTVI Vireo flavifrons su 50 

Hooded Warbler HOWA Setophaga citrina su 45 

Scarlet Tanager SCTA Piranga olivacea su 42 

Summer Tanager SUTA Piranga rubra su 37 

Red-headed Woodpecker RHWO Melanerpes erythrocephalus yr 34 

Chimney Swift CHSW Chaetura pelagica su 30 

Barred Owl BDOW Strix varia yr 28 

Northern Parula NOPA Setophaga americana mi 28 

Brown Thrasher BRTH Toxostoma rufum yr 27 

Wild Turkey WITU Meleagris gallopavo yr 26 

Yellow-bellied Sapsucker YBSA Sphyrapicus varius wi 25 

Bobolink BOBO Dolichonyx oryzivorus mi 23 

Fish Crow FICR Corvus ossifragus yr 23 

Ruby-throated Hummingbird RTHU Archilochus colibris su 20 

Blackpoll Warbler BLPW Setophaga striata mi 19 

Eastern Phoebe EAPH Sayornis phoebe su 18 

Swainson’s Thrush SWTH Catharus ustulatus mi 16 

Wood/Catharus Thrush     16 

Unknown Empidonax  Empidonax sp.   15 

Brown-headed Nuthatch BHNU Sitta pusilla yr 14 

Dark-eyed (Slate-colored) Junco SCJU Junco hyemalis wi 14 

Worm-eating Warbler WEWA Helmitheros vermivorum su 14 

Blue-headed Vireo BHVI Vireo solitarius mi 12 

Brown-headed Cowbird BHCO Molothrus ater yr 12 

European Starling EUST Sturnus vulgaris yr 12 

Great Blue Heron GBHE Ardea herodias yr 12 

House Finch HOFI Carpodacus mexicanus yr 12 

Purple Martin PUMA Progne subis su 12 

Bald Eagle BAEA Haliaeetus leucocephalus yr 11 

Chestnut-sided Warbler CSWA Setophaga pensylvanica mi 10 

Common Yellowthroat COYE Geothlypis trichas su 10 

Gray-cheeked Thrush GCTH Catharus minimus mi 10 

Indigo Bunting INBU Passerina cyanea su 10 

Northern Mockingbird NOMO Mimus polyglottos yr 10 
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Red-tailed Hawk RTHA Buteo jamaicensis yr 10 

Killdeer KILL Charadrius vociferus yr 9 

Magnolia Warbler MAWA Setophaga magnolia mi 9 

Northern (Baltimore) Oriole BAOR Icterus galbula su 9 

Prothonotary Warbler PROW Protonotaria citrea su 9 

Eastern Screech-Owl EASO Megascops asio yr 8 

Field Sparrow FISP Spizella pusilla su 8 

Rose-breasted Grosbeak RBGR Pheucticus ludovicianus mi 8 

Tree Swallow TRES Tachycineta bicolor su 8 

Belted Kingfisher BEKI Megaceryle alcyon yr 7 

Great Horned Owl GHOW Bubo virginianus yr 7 

Northern Waterthrush NOWA Parkesia noveboracensis mi 7 

Unknown Vireo  Vireo sp.   7 

Blue Grosbeak BLGR Passerina caerulea su 6 

Pine Siskin PISI Spinus pinus wi 6 

Unknown Hawk      6 

American Woodcock AMWO Scolopax minor yr 5 

Black Vulture BLVU Coragyps atratus yr 5 

Black-throated Green Warbler BTNW Setophaga nigrescens mi 5 

Blue-gray Gnatcatcher BGGN Polioptila caerula su 5 

Cooper's Hawk COHA Accipiter cooperii yr 5 

Herring Gull HERG Larus argentatus yr 5 

Snow Goose SNGO Chen caerulescens wi 5 

Song Sparrow SOSP Melospiza melodia yr 5 

Unknown Accipiter  Accipiter sp. yr 5 

Unknown Gull      5 

Barn Swallow BARS Hirundo rustica su 4 

Fox Sparrow FOSP Passerella iliaca wi 4 

House Wren HOWR Troglodytes aedon su 4 

Red-breasted Nuthatch RBNU Sitta canadensis wi 4 

Sharp-shinned Hawk SSHA Accipiter striatus yr 4 

Black-billed Cuckoo BBCU Coccyzus erythropthalmus mi 3 

Blackburnian Warbler BLBW Setophaga fusca mi 3 

Caspian Tern CATE Hydroprogne caspia su 3 

Great Egret GREG Ardea alba yr 3 

Greater Yellowlegs GRYE Tringa melanoleuca mi 3 

Northern Bobwhite NOBO Colinus virginianus yr 3 

Osprey OSPR Pandion haliaetus su 3 

Rusty Blackbird RUBL Euphagus carolinus wi 3 

Swamp Sparrow SWSP Melospiza georgiana wi 3 

Unknown Catharus  Catharus sp. mi 3 

Warbling Vireo WAVI Vireo gilvus su 3 

Wood Duck WODU Aix sponsa yr 3 
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Yellow-breasted Chat YBCH Icteria virens su 3 

American Pipit AMPI Anthus rubescens wi 2 

Bay-breasted Warbler BBWA Setophaga castanea mi 2 

Canada Warbler CAWA Cardellina canadensis mi 2 

Cape May Warbler CMWA Setophaga tigrina mi 2 

Chipping Sparrow CHSP Spizella passerina su 2 

Horned Lark HOLA Eremophila alpestris yr 2 

Laughing Gull LAGU Leucophaeus atricilla su 2 

Unknown Buteo  Buteo sp.   2 

Unknown Icterid  Icterid sp. su 2 

Unknown Owl    yr 2 

Bank Swallow BANS Riparia riparia su 1 

Barn Owl BANO Tyto alba yr 1 

Blue-winged Warbler BWWA Vermivora cyanoptera mi 1 

Palm Warbler PAWA Setophaga palmarum mi 1 

Swainson's Warbler SWWA Limnothlypis swainsonii su 1 

Unknown Crow  Crow sp. yr 1 

Unknown Hummingbird    su 1 

Unknown Oriole  Icterus sp. su 1 

Unknown Wren      1 

Unknown Kinglet  Regulus sp. wi 1 

Yellow-bellied Flycatcher YBFL Empidonax flaviventris mi 1 
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Table 8. Parameters and predictive performance metrics for all BRT models used in analysis of ground survey data, obtained 
from 10-fold cross-validation and using the 31 predictor variables detailed in Table 2. Table values indicate: the response 
variable for each model, each model’s optimal learning rate, number of trees fitted for the final ensemble model, proportion of 
total deviance explained of the training data; and cross validation correlation. For all models, bag fraction was left at 0.5 and tree 
complexity at 2. Note: See Table 10 for species codes. 

Response 
Variable (Model) 

Learning 
Rate 

No. of 
Trees 

Proportion 
Deviance 
Explained 

CV 
Correlation 

AllMigPerHa 0.015 1100 0.38 0.43 

FrugMigPerHa  0.0025 1400 0.24 0.39 

TransMigPerHa  0.005 1700 0.27 0.37 

BreedMigPerHa  0.015 1900 0.64 0.64 

WinterMigPerHa  0.0025 1200 0.41 0.62 

ACFL 0.015 1300 0.50 0.56 

AMRE 0.005 1600 0.31 0.34 

BTBW 0.01 1100 0.30 0.34 

EAWP 0.005 1500 0.46 0.54 

GCFL 0.0025 1100 0.25 0.35 

GCKI 0.0025 1700 0.39 0.57 

HETH 0.001 1600 0.28 0.40 

MYWA 0.001 1500 0.16 0.38 

RCKI 0.001 1600 0.13 0.31 

REVI 0.015 1200 0.62 0.59 

WEVI 0.025 1200 0.59 0.63 

WIWR 0.005 1700 0.38 0.48 

WOTH 0.0025 1200 0.26 0.30 

YSFL 0.005 1800 0.30 0.39 
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Table 9. Summary table for the relative contributions (%) of each predictor variable included in boosted regression tree models developed to identify which 
factors were most influential in determining migrant density for 14 bird species. Species codes defined in Table 8. 

 
Predictor 

Response Variable (%) 

ACFL AMRE BTBW EAWP GCFL GCKI HETH MYWA RCKI REVI WEVI WIWR WOTH YSFL 
Patch / 
Food 

Resources 

InvPerGrBr 5.40 2.10 2.04 7.11 1.99 0.74 0.30 4.56 5.31 13.02 1.61 1.74 5.30 4.83 
InvVism2 2.08 1.36 1.69 0.96 1.66 0.53 0.09 5.00 0.17 0.83 1.89 2.07 21.09 1.60 
InvVisAR 0.94 1.67 2.29 0.72 0.30 7.22 0.34 1.81 0.15 0.65 1.19 1.04 0.57 3.36 
InvBrLep 0.88 2.69 8.20 0.21 0.33 0.12 0.00 0.00 0.00 0.21 1.58 0.05 0.37 2.15 
InvVisLep 0.03 0.00 0.00 0.27 0.20 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.00 
InvBrDI 3.88 0.09 0.65 0.15 0.16 2.56 2.29 0.07 0.97 0.00 1.30 5.29 0.89 0.99 
InvVisDI 0.57 2.46 0.39 0.14 0.86 0.17 0.04 0.03 0.28 0.38 0.28 0.34 0.08 0.93 
InvBrOR 0.22 0.17 0.20 1.37 0.92 0.00 0.00 0.00 0.00 1.49 0.86 0.00 0.00 0.06 
InvVisOR 0.39 0.02 0.65 0.70 0.26 0.00 0.00 0.00 0.00 2.18 0.63 0.00 0.00 0.30 
FrtAllm2 2.15 19.87 3.21 0.62 4.67 0.37 0.98 0.40 1.12 2.21 2.86 1.84 0.43 5.79 
FrtBGum 0.23 0.09 2.23 0.34 3.25 0.16 0.00 1.25 0.00 1.66 0.50 2.23 3.06 7.10 
FrtHolly 0.56 2.50 1.36 0.02 0.01 5.58 16.96 0.91 11.50 0.00 0.23 4.60 0.07 6.29 
FrtBlueB 0.78 0.00 0.00 0.91 0.13 0.00 0.00 0.00 0.00 0.16 0.35 0.00 0.00 0.00 
FrtDogw 0.14 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.44 0.00 0.00 0.01 
FrtGrape 0.20 8.66 8.30 0.00 0.00 0.13 0.00 5.83 0.00 0.00 0.38 0.00 0.00 1.70 
FrtParB 0.80 0.18 4.49 0.24 0.45 1.96 13.33 1.39 14.36 0.01 0.46 0.84 2.71 2.35 

FrtSmilax 0.00 0.61 2.44 0.00 0.03 4.19 0.20 0.68 3.00 0.00 2.46 19.49 0.18 7.06 
                

Patch / 
Habitat 
Features 

CanopyC 1.00 0.05 1.60 0.42 2.99 1.37 0.05 0.61 3.03 0.06 2.77 1.80 0.00 0.16 
LitterDep 10.11 0.96 1.05 3.24 0.45 2.30 1.49 0.33 0.33 0.98 1.37 2.13 1.01 1.22 
CtGrLeaf 0.72 0.26 0.05 0.25 2.95 0.09 0.02 0.04 0.00 0.03 0.06 0.06 0.00 0.89 
CtGrVeg 2.04 0.51 3.74 0.26 0.58 0.34 0.23 0.08 0.87 1.38 0.28 2.06 9.29 3.10 
CtVine 0.26 0.71 0.30 0.68 0.00 0.64 0.49 0.01 0.11 0.13 0.05 0.00 0.03 0.83 

CtGrShrub 2.33 0.55 4.30 1.97 5.45 1.64 4.43 0.11 11.34 9.52 0.44 1.47 18.89 0.83 
ShrubStemCt 5.19 1.41 1.15 0.76 7.07 3.75 0.20 10.59 2.98 0.99 0.72 0.37 0.69 0.32 

basalarea 2.75 0.65 0.99 2.67 0.38 0.67 0.01 0.86 0.06 1.64 0.70 18.27 1.49 1.49 
NDVI 15.20 3.61 3.07 23.85 23.26 2.37 0.16 2.47 0.92 30.42 11.70 10.06 8.90 5.34 
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Landscape impurban1km 2.64 1.18 5.24 0.11 1.10 0.21 1.31 0.06 0.02 1.03 3.95 0.35 1.50 0.62 

water1km 0.00 4.89 5.08 0.35 0.05 0.03 0.00 2.89 0.00 1.56 0.00 1.70 4.16 2.49 
ag1km 0.25 25.48 7.98 0.15 2.41 0.56 0.02 1.03 1.32 0.49 0.63 0.32 0.02 2.49 

hrdwood1km 4.92 0.51 1.14 0.49 4.86 1.25 0.03 0.09 0.76 4.07 0.74 0.37 2.11 1.38 
shrub1km 1.53 0.22 0.19 0.17 0.53 0.24 2.63 2.04 0.01 0.40 27.50 0.02 0.24 2.33 

wetlnd1km 0.18 0.12 0.84 0.56 0.03 0.07 4.86 1.14 0.01 2.25 0.28 0.54 0.08 1.63 
                

Regional Latitude 2.60 1.26 4.94 18.84 8.68 2.71 1.94 0.12 18.13 4.82 6.42 4.40 1.59 0.77 
distatl 0.34 1.73 2.15 2.94 0.28 2.66 10.75 7.93 1.76 2.52 2.71 2.68 4.48 2.19 

dist_sky_5 5.81 0.83 0.88 0.31 0.32 3.04 2.40 0.96 0.14 1.82 3.00 0.03 1.97 2.82 
                

Temporal Year 0.44 1.59 1.18 3.29 1.52 0.08 0.01 0.62 0.83 3.21 0.04 0.10 1.88 0.45 
 Period 22.25 10.85 15.67 24.73 21.67 52.11 34.26 45.93 20.37 9.71 17.66 13.59 6.78 23.99 

Note: All numbers in bold represent variables whose contributions accounted for at least 5% of the respective model’s total, and were considered the most 
influential predictor variables for determining migrant density.  
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Table 10. Summary table for the relative contributions (%) of each predictor variable included in boosted regression tree models developed to identify which 
factors were most influential in determining migrant density for several species groups (defined in text). 

 
Predictor 

Response Variable (%)    

AllMigPerHa FrugMigPerHa BreedMigPerHa TransMigPerHa WinterMigPerHa 
Patch / Food Resources InvPerGrBr 2.55 4.64 7.91 3.53 1.85 

InvVism2 1.32 5.03 3.04 1.29 0.43 
InvVisAR 2.04 0.51 1.22 1.81 0.89 
InvBrLep 0.35 0.02 0.48 4.63 0.00 
InvVisLep 0.00 0.00 0.23 0.00 0.00 
InvBrDI 0.88 0.12 0.59 0.35 0.16 
InvVisDI 0.98 0.90 0.32 1.30 0.01 
InvBrOR 0.15 0.00 2.94 0.11 0.00 
InvVisOR 0.00 0.00 1.65 0.17 0.00 
FrtAllm2 5.50 7.36 0.91 9.72 0.41 
FrtBGum 8.23 3.13 5.89 3.36 0.02 
FrtHolly 5.95 2.32 0.25 3.31 4.25 
FrtBlueB 0.07 0.00 0.25 0.00 0.00 
FrtDogw 0.01 0.00 0.09 0.00 0.00 
FrtGrape 0.93 2.76 0.87 1.86 0.94 
FrtParB 11.08 5.80 0.05 0.98 4.02 

FrtSmilax 3.64 2.26 0.24 0.67 1.16 
       

Patch / Habitat Features CanopyC 1.44 1.20 0.38 0.39 0.75 
LitterDep 0.76 2.82 2.75 0.28 0.10 
CtGrLeaf 0.06 0.01 0.18 0.16 0.00 
CtGrVeg 2.23 0.75 1.42 0.70 0.09 
CtVine 0.09 0.06 0.16 0.16 0.04 

CtGrShrub 5.20 3.00 6.26 5.23 2.68 
ShrubStemCt 1.63 1.71 1.08 0.39 2.71 

basalarea 0.62 0.84 1.26 0.59 0.05 
NDVI 2.74 2.80 18.52 2.30 1.36 
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Landscape impurban1km 0.86 0.37 2.78 3.30 0.22 

water1km 6.47 4.13 2.24 7.96 1.02 
ag1km 2.99 1.01 0.63 16.60 1.63 

hrdwood1km 1.80 0.96 2.89 1.29 0.65 
shrub1km 1.14 0.54 1.32 0.49 0.01 

wetlnd1km 0.54 1.82 0.95 0.81 0.12 
       

Regional Latitude 5.32 1.11 2.27 1.17 2.50 
distatl 6.83 7.23 2.75 2.96 5.16 

dist_sky_5 0.86 1.44 0.94 2.41 0.13 
       

Temporal Year 0.90 0.30 1.19 0.26 0.19 
Period 13.66 32.88 22.91 19.30 66.29 

Note: All numbers in bold represent variables whose contributions accounted for at least 5% of the respective model’s total, and were considered the most 
influential predictor variables for determining migrant density.  
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Table 11. Ranked interaction sizes for the ten most influential predictor variable interactions for the BRT analysis of 
winter migrant density. 

Rank Variable 1 Variable 2 Interaction Size 

1 distatl Period 12.37 

2 ShrubStemCt Period 12.07 

3 FrtParB Period 10.08 

4 InvPerGrBr Period 5.86 

5 ag1km Period 3.71 

6 Latitude Period 2.65 

7 CtGrShrub Period 2.22 

8 FrtGrape Period 1.68 

9 InvVisAR Period 1.02 

10 Latitude FrtHolly 0.94 
Note: Interactions presented that include the variable “Period” likely reflect changes in the relationships with 
predictors when winter landbird migrants were generally absent. 
 
 
 
Table 12. Ranked interaction sizes for the ten most influential predictor variable interactions for the BRT analysis of 
transient migrant density. 

Rank Variable 1 Variable 2 Interaction Size 

1 ag1km Period 1.37 

2 FrtAllm2 Period 0.41 

3 FrtAllm2 InvPerGrBr 0.35 

4 FrtBGum FrtAllm2 0.23 

5 ag1km InvBrLep 0.20 

6 ag1km FrtAllm2 0.19 

7 water1km FrtBGum 0.15 

8 ag1km FrtHolly 0.15 

9 impurban1km Period 0.15 

10 ag1km InvVisDI 0.14 
Note: Interactions presented that include the variable “Period” likely reflect changes in the relationships with 
predictors when transient landbird migrants were generally absent. 
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Table 13. Ranked interaction sizes for the ten most influential predictor variable interactions for the BRT analysis of 
breeding migrant density. 

Rank Variable 1 Variable 2 Interaction Size 

1 hrdwood1km InvPerGrBr 12.05 

2 FrtBGum Period 9.93 

3 LitterDep NDVI 8.58 

4 InvVism2 Period 8.32 

5 CtGrShrub Period 6.99 

6 InvPerGrBr NDVI 5.44 

7 NDVI Year 5.15 

8 distatl FrtBGum 3.58 

9 InvVisAR NDVI 3.09 

10 CtGrShrub FrtBGum 2.73 
Note: Interactions presented that include the variable “Period” likely reflect changes in the relationships with 
predictors when breeding landbird migrants were generally absent. 
 

Table 14. Ranked interaction sizes for the ten most influential predictor variable interactions for the BRT analysis of 
frugivorous migrant density. 

Rank Variable 1 Variable 2 Interaction Size 

1 distatl Period 4.09 

2 FrtGrape Period 2.76 

3 InvVism2 Period 1.98 

4 FrtParB Period 1.42 

5 wetlnd1km Period 0.59 

6 FrtParB NDVI 0.56 

7 FrtBGum InvVisDI 0.47 

8 water1km FrtBGum 0.44 

9 InvPerGrBr Period 0.39 

10 dist_sky_5 Period 0.36 
Note: Interactions presented that include the variable “Period” likely reflect changes in the relationships with 
predictors when frugivorous landbird migrants were generally absent. 
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Table 15. Ranked interaction sizes for the ten most influential predictor variable interactions for the BRT analysis of 
all nocturnal migrant density. 

Rank Variable 1 Variable 2 Interaction Size 

1 water1km FrtBGum 16.31 

2 ag1km distatl 15.91 

3 FrtParB Period 9.27 

4 distatl Period 7.79 

5 water1km Latitude 7.53 

6 hrdwood1km CtGrShrub 3.06 

7 InvVism2 Period 3.02 

8 FrtGrape Period 2.42 

9 FrtHolly InvBrDI 2.23 

10 distatl Latitude 2.17 
Note: Interactions presented that include the variable “Period” likely reflect changes in the relationships with 
predictors when nocturnal landbird migrants were generally absent. 
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Table 16. Values of predictor variables to determine stopover functional type classification of 45 transects sites in the mid-
Atlantic and Gulf Coast regions. All sites with 4-letter acronyms are from mid-Atlantic region. 

Transect 
Relative 
stopover 
duration 

Proportion 
hardwood 

forest within 
sample 

volumes 

Proportion 
hardwood 

forest within 
5km 

Distance 
to coast 

(km) 

Insect 
density 

(#/g veg) 

Residual 
stopover 
duration 

Functional type 

BFLP 0.65 0.77 0.29 4.1 0.051 -0.92 1) Coastal fire escape 
BHNW 0.91 1.00 0.05 5.8 0.077 -0.16 1) Coastal fire escape 
BLWA 1.21 0.88 0.35 20.8 0.066 -0.23 2) Inland fire escape 
CBSN 2.69 0.83 0.36 52.8 0.190 0.53 3) Store 
CHSP 1.08 0.65 0.21 2.1 0.063 -0.46 1) Coastal fire escape 
CPSP 0.84 0.88 0.38 26.3 0.236 -0.60 2) Inland fire escape 
CSNA 1.75 0.94 0.30 60.0 0.364 0.19 3) Store 
FBNP 0.93 0.90 0.35 14.7 0.024 -0.48 2) Inland fire escape 
GDNW 0.75 0.99 0.61 21.7 0.475 -0.51 2) Inland fire escape 
GDSE 0.78 0.88 0.65 24.2 0.173 -0.67 2) Inland fire escape 
GDSW 0.97 0.95 0.61 36.3 0.234 -0.37 2) Inland fire escape 
HCWP 1.55 0.41 0.11 0.7 0.307 -0.18 1) Coastal fire escape 
IDYL 1.96 0.99 0.41 39.7 0.095 0.45 3) Store 
KPSP 1.53 0.96 0.28 17.0 0.046 0.09 2) Inland fire escape 
MAHO 2.93 0.79 0.28 30.8 0.151 0.60 3) Store 
MASP 3.72 0.59 0.24 24.9 0.129 0.76 3) Store 
MCWS 0.95 0.84 0.17 9.6 0.040 -0.50 1) Coastal fire escape 
MNWA 0.36 1.00 0.38 3.3 0.043 -1.14 1) Coastal fire escape 
MSBT 6.07 0.56 0.38 27.8 0.275 1.23 3) Store 
NE3 0.09 0.87 0.53 56.5 2.114 -2.80 4) Hotel 
NE4 0.18 0.94 0.76 51.3 2.835 -2.07 4) Hotel 
NE5 0.69 0.75 0.69 45.0 2.185 -0.86 4) Hotel 
NW1 0.51 0.92 0.39 52.9 1.800 -1.05 4) Hotel 
NW2 0.38 0.92 0.31 37.8 1.525 -1.36 2) Inland fire escape 
NW3 7.29 0.96 0.33 32.6 2.208 1.67 3) Store 
NW4 0.35 1.00 0.73 53.9 3.868 -1.08 4) Hotel 
NW5 0.33 0.98 0.79 45.6 2.187 -1.37 4) Hotel 
NW6 0.19 1.00 0.76 41.0 1.757 -1.69 4) Hotel 
NWWA 2.36 0.95 0.51 22.6 0.027 0.51 2) Inland fire escape 
PACP 3.95 0.23 0.01 13.1 0.094 0.69 1) Coastal fire escape 
PHWA 0.53 0.97 0.29 3.8 0.038 -0.93 1) Coastal fire escape 
RACP 2.04 0.93 0.27 71.4 0.091 0.34 3) Store 
SE1 45.88 0.88 0.18 19.1 1.126 3.40 3) Store 
SE2 57.70 1.00 0.17 17.8 1.191 4.03 3) Store 
SE3 0.96 0.98 0.19 17.2 0.832 -0.30 2) Inland fire escape 
SE4 0.12 0.98 0.80 24.1 1.770 -2.38 4) Hotel 
SOQU 1.74 0.71 0.37 50.0 0.460 0.04 3) Store 
SW1 7.51 0.80 0.31 8.5 1.039 1.54 3) Store 
SW2 1.81 0.61 0.37 12.7 1.413 0.04 2) Inland fire escape 
SW3 9.04 0.91 0.35 16.2 1.095 1.80 3) Store 
SW4 3.40 1.00 0.85 22.8 2.447 1.20 4) Hotel 
SW6 2.15 1.00 0.89 20.2 2.244 0.74 4) Hotel 
THWO 4.46 0.98 0.28 5.9 0.022 1.20 1) Coastal fire escape 
TUSP 1.45 0.88 0.21 21.7 0.043 -0.05 2) Inland fire escape 
ZUNI 4.49 0.93 0.32 32.5 0.333 1.12 3) Store 
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Figure 1. Location, short name, and radar coverage area (80-km radius) of 16 NEXRAD stations used in the study within 
USFWS Region 5. Coverage area (60-km radius) of NASA’s NPOL radar (red) and the four TDWR stations (blue) used in the 
study are also denoted and labeled by radar name. 
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Figure 2. Example scatterplot of the increase in mean total reflectivity through time at the onset of a nocturnal bird-dominated 
flight. Vertical dashed line at the sun angle (100° [i.e., 10° below the horizon]) indicates where the point of the maximum rate 
of increase in reflectivity occurs. This would be the sun angle at which radar data were sampled for quantifying bird 
distributions aloft at this radar on this night. 
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Figure 3. Normalized spatial axes towards (top) and along (bottom) the Atlantic Seaboard, rotated 42° clockwise compared to 
Easting and Northing variables, respectively. 
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Figure 4. Correlation coefficients (left) between mean VIR and 8 landscape-scale predictors at 1-100-km scales (X axis), and 
(right) between the same predictor at each scale with that at the nominal 5-km scale. 
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Figure 5. Locations of 48 hardwood forest transect survey sites within (red) and outside (blue) of NEXRAD coverage areas (gray 
shaded areas) where bird surveys were conducted.  
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Figure 6. Visualization of steps for land cover data extraction in ArcGIS. The first image (left of the arrow) shows buffers around 
all 48 sites, while the second (right) shows the 5-km buffers around eight Eastern Shore of Virginia sites after using ‘extract by 
mask’ tool.  

 
 

 
Figure 7. Locations of 45 hardwood forest transect sites where bird surveys were conducted for determination of stopover 
duration and the coverage areas (shaded in gray) and names of four associated NEXRAD stations. 
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Figure 8. Radar measures of bird density at static sun elevation angles from 0 - 10° below the horizon. The change in mean 
reflectivity pooled across radars (KAKQ and KDOX) in autumns 2013 and 2014. Error bars denote ±1 standard error of the 
mean. 

 
Figure 9. Bars indicate the sun elevation angle at the inflection point of flight exodus for individual sampling nights during 
autumn 2013 and 2014 at KDOX and KAKQ. Sampling days are sorted by increasing day of year. 
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Figure 10. Pearson correlations between seasonal average migrant density at the ground and aloft sampled at a series of fixed sun 
angles and at the daily inflection point of exodus among days. Error bars are bootstrapped 95% CI. 

 
Figure 11. Mapped bird stopover density (mean reflectivity) on three nights sampled at either the daily inflection point of exodus 
(top) or a fixed sun angle of -5.5° (bottom) at the KDOX NEXRAD radar station. 
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Figure 12. Boxplots of the distribution of the nightly sun angles at the inflection point of flight exodus curves for sampling nights 
at 18 radar stations in the eastern U.S. Radars decrease in latitude from top to bottom. Vertical line denotes the sampling sun 
angle of -5.5° of Buler and Dawson (2014).  
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Figure 13. Map of regionally-classified (i.e., data pooled across radars) radar-observed bird stopover use during autumn 2008 - 
2014 among 16 NEXRAD coverage areas within USFWS Region 5. 
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Figure 14. Map of coefficient of annual linear trend in mean autumn radar-observed bird stopover density (cm2/ha per year) 
during autumn from 2008 - 2014 for 16 individual NEXRAD coverage areas within USFWS Region 5. 
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Figure 15. Predicted influence of each predictor on (top) mean fall stopover density and (bottom) daily variability in fall stopover 
density, based on the BGAM model and log-transformed seasonal mean VIR. See Table 1 for predictor names and descriptions. 
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Figure 16. Predicted response to each (normalized) predictor on log-transformed mean VIR, as proxy for stopover density. Rug 
plots (red lines) indicate coverage of normalized values of each predictor (or interaction term) among the measured data. 
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Figure 17. Predicted response to each (normalized) predictor on coefficient of variation in VIR, as proxy for variability in 
stopover density. Rug plots (red lines) indicate coverage of normalized values of each predictor (or interaction term) among the 
measured data. 
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Figure 18. Predicted response (solid blue lines) in mean stopover to, and frequency distribution (dotted red lines) of, fractional 
hardwood cover at 50-km scales (upper left), 5 km (upper right), to mean NDVI (Normalized Difference Vegetation Index; lower 
left) and to hardwood at 1 km scales (lower right). The vertical axis represents additive factors in log-transformed stopover 
density, i.e. multiplicative factors in stopover density. Dotted red lines indicate frequency of normalized values of each predictor 
(or interaction term) among grid cells. 
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Figure 19. Predicted response (solid blue lines) in mean stopover to, and frequency distribution (dotted red lines) of, fraction of 
emergent marsh (left), coniferous forest and (middle) and agricultural landcover (right), all at 5-km scales. Panels are presented in 
descending order of model influence. 

 



87 

 
Figure 20. Predicted response (solid blue lines) in mean stopover to, and frequency distribution (dotted red lines) of, distance to 
the Atlantic coast (within 150 km) and to the brightest (4%) light sources, and their interactions with fractional hardwood cover 
at 50 km. Panels are presented in order of descending model influence (upper left, upper right, lower left, lower right. 
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Figure 21. Predicted response (solid blue lines) in mean stopover to, and frequency distribution (dotted red lines) of, distance 
from bright lights (left) and fractional developed (urban) cover within 5 km (right). Panels are presented in descending order of 
model influence. 

 
Figure 22. Predicted response (solid blue lines) in mean stopover to, and frequency distribution (dotted red lines) of, distance to 
the radar (left) and elevation relative to the radar (right). Panels are presented in descending order of model influence. 
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Figure 23. Predicted response to each (normalized) predictor on mean VIR in weeks 1-2, as proxy for stopover density. Rug plots 
(red lines) indicate coverage of normalized values of each predictor (or interaction term) among the measured data. 
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Figure 24. Predicted response to each (normalized) predictor on mean VIR in weeks 3-4, as proxy for stopover density. Rug plots 
(red lines) indicate coverage of normalized values of each predictor (or interaction term) among the measured data. 
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Figure 25. Predicted response to each (normalized) predictor on mean VIR in weeks 5-6, as proxy for stopover density. Rug plots 
(red lines) indicate coverage of normalized values of each predictor (or interaction term) among the measured data. 
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Figure 26. Predicted response to each (normalized) predictor on mean VIR in weeks 7-8, as proxy for stopover density. Rug plots 
(red lines) indicate coverage of normalized values of each predictor (or interaction term) among the measured data. 
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Figure 27. Predicted mean VIR during autumn 2008 – 2014 within USFWS Region 5 as proxy for mean stopover density, based 
on the BGAM model. 
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Figure 28. Predicted coefficient of variation in VIR during autumn 2008 – 2014 within USFWS Region 5 as proxy for daily 
variability in stopover density, based on the BGAM model. 
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Figure 29. Map of regionally-classified predicted bird stopover use during autumn 2008 - 2014 within USFWS Region 5. 
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Figure 30. Maps depicting predicted stopover use classified at various window sizes (e.g. 10-km radius, 50-km radius, and 
region-wide) during autumn 2008 – 2014 within USFWS Region 5. Inset region of the Delmarva Peninsula is also shown with 
the locations of transect survey sites (black dots). Land cover of the Delmarva Peninsula is shown for reference. 
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Figure 31. Map of regionally-classified predicted bird stopover use during four bimonthly periods averaged across autumn 2008 - 
2014 within USFWS Region 5.  
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Figure 32. Map of predicted mean VIR during four bimonthly periods averaged across autumn 2008 - 2014 within USFWS 
Region 5. 
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Figure 33. Map of the Cumulative Stopover Importance Index for autumns 2008 – 2014 within USFWS Region 5. 
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Figure 34. Mean VIR of observed NPOL data versus co-located NEXRAD data as a function of distance to the NEXRAD (dist 
NEX) radar (see color bar). 

 
Figure 35. Mean VIR of observed TDWR (TD) data versus NEXRAD data as a function of distance to the NEXRAD (dist NEX) 
radar (see color bar). 
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Figure 36. Mean VIR of observed NPOL data versus GAM-predicted data as a function of distance to the NPOL radar (see color 
bar). 

 
Figure 37. Mean VIR of observed TDWR data versus GAM-predicted data as a function of distance to the TDWR radar (see 
color bar). 
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Figure 38. Total number of migrants (Neotropical versus temperate) detected throughout the fall field season for all 48 transects 
by year. Sampling periods start on August 15 and end on November 7. 
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Figure 39. Partial dependence plots for the nine most influential variables that predict migrant density for wintering landbird 
migrant species included in the analysis. Rug plots show the distribution of data, in deciles, for the X-axis variable. Relative 
influence in parentheses.  
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Figure 40. Partial dependence plots for the nine most influential variables that predict migrant density for transient landbird 
migrant species included in the analysis. Rug plots show the distribution of data, in deciles, for the X-axis variable. Relative 
influence in parentheses. 
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Figure 41. Partial dependence plots for the nine most influential variables that predict migrant density for breeding landbird 
migrant species included in the analysis. Rug plots show the distribution of data, in deciles, for the X-axis variable. Relative 
influence in parentheses. 
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Figure 42. Partial dependence plots for the nine most influential variables that predict migrant density for frugivorous landbird 
species included in the analysis. Rug plots show the distribution of data, in deciles, for the X-axis variable. Relative influence in 
parentheses. 
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Figure 43. Partial dependence plots for the nine most influential variables that predict migrant density for all nocturnal landbird 
species included in the analysis. Rug plots show the distribution of data, in deciles, for the X-axis variable. Relative influence in 
parentheses. 
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Figure 44. Partial dependence plots for the response of migrant density to distance from bright areas (top row) and distance from 
the Atlantic coast (bottom row) for breeding, transient, and wintering landbird migrant species included in the analysis. Rug plots 
show the distribution of data, in deciles, for the X-axis variable. Relative influence in parentheses. 

  



109 

 
Figure 45. Partial dependence plots for the response of breeding migrant density to 4 select predictors when modeled using data 
separated by sampling period (Period 1 on the left and Period 3 on the right). Rug plots show the distribution of data, in deciles, 
for the X-axis variable. Relative influence in parentheses. 
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Figure 46. Cluster plots of 45 transect sites along two component axes and designated as members of four labeled stopover 
functional types by colored ellipses. The number of sites within each cluster group is presented in parentheses after cluster label 
name. 
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Figure 47. Boxplots of values of residual migrant stopover duration, insect density, distance to coast, and forest cover within 5 
km among four stopover site functional type clusters (coastal fire escape, inland rest stop, convenience store, and hotel) 
comprised of 45 transect sites in the mid-Atlantic and Gulf of Mexico coastal regions during fall migration. Clusters with the 
same letters above boxes are similar with respect to mean values of each variable.  
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Figure 48. Maps of classified fall migration stopover functional types for 45 transect sites near the Mid-Atlantic (top panel) and 
Gulf of Mexico (bottom panel) coasts. 
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