<table>
<thead>
<tr>
<th>Proceeding on Motion of the Commission</th>
<th>CASE 18-E-0138</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regarding Electric Vehicle Supply</td>
<td></td>
</tr>
<tr>
<td>Equipment and Infrastructure</td>
<td></td>
</tr>
</tbody>
</table>

POST-CONFERENCE COMMENTS OF SIEMENS

Chris King
Chief Policy Officer
Siemens Digital Grid
4000 E Third Avenue
Foster City, CA 94404
Tel: (650) 227-7770
E-mail: chris_king@siemens.com

September 21, 2018
Siemens hereby submits comments pursuant to the Public Service Commission’s (“Commission”) “Notice of Working Group Meeting and Request for Post-Conference Comment” (“Notice”) issued on August 16, 2018 in Case No. 18-E-0138.

Introduction
Siemens is a global leader in eMobility and considers eMobility to be a critical element in driving economic benefits from new investments and job opportunities, at the same time achieving the societal benefit of a cleaner environment. We operate in 180 countries and are the first corporation of our size to commit to being carbon-neutral by 2030. Siemens therefore, is a strong supporter of New York State’s climate and REV goals.

Siemens operates through 28 locations in New York generating over $800 million in in-state sales and employing over 4200 personnel.

Siemens sells a wide variety of technology solutions to a broad spectrum of customers. In general, we sell to utilities, federal and state governments, cities, site owners (both residential and commercial, including for workplace charging), transit authorities, non-utility charging network providers, etc. Siemens offerings in eMobility encompass what we refer to as the plug to the grid hardware and software ecosystem – and cover light, medium, and heavy-duty vehicles as well as off road solutions such as:

- hardware and software for charging light, medium, and heavy duty vehicles;
- software and services, including smart phone apps, for managing charging and engaging electric vehicle and electricity customers;
- make-ready equipment ranging from transformers to service drops;
- utility software to plan, operate, and manage the grid, including integrating EV charging into system operations;
- software to run transmission grids and wholesale electricity markets;
- battery storage and microgrid systems for DC fast charging installations; and
Siemens sees eMobility as a pivotal trend not just for people but any item that needs to move from one point to another -- and the goal of our policy efforts is to promote public policies and global best practices to drive market growth and consumer adoption of EVs through lowering the Total Cost of Ownership (TCO).

Questions

Siemens submits below, responses to select questions posed by the Commission. However, it reserves the right to comment on the remaining questions during the tenure of this proceeding.

1. **What role should the utility play in supporting Electric Vehicle Supply Equipment (EVSE) deployment? Please address this question from the perspective of utility ratepayers, Electric Vehicle (EV) suppliers, and providers of EVSE.** How should utility investment costs, if any, be compensated or recovered? Should utilities have the opportunity for earnings adjustment mechanisms related to successful EVSE deployment?

SIEMENS: Electrification of transportation is a key driver for New York’s ambitious Reforming the Energy Vision strategy that will enable the building of a cleaner, more resilient and affordable energy and transport system. **In order to do so, New York needs to fully leverage utility assets and capabilities to maximize the benefits associated with EV ownership and operation to animate the market.** In our opinion, the charging market should be open to all relevant participants, including the utilities. Several states have reached the conclusion that utility participation in EV charging is not only beneficial but, in some cases, necessary, to achieve state policy goals for EV adoption. Within the last few months alone, public utility commissions in Florida, Washington, Oregon, Massachusetts, Nevada, Ohio, and California have approved utility investments in EV charging infrastructure. Contrary to arguments made by a minority of parties, we have not seen a single instance where utility participation has harmed competition in the EV charging infrastructure market (as per our testimony in Oregon¹).

EVs offer the obvious benefit to their owners (or operators) of providing transportation and to society of reducing air emissions. However, EVs also offer important benefits (or can impose

¹ In the matter of Portland General Electric’s application for Transport Electrification Programs, Docket No. UM 1811
additional costs) to the electricity grid, wholesale electricity markets, and integration of both centralized and distributed renewable generation. For the grid, EVs can provide peaking capacity and, thus, act as a non-wires alternative to traditional grid reinforcement when there is a need for additional capacity. For wholesale markets, EVs can provide peaking capacity and ancillary services such as imbalance energy. For renewable generation, EVs can reduce curtailments by using wind and solar energy at times of abundance (over-generation). We refer to these as the full value stack of EV benefits.

These benefits are widely recognized, but there is less discussion of how to capture the benefits. Capturing the full value stack requires:

- an end-to-end integrated system approach that is only possible via the active involvement and participation by the utility either alone or working with third-party service providers;
- seamless, low-cost, reliable, and efficient integration of EV charging data and operations with utility planning, operational, business, and customer systems; and
- a robust connection with the NYISO operational and market systems.

Utility planners can minimize their grid investment requirements if they know where and when EV charging loads are occurring and how those loads will grow over time. Utility operators can maintain reliability by having the same information in near real time, as well as the ability to either control such charging or accurately predict how EV owners (or their third party service providers) will control such charging in response to price signals. Utility customer engagement and charging management software can send price or control signals to smart phones and directly to EVSEs (or third party service providers), as well as allow consumers to program their charging preferences. Utility demand response program operators can use the EV data to bid peak demand reductions and ancillary services into the wholesale market. These are just a few examples.

Similarly, New York needs to fully leverage utility assets and capabilities to minimize the costs associated with EV ownership and operation to animate the market.
Utilities also have important assets and capabilities to reduce the total cost of ownership (TCO) – buying, owning and operating EVs. Lowering the TCO is critical to adoption of EVs. Of course, capturing the full benefits as described above directly reduces operating costs by minimizing electricity costs, including costs that might otherwise be required to reinforce the grid. Utilities can greatly reduce costs in three key areas: asset ownership and maintenance, chargers, and the consumer experience. In many situations, such as home charging – where 70% of charging is expected to occur\(^2\) – utilities can have the greatest ability to reduce these costs when they own EVSEs.

A core competency and central business model element for utilities has always been asset ownership and maintenance. They specialize, in part, in the distribution grid, which consists of very large numbers (millions) of widely dispersed devices that must operate safely and reliably with low maintenance costs for periods of decades. EVSEs are exactly this type of asset and, in fact, have many features in common with smart meters (data recording, communications, electronics in harsh environments, etc.). Utilities have the necessary expertise, business processes, and software for deploying, managing, and maintaining these assets.

Utilities can play a major role in reducing EV charger costs as well. One way is by procuring larger quantities of EVSEs. Another way of reducing costs is standardization, including promoting “smart chargers” with communications and metering capability. For example, just as all home networks run on WiFi, chargers should have common communications. Also, where cost-effective, chargers should have built-in metering sufficiently accurate to allow billing of EV-only tariffs – customers may not want dynamic pricing for their homes or businesses, but usually want it for their EV. These standard features allow for interoperability – a key requirement for cost reduction – and reduced risk of obsolescence. Regulators should not require specific standards but instead to make the point that such standards are essential to both short- and long-term cost reductions.

Utilities can also play a major role in minimizing consumer experience costs, a major barrier to EV adoption. For example, utilities can substantially reduce charging-related concerns and uncertainties for consumers when buying an EV. The utility can assist by being the trusted energy adviser regarding charger availability and requirements. Where the utility manages the solution, the consumer can rely on

\(^2\) - see Maryland PC44 Scenario Analysis in the Joint Parties Proposal, page 18
the utility’s experience, expertise, longevity, service delivery capability, service reliability, and other strengths in providing and maintaining the EVSE. The consumer can rely on the utility’s objectivity in qualifying EVSEs, estimating EV charging costs, helping manage EV charging hours for time-varying rates, and so on.

The Commission should provide guidance around cost recovery and support options that provide appropriate incentives for utilities that reflect the risks taken in making EV charging investments and offer opportunity for fair rewards for successful programs. Cost recovery itself can be accomplished through three mechanisms:

Rate basing is appropriate for investments that provide benefits to all or large groups of ratepayers, as is the case with rapid adoption of EVs generally. EV charging in public locations, multi-family dwellings, or disadvantaged communities – where private market players are not providing service and face significant cost challenges – are examples. Rate basing is well understood and agreed upon as providing both proper cost recovery and appropriate financial incentives.

Where the benefits accrue to single ratepayers, such as a home charging station, appropriate recovery can be achieved through charging the individual ratepayer. Fees should reflect the proper depreciation period for assets and recover ongoing maintenance and operations expenses. Note that, even in this case where EV owners are bearing the full costs, utility provision of the service promotes the overall adoption of EVs and, accordingly, delivers benefits to all ratepayers, not just participants.

A third option is performance-based ratemaking, where cost recovery is limited to recovering expenses, such as rebate payments. In these cases, it is essential to provide some sort of financial incentive to utilities, because there is risk in operating any program, and simple recovery of the expenses exposes the utility to the possibility of under collection. This is because unanticipated costs may arise, especially in new program types. PBR mechanisms could include the rate at which EVs are adopted, the speed with which interconnections to private charging stations are made, or other such metrics. PBR incentives need to be attractive enough to make EV charging programs a priority for utilities. The challenge with PBR incentives is that they are evolving and,
hence, uncertain. This creates additional risk and threatens to slow program growth and, therefore, EV adoption.

2. What are the most significant changes the Commission can make in order enhance the utilities’ roles in supporting EVSE deployment? What are the benefits and problems with utility ownership of EVSE?

SIEMENS: First, the Commission should provide guidance around cost recovery and support options that allow utility participation and provide appropriate incentives for utilities that reflect the risks taken in making EV charging investments as well as offer opportunity for fair rewards for successful programs. Second, the Commission should keep the market open to all business models, including utility ownership of chargers in appropriate circumstances, to ensure an open and competitive market. Contrary to arguments made by a minority of parties, we have not seen a single instance where utility participation has harmed competition in the EV charging infrastructure market (as per our testimony in Oregon).

We have enunciated our arguments in our response to Q1 for the benefits of utility ownership of EVSE, especially in the residential segment. The question the Commission should be deliberating is how to leverage utility capabilities to accelerate widespread eMobility and not who should (or should not) own the EVSE. In our opinion, this approach to policy making is extremely narrow and ties the Commission to a deliberation that is neither supportive nor conducive to the broader challenge of accelerating eMobility in the state.

Utility ownership of EVSEs should be permitted, because such ownership provides compelling benefits and actually promotes competition.

A major reason to allow the utility ownership option is that such ownership is the lowest cost and most reliable means of creating end-to-end technical solutions for electric vehicles as distributed resources to “assist in grid management, integrating generation from eligible renewable energy resources, and reducing fuel costs for vehicle drivers who charge in a manner consistent with

3 In the matter of Portland General Electric’s application for Transport Electrification Programs, Docket No. UM 1811
electrical grid conditions." (Note that the distributed resource is the electric vehicle itself, not the EVSE.) Another reason is that many markets are not served by third-parties, such as low-income, multi-unit dwellings, and school districts and transit agencies (for eBuses). Making these EVs grid assets requires linking wholesale markets or grid conditions with utility software applications managing the grid with communications solutions linking to the EVSE and management of the EVSE itself. Ownership gives the utility the maximum level of control in selecting and implementing elements of the solution in order to verify functionality, performance and operability.

The utility ownership option reduces the risk of stranded costs as well, by shifting more of the risk to the utility and because the utility is in better position to bear the risk. When the utility owns the EVSE it has greater flexibility and incentive in selecting and testing EVSE to verify long-term reliable operation. The utility has field crews throughout its service territory that can maintain, repair, or even relocate EVSE – crews that, with certainty, will be in place for the life of the EVSE. The utility has, and will have, the expertise to select and manage EVSE. If a customer chooses an EVSE from a company that exits the market five years from now, the utility-provided funding for that EVSE could well become a stranded asset – but would not be if the utility could take over ownership. Similarly, if a customer sells the EV or relocates, the utility can retrieve the EVSE and reinstall it elsewhere. Finally, utilities buying EVSE are better positioned to drive standards and interoperability – both of which reduce the risk of stranded assets.

The Commission should ensure that the customer has the choice to decide the model of EVSE ownership they desire by allowing the consumer option of choosing utility ownership.

Consumers may choose to opt for a third-party as well. Selecting, installing, and maintaining a smart (networked) Level 2 or DC EVSE is complicated and unfamiliar, a reason why many consumers or site-owners do not want the burden of selection on themselves, but, instead, want the choice of utility ownership as part of a convenient, turn-key solution. An EVSE is not like a home appliance. Selecting and installing a grid-supporting smart EVSE should not be equated with selecting and installing a refrigerator. Many consumers want a trusted entity to provide a convenient and reliable solution; with the utility ownership option, that solution can include selecting equipment, arranging for installation, operation, maintenance, repair, customer service, removal, and warranty. This is specifically true of complex deployments in medium and heavy duty categories such as transit bus depots or truck stops.

The utility ownership option allows for customer choice of the more consumer-oriented features related to a smart EVSE. An EVSE’s advanced features (viewing of charging consumption data, remote control, etc.) require software applications or service providers. This is where customers desire more choices, and these can be provided by the utility or third parties, as is the case for smart meter data applications (such as viewing consumption data on a smart phone).

Another benefit of the utility ownership option is scale economies. A utility buying even just 100 EVSE will get a much better price than a site-owner buying two or ten units. This is critical in driving down and managing costs, especially where the ratepayer is funding the programs.

5 Opening Testimony of Max Baumhefner, Melissa Whited, and Chris King, Sponsored by the Natural Resources Defense Council, the Greenlining Institute, Plug in America, the Coalition of California Utility Employees, Sierra Club, Environmental Defense Fund, the Alliance of Automobile Manufacturers, Greenlots, Siemens, and Emotorwerks on Residential Charging Infrastructure and Rates, at 11. Application 17-01-020 of San Diego Gas & Electric Company (U 902E) for Approval of SB 350 Transportation Electrification Proposals
Based on our global experience, as well as our ongoing observation and analysis, the utility ownership option is neither anti-competitive nor anti-innovation. First, those opposed to utility ownership of EVSE have not provided an actual case of such ownership having a negative effect on competition. Second, EVSE providers will still be selling their EVSE in the charging market, with equal opportunities to participate in utility procurements. Third, the market for EV chargers will be larger. Fourth, non-utility entities will remain free to compete to sell to EVSE users and site owners or expand their own public charging networks, leveraging whatever advantages they have. Our belief is that the utility ownership option has many benefits but that third-party ownership can also have advantages in a number of situations as well – and that having open markets with participation by both utilities and third parties will allow markets and customers to determine the optimum long-term ownership mix. Consumers should have choice, and the utility ownership option should not be taken away from consumers.

Moreover, the utility ownership option drives innovation. Vendors selling to utilities compete intensely on price and product capabilities, including features and reliability. Siemens sees this every day in thousands of utility procurements for everything from transformers to smart meters. Utilities are sophisticated buyers who demand the latest capabilities and ongoing improvement. This intense competition drives robust and rapid innovation, as well as price competitiveness – with companies like ours spending very large amounts on research and development to remain competitive.

So long the Commission ensures that the utility role is not anti-competitive, in our opinion there are no specific problems to utility ownership of EVSE.
3. What role should the utility play in encouraging EV adoption? Should the role of the utility extend beyond customer education and awareness? Please address this question from the perspective of utility ratepayers, EV suppliers, and providers of EVSE. How should utility costs, if any, be compensated or recovered?

SIEMENS: There are two critical roles that the utility should play in driving the adoption of EVs:

- Provide available and accessible charging infrastructure
- Empower consumers to understand and have easy access to comparative “fuel”, i.e., electricity rate options

We have illustrated in our responses for Q1 & Q2, the benefits of utility ownership of EVSE and the various roles the utility can play to provide charging options to the EV driver – a key barrier to wide scale adoption of EVs. Publicly funded infrastructure via the utility should be based on open payment standards with credit card as a minimum – this will ensure consumer convenience and familiarity as well as ensure that the charging stations are accessible to all users without the inconvenience of enrolling in memberships or associations even if these are “free”. A utility role in infrastructure deployment will ensure provision of services across all consumer classes and income levels thereby promoting equity and availability.

“Fuel” costs are a big item in lowering the TCO of EVs. Utilities can develop EV-only rates that are dynamic which can incent the customer to charge at off-peak hours or during the day in instances of renewable over-generation when the wholesale prices can often be negative. This is a win-win for both the customer and the grid. Consumer advocates argue, and we agree that consumers should be allowed to have TOU rates apply only to their EVs, without imposing such rates on the whole home or business through “EV-only” tariffs. A number of metering options are available for this approach, which should be entirely voluntary for the consumer.

With regard to customer education and awareness, our opinion is for the Commission to seek information and cost synergies between the various public and private initiatives on this topic. The critical need is for the customer to be able to access a single reliable information source.

(preferably an online resource) that contains all the relevant details with regard to EV infrastructure types, purchase, deployment and management. The need is for accuracy and availability of information – fragmentation or multiple sources do not equal positive customer experience. Siemens respectfully requests that the Commission review this topic with intent to provide the customer effective information they need to go electric versus more ratepayer funds being spent on multiple awareness campaigns with little or no returns in terms of actual education and conversion (via empirical campaign measurements).

4. What is the best way for utilities, charging station providers, and site hosts to work together to locate charging stations where they best meet electric system, customer, and community needs? What data is needed to further this collaboration?

SIEMENS: It is difficult for charging station providers to work with one another to best meet system and community needs, because the companies compete. A pragmatic solution is to have an overall assessment plan prepared at the state level that determines what charging infrastructure is needed to achieve New York’s EV adoption targets as well as climate goals. This is the path California is taking, where the Legislature just passed AB 2127. With an integrated plan in place, utilities, charging station providers, and site hosts can independently consider how their own investments can move the plan forward and without explicit collaboration that competition prevents. This approach also has benefits in terms of access to data, because competitors are not asked to share data with one another, but instead with a neutral, government party. Data important to such an infrastructure plan includes locations of existing chargers, utilization rates, utilization of different charger types (e.g. Level 2, DCFC), utilization levels of existing distribution infrastructure (less loaded/more loaded transformers and substations), and, importantly, investment plans by utilities, charging station providers, and site hosts. And those plans can be aggregated and shared anonymously with all three entity types and without disclosing sensitive competitive information.
5. *Are there any communities or customer groups that require special consideration in the placement of EVSE facilities? What role should the utility play in encouraging or facilitating increased EV usage by low- to moderate-income households?*

SIEMENS: Siemens supports equitable distribution of EVSEs across society. While we have shared how utilities can ensure access to all consumer classes including low income and disadvantaged communities, we would like to point out that availability of EVSE without corresponding affirmative actions by the state on access to EVs (private and public) leads to under-utilization of infrastructure and consequently of public and ratepayer funds. So while states like California have mandated 30% - 40% of utility charging infrastructure investments towards low income, given the absence of EV availability or access to purchase, these investments may prove to be expensive in the short to medium term with regard to return-on-investments.

6. *What rules, requirements, and standards are needed to enable EVs and EVSE to operate as a source of grid services and system value, including possible data and instrumentation needs?*

SIEMENS: Regarding rules, requirements, and standards, we note the following with reference to our comments in Q1 with regard to what is needed to capture the full value stack of grid benefits:

1. Utilities should be able to provide “plug-to-grid” solutions to consumers that link chargers to utility back offices and to wholesale markets
2. Consumers should be allowed to select EV- only tariffs as referred to in Q3
3. Publicly-funded charging infrastructure, specifically chargers, should comply with open technical standards. Widely adopted and relevant standards to achieve the above results include OCPP and OpenADR. Siemens recommends that regulators direct utilities to purchase EVSE that comply with open standards, that utilities should have the final choice of which standards to select, and that OCPP and OpenADR are among the “promising open standards available” for these functions.
4. Publicly-funded chargers should be “smart” and include capabilities for remote communications and internal metering of interval consumption to support billing of time-varying pricing.
7. What are the barriers to treating EVs and EVSE as Distributed Energy Resources (DERs)?
How does rate design affect the ability of EVs and EVSE to provide this value?
How does rate design affect the extent to which the value provided by EVs and EVSE
(including environmental and economic benefits) is compensated?

SIEMENS: As context, EVSE are not DERs; in the absence of a connection to an EV, EVSE have no ability to provide generation, storage, or consumption resources. The EVs themselves are the DERs; the EVSE are merely an electrical connection to the DER. An analogy is an inverter associated with a solar panel.

There are at least three major barriers to having EVs act as DERs.

The first is metering. Without interval metering, it is impossible to determine the time-varying value of EVs to the grid and to wholesale markets. The metering must be at the EVSE level to accurately determine the costs and benefits of the EV acting as a DER (i.e. reducing on-peak consumption and increasing consumption when renewables are abundant and wholesale prices low).

The second barrier is communications. Data from the EVSE meter must be delivered to the cloud and/or utility for use in determining the value, and control and programming signals must be deliverable to the EV via remote communications. A local timer on board the EVSE or EV could respond to simple TOU rates but is incapable of delivering the far greater value associated with hourly pricing or demand response events dispatched by the market operator.

The third barrier is integration with IT systems. Data for billing, signals for controlling EV charging, and other communications to or from EVs need to be integrated with back-office systems to create, capture, measure, and monetize – through rate design – the DER value of EVs.

Rate design is the single mechanism that allows for monetization of the value of EVs as DERs. The more that rate design reflects disaggregated costs of wholesale power and distribution grid investments, the more that DERs can respond to price signals, provide value shifting load, and capture the value of that shifting. The more rates are averaged, the less value EVs can
provide/capture; the more rates reflect time-varying wholesale costs and local distribution constraints, the more EVs can respond to reduce those costs. Rates can also include price signals reflecting environmental factors, such as the cost of carbon emissions, thus increasing the ability of EVs as DERs to respond to those signals and deliver value.

8. Should EVs and EVSE be treated as DERs? If so, what factors need to be addressed to include EVs and EVSE within the DER market and compensation structure for DERs?

SIEMENS: EVs, not EVSEs, should be treated at DERs given that they can be a source of distributed energy via the battery. EVSE is the conduit which enables the EVs to become a DER when the EVSE is “smart” i.e. networked and sub-metered. Smart charging or managed charging is key to EVs being a DER and providing grid benefits through demand-side management initiatives including dynamic pricing.

The barriers referred to in Q7 need to be addressed.

9. What considerations should be taken into account in designing rates for charging stations? For example, should a typical three-part tariff (customer, demand and energy charge) be applied? Should the rate design be different for residential versus commercial use? Should the rate design be expected to change over time as EV penetration increases? Should time-of-use rates be required for EV charging? Should utility residential EV charging tariffs (filed in Case 18-E-0206) be modified? Please address these questions from the perspective of utility ratepayers, EV owners, and EVSE suppliers.

SIEMENS: Rates for chargers should reflect disaggregated costs of wholesale power and distribution network resources, differentiated by time of day. Time-varying tariffs should be available to EV chargers as EV-only tariffs, allowing consumers to maintain their home or business on non-time-varying rates. We recommend demand charges be limited to business customers who are already familiar with them. Given low utilization of chargers in today’s nascent market, we recommend a phase-in of demand charges over ten years for commercial sites, as is being done in Oregon, Nevada, and California.
Time-varying rates should be optional, especially in the absence of EV-only tariffs. Most EV drivers prefer time-varying rates, and the savings they offer, for their EVs, especially when the rates are available on an EV only basis. Time-varying rates save money for EV drivers as well as ratepayers, by reducing system costs. EVSE providers, such as Siemens, prefer them, because they reduce the TCO (thus promoting market adoption), as well as enable savings options beneficial to EV owners using smart or non-smart charging EVSE.

10. How should the cost of recovering distribution network upgrades for EVSE be recovered if not through the demand charges?

SIEMENS: Demand charges are a time-tested solution to recovering the cost of distribution network upgrades. EV charging is not fundamentally different from any other use of the grid, except that NY state policy promotes EV adoption. This argues for temporary mitigation but not elimination of demand charges. Another possibility is to consider average demand for the month and develop demand charges for that approach, as opposed to the typical approach where the demand charge is based on the highest 15 minutes of consumption in the month. The benefits include still having a price signal explicitly for demand and having a price signal that continues throughout the month (with the traditional approach, once a very high demand has been registered, there is no incentive to remain below that very high peak for the remainder of the month). A third possibility is time-differentiated demand charges, with higher charges during peak hours and lower charges off peak.

11. In designing EV and EVSE programs, how can the Commission ensure compatibility with ongoing regional initiatives, programs offered in other states, and potential private investment?

SIEMENS: We recommend that the Commission take a comprehensive approach for eMobility for the state of New York. This will enable the Commission to understand what, when and where the EV infrastructure is required. Based on this analysis, the Commission can map how to integrate into regional and private initiatives already underway which support the state’s overall plan. Doing so will allow for efficient and directed use of public funds towards building infrastructure.
California passed Assembly Bill 2127 last month which directs the Energy Commission to develop a comprehensive need assessment for EV infrastructure for the state on a biannual basis across all vehicle categories and on-road/off road segments.

12. Should the Commission address electrifying light-duty passenger vehicles, and medium and heavy-duty vehicles within this Case?

SIEMENS: We recommend that the Commission take a holistic view of the transport sector in this Case. This includes not only vehicle categories (i.e. light duty, medium duty and heavy duty) but off-road electrification as well such as port and airport equipment.

13. How should Staff structure future stakeholder engagement in this proceeding? Should additional issue-specific working groups be held prior to Staff issuing recommendations?

SIEMENS: We thank the Commission for seeking feedback on the engagement process. We encourage the Commission to make the process both time and resources efficient so that interested stakeholders are able to participate effectively. While issue-specific working groups can be productive, they entail time and cost for participants.

In our opinion, the Commission should use the staff paper – stakeholder comment – reply comment process before arriving at a draft decision. At this point, a stakeholder workshop should be hosted to discuss this draft before a final decision is issued. However, in our opinion, the Commission should first identify no more than five priorities that this case should address.

###